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ABSTRACT. If n-tuples g, h in a rank 2 free group satisfy the same existential
formulas, then there is an automorphism taking g to h.

Fix a prime p. Then Fj is, up to isomorphism, the only k—generated
group having all finite k—generated p-groups as homomorphic images.

The theory of nonabelian free groups has no prime model.

1. Introduction

This works contributes to the understanding of the model theory and the structure
of free groups. In the first two sections, we study the extent to which the first—
order properties of an n—tuple g in a free group F' determine its orbit. We show
that in F, if n—tuples g, h satisfy the same existential formulas, then there is an
automorphism of F, taking g to h. In particular, F, is w—homogeneous (as defined
in model theory). We present partial results along these lines for other free groups.
In the third Section, we give a characterization of Fj. Fix a prime p. Then F}
is the only k—generated group having all finite k—generated p-groups as homomor-
phic images. In [1, Question (F14)], it was asked whether any finitely generated
(f.g.) residually finite group G with the same finite homomorphic images as Fy, is
isomorphic to Fj. By our result, this is true if G has rank at most k.
Understanding f.g. groups through their finite images has been a recurrent theme.
For instance, both Wehrfritz and Robinson proved that a f.g. solvable group is
nilpotent iff all its finite images are nilpotent (see [9, Thm 15.5.3]).

A structure A is a prime model of a theory T if it is the least model of T, in the sense
that A is elementarily embedded into any other model of T'. For instance, (N, +, x)
is a prime model of Th(N, 4, x). The concept of a prime model is basic in model
theory. In the final section we observe how the recent result of Kharlampovich
and Myasnikov [5] that all nonabelian free groups have the same first-order theory
implies that this theory has no prime model. This contrasts with a result of the
author [8, Cor. 5.3]: the free step-2 nilpotent group of rank 2 is a prime model of
its theory.
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2. Test tuples are 3—determined

We begin with some definitions. We use the first—order language with symbols
{o, 71,1} for the group operation, inverse and the neutral element. An 3-formula
is a formula 3z ...3z, 9, where ¢ is a quantifier free formula. If ¢ contains no
negation sign, the formula is positive. Let G be a countable group. If g, h € G™, we
write § =3 h if g, h satisfy the same I-formulas. An n-orbit of G is an orbit under
the action of Aut(G) on G™.

Given g, if h is in the same n—orbit as (g), then clearly h satisfies the same first—
order formulas as g. If the converse holds, g is called first—order determined. The
following is a stronger property: g is 3-determined if each h such that A =3 g is in
the same n—orbit as g.

Consider G = Fj,. Next we define sets T'(g) and T*(g) (for k¥ = 2) which capture
how the n—tuple g can be expressed by terms of the group language applied to
elements u1,...,ug.

DEFINITION 2.1. Let G = F(x1,...,xk) be the free rank k group and let g € G™.

(1) T(g) = {tl,...,tn €qG: Elul,...,uk € G/\lgisng,’ =ti(u1,...,uk)}.
(i) k=2, let T*@) = {t1,...,tn € G :
3’&1,’&2 eG ([’LL1,’LL2] # 1& Alfifn gi; = ti(ul,’LLz))}.

Clearly, “t1,...,t, € T(g)” can be expressed by a positive 3-formula about g, and
“t1,t2 € T*(g)” can be expressed by an 3-formula.

LEMMA 2.2. (i) T(g) CT(h) iff there is an endomorphism a of Fy}, such that
a(gi)) =hi 1<i<n)
(i) In case k = 2, T*(g) C T*(h) iff there is an monomorphism o of G such
that a(g;) = h; (1<i<n).

Proof. The direction from right to left is trivial for both (i) and (ii) . To prove the
other direction, choose a base by, ..., b for Fy. For (i), choose t1,...,t, such that
gi = ti(b1,...,bg) for each i. Since T(g) C T'(h), we may pick ui,...,u; € G such
that h; = t;(u1,...,ug). If a is the endomorphism of G given by «a(b;) = u;, then
a(gi) =hi (1<i<n).

For (ii), since T*(g) C T*(h), we can choose uj,u2 € G as above such that, in
addition, [ug,us] # 1, so that a is a monomorphism. O

The following was studied by Turner [10]

DEFINITION 2.3. A tuple § = g1,---,9n of elements of a group G is called a test
tuple if each endomorphism ¢ : G — G fizing all elements g; is an automorphism.
The tuple is called a test tuple for monomorphisms if each monomorphism ¢ : G —
G fizing oll elements g;, 1 <1i < n, is an automorphism.

For instance, if g generates G, or, more generally, a subgroup of finite index of G,
then g is a test tuple.

