A Uniformity of Degree Structures”
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Abstract

We isolate a fact which holds for various degree structures arising from
recursion theory and complexity theory and makes it possible to prove
the undecidability of their theories in a more uniform way than in the
original proofs, namely by interpreting the lattice of X9—sets for some

k.

Dedicated to Kena Prosper

1 Introduction

A reducibility <, gives a method to compare sets of natural numbers with
respect to their computational complexity. Reducibilities are preorderings
on sets; the r-degree of a set X, denoted by deg, (X), is the equivalence
class of all sets which have the same complexity as X. The r-degrees form
an uppersemilattice (u.s.l.). Here we discuss the restricted u.s.l. R, of r-
degrees of recursively enumerable sets with respect to reducibilities arising
from recursion theory (e.g. Turing- or many-one-reducibility), as well as the
partial order of r-degrees of the recursive sets with respect to subrecursive
reducibilities (e.g. polynomially bounded Turing- or many-one reducibility).
Investigations of these degree structures usually show that they behave in
a different way rather than leading to uniformities. For instance, some r.e.
degree structures possess minimal degrees whereas others are dense. An
elementary difference between any two r.e. degree structures (viewed as
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partial orders) exists already at the two-quantifier level, except for the case
of r.e. tt- and btt-degrees. Undecidability of the theories was shown by widely
varying coding schemes, relying on specific properties of the reducibility in
question. Here we prove that a fact, called the Exact Degree Theorem, which
only depends on a parameter k € {2,3,4}, is shared by all degree structures
discussed in this paper. This fact suggests a uniform coding scheme for
proving undecidability of the given degree structure, namely interpreting with
parameters the lattice % of Y.9-sets under inclusion. The number k could be
called the arithmetical complexity of the reducibility, namely & is the least
number such that {(z,7) : X; <, X;} is in X9, if we assume an appropriate
effective enumeration (X;) of the sets in question. In the recursion theoretic
case, we let X; = W;. In the complexity theoretic case, we restrict ourselves
to some recursively presented ideal of the u.s.l. of recursive r-degrees: thus we
assume a uniformly recursive listing (X;) of sets of words in {0, 1}* such that
{deg,(X;) : © € w} forms an ideal. For instance, (X;) could be an effective
listing of the primitive recursive or of the elementary recursive sets. The
arithmetical complexity is 2 for subrecursive reducibilities, 3 for many-one,
btt, tt and wtt-reducibility, and 4 for Turing- and )-reducibility.

The two notions involved in an Exact Degree Theorem are independent
sequences and effectivity of sequences. A sequence (&;);e, of elements of a
degree ordering is called independent if a,, £ sup;cpa; for every finite set
F C wand each n € w — I, and effective if a; = deg,(Xy(;)) for some
recursive function f. For an effective sequence (a;) and an element b of the
degree structure under consideration, the set {7 : a; < b} is ¥9. The Exact
Degree Theorem states the converse, if the sequence is independent:

For independent sequences (a;), each X.9-set S can be represented
as {i:a; < b} for some degree b.

We call b an ezact degree for {a; : ¢ € S}. The coding scheme to prove unde-
cidability of the theory relies on the assumption that for some independent
effective sequence (a;), the set {a; : ¢ € w} is definable from parameters,
using a formula ¢(z;p) (where p is the list of parameters). Represent the
number 7 by the degree a; and a X{-set S of numbers by a degree b, i.e.
S = {1 :a; < b}. Then inclusion of sets represented by the degrees b, ¢ is
definable from parameters: the formula

6(b,¢;p) =1 (Vo) [6(a;P) = (a < b— a < ¢)



expresses that {i : a; < b} C {i : a; < c}. So &* is elementarily definable
with parameters in the degree structure, and undecidability follows by model
theoretic methods ([BM81], see also [ASNA92]) from the fact, proved in
[Her84], that £* has a hereditarily undecidable theory.

The existence of such a definable sequence can be shown for all recursion
theoretic reducibilities and for the complexity theoretic reducibilities <? <!,
if the recursively presentable ideal is large enough. To prove the existence,
specific properties of the reducibility are exploited, whereas the proof of the
Exact Degree Theorems can be given for each k uniformly. See [ASNA92]
for wtt-, [NS95] for tt-, [Nie92] for btt-, [Nie93] for m- and [NSS] for T-
reducibility. Also see [ASN92] and [SS91] for <P | <% respectively.

The results are also interesting from the point of view of definability: &*
is elementarily definable in a very direct way, since each degree represents a
Y0 set. An extended version of the Exact Degree Theorems can be proved
which shows that also the inclusion relation on X¢-sets is given directly by
the degree ordering: if S C T are X9-sets, then S = {i : a; < b} and
T = {i:a; < c} for some degrees b, ¢ such that b < c.

