
A Uniformity of Degree Structures�Andr�e NiesAbstractWe isolate a fact which holds for various degree structures arising fromrecursion theory and complexity theory and makes it possible to provethe undecidability of their theories in a more uniform way than in theoriginal proofs, namely by interpreting the lattice of �0k{sets for somek. Dedicated to Kena Prosper1 IntroductionA reducibility �r gives a method to compare sets of natural numbers withrespect to their computational complexity. Reducibilities are preorderingson sets; the r-degree of a set X, denoted by degr(X), is the equivalenceclass of all sets which have the same complexity as X. The r-degrees forman uppersemilattice (u.s.l.). Here we discuss the restricted u.s.l. Rr of r-degrees of recursively enumerable sets with respect to reducibilities arisingfrom recursion theory (e.g. Turing- or many-one-reducibility), as well as thepartial order of r-degrees of the recursive sets with respect to subrecursivereducibilities (e.g. polynomially bounded Turing- or many-one reducibility).Investigations of these degree structures usually show that they behave ina di�erent way rather than leading to uniformities. For instance, some r.e.degree structures possess minimal degrees whereas others are dense. Anelementary di�erence between any two r.e. degree structures (viewed as�Part of this research appeared in the author's Ph.D. Thesis. This research was sup-ported under NSF-grant DMS-9500983 1



partial orders) exists already at the two-quanti�er level, except for the caseof r.e. tt- and btt-degrees. Undecidability of the theories was shown by widelyvarying coding schemes, relying on speci�c properties of the reducibility inquestion. Here we prove that a fact, called the Exact Degree Theorem, whichonly depends on a parameter k 2 f2; 3; 4g, is shared by all degree structuresdiscussed in this paper. This fact suggests a uniform coding scheme forproving undecidability of the given degree structure, namely interpreting withparameters the lattice Ek of �0k-sets under inclusion. The number k could becalled the arithmetical complexity of the reducibility, namely k is the leastnumber such that fhi; ji : Xi �r Xjg is in �0k, if we assume an appropriatee�ective enumeration (Xi) of the sets in question. In the recursion theoreticcase, we let Xi = Wi. In the complexity theoretic case, we restrict ourselvesto some recursively presented ideal of the u.s.l. of recursive r-degrees: thus weassume a uniformly recursive listing (Xi) of sets of words in f0; 1g� such thatfdegr(Xi) : i 2 !g forms an ideal. For instance, (Xi) could be an e�ectivelisting of the primitive recursive or of the elementary recursive sets. Thearithmetical complexity is 2 for subrecursive reducibilities, 3 for many-one,btt, tt and wtt-reducibility, and 4 for Turing- and Q-reducibility.The two notions involved in an Exact Degree Theorem are independentsequences and e�ectivity of sequences. A sequence (ai)i2! of elements of adegree ordering is called independent if an 6� supi2F ai for every �nite setF � ! and each n 2 ! � F , and e�ective if ai = degr(Xf(i)) for somerecursive function f . For an e�ective sequence (ai) and an element b of thedegree structure under consideration, the set fi : ai � bg is �0k. The ExactDegree Theorem states the converse, if the sequence is independent:For independent sequences (ai), each �0k-set S can be representedas fi : ai � bg for some degree b.We call b an exact degree for fai : i 2 Sg. The coding scheme to prove unde-cidability of the theory relies on the assumption that for some independente�ective sequence (ai), the set fai : i 2 !g is de�nable from parameters,using a formula �(x;p) (where p is the list of parameters). Represent thenumber i by the degree ai and a �0k-set S of numbers by a degree b, i.e.S = fi : ai � bg. Then inclusion of sets represented by the degrees b; c isde�nable from parameters: the formula�(b; c;p) �def (8a)[�(a;p)! (a � b! a � c)]2



expresses that fi : ai � bg � fi : ai � cg. So Ek is elementarily de�nablewith parameters in the degree structure, and undecidability follows by modeltheoretic methods ([BM81], see also [ASNA92]) from the fact, proved in[Her84], that Ek has a hereditarily undecidable theory.The existence of such a de�nable sequence can be shown for all recursiontheoretic reducibilities and for the complexity theoretic reducibilities�pm;�pTif the recursively presentable ideal is large enough. To prove the existence,speci�c properties of the reducibility are exploited, whereas the proof of theExact Degree Theorems can be given for each k uniformly. See [ASNA92]for wtt-, [NS95] for tt-, [Nie92] for btt-, [Nie93] for m- and [NSS] for T -reducibility. Also see [ASN92] and [SS91] for �pm;�pT , respectively.The results are also interesting from the point of view of de�nability: Ekis elementarily de�nable in a very direct way, since each degree represents a�0k- set. An extended version of the Exact Degree Theorems can be provedwhich shows that also the inclusion relation on �0k-sets is given directly bythe degree ordering: if S � T are �0k-sets, then S = fi : ai � bg andT = fi : ai � cg for some degrees b; c such that b � c.The idea of obtaining undecidability by de�ning Ek was �rst applied in[ASNA92] for the r.e. wtt-degrees and in [ASN92] for the polynomial timem-degrees of recursive sets. There, exact pairs for ideals instead of exact degreeswere used to represent the �0k-sets, so the coding is a little less direct. Forde�nitions and basic facts about reducibilities in recursion theory, see [Odi89],and for reducibilities in complexity theory see [BDG88].The degree structures considered here fall into three groups, determinedby the arithmetical complexity k. For each group, there is one version of theExact Degree Theorem. The general scheme for the proofs is that, for eachi, coding requirements try to code Ai into B, while, for every r-reductionprocedure [n], diagonalization requirements try to cause Ai 6= [n]B. If i 2 S,then some coding requirement succeeds. Otherwise, for each n some diago-nalization requirement associated with [n] succeeds. Using the fact that S isa �0k-set we can choose a uniformly recursively enumerable (u.r.e.) sequenceof sets (Xk) so that the value of S(i) depends in an appropriate way on thesubsequence (Xhi;ni)n2!. The actions of the Requirements concerned with Aiare controlled by this subsequence. The groups considered are1. k = 2: recursively presented degree structures given by subrecur-sive reducibilities, e.g. polynomially time bounded reducibilities andLOGSPACE reducibility; 3