PROPOSITION 2.4. Suppose G is a test tuple in Fy,. Then g is I—determined.

Proof. If § =3 h, then T(g) = T'(h). By Lemma 2.2, we can choose endomorphisms
a, B of Fy such that a(g;) = h; and B8(h;) = ¢; (1_3 i < n). Clearly § o« fixes g.
Therefore a is an automorphism, showing that g, h are in the same n—orbit. O
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COROLLARY 2.5. If g generates a subgroup of finite index of Fy, then g is 3—
determined.

COROLLARY 2.6. If a: Fy, — F}, preserves A—formulas in both directions, then « is
an automorphism.

Proof. a(b) satisfies the same 3-formulas as b does, so by Corollary 2.5, a(b) must
be base. &
Let V be a variety. The definitions and the proofs of our results above, except
(ii) of Lemma 2.2, carry over to the relatively free group Fy (k) for the variety.
Thus, a base, or more generally, a tuple generating a subgroup of finite index is
3-determined in Fy (k).

3. F, is 3-homogeneous

A group G is called 3-homogeneous if for all n > 1, all n —tuples in G are 3-
determined. To prove that F» is 3-homogeneous, we need (ii) of the following
result. The result was obtained by Turner [10] for 1-tuples, but the proof carries
over to the general case. Recall that a retract of a group G is a subgroup Im(p),
where p : G — G is an endomorphism such that pop = p.

THEOREM 3.1 ([10]). (i) g is a test tuple in Fy iff, for each proper retract R
of Fy, there is an i such that g; ¢ R.
(ii) g is a test tuple for monomorphisms in Fy, iff, for each proper free factor
L of Fy, there is an i such that g; ¢ L.

THEOREM 3.2. F, is 3-homogeneous.

Proof. Suppose g, h are n—tuples in Fy and g =3 h. Then T*(g) = T*(h). First
assume g is a test tuple for monomorphisms. By (ii) of Lemma 2.2, we can choose
monomorphisms «, 8 of Fy such that a(g;) = h; and 8(h;) = g; (1 <i <n). Then
B o« fixes g, so « is an automorphism.

Otherwise, by Theorem 3.1, the subgroup generated by g is contained in a proper
free factor of F,. Thus there is a primitive element ¢ such that g; = ¢™ for some
r; € Z (1 <i<n). Now we apply the following fact.

LEMMA 3.3. Suppose ¢ € Fy, is a primitive element and a(d) = ¢ for a monomor-
phism a of Fy,. Then d is primitive as well.

Proof. Pick a base ¢, ba,...bg of F(k). Let U be the range of a. We claim that ¢
is primitive in U. Choose a Nielsen reduced base u,...,u; of U (see Lyndon and
Schupp [6]). Since ¢ € U, a non-cancelling product of m elements of this base or
their inverses is a word of length > m [6, Prop. 2.13]. Then necessarily ¢ = u; or
¢ =u; ' for some i. Thus c is primitive in U, and hence d = a~'(c) is primitive in
Fy. B O
Since g =3 h, there is d € F» such h; = d™ for each i < n. Since T*(g1) = T™*(h1)
and the extraction of roots is unique in a free group, T*(c) = T*(d). By (ii) of
Lemma 2.2 there is a monomorphism « such that a(d) = ¢. Then, by Lemma 3.3,
d is primitive. Thus g, h are in the same n—orbit. O

We do not know whether the free groups F, k > 3, are also 3-homogeneous (or
w—homogeneous at all). By Proposition 2.4 and (i) of Theorem 3.1, it remains to be
shown that g is first—order determined when g is contained in a proper retract R.
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(The following might be useful here: by [2], retracts in f.g. free groups are closed
under intersection, so that there is a unique least retract R containing g.)

4. Finite homomorphic images

Recall that if V C F(x1,%2,...) and A is group, then V(A) is the (fully invariant)
subgroup of A generated by all elements v(a1,-..,a,), wherev € VNF(x1,...,2;)
and ai,...,a, € A. For instance, if V = {[z1,...,2,]}, then V(A4) is the r-th
member of the lower central series, also denoted by ~,.A. The following lemma, is
easily verified.

LEMMA 4.1. (i) If A, B are groups and f : A — B is an epimorphism, then
f maps V(A) onto V(B).
(ii) If N< A, then V(A/N) = (V(A)N)/N.
¢

THEOREM 4.2. F}, is, up to isomorphism, the only k—generated group having all
finite nilpotent k—generated groups as homomorphic images.

Proof. Let F = Fy. It suffices to show the following: if a € Fy, — {1} generates
the normal subgroup N, then there is a k—generated finite p-group @ which is not
a quotient of F//N.