The idea of obtaining undecidability by defining £* was first applied in
[ASNA92] for the r.e. wtt-degrees and in [ASN92] for the polynomial time m-
degrees of recursive sets. There, exact pairs for ideals instead of exact degrees
were used to represent the ¥0-sets, so the coding is a little less direct. For
definitions and basic facts about reducibilities in recursion theory, see [0di89)],
and for reducibilities in complexity theory see [BDGS8].

The degree structures considered here fall into three groups, determined
by the arithmetical complexity k. For each group, there is one version of the
Exact Degree Theorem. The general scheme for the proofs is that, for each
t, coding requirements try to code A; into B, while, for every r-reduction
procedure [n], diagonalization requirements try to cause A; # [n]B. Ifi € 9,
then some coding requirement succeeds. Otherwise, for each n some diago-
nalization requirement associated with [n] succeeds. Using the fact that S is
a Y.9-set we can choose a uniformly recursively enumerable (u.r.e.) sequence
of sets (Xj) so that the value of S(i) depends in an appropriate way on the
subsequence (X(; ) )new. The actions of the Requirements concerned with A;
are controlled by this subsequence. The groups considered are

1. & = 2: recursively presented degree structures given by subrecur-
sive reducibilities, e.g. polynomially time bounded reducibilities and

LOGSPACE reducibility;



2. k= 3: r.e. m-, btt-, tt- and wtt-degrees, as well as r.e. degrees with
respect to other ti-like reducibilities (see [Odi89]);

3. k=4: r.e. Turing- and )-degrees.

In Sections 2, 3 and 4, we give a proof of the Exact Degree Theorem
for each group. We also briefly consider the enumeration degrees of X9-sets,
which possess arithmetic complexity 4 and satisfy the Exact Degree Theorem
for k = 4. However, they will be treated like the members of group 2, using
a similar construction relativized to /.

It is possible to handle the reducibilities in the groups 1 and 2 on the
basis of very weak axioms. First we introduce some notation:

Notation. We fix an effective pairing function (,) on natural numbers, with

effective projections, which is monotonic in its arguments. X denotes the

set {x: (z,2) € X}, and P, C; stands for {(v,7) : @ € C; Av € F'}. In the

complexity theoretic case, we fix {0, 1} as the alphabet. Numbers are written

in binary, (,) is a polynomial pairing function, monotonic in its arguments

with polynomial time computable projections such that |{z,y)| > |z|, |y].
For all reducibilities we require the following 4 axioms:

(A1) The reducibility is a preordering on sets of numbers (words, in the
complexity theoretic case).

(A2) X <, Y does not depend on finite variants of X and Y.

(A3) The degree structure induced by the preordering on all sets is an u.s.1.,
the supremum is given by

sup deg, (A;) = deg, (G1ci¢,A,).

1<i<n
A4) As a fourth axiom, we require in the recursion theoretic case that
) q
X<,Y=X<Y.

In the complexity theoretic case, in order to include honest reducibili-
ties and LOGSPACE reducibility, we only require that, for each word
¢, an m-reduction via the map = — (x, ¢) is also an r-reduction.

4



The fifth axiom is also different for group 1 and group 2. Let (M.) be a listing
of oracle Turing machines associated with the reducibility, and let M, ;(7)(x)
be the output of the computation of M, with oracle Z if this computation
converges in s steps, and 0 otherwise. The axiom required for group 1 is an
abstraction from a property of polynomially bounded oracle computations:

(A5) {X : X <, YV} = {M. . op(Y)(2) : @ € w}, for an effective sequence

(ge) of total recursive time bounds.

It is essential that ¢g. be total for each e; thus only restricted classes of
time bounds like polynomials or primitive recursive functions are acceptable,
but not the class of all total recursive functions. The axiom (A5) holds for
any polynomial bounded reducibility extending <? | but also for LOGSPACE
reducibility. The axiom implies that the arithmetical complexity is bounded
by 2, since

X; < X; & (3)(Va)[Xile) = Moy oy (X)) ().

For group 2, we use the following notation: given a partially recursive
function f, let M. (7, f)(x) be M. (Z)(x), if both f(x) and the computation
converge in s steps and the computation uses only oracle questions < f(x),

and let M, (7, f)(x) be undefined otherwise. Moreover, let
MZ.)(x) = lim M, (. f)(2)
(i.e. M.(Z, f)(x) is defined iff M, (7, f)(x) is defined from some stage on).
Instead of (A5), we require that
(AS") {X: X <, Y} ={MY, f.): e € w A MY, f.) total} for an effective

sequence (M., f.) of oracle Turing machines and recursive bounds on the
maximal oracle question asked.