2. k = 3: r.e. m-, btt-, tt- and wtt-degrees, as well as r.e. degrees withrespect to other tt-like reducibilities (see [Odi89]);3. k = 4: r.e. Turing- and Q-degrees.In Sections 2, 3 and 4, we give a proof of the Exact Degree Theoremfor each group. We also brie
y consider the enumeration degrees of �02-sets,which possess arithmetic complexity 4 and satisfy the Exact Degree Theoremfor k = 4. However, they will be treated like the members of group 2, usinga similar construction relativized to ;0.It is possible to handle the reducibilities in the groups 1 and 2 on thebasis of very weak axioms. First we introduce some notation:Notation. We �x an e�ective pairing function h; i on natural numbers, withe�ective projections, which is monotonic in its arguments. X [i] denotes theset fx : hx; ii 2 Xg, and Li2F Ci stands for fhx; ii : x 2 Ci ^ i 2 Fg. In thecomplexity theoretic case, we �x f0; 1g as the alphabet. Numbers are writtenin binary, h; i is a polynomial pairing function, monotonic in its argumentswith polynomial time computable projections such that jhx; yij � jxj; jyj.For all reducibilities we require the following 4 axioms:(A1) The reducibility is a preordering on sets of numbers (words, in thecomplexity theoretic case).(A2) X �r Y does not depend on �nite variants of X and Y .(A3) The degree structure induced by the preordering on all sets is an u.s.l.,the supremum is given bysup1�i�n degr(Ai) = degr(�1�i�nAi):(A4) As a fourth axiom, we require in the recursion theoretic case thatX �m Y ) X �r Y:In the complexity theoretic case, in order to include honest reducibili-ties and LOGSPACE reducibility, we only require that, for each wordc, an m-reduction via the map x 7! hx; ci is also an r-reduction.4



The �fth axiom is also di�erent for group 1 and group 2. Let (Me) be a listingof oracle Turing machines associated with the reducibility, and letMe;s(Z)(x)be the output of the computation of Me with oracle Z if this computationconverges in s steps, and 0 otherwise. The axiom required for group 1 is anabstraction from a property of polynomially bounded oracle computations:(A5) fX : X �r Y g = fMe;ge(jxj)(Y )(x) : x 2 !g, for an e�ective sequence(ge) of total recursive time bounds.It is essential that ge be total for each e; thus only restricted classes oftime bounds like polynomials or primitive recursive functions are acceptable,but not the class of all total recursive functions. The axiom (A5) holds forany polynomial bounded reducibility extending �pm, but also for LOGSPACEreducibility. The axiom implies that the arithmetical complexity is boundedby 2, since Xi �r Xj , (9e)(8x)[Xi(x) = Me;ge(jxj)(Xj)(x)]:For group 2, we use the following notation: given a partially recursivefunction f , letMe;s(Z; f)(x) beMe;s(Z)(x), if both f(x) and the computationconverge in s steps and the computation uses only oracle questions < f(x),and let Me;s(Z; f)(x) be unde�ned otherwise. Moreover, letMe(Z; f)(x) = lims Me;s(Z; f)(x)(i.e. Me(Z; f)(x) is de�ned i� Me;s(Z; f)(x) is de�ned from some stage on).Instead of (A5), we require that(A5*) fX : X �r Y g = fMe(Y; fe) : e 2 ! ^Me(Y; fe) totalg for an e�ectivesequence (Me; fe) of oracle Turing machines and recursive bounds on themaximal oracle question asked.It is easy to verify that all reducibilities in group 2 satisfy the axioms.The axiom (A5*) implies that the arithmetical complexity is bounded by 3,since an r.e. oracle can only change fe(n)+ 1 times on the interval [0; fe(n)):Wi �r Wj , (9e)(8x)(8t)(9s� t)[Wi(x) =Me;s(Wj;s)(x)]: (1)Finally, for the r.e. T -degrees, the arithmetical complexity is 4 (see [Soa87]),as well as for the r.e.Q-degrees: recall that, if C;D are r.e. sets, then C �Q Dif there exists a recursive function g such thatx 2 C ,Wg(x) � D (2)5