Since F' is residually nilpotent [4, Thm 14.2.2], there is a least ¢ > 1 such that
a & v.F. Let H = F/~v.F be the free step-c nilpotent group of rank k, and let
N = (Nv.F)/~.F. Tt suffices to find a finite step-c nilpotent p-group @ of rank < k
which is not a quotient of F/(y.FN) = H/ N. For suppose such a Q is a quotient
of F/N, and choose an onto homomorphism f : F/N — Q. By (i) of Lemma 4.1,
the induced map (F/N)/v.(F/N) = Q/~.Q = Q is onto. But, by (ii) of the same
Lemma, the group on the left equals F/(N~v.F).

Let A=r~._1H. Then a = (7.F)a € A, and A is contained in (and in fact, equals)
the center of H. Clearly A is f.g., since f.g. nilpotent groups satisfy the maximum
condition for subgroups. Because free nilpotent groups are torsion free [7, 31.62],
A is a f.g. free abelian group. Choose a basis by, ..., b, of A in a way that a = b}
for some ¢ € N, and pick r so that p” > q.

CLAIM 4.3. For each prime p and each r > 1, there is step-c nilpotent finite p-group
Q of rank < k such that v.—1Q = Zj;.

The group @ given by the Claim is as desired, namely @) is not a quotient of
H/N. For suppose so. Then, by (i) of Lemma 4.1, A/N = ~._1(H/N) maps onto
Ye—1Q = Zy;: via an epimorphism F. But A/]V 2 Zyx Z™ 1. If p does not divide
q this gives an immediate contradiction. Otherwise ¢ = p® where s < r. Let ¢ be a
generator for Z, in Z,xZ™~!, and let L = kerF(c). Then we obtain an epimorphism
(Zg x Z™~Y)/L — Z:/F(L). The group on the right has rank m, since F(L) is
contained in the subgroup of elements of order < p"~1). Contradiction.

Proof of the Claim. We obtain @) as a quotient of H. As above, let by,...,b,, be a
basis of the free abelian group A =+, 1H, and let R = p"A. Since R is contained
in the center, R < H. Since H/R is a f.g. nilpotent group, it is residually finite
(see [4, Ex. 17.2.8]). So we may choose M, R < M < H such that H/M is finite,
and none of the finitely many nontrivial linear combinations of the Rb; is in M/R.
Let Qo = H/M. By (i) of Lemma 4.1, v.-1Qo = (M~.—1H)/M is the image of
Ye—1(H/R) under the natural map 5 : H/R — Q¢ (whose kernel is M/R). Then,
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since the elements n(Rb;) are linearly independent, v.—1Qo = Z}'. Finally, Qo is
the direct product of its g—Sylow subgroups. Let @) be the p—Sylow subgroup, then
Q is a quotient of Qp and v, 1Q = Y.-1Qo- &

5. Prime models

Using Kharlampovich and Myasnikov [5], we observe that the theory of non-abelian
free groups has no prime model. We use the following well-known fact.

PROPOSITION 5.1. Let A be a countable structure. Then A is a prime model of its
theory iff each n—orbit is first—order definable without parameters in A. &

In F(a,b), the orbit of [a, b] is the union of the conjugacy classes of [a,b] and [b, a,
while in Fy, k > 2, each nontrivial orbit splits into infinitely many conjugacy classes
(see [6, 1.5.1]). This implies

LEMMA 5.2. If the 1-orbit of [a,b] is definable without parameters in F'(a,b), then
F(a,b) does not satisfy the same sentences as Fy, for 2 < k.

Proof. If the orbit is definable by a formula (z), the sentence saying that there
are exactly two conjugacy classes of elements satisfying ¢ is true in F(a,b), but in
no group Fy for k > 2 (since the set of elements satisfying ¢ contains an orbit). {

THEOREM 5.3. Th(F) has no prime model.

Proof. If there is a prime model P, it can be elementarily embedded into F5.
Then P is a free group. If P has rank > 2, then for suitable words ¢; in F», three
generators go, g1, g2 of P satisfy the existential formula Jz3y A,_, ,9i = ti(z,y)
in F5, but not in P. Thus P is a free group F(a,b) of rank 2. By Proposition 5.1,
the orbit of [a, b] is definable without parameters, whence F'(a,b) does not satisfy
the same sentences as F for 2 < k. Using Lemma 5.2, this contradicts the result
of Kharlampovich and Myasnikov [5]. &
An important question which remains in the model theory of free groups is whether
the theory of a non-abelian free group is stable. Stability would mean that there
is no formula ¢(Z,y), where %,y are tuples of variables of the same length, which
determines linear orders on (not necessarily definable) arbitrarily large finite sets
of tuples. It is known that the theory is not superstable (see [3, p. 694]).
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