It is easy to verify that all reducibilities in group 2 satisfy the axioms.
The axiom (A5*) implies that the arithmetical complexity is bounded by 3,
since an r.e. oracle can only change f.(n)+ 1 times on the interval [0, f.(n)):

Wi <, Wi & (3e)(Va)(V1)(3s = 1)[Wi(w) = Mo (W) (2)]. (1)

Finally, for the r.e. T-degrees, the arithmetical complexity is 4 (see [Soa87]),
as well as for the r.e. ()-degrees: recall that, if C, D are r.e. sets, then C' <g D
if there exists a recursive function ¢g such that

xEC@Wg(x)gD (2)
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(see [0di89]). Then W; <q W; is X because {x : Wy,) C D} is II9. Tt is
also easy to verify that k = 4 for the structure of ¥j enumeration-degrees.

The axiom systems have trivial models, so the bound computed on the
arithmetical complexity may not be optimal. But for reducibilities in the
groups above, independent effective sequences exist. So an application of
the respective Exact Degree Theorems to a X9-complete set shows that the
bounds (with respect to the particular representations of the degree struc-
tures) are optimal.

2 The Exact Degree Theorem for reducibili-
ties of arithmetical complexity 3

We begin with the reducibilities satisfying the axioms for group 2.

Theorem 2.1 (Exact Degree Theorem for arithmetical complexity 3)
Let <, be a reducibility satisfying (A5%) (e.g. m-, btt-, tt- or wtt-reducibility)
and suppose that (A;)ic, is a u.r.e. sequence of sets such that deg,(A;)icw 15
independent. Then, for each ¥.3-set S, there exists an r.e. set B such that,
for all 1,

e S e A<, B.

Notation. We assume that a sequence (M., f.) is given so that (A5*) is
satisfied, and write [e]?(z) instead of M.(Z, f.)(x). Also we write AF1 for
@iep AL The proof contains an elementary tree construction on the binary
tree T = 2. We use standard notation from [S0a87, p. 301]. We fix some
numbering v +— n(y) of strings on 7' and write (z,7) and XD instead of
(z,n(y))and X" We also use the notation X< etc. in the obvious sense
(referring to the lexicographical ordering of strings) and sometimes write
X == Yl instead of (a.e.2)[z € X < (z,n) € Y] (the symbol “a.c.” stands
for “for almost every”). The notation X =* Y1 is used in a similar way.

Proof. By [Soa87, p. 66], for any II5-set P there exists a u.r.e. sequence
(X% )kew such that each set X is an initial segment of w and, for each £,

ke Pe X, =w.



Let S € X9. Then there exists a u.r.e. sequence (X}) of initial segments such
that, for each 1,

1€ S5 = (Hn)[X“M = w] (1)
i € .S = (Yn)[ X is finite]. (2)

We will have to guess at “X;, = w 7”7 on a tree. To explain the strategies,
we first ignore the necessity of such a guessing procedure. There are infinitely
many coding requirements C; ,y which try to achieve A; =~ B For each
n, there is a diagonalization requirement @) ) associated with [n], which
tries to cause A; # [n]P. We incorporate assumptions on the sequence (X})
into the requirements as follows:

Qi (V' < n)[ Xy is finite] = A; # [n]®.

The coding for C; ,y is carried out whenever |X(i,n>| increases. The strategy
for Q;,n) simply consists in filling up BEGEn: et

[((i,n), 5) = max{z : (Vy < 2)[Ai(y) = []"(y)[s]]}-

Whenever, at stage s, [({1,n),s) is greater than all previous values, then
enumerate [0, s)>@ into B.

We sketch how to show that Q; ) is met. Assume for a contradiction that
¢ & S and that A; = [n]P. By axiom (A5*), the last condition is equivalent to
sup, I((¢,n), s) = oo, using the same argument as for (1). By (2), the coding
of the requirements C; ,n,n’ < n, ceases at some stage. Therefore

B =* pUGm):{im)<{in)nj#i}]

Inductively suppose that for each (j,m) < (i,n), j # 1, either A; == Bl
or B0 is finite. Then B <, DicgA;, where J is the finite set of first
components of such pairs (j,m). Since ¢ € J and A; = [n]?, this contradicts
the independence of the sequence (A;).

This argument also shows that (), is finitary if ¢ € S. However, if
¢ € 5, it might be the case that X, = w for some n’ < n, whence the
coding of U, is infinitary and the argument fails. Therefore we have to
equip the requirement (); »y with a guess at whether its hypothesis is true.

Our guessing procedure at ” X3 = w?” is standard. Let 6o = A. If s > 0,
then by induction on k, with 1 < k < s, define 6, | k: if v = 6, | k—1
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and t < s is the greatest stage number such that t = 0 or v C é;, then let
6s(k — 1) = p, where p = 0 if | X} 4| < |Xk,s| and p = 1 otherwise.

Since T' is finitely branching, there exists a true path, namely a path f
through T' such that, for each e, letting a = f | e, we have that (a.e. s)[a <
6] and (I%°s)[a C 65]. Then

X :w<:>f(k) =0. (3)

For each a, |a| = (¢,n)+ 1, we introduce versions C,, ), of the requirements
Cimy and Qi ny. Since at stage s, the current approximation of the true path
is 05, by (3), the hypothesis of a requirement Cy; ) or Qi translates into
a combinatorial condition on the guess of a version C,, or (),. Hence the
version can directly obtain from « the information whether, according to
its guess, the hypothesis is true. If not, the version does not act at all.
This eliminates the problem that occurred above: for a = f [ (i,n) + 1, if
X(iny = w for some n' < n, then a((7,n’)) = 0, whence @, never acts.