(see [Odi89]). Then Wi �Q Wj is �04 because fx : Wg(x) � Dg is �02. It isalso easy to verify that k = 4 for the structure of �02 enumeration-degrees.The axiom systems have trivial models, so the bound computed on thearithmetical complexity may not be optimal. But for reducibilities in thegroups above, independent e�ective sequences exist. So an application ofthe respective Exact Degree Theorems to a �0k-complete set shows that thebounds (with respect to the particular representations of the degree struc-tures) are optimal.2 The Exact Degree Theorem for reducibili-ties of arithmetical complexity 3We begin with the reducibilities satisfying the axioms for group 2.Theorem 2.1 (Exact Degree Theorem for arithmetical complexity 3)Let �r be a reducibility satisfying (A5*) (e.g. m-, btt-, tt- or wtt-reducibility)and suppose that (Ai)i2! is a u.r.e. sequence of sets such that degr(Ai)i2! isindependent. Then, for each �03-set S, there exists an r.e. set B such that,for all i, i 2 S , Ai �r B:Notation. We assume that a sequence (Me; fe) is given so that (A5*) issatis�ed, and write [e]Z(x) instead of Me(Z; fe)(x). Also we write A[F ] for�i2FA[i]. The proof contains an elementary tree construction on the binarytree T = 2!. We use standard notation from [Soa87, p. 301]. We �x somenumbering 
 7! n(
) of strings on T and write hx; 
i and X [
] instead ofhx; n(
i)and X [n(
)]. We also use the notation X [<
] etc. in the obvious sense(referring to the lexicographical ordering of strings) and sometimes writeX =� Y [n] instead of (a.e. z)[z 2 X , hz; ni 2 Y ] (the symbol \a:e:" standsfor \for almost every"). The notation X =� Y [
] is used in a similar way.Proof. By [Soa87, p. 66], for any �02-set P there exists a u.r.e. sequence(Xk)k2! such that each set Xk is an initial segment of ! and, for each k,k 2 P , Xk = !:6



Let S 2 �03. Then there exists a u.r.e. sequence (Xk) of initial segments suchthat, for each i, i 2 S ) (9n)[Xhi;ni = !] (1)i 62 S ) (8n)[Xhi;ni is �nite]: (2)We will have to guess at \Xk = ! ?" on a tree. To explain the strategies,we �rst ignore the necessity of such a guessing procedure. There are in�nitelymany coding requirements Chi;ni which try to achieve Ai =� B[hi;ni]. For eachn, there is a diagonalization requirement Qhi;ni associated with [n], whichtries to cause Ai 6= [n]B. We incorporate assumptions on the sequence (Xk)into the requirements as follows:Chi;ni : Xhi;ni = ! ) Ai =� B[hi;ni]Qhi;ni : (8n0 � n)[Xhi;n0i is �nite]) Ai 6= [n]B:The coding for Chi;ni is carried out whenever jXhi;nij increases. The strategyfor Qhi;ni simply consists in �lling up B[>hi;ni]: letl(hi; ni; s) = maxfx : (8y < x)[Ai(y) = [n]B(y)[s]]g:Whenever, at stage s, l(hi; ni; s) is greater than all previous values, thenenumerate [0; s)[>hi;ni] into B.We sketch how to show that Qhi;ni is met. Assume for a contradiction thati 62 S and that Ai = [n]B. By axiom (A5*), the last condition is equivalent tosups l(hi; ni; s) =1, using the same argument as for (1). By (2), the codingof the requirements Chi;n0i; n0 � n, ceases at some stage. ThereforeB =� B[fhj;mi:hj;mi<hi;ni^j 6=ig]:Inductively suppose that for each hj;mi < hi; ni, j 6= i, either Aj =� B[hj;mi]or B[hj;mi] is �nite. Then B �m �i2JAi, where J is the �nite set of �rstcomponents of such pairs hj;mi. Since i 62 J and Ai = [n]B, this contradictsthe independence of the sequence (Aj).This argument also shows that Qhi;ni is �nitary if i 62 S. However, ifi 2 S, it might be the case that Xhi;n0i = ! for some n0 � n, whence thecoding of Chi;n0i is in�nitary and the argument fails. Therefore we have toequip the requirement Qhi;ni with a guess at whether its hypothesis is true.Our guessing procedure at "Xk = !?" is standard. Let �0 = �. If s > 0,then by induction on k, with 1 � k � s, de�ne �s � k: if � = �s � k � 17