The strategies are adapted to the tree construction: €, now tries to
code A; into B, and QI tries to fill up B>*l. In this way, a requirement
()., where «a is to the right of the true path, can do no harm to a coding
requirement C, such that « is on the true path.

Construction of B.

Stage 0. Let By = ().

Stage s,s > 0. For each k < s, k = (1,n), carry out the following. Let
a=4é6, k+1.

Case 1. (Vn' < n)[a((i,n")) = 1]. Then let t < s be the greatest stage
number such that t = 0 or o C é:. If I[((¢,n),t) < I({1,n),s), then
enumerate the set [0,5)>° into B. We say that the requirement Q.
acts.

Case 2. a({(i,n)) = 0. Then, for each x < s, if © € A;;, enumerate (z, )
into B. (Note that (x,a) may be in B already due to action of a
()-requirement.) We say that the requirement C, acts.

If none of these cases applies, do nothing.

Verification.

Lemma 2.1 Let k= (i,n) and a = f | k+ 1. Then the following hold.
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(i) If X = w, then A; = Bl
(ii) The requirement Q) acts only finitely often.

Proof. Inductively assume that the lemma is true for all & < k. Let sq be a
stage number such that, for each s > s¢

a < 6; N (VB C a)[Qp does not act at stage s.

(i) By (3), a(k) = 0. Moreover, by the choice of sy, no element of wl! is
enumerated into B by an action of a ()-requirement at any stage s > so.

Therefore A; =* Blel,

(ii) Assume for a contradiction that @), acts infinitely often. Then a({i,n’)) =
1 for each n’ < n. Moreover sup, [({,n),s) = 00, i.e. A; = [n]P. Let

J={: (@m)[,m) < kA X =}

and let AVl = @.;A;. Note that 7 ¢ J. We show B <,, AVl contrary
to the independence of the sequence (deg,(A4;)).

Let v € T be arbitrary. If a < =, then BN = . If ’y <p a (ie v
precedes « but is not an initial segment of a) then B is finite by the
inductive hypothesis in (ii).

Finally, suppose that v C «, and let |y| = (j,m). If X{;,,) = w, then
j € J and, by (i), A; == B0 If Xjmy 18 ﬁnite then f((j,m)) = 1,
and hence no number is enumerated into B for the sake of coding via
Case 2. However if a requirement ()5 acts and enumerates an element
into BN, thenB < ~. Therefore, by the inductive hypothesis in (ii),
B g ﬁmte. This shows that B <,, AYl, a contradiction.

Lemma 2.2 1€ 5 < A, <, B.

Proof. For one direction suppose that ¢ ¢ 5, and assume for a contradiction
that A; = [n]. Let a« = f | (i,n) + 1. Since i ¢ S, it follows that
(Vn' < n)[a({s,n')) = 1]. Hence @, acts infinitely often, contrary to the first
Lemma. Now suppose that 7 € S, and choose n such that X; ,y = w. Then,
by the first Lemma and the axioms (A2) and (A4), A; <, B. O
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Theorem 2.2 (Exact Degree Theorem for X e-degrees) Suppose that
(Ai)icw is a uniformly X9-sequence of sets such that deg,(A;)ie, is indepen-
dent. Then, for each ¥.9-set S, there exists a ¥.9-set B such that i € S <
Ai Se B.

Proof. Tt is enough to relativize the previous construction to (. Thus let [n]
denote the n-th enumeration reduction, i.e.

] (2) =1 < (Fu)[D, CY A (z,u) € W,].

If Y is X9, there is a ()’ sequence (Y) of strong indices for finite sets such
that Y = (JY,. Thus we obtain an approximation [n]¥(z)[s], replacing Y
and W by Y; and W, respectively, and we can adapt the definition of I(n, s).
Since S is X9(()"), we obtain X(; .y approximating S, as well as (é,), both now
recursive in (. Running the construction produces a set B which is r.e. in
0", i.e. Y. The verification goes through without changes. O

3 The Exact Degree Theorem for subrecur-
sive reducibilities

We now prove the Exact Degree Theorem for reducibilities satisfying axiom
(A5). The Theorem can be stated without reference to recursively presented
ideals: as an effectivity condition on the sequence (deg,(A;)) it suffices to
require that A = @, A; be recursive. We prove that each ¥9-set S has an
exact degree deg,(B) such that B <2 &, A; (actually B = ANQ for some set
() in P). We first discuss the relevance of this bound on B. Suppose that <,
is a reducibility which extends polynomial time m-reducibility and that C' is
a recursively presented ideal in the u.s.l. of r-degrees of recursive sets (as an
example, consider the polynomial T-degrees of the primitive recursive sets
or of the sets in EXPTIME). Call a sequence (a;) of r-degrees C-uniform if
a;, = deg, (A;) for some sequence of sets such that deg,($;A;) € C. Then, by
the result above, if an independent sequence (a;) is C-uniform, every ¥9-set
S can be represented by a degree in (. This gives the following method to
prove undecidability of Th(C, <)):

If, for some C-uniform independent sequence (a;);c,, the set {a; : i € w}
is definable in (C, <) from parameters, then E* is elementarily de-
finable with parameters in C. In particular, in that case Th(C, <)

is undecidable.
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The method can be applied to the polynomial time m-degrees of primi-
tive recursive sets, using a result from [ASN92] and observing that the corre-
sponding construction can be carried out within the primitive recursive sets.
It can also be applied to the polynomially honest m-degrees of elementary
recursive sets. Note that the speed-up technique introduced by Ambos-Spies
(see e.g. [ASN92]) produces sets which are not elementary recursive, however
if the construction is adapted to honest m-reducibility, they will be. For
more restricted degree structures, like the polynomial time T-degrees of sets
in EXPTIME, it is not known how to obtain such a definable sequence (or
in fact whether the theory is undecidable).

Theorem 3.1 (Exact Degree Theorem for subrecursive reducibilities)
Suppose that <, satisfies the axioms (Al)-(A5). Let (A;) be any sequence
of subsets of {0,1}* such that A = @;A; is recursive and the sequence
deg,(A;)icw is independent. Then, for each Y9-set S, there exvists a set B
such that 1 € S & A; <, B, for every t. Moreover, B=ANQ for some set

Q in P.

Notation. We assume that a sequence (M., g.) is given so that (A5) is satis-
fied, and write (e)?(x) instead of M, ;. (.)(Z)(x). Note that, if Z is recursive,

then the ternary relation(e)?(z) = y is recursive. By [u,v) we denote the set
of words {z : u < || < v}. Words are ordered by

r<y& x| <l|y| V(x| = |y| Az precedes y lexicographically).

Proof. Since S is a Y.9-set there exists a recursive function ¢(z,n) which is
monotonic in the second argument such that ¢« € S & lim, g(¢,n) < oo.
Let ¢(¢) = lim, ¢g(¢,n). For each pair (i,e), we meet the diagonalization
requirement

Qi 1€ < g(1) = A # (e)”.
Then ¢ ¢ S = A; £, B.

For the converse, we ensure that
ieS= A =Bl (1)

We will effectively determine a strictly increasing time constructible function
f (see [BDGS88]) and a sequence of numbers ¢(n) (with n € w). The segment
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[f(n), f(n+41)) is devoted to some diagonalization requirement Qi(n).). We
define B in this segment by omitting the row ¢(n) from @®;<,A;, i.e.

BN [f(n), f(n+1)) = BicpniginyAi N [f(n), f(n+1)). (2)

It is possible to diagonalize for () i,y by choosing f(n+1) sufficiently large:
let
Z =Bn0, f(n)) U (BicpnigiimAi N {z 1 |2] = f(n)}).

Since Z =" Bi<nnizi(n) i, we have that A,y £, Z by (A2),(A3) and the
independence of the sequence (a;). Hence there exists a word y which can be
computed effectively such that A;,)(y) # (e)?(y). Now, if we make sure that
f(n + 1) exceeds the length of any oracle query asked in the computation
(€)?(y), then we diagonalize, since BN [0, f(n + 1)) = Z N[0, f(n + 1)) by
the definition of B.

Actually we will define f so large that all the possible values of e <
n,B | f(n)and i(n) are covered and also that ¢(n) can be computed in time
polynomial in f(n). First let

ho(k) = min{r :r > 2k AN (YBy C [0,k))(Vi < k)(Ve < k)(Ty)
[ly| < kA Ai(y) # <€>B°U(GBJS"AJ#"Aiﬂ{Z:'Z'Zk})(y) A no oracle
query of length > r is asked in the computation of M. on input y]}.

The function hg is recursive since each oracle query asked in the computation
of M. on input y is bounded by ¢.(|y|). Let h be a time constructible func-
tion dominating hg, and let T, be a monotonic time constructible function
bounding the time needed to compute g(¢,n) for any ¢ such that |¢] < n.