and t < s is the greatest stage number such that t = 0 or � � �t, then let�s(k � 1) = p, where p = 0 if jXk;tj < jXk;sj and p = 1 otherwise.Since T is �nitely branching, there exists a true path, namely a path fthrough T such that, for each e, letting � = f � e, we have that (a.e. s)[� ��s] and (91s)[� � �s]. ThenXk = ! , f(k) = 0: (3)For each �, j�j = hi; ni+1, we introduce versions C�, Q� of the requirementsChi;ni and Qhi;ni. Since at stage s, the current approximation of the true pathis �s, by (3), the hypothesis of a requirement Chi;ni or Qhi;ni translates intoa combinatorial condition on the guess of a version C�, or Q�. Hence theversion can directly obtain from � the information whether, according toits guess, the hypothesis is true. If not, the version does not act at all.This eliminates the problem that occurred above: for � = f � hi; ni + 1, ifXhi;n0i = ! for some n0 � n, then �(hi; n0i) = 0, whence Q� never acts.The strategies are adapted to the tree construction: C� now tries tocode Ai into B[�], and Q[�] tries to �ll up B[>�]. In this way, a requirementQ�, where � is to the right of the true path, can do no harm to a codingrequirement C� such that � is on the true path.Construction of B.Stage 0. Let B0 = ;.Stage s; s > 0. For each k < s, k = hi; ni, carry out the following. Let� = �s � k + 1.Case 1. (8n0 � n)[�(hi; n0i) = 1]. Then let t < s be the greatest stagenumber such that t = 0 or � � �t. If l(hi; ni; t) < l(hi; ni; s), thenenumerate the set [0; s)[>�] into B. We say that the requirement Q�acts.Case 2. �(hi; ni) = 0. Then, for each x < s, if x 2 Ai;s, enumerate hx; �iinto B. (Note that hx; �i may be in B already due to action of aQ-requirement.) We say that the requirement C� acts.If none of these cases applies, do nothing.Veri�cation.Lemma 2.1 Let k = hi; ni and � = f � k + 1. Then the following hold.8



(i) If Xk = !, then Ai =� B[�].(ii) The requirement Q� acts only �nitely often.Proof. Inductively assume that the lemma is true for all k0 < k. Let s0 be astage number such that, for each s � s0� � �s ^ (8� � �)[Q� does not act at stage s]:(i) By (3), �(k) = 0. Moreover, by the choice of s0, no element of ![�] isenumerated into B by an action of a Q-requirement at any stage s � s0.Therefore Ai =� B[�].(ii) Assume for a contradiction thatQ� acts in�nitely often. Then �(hi; n0i) =1 for each n0 � n. Moreover sups l(hi; ni; s) =1, i.e. Ai = [n]B. LetJ = fj : (9m)[hj;mi � k ^Xhj;mi = !]gand let A[J ] = �j2JAj: Note that i 62 J . We show B �m A[J ], contraryto the independence of the sequence (degr(Ai)).Let 
 2 T be arbitrary. If � < 
, then B [
] = !. If 
 <L � (i.e. 
precedes � but is not an initial segment of �), then B [
] is �nite by theinductive hypothesis in (ii).Finally, suppose that 
 � �, and let j
j = hj;mi. If Xhj;mi = !, thenj 2 J and, by (i), Aj =� B[
]. If Xhj;mi is �nite, then f(hj;mi) = 1,and hence no number is enumerated into B[
] for the sake of coding viaCase 2. However, if a requirement Q� acts and enumerates an elementinto B[
], then� < 
. Therefore, by the inductive hypothesis in (ii),B[
] is �nite. This shows that B �m A[J ], a contradiction.Lemma 2.2 i 2 S , Ai �r B.Proof. For one direction suppose that i =2 S, and assume for a contradictionthat Ai = [n]B. Let � = f � hi; ni + 1. Since i 62 S, it follows that(8n0 � n)[�(hi; n0i) = 1]. Hence Q� acts in�nitely often, contrary to the �rstLemma. Now suppose that i 2 S, and choose n such that Xhi;ni = !. Then,by the �rst Lemma and the axioms (A2) and (A4), Ai �r B. �9



Theorem 2.2 (Exact Degree Theorem for �02 e-degrees) Suppose that(Ai)i2! is a uniformly �02-sequence of sets such that dege(Ai)i2! is indepen-dent. Then, for each �04-set S, there exists a �02-set B such that i 2 S ,Ai �e B.Proof. It is enough to relativize the previous construction to ;0. Thus let [n]denote the n-th enumeration reduction, i.e.[n]Y (z) = 1, (9u)[Du � Y ^ hz; ui 2 Wn]:If Y is �02, there is a ;0 sequence (Ys) of strong indices for �nite sets suchthat Y = SYs. Thus we obtain an approximation [n]Y (z)[s], replacing Yand W by Ys and Ws respectively, and we can adapt the de�nition of l(n; s).Since S is �03(;0), we obtain Xhi;ni approximating S, as well as (�s), both nowrecursive in ;0. Running the construction produces a set B which is r.e. in;0, i.e. �02. The veri�cation goes through without changes. �3 The Exact Degree Theorem for subrecur-sive reducibilitiesWe now prove the Exact Degree Theorem for reducibilities satisfying axiom(A5). The Theorem can be stated without reference to recursively presentedideals: as an e�ectivity condition on the sequence (degr(Ai)) it su�ces torequire that A = �iAi be recursive. We prove that each �02-set S has anexact degree degr(B) such that B �pm �iAi (actually B = A\Q for some setQ in P ). We �rst discuss the relevance of this bound on B. Suppose that �ris a reducibility which extends polynomial time m-reducibility and that C isa recursively presented ideal in the u.s.l. of r-degrees of recursive sets (as anexample, consider the polynomial T -degrees of the primitive recursive setsor of the sets in EXPTIME). Call a sequence (ai) of r-degrees C-uniform ifai = degr(Ai) for some sequence of sets such that degr(�iAi) 2 C. Then, bythe result above, if an independent sequence (ai) is C-uniform, every �02-setS can be represented by a degree in C. This gives the following method toprove undecidability of Th(C;�)):If, for some C-uniform independent sequence (ai)i2!, the set fai : i 2 !gis de�nable in (C;�) from parameters, then E2 is elementarily de-�nable with parameters in C. In particular, in that case Th(C;�)is undecidable. 10