Define f by
FO) =T, (0)+1, and f(n + 1) = max(h(F(n)), Ty(n))

Note that f is time constructible and f(n) > 2". We think of the definition
of B as a construction in stages. At stage n, at most one diagonalization
requirement @y is called active: (z,¢) is the least pair (with respect to to
the ordering of words) such that e < ¢(i,n), 2109 < n and @i,y has not
been active before. We let ¢(n) = i if a requirement Q; ) is active at stage
n and ¢(n) = n + 1 else. Now the maps f and ¢ define B via (2). We verify
that B has the desired properties. Clearly the requirement Qy; .) is met, since
Q(i,e) is active at some stage if e < g(7). For (1), note that A; is coded into
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Bl whenever i < n and i # i(n). Every diagonalization requirement Qie)
is active at most once, and only if e < ¢(¢). Hence, if ¢(7) is finite, then
i # i(n) for almost every n and hence A; == Bll. So the axioms (A2) and
(A4) imply A; <, B. To complete the proof, let

Q = {(z,5): (n)[f(n) < [z, )] < fn+ D AJ <nAjFi(n)]}

Then B = ANQ. To show that () € P, given a word z, first compute j such
that z = (x,7) for some x, and compute n such that f(n) < |z| < f(n +1).
Since f(m) can be computed in time C f(m) for some constant C, this can be
done in time O(|z|?*) by successively computing f(0), f(1),... until a number
n is found such that the computation of f(n + 1) does not terminate in time
C|z]. We claim that ¢(n) can be computed in time polynomial in f(n) < |z|.
This shows that j # i(n) can be checked in time polynomial in |z|, so ) € P.

The algorithm to compute i(n) goes through the steps 0,... ,n. At each
step m it computes which requirement Q) .y is active at stage m of the
construction of B and maintains a list of requirements ¢y .y which have
been active up to stage m. Since [(¢/,¢')] < m for such a requirement, this
list has length O(m?). To compute (i,¢€), it finds the minimal pair (i,€) of
length < m not yet in the list such that e < ¢(¢,m). Since n < log(|z|)
there are only polynomially many numbers to be considered. Any possible
candidate (¢, €) satisfies |¢| < m. Since Ty(m) < f(n), it is clear that g(z,m)
can be computed in time f(n). So finding the least pair (z,e) takes time
polynomial in f(n). If (i, €) exists, add this pair to the list. The output is
i if (¢,€) was computed at step n, and n + 1 else. The whole computation
takes time polynomial in f(n). O

4  The Exact Degree Theorem for Turing-
and Q-reducibility

We first prove the theorem for T-reducibility and then note how to adapt
the proof for ()-reducibility.

Theorem 4.1 (Exact Degree Theorem for T-reducibility) Let (A;)cw
be a u.r.e. sequence of sets such that deg,.(A;)icw is independent. Then, for
each Y.9-set S, there exists an r.e. sel B such that i € S & A; <r B, for
EVETY .
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Notation. In the proof of the Theorem, we make use of “hat computations”
(see [Soa87, p. 131]). The crucial property of hat computations is

Remark 4.1 Fach hat computation which exists at a nondeficiency stage of
the oracle set is final.

By (i,n,m) we denote the number (¢, (n,m)). Before proving the theo-
rem, we construct an appropriate representation of the set 5.

Lemma 4.1 There is a u.r.e. sequence X; , ) of initial segments of w such
that

i €5 = (a.e.n,m)[Xjnm finie (1)
1 ¢ 5 = (Vn)(3m)[Xinm) = w]. (2)

Proof of the Lemma. Since S is X9, there is a u.r.e. sequence (Y}) of initial
segments of w such that

i € .5 & (In)(Vm)[Yiinm finite].

We now modify (Y%) to satisfy (1) by reducing the number of sets which
equal w. By the row (,n) we mean the collection of sets (Y{; ) )mew- First
we replace Y(; ) by

Yiiom0) N e s 0 Yinm

(where m = (7g,...,7,)). Then, if the row (i,n) only contains finite sets, so
do all the rows (7,n"), n’ > n.

Next, we modify (Y%) to obtain a u.r.e sequence (Xj) such that each row
has at most one infinite member. The following process is applied uniformly
to each row (,n) to obtain (Xj). Let Cp, = Y{;nmy. We replace this row by
a row Dy, , where g is thought of as a guess about [ J,,..,, Cnr|. As long
as the guess is correct, Dy, ,y is allowed to copy C',. Formally, let Dyo=10
and, for s > 0 and p = (m,g), if g = U, c,, Cmr | then let D, o = C, ,, else
let D, = D, 1. Clearly, there is at most one (m, g) such that Dy, , = w.

Proof of the Theorem. We build an r.e. set B such that

1€ S=A,<rB (3)
(€S = (Vn)[A; # {7}7]. (4)
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Intuitively speaking, the number n in (2) is interpreted as an index of a
Turing reduction. For each number m, a requirement Qr = Qi tries
to cause A; # {n}P. If ¢ & S, then some requirement Qr = Qi nm), such
that Xj, = w, will succeed. In this way we will satisfy (4). If Xj is finite,
then @) will only exert a finite influence on the construction. We meet the
requirements
Q(i,n,m) : X(i,n,m) =w= A 75 {ﬁ}B

We write ig(k) = ¢ if @ works on (4) for ¢, i.e. if & = (i,n,m) for some
n,m.

For (3) we meet the coding requirements Cj. Each coding requirement
attempts to code a set A;_ 1 into B for each i there are infinitely many
numbers k such that Cj works on (3) for ¢. For definiteness, let ic(k) = ¢ if
k = (i,n) for some n. The priority ordering of the requirements is

CO<QO<01<Q1<...

A requirement C'; may be affected by the lower priority requirements (), such
that ig(p) = tc(k). Cy relies on a hypothesis which implies that each single
requirement (), affects C only finitely often:

Cy : (Vp > k)[ig(p) = 1 = X, is finite] = A; = Ap(BW)

where ¢ = i¢(k), and Ay is a Turing reduction we build during the construc-
tion. Given ¢ € S, since infinitely many coding requirements work on (3),
by (1) we can choose k such that ic(k) =7 and the hypothesis of the coding
requirement (', is correct. Therefore A; <p B. We emphasize that the part
of the construction concerned with the set A; goes two completely different
ways depending on whether z € S or not: if ¢ € 5, then for some & such that
i = ic(k), Cp succeeds. Moreover, by (1), almost all the requirements @),
such that ig(p) = ¢ are finitary. If ¢ € S, then for each n there exists m such
that @ (i nm) succeeds. Moreover, each requirement Cy, ic(k) = i, is affected
infinitely often by some single requirement @), where p > k and ic(p) = 4,
whence the coding of Cj, fails.

The strategy for Cy

If the set S is not X9, we cannot have a wtt-reduction in (3). Therefore
we have to exploit the full power of Turing reductions. The requirements C,
use coding via markers. With each () we associate a sequence of markers
(7k(2))zew- For almost every s, the marker v (x) possesses a value v (@) €
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w* at the end of stage s, unless v, () gets cancelled (because = entered A;).
The sequence of markers v, () will satisfy the following two conditions:

Yroo1(%) # hs(2) = Booq | pso1(@) +1# By | Apsa(z)+1  (5)

(a.e.x)[x € A; = at some stage t + 1,

ve.(2) is enumerated into B and ~i(x) gets cancelled forever |. (6)
Moreover, if the hypothesis of requirement C} is correct, then, for each x

if i (x) does not get cancelled, then lim v, ;(x) exists. (7)

It is now clear how to build a T-reduction from A; to BM: given input y,
compute a stage ¢ such that ~(y) has been cancelled or B; [ v .(y)+ 1 =
B v:(y)+ 1. Then A;(y) = Ai+(y). In this way we satisfy Cj. As usual,

the values 7; s(x) will be monotonic in = and in s.

Notation. We write vi(x) || [s] if either v,(x) has been cancelled at the
end of stage s or this marker remains uncanceled and ~j ;(x) = limy v ().

Let
P={p: (Vo)(3s)|lnp(x) L1 [s]]}-
If £ ¢ P, then let 2(k) be the minimal number z such that = & A;_¢y and

lim, y4(2) does not exist (there is such a number x since A;_ ) is coinfinite.)

The strateqy for Qg
The length of agreement associated with @)y 1s

[(k,t) = max{z : (Vy < 2)[Ai(y)[t] = {R}7 (y)[]]}
(where 1 = ig(k)).
Let Jy = {ic(p) : p < kAp € P} If Xy = w, then the strategy for Qi
consists of the following:

a) we cause ¢ & Jj,

b) roughly speaking, at stage s we restrain the lower priority requirements
in order to protect computations {n}?(y), where y < I(k, s).
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From this, it will be possible to argue that A; # {n}? : otherwise A; <7
®jes. Aj, contrary to the independence of the sequence (deg,(A;)).

To cause ¢ € Ji, @ has to detach some marker ~,(x) for each p < k such
that ic(p) = ig(k). To make the influence of Q) on C, finite if the set X is
finite, we only allow this if | Xj| has increased since the last time when ~,(x)
was detached.

Let
u(k,s) = max{u(Bs;n,y,s):y < l(k,s)}.

The restraint imposed by (); on the lower priority requirements is defined as
follows: r(k,0) = 0, and for s > 0,r(k,s) = r(k,s — 1) if Xps # Xk, s —1,
and r(k,s) = min(r(k,s —1),u(k,s — 1)), otherwise. By this definition, we
let r(k,s) drop back at any stage, but we allow an increase of r(k, s) only at
stages where | X | has increased. Therefore, if X} is finite, then lim, r(k, s)
exists and is finite.