The method can be applied to the polynomial time m-degrees of primi-tive recursive sets, using a result from [ASN92] and observing that the corre-sponding construction can be carried out within the primitive recursive sets.It can also be applied to the polynomially honest m-degrees of elementaryrecursive sets. Note that the speed-up technique introduced by Ambos-Spies(see e.g. [ASN92]) produces sets which are not elementary recursive, howeverif the construction is adapted to honest m-reducibility, they will be. Formore restricted degree structures, like the polynomial time T -degrees of setsin EXPTIME, it is not known how to obtain such a de�nable sequence (orin fact whether the theory is undecidable).Theorem 3.1 (Exact Degree Theorem for subrecursive reducibilities)Suppose that �r satis�es the axioms (A1)-(A5). Let (Ai) be any sequenceof subsets of f0; 1g� such that A = �iAi is recursive and the sequencedegr(Ai)i2! is independent. Then, for each �02-set S, there exists a set Bsuch that i 2 S , Ai �r B, for every i. Moreover, B = A \ Q for some setQ in P .Notation. We assume that a sequence (Me; ge) is given so that (A5) is satis-�ed, and write heiZ(x) instead ofMe;ge(jxj)(Z)(x). Note that, if Z is recursive,then the ternary relationheiZ(x) = y is recursive. By [u; v) we denote the setof words fx : u � jxj < vg. Words are ordered byx < y , jxj < jyj _ (jxj = jyj ^ x precedes y lexicographically):Proof. Since S is a �02-set there exists a recursive function g(i; n) which ismonotonic in the second argument such that i 2 S , limn g(i; n) < 1.Let g(i) = limn g(i; n). For each pair hi; ei, we meet the diagonalizationrequirement Qhi;ei : e < g(i)) Ai 6= heiB:Then i 62 S ) Ai 6�r B.For the converse, we ensure thati 2 S ) Ai =� B[i]: (1)We will e�ectively determine a strictly increasing time constructible functionf (see [BDG88]) and a sequence of numbers i(n) (with n 2 !). The segment11



[f(n); f(n+1)) is devoted to some diagonalization requirement Qhi(n);ei. Wede�ne B in this segment by omitting the row i(n) from �i�nAi, i.e.B \ [f(n); f(n + 1)) = �i�n^i 6=i(n)Ai \ [f(n); f(n+ 1)): (2)It is possible to diagonalize for Qhi(n);ei by choosing f(n+1) su�ciently large:let Z = B \ [0; f(n)) [ (�i�n^i 6=i(n)Ai \ fz : jzj � f(n)g):Since Z =� �i�n^i 6=i(n)Ai, we have that Ai(n) 6�r Z by (A2),(A3) and theindependence of the sequence (ai). Hence there exists a word y which can becomputed e�ectively such that Ai(n)(y) 6= heiZ(y): Now, if we make sure thatf(n + 1) exceeds the length of any oracle query asked in the computationheiZ(y), then we diagonalize, since B \ [0; f(n + 1)) = Z \ [0; f(n + 1)) bythe de�nition of B.Actually we will de�ne f so large that all the possible values of e �n;B � f(n) and i(n) are covered and also that i(n) can be computed in timepolynomial in f(n). First leth0(k) = minfr : r � 2k ^ (8B0 � [0; k))(8i � k)(8e � k)(9y)[jyj � k ^ Ai(y) 6= heiB0[(�j�n^j 6=iAi\fz:jzj�kg)(y) ^ no oraclequery of length � r is asked in the computation of Me on input y]g:The function h0 is recursive since each oracle query asked in the computationof Me on input y is bounded by ge(jyj). Let h be a time constructible func-tion dominating h0, and let Tg be a monotonic time constructible functionbounding the time needed to compute g(i; n) for any i such that jij < n.De�ne f byf(0) = Tg(0) + 1; and f(n + 1) = max(h(f(n)); Tg(n)):Note that f is time constructible and f(n) � 2n. We think of the de�nitionof B as a construction in stages. At stage n, at most one diagonalizationrequirement Qhi;ei is called active: hi; ei is the least pair (with respect to tothe ordering of words) such that e < g(i; n), 2jhi;eij < n and Qhi;ei has notbeen active before. We let i(n) = i if a requirement Qhi;ei is active at stagen and i(n) = n + 1 else. Now the maps f and i de�ne B via (2). We verifythat B has the desired properties. Clearly the requirementQhi;ei is met, sinceQhi;ei is active at some stage if e < g(i). For (1), note that Ai is coded into12



B[i] whenever i � n and i 6= i(n). Every diagonalization requirement Qhi;eiis active at most once, and only if e < g(i). Hence, if g(i) is �nite, theni 6= i(n) for almost every n and hence Ai =� B[i]. So the axioms (A2) and(A4) imply Ai �r B. To complete the proof, letQ = fhx; ji : (9n)[f(n) � jhx; jij < f(n+ 1) ^ j � n ^ j 6= i(n)]g:Then B = A\Q. To show that Q 2 P , given a word z, �rst compute j suchthat z = hx; ji for some x, and compute n such that f(n) � jzj � f(n + 1).Since f(m) can be computed in time Cf(m) for some constant C, this can bedone in timeO(jzj2) by successively computing f(0); f(1); : : : until a numbern is found such that the computation of f(n+1) does not terminate in timeCjzj. We claim that i(n) can be computed in time polynomial in f(n) � jzj.This shows that j 6= i(n) can be checked in time polynomial in jzj, so Q 2 P .The algorithm to compute i(n) goes through the steps 0; : : : ; n. At eachstep m it computes which requirement Qhi;ei is active at stage m of theconstruction of B and maintains a list of requirements Qhi0;e0i which havebeen active up to stage m. Since jhi0; e0ij < m for such a requirement, thislist has length O(m2). To compute hi; ei, it �nds the minimal pair hi; ei oflength < m not yet in the list such that e < g(i;m). Since n < log(jzj)there are only polynomially many numbers to be considered. Any possiblecandidate hi; ei satis�es jij < m. Since Tg(m) � f(n), it is clear that g(i;m)can be computed in time f(n). So �nding the least pair hi; ei takes timepolynomial in f(n). If hi; ei exists, add this pair to the list. The output isi if hi; ei was computed at step n, and n + 1 else. The whole computationtakes time polynomial in f(n). �4 The Exact Degree Theorem for Turing-and Q-reducibilityWe �rst prove the theorem for T -reducibility and then note how to adaptthe proof for Q-reducibility.Theorem 4.1 (Exact Degree Theorem for T-reducibility) Let (Ai)i2!be a u.r.e. sequence of sets such that degr(Ai)i2! is independent. Then, foreach �04-set S, there exists an r.e. set B such that i 2 S , Ai �T B, forevery i. 13



Notation. In the proof of the Theorem, we make use of \hat computations"(see [Soa87, p. 131]). The crucial property of hat computations isRemark 4.1 Each hat computation which exists at a nonde�ciency stage ofthe oracle set is �nal.By hi; n;mi we denote the number hi; hn;mii. Before proving the theo-rem, we construct an appropriate representation of the set S.Lemma 4.1 There is a u.r.e. sequence Xhi;n;mi of initial segments of ! suchthat i 2 S ) (a.e. n;m)[Xhi;n;mi �nite] (1)i =2 S ) (8n)(9m)[Xhi;n;mi = !]: (2)Proof of the Lemma. Since S is �04, there is a u.r.e. sequence (Yk) of initialsegments of ! such thati 2 S , (9n)(8m)[Yhi;n;mi �nite]:We now modify (Yk) to satisfy (1) by reducing the number of sets whichequal !. By the row hi; ni we mean the collection of sets (Yhi;n;mi)m2!. Firstwe replace Yhi;n;mi by Yhi;0;�0i \ : : : \ Yhi;n;�ni(where m = h�0; : : : ; �ni). Then, if the row hi; ni only contains �nite sets, sodo all the rows hi; n0i, n0 � n.Next, we modify (Yk) to obtain a u.r.e sequence (Xk) such that each rowhas at most one in�nite member. The following process is applied uniformlyto each row hi; ni to obtain (Xk). Let Cm = Yhi;n;mi. We replace this row bya row Dhm;gi where g is thought of as a guess about jSm0<m Cm0 j. As longas the guess is correct, Dhm;gi is allowed to copy Cm. Formally, let Dp;0 = ;and, for s > 0 and p = hm; gi, if g = jSm0<m Cm0;sj then let Dp;s = Cm;s, elselet Dp;s = Dp;s�1. Clearly, there is at most one hm; gi such that Dhm;gi = !.Proof of the Theorem. We build an r.e. set B such thati 2 S ) Ai �T B (3)i 62 S ) (8n)[Ai 6= fbngB]: (4)14