We now sketch the argument for A; # {n}? (supposing that X = w).
Assume for a contradiction that A; = {#}”. Then, for each y, there ex-
ists a stage number s* such that Xj o # Xy «_1 and all the computations
{7}B(y'),y" <y, are stable from stage s* on, i.e.

l(k,s*)>yANBs | u=BT u (8)

where v = U(Bs;n,y,s*). By (5) and (6), v,(x) || [s*] for each marker ~,(x)
such that v, s(2) < w. In particular, if p < k and p € P, then

Yos(x(p)) > u. (9)

Let AVl = BjcsA; (where J = Ji). We show how to compute A; from Al
Given an input y, compute a stage number s such that Xy ; # Xps—1,l(k,s) >
Yy, (9) holds for those p < k such that p ¢ P and, if p < k and p € P then
x ¢ A; for each marker v,(x) which has value < u. (By the remarks above,
§* is such a stage.) Since |Xj ;| has increased, ) can “update” its restraint.
This implies that (8) holds for s instead of s*. Hence A; (y) = {n}P:(y) =
{7}B(y). In this way we determine A;(y).

Finally, we consider the behavior of the restraint function r(k,s) if X} =
w. Since A; # {n}B, by a standard argument involving Remark 4.1 (see the
"Window Lemma” in [Soa87, p. 134]) together with the fact that we always
allow the restraint to drop back, we conclude

liminfr(k,s) =limr(k,t) is finite.
s teT
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Then liminf, r(< j,s) is finite as well for each j, where
liminfr(< j,s) = max{r(k,s): k < j}.

Thus, the requirement (), leaves enough room for the lower priority require-
ments.

Construction of B.
Stage 0. Let By = 0. Each marker 44(x) is declared undefined.
Stage s,s > 0.

Phase 1. (The @Q-requirements detach markers) For each k£, 0 < k < s and
for each p < k such that ic(p) = ig(k) do the following: if a number
x < s—1 exists such that ~,(z) is defined, k < @, r(< k,s) < v, 5-1(2),
and X+ # Xy, where ¢ < s is the greatest stage number such that
vp(x) was detached by @) or t = x , then let  be a minimal such
number. Enumerate v, s_1(2) into B. For + < 2’ < s — 1 we say that
Q1 detaches v,(2') and that v,(2") is now undefined.

Phase 2. (Giving values to markers and coding) For each k < s do the fol-
lowing:

Step 1. Let @ < s be minimal such that () is undefined. Give values
Yes(x') € W to the markers ye(2"), @ < 2’ < s which have not
been cancelled. Choose these values increasing in @', greater than
s and greater than any former value.

Step 2. Let ¢ = i¢(k). For each y < s, if y € A, 5, 7(y) has not been
cancelled and v s(y) > r(< k,s), then enumerate y;s(y) into B
and cancel the marker v4(y).

The Verification.

Lemma 4.2 Let k = (i,n,m).

(1) r(< k) =limyerr(< k,t + 1) exists and is finite.

(i) If X) = w, then the following hold:
(ii.1) If p < k and ic(p) = i, then p & P. In particular, i & J.
(ii.2) A; # {n}P.
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(iii) limger r(k,t 4+ 1) exists and is finite.

Proof. Inductively assume that the lemma is true for all " < k. Then (i) is
immediate.

(ii.1) Suppose that p < k and i¢(p) = i. We show that, for some «,
vp(x) is detached infinitely often by Q. (10)

Let @ > k be a number such that @ € A; and « > r(< k) (« exists
because A; is coinfinite). Suppose that #y is a stage number such that
vp(x) is detached by Q) at stage to or to = x, and let ¢t > %, be the
smallest stage number such that t—1 € T, Xy 4, # Xpe, t > 241, t > k
and r(< k,t) < r(< k). Then at some stage ',y < t' < ¢, the marker
vp(x) is detached by Q. This shows (10).

(ii.2) One carries out in detail the argument sketched above. See [Nie92].

(iii) If Xy is finite then lim, r(k, s) exists and is finite. If X} = w, then (iii)
can be inferred from the fact that A; # {n}%.

Lemma 4.3 1€ 5 < A, <r B.

Proof. For one direction suppose that ¢ ¢ S. Let n be arbitrary; we show that
A; # {n}P. Since i ¢ 5, we can choose a number m such that X, ) = w.
Then, by (ii.2) of the previous Lemma, A; # {n}P.

For the converse direction, suppose that : € S. By (1), there exists a p
such that the hypothesis of the coding requirement (), is correct. We verify
(5)-(7). The condition (5) is immediate, and (6) holds by Phase 2, Step 2 of
the construction, since lim, r(< p, s) is finite. For (7), let « be arbitrary and,
by induction, choose s such that

(Va' < @)[yp(2") LI [s])-

After stage s, v,(x) can only be detached by one of the finitely many require-
ments @, where k < x, p <k and ic(p) = ig(k), and only as often as | Xj|
increases. Therefore (4.1) holds for . O

To obtain the result for ()-reducibility, we slightly modity the construc-
tion in the proof: whenever a marker is detached in Phase 1, then its value
is enumerated into B. Then, if C, is a coding requirement with correct hy-
pothesis and i¢(p) = ¢, the coding of C, in Phase 2 gives A; <o B. To see
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this, in (2) let Wy, be the r.e. set of all values of the marker v,(x). Then
A; <g B via g. O
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