Intuitively speaking, the number n in (2) is interpreted as an index of aTuring reduction. For each number m, a requirement Qk = Qhi;n;mi triesto cause Ai 6= fbngB. If i 62 S, then some requirement Qk = Qhi;n;mi, suchthat Xk = !, will succeed. In this way we will satisfy (4). If Xk is �nite,then Qk will only exert a �nite in
uence on the construction. We meet therequirements Qhi;n;mi : Xhi;n;mi = ! ) Ai 6= fbngB:We write iQ(k) = i if Qk works on (4) for i, i.e. if k = hi; n;mi for somen;m.For (3) we meet the coding requirements Ck. Each coding requirementattempts to code a set AiC(k) into B [k]; for each i there are in�nitely manynumbers k such that Ck works on (3) for i. For de�niteness, let iC(k) = i ifk = hi; ni for some n. The priority ordering of the requirements isC0 < Q0 < C1 < Q1 < :::A requirementCk may be a�ected by the lower priority requirementsQp suchthat iQ(p) = iC(k). Ck relies on a hypothesis which implies that each singlerequirement Qp a�ects Ck only �nitely often:Ck : (8p � k)[iQ(p) = i) Xp is �nite]) Ai = �k(B[k])where i = iC(k), and �k is a Turing reduction we build during the construc-tion. Given i 2 S, since in�nitely many coding requirements work on (3),by (1) we can choose k such that iC(k) = i and the hypothesis of the codingrequirement Ck is correct. Therefore Ai �T B. We emphasize that the partof the construction concerned with the set Ai goes two completely di�erentways depending on whether i 2 S or not: if i 2 S, then for some k such thati = iC(k), Ck succeeds. Moreover, by (1), almost all the requirements Qpsuch that iQ(p) = i are �nitary. If i 62 S, then for each n there exists m suchthat Qhi;n;mi succeeds. Moreover, each requirement Ck, iC(k) = i, is a�ectedin�nitely often by some single requirement Qp where p � k and iC(p) = i,whence the coding of Ck fails.The strategy for CkIf the set S is not �03, we cannot have a wtt-reduction in (3). Thereforewe have to exploit the full power of Turing reductions. The requirements Ckuse coding via markers. With each Ck we associate a sequence of markers(
k(x))x2!. For almost every s, the marker 
k(x) possesses a value 
k;s(x) 215



![k] at the end of stage s, unless 
k(x) gets cancelled (because x entered Ai).The sequence of markers 
k(x) will satisfy the following two conditions:
k;s�1(x) 6= 
k;s(x)) Bs�1 � 
k;s�1(x) + 1 6= Bs � 
k;s�1(x) + 1 (5)(a.e.x)[x 2 Ai ) at some stage t+ 1;
k;t(x) is enumerated into B and 
k(x) gets cancelled forever ]: (6)Moreover, if the hypothesis of requirement Ck is correct, then, for each xif 
k(x) does not get cancelled, then lims 
k;s(x) exists: (7)It is now clear how to build a T -reduction from Ai to B[k]: given input y,compute a stage t such that 
k(y) has been cancelled or Bt � 
k;t(y) + 1 =B � 
k;t(y) + 1. Then Ai(y) = Ai;t(y). In this way we satisfy Ck. As usual,the values 
k;s(x) will be monotonic in x and in s.Notation. We write 
k(x) ## [s] if either 
k(x) has been cancelled at theend of stage s or this marker remains uncanceled and 
k;s(x) = limt 
k;t(x).Let P = fp : (8x)(9s)][
p(x) ## [s]]g:If k 62 P , then let x(k) be the minimal number x such that x 62 AiC(k) andlims 
k(x) does not exist (there is such a number x since AiC(k) is coin�nite.)The strategy for QkThe length of agreement associated with Qk isl(k; t) = maxfx : (8y < x)[Ai(y)[t] = fbngB(y)[t]]g(where i = iQ(k)).Let Jk = fiC(p) : p � k ^ p 2 Pg: If Xk = !, then the strategy for Qkconsists of the following:a) we cause i 62 Jkb) roughly speaking, at stage s we restrain the lower priority requirementsin order to protect computations fbngB(y), where y < l(k; s).16



From this, it will be possible to argue that Ai 6= fbngB : otherwise Ai �T�j2JkAj, contrary to the independence of the sequence (degr(Ai)).To cause i 62 Jk, Qk has to detach some marker 
p(x) for each p � k suchthat iC(p) = iQ(k). To make the in
uence of Qk on Cp �nite if the set Xk is�nite, we only allow this if jXkj has increased since the last time when 
p(x)was detached.Let bu(k; s) = maxfbu(Bs;n; y; s) : y < l(k; s)g:The restraint imposed by Qk on the lower priority requirements is de�ned asfollows: r(k; 0) = 0, and for s > 0; r(k; s) = r(k; s � 1) if Xk;s 6= Xk; s � 1,and r(k; s) = min (r(k; s� 1); bu(k; s� 1)), otherwise. By this de�nition, welet r(k; s) drop back at any stage, but we allow an increase of r(k; s) only atstages where jXkj has increased. Therefore, if Xk is �nite, then lims r(k; s)exists and is �nite.We now sketch the argument for Ai 6= fbngB (supposing that Xk = !).Assume for a contradiction that Ai = fbngB. Then, for each y, there ex-ists a stage number s� such that Xk;s� 6= Xk;s��1 and all the computationsfbngB(y0); y0 � y, are stable from stage s� on, i.e.l(k; s�) > y ^Bs� � u = B � u (8)where u = bu(Bs;n; y; s�). By (5) and (6), 
q(x) ## [s�] for each marker 
q(x)such that 
q;s(x) < u. In particular, if p � k and p 62 P , then
p;s(x(p)) � u: (9)Let A[J ] = �j2JAj (where J = Jk). We show how to compute Ai from A[J ].Given an input y, compute a stage number s such thatXk;s 6= Xk;s�1; l(k; s) >y, (9) holds for those p � k such that p 62 P and, if p < k and p 2 P thenx 62 Aj for each marker 
p(x) which has value < u. (By the remarks above,s� is such a stage.) Since jXk;sj has increased, Qk can \update" its restraint.This implies that (8) holds for s instead of s�. Hence Ai;s(y) = fbngBss (y) =fbngB(y). In this way we determine Ai(y).Finally, we consider the behavior of the restraint function r(k; s) if Xk =!. Since Ai 6= fbngB, by a standard argument involving Remark 4.1 (see the"Window Lemma" in [Soa87, p. 134]) together with the fact that we alwaysallow the restraint to drop back, we concludelim infs r(k; s) = limt2T r(k; t) is �nite:17



Then lim infs r(< j; s) is �nite as well for each j, wherelim infs r(< j; s) = maxfr(k; s) : k < jg:Thus, the requirement Qk leaves enough room for the lower priority require-ments.Construction of B.Stage 0. Let B0 = ;. Each marker 
k(x) is declared unde�ned.Stage s; s > 0.Phase 1. (The Q-requirements detach markers) For each k, 0 � k < s andfor each p � k such that iC(p) = iQ(k) do the following: if a numberx < s�1 exists such that 
p(x) is de�ned, k � x, r(< k; s) � 
p;s�1(x),and Xk;t 6= Xk;s, where t < s is the greatest stage number such that
p(x) was detached by Qk or t = x , then let x be a minimal suchnumber. Enumerate 
p;s�1(x) into B. For x � x0 < s � 1 we say thatQk detaches 
p(x0) and that 
p(x0) is now unde�ned.Phase 2. (Giving values to markers and coding) For each k < s do the fol-lowing:Step 1. Let x < s be minimal such that 
k(x) is unde�ned. Give values
k;s(x0) 2 ![k] to the markers 
k(x0), x � x0 < s which have notbeen cancelled. Choose these values increasing in x0, greater thans and greater than any former value.Step 2. Let i = iC(k). For each y < s, if y 2 Ai;s, 
k(y) has not beencancelled and 
k;s(y) � r(< k; s), then enumerate 
k;s(y) into Band cancel the marker 
k(y).The Veri�cation.Lemma 4.2 Let k = hi; n;mi:(i) r(< k) = limt2T r(< k; t+ 1) exists and is �nite.(ii) If Xk = !, then the following hold:(ii.1) If p � k and iC(p) = i, then p 62 P . In particular, i 62 Jk.(ii.2) Ai 6= fbngB: 18



(iii) limt2T r(k; t+ 1) exists and is �nite.Proof. Inductively assume that the lemma is true for all k0 < k. Then (i) isimmediate.(ii.1) Suppose that p � k and iC(p) = i. We show that, for some x,
p(x) is detached in�nitely often by Qk: (10)Let x � k be a number such that x 62 Ai and x � r(< k) (x existsbecause Ai is coin�nite). Suppose that t0 is a stage number such that
p(x) is detached by Qk at stage t0 or t0 = x, and let t > t0 be thesmallest stage number such that t�1 2 T ,Xk;t0 6= Xk;t; t > x+1; t > kand r(< k; t) � r(< k). Then at some stage t0; t0 < t0 � t, the marker
p(x) is detached by Qk. This shows (10).(ii.2) One carries out in detail the argument sketched above. See [Nie92].(iii) If Xk is �nite then lims r(k; s) exists and is �nite. If Xk = !, then (iii)can be inferred from the fact that Ai 6= fbngB.Lemma 4.3 i 2 S , Ai �T B:Proof. For one direction suppose that i 62 S. Let n be arbitrary; we show thatAi 6= fbngB. Since i 62 S, we can choose a number m such that Xhi;n;mi = !.Then, by (ii.2) of the previous Lemma, Ai 6= fbngB.For the converse direction, suppose that i 2 S. By (1), there exists a psuch that the hypothesis of the coding requirement Cp is correct. We verify(5)-(7). The condition (5) is immediate, and (6) holds by Phase 2, Step 2 ofthe construction, since lims r(< p; s) is �nite. For (7), let x be arbitrary and,by induction, choose s such that(8x0 < x)[
p(x0) ## [s]]:After stage s, 
p(x) can only be detached by one of the �nitely many require-ments Qk, where k � x, p � k and iC(p) = iQ(k), and only as often as jXkjincreases. Therefore (4.1) holds for x. �To obtain the result for Q-reducibility, we slightly modify the construc-tion in the proof: whenever a marker is detached in Phase 1, then its valueis enumerated into B. Then, if Cp is a coding requirement with correct hy-pothesis and iC(p) = i, the coding of Cp in Phase 2 gives Ai �Q B. To see19



this, in (2) let Wg(x) be the r.e. set of all values of the marker 
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