
Reals which compute little

André Nies

Abstract. We investigate combinatorial lowness properties of sets of natural
numbers (reals). The real A is super-low if A′ ≤tt ∅′, and A is jump-traceable if

the values of {e}A(e) can be effectively approximated in a sense to be specified.

We investigate those properties, in particular showing that super-lowness and
jump-traceability coincide within the r.e. sets but none of the properties implies

the other within the ω-r.e. sets. Finally we prove that, for any low r.e. set B,

there is is a K-trivial set A 6≤T B.

1. Introduction

In computability theory, one measures and compares the computational complexity
of sets of natural numbers (also called reals). The first question one is interested in
is whether the real is computable. Reals which come close to being computable are
therefore of particular interest. A lowness properties of a real A says that, in some
sense, A has low computational power when used as an oracle (and therefore A is
close to being computable). To qualify as a lowness property, we require that the
property be downward closed under Turing reducibility ≤T , and that each real A
with that property is generalized low, namely A′ ≤T A⊕∅′. In this paper we study
and compare two lowness properties, being super-low and being jump-traceable.
Superlow reals. Recall that a real A is low if its jump A′ is Turing-below the
halting problem ∅′, or, equivalently, A′(e) = limsg(e, s) for a computable 0, 1-valued
g. The following concept is more restrictive.

Definition 1.1. The real A is super-low if A′ ≤tt ∅′. Equivalently, A′(e) =
limsg(e, s) for a computable 0, 1-valued g such that g(e, s) changes at most b(e)
times, for a computable function b.

This notion goes back to work of Mohrherr [8], and an unpublished manuscript of
Bickford and Mills [1] (where only super-low r.e. sets are studied, called “abject”
there). The canonical construction of a low simple set (see [10, Thm VII.1.1])
produces in fact a super-low set: one satisfies lowness requirements

Le : ∃∞s {e}A(e) ↓ [s-1] ⇒ {e}A(e) ↓.
Le is injured at most e times by requirements

Pi : |Wi| = ∞ ⇒ Wi ∩A 6= ∅,
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i < e, which enumerate a number x ≥ 2i such that x ∈ Wi,s into A at a stage s if
Wi,s ∩As−1 = ∅. Then {e}A(e) can become undefined at most e times. Thus, if we
let g(e, s) = 1 when {e}A(e) converges at stage s and g(e, s) = 0 otherwise, then g
is an approximation as in Definition 1.1, where b(e) = e.
The low basis theorem of Jockusch and Soare [6] can also be strengthened to “super-
low”: each non-empty Π0

1 class has a super-low member (Proposition 3.1 below).
Jump-traceable reals. We write JA(e) for {e}A(e), the jump at argument e.
While lowness and super-lowness restrict the domain A′ = {e : JA(e) ↓} of JA,
jump traceability expresses that JA(e) has few possible values. Given T ⊆ N, let
T [x] = {y : 〈y, x〉 ∈ T}.

Definition 1.2. (i) An r.e. set T ⊆ N is a trace if for some computable h,
∀n|T [n]| ≤ h(n). We say that h is a bound for T .

(ii) The real A is jump-traceable if there is a trace T such that

∀e JA(e) ↓ ⇒ JA(e) ∈ T [e].

This modifies the property of being recursively traceable, used in [11] to give a
characterization of the reals that are low for Schnorr tests. We will see below that,
because of the universality of the jump, jump traceability of A actually restricts
the possible values of any partial A-recursive function via a trace.
Both super-lowness and jump traceability are closed downward under ≤T and imply
GL1. Thus they satisfy our criteria for being lowness properties. Super-low reals A
are ω-r.e., that is, A ≤tt ∅′. On the other hand, we will see that there is a perfect
Π0

1-class of jump-traceable reals. Among our main results are:
• super-lowness and jump-traceability coincide within the r.e. sets
• none of the properties implies the other within the ω-r.e. sets.

We also prove that jump traceability is Σ0
3 on the ω-r.e. sets, namely, if (Θe)e∈N

is an effective listing of all tt-reduction procedures defined on an initial segment
of N, then {e : Θe(∅′) jump-traceable} is Σ0

3. The same result follows for the r.e.
sets. Recall that {e : We low} is Σ0

4-complete [10, Cor. XII 4.7]. Since our two
properties coincide for r.e. sets, super-lowness is strictly stronger than lowness even
for the r.e. sets.
Our “combinatorial” lowness properties can be used to study very interesting low-
ness properties related to randomness and prefix Kolmogorov complexity. We first
recall some definitions. For each real A, we want to define KA(y), the length of
a shortest prefix description of y using oracle A. An oracle machine is a partial
recursive functional M : 2ω × 2<ω 7→ 2<ω. We write MA(x) for M(A, x). M is an
oracle prefix machine if the domain of MA is an antichain under inclusion of strings,
for each A. Let (Md)d∈N+ be an effective listing of all oracle prefix machines. The
universal oracle prefix machine U is given by

UA(0d1σ) = MA
d (σ).

Let KA(y) = min{|σ| : UA(σ) = y}. If A = ∅, we simply write U(σ) and K(y).
Us(σ) = y indicates that U(σ) = y and the computation takes at most s steps.
The real A is K-trivial if the K-complexity of its initial segments is as low as
possible, up to a constant c, namely ∀n K(X � n) ≤ K(n) + c. Let K denote this
class of reals. K contains nonrecursive r.e. sets and is closed under ⊕ (see [3] for
proofs and more references). Here we show that,

• for each low r.e. B, there is an r.e. A ∈ K such that A 6≤T B.
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In [9] I prove that K is closed downward under Turing reducibility, and each A ∈ K
is truth table-below some r.e. D ∈ K. Thus K is an example of a lowness property
which is an ideal in the ω-r.e. reals, generated by its r.e. members. In contrast, the
super-low r.e. sets do not form an ideal, since there are super-low r.e. sets A0, A1

such that A0 ⊕A1 is Turing complete (see [1] or Theorem below).
We also show in Nies [9] that each A ∈ K is superlow. Since the construction in
[3] produces a noncappable A ∈ K, the class of super-low r.e. degrees is downward
dense in the nonrecursive r.e. degrees.
The notion of jump traceability can be used to characterize reals which are com-
putationally weak in the following sense.

Definition 1.3. Let p : N 7→ N be a non-decreasing computable function such that
limnp(n) − n = ∞. A real A is p-low if ∀y K(y) ≤ p(KA(y) + c0) + c1 for some
constants c0, c1 ∈ N.

Thus, for such A, KA(y) is not much smaller than K(y). Let M[p] denote this
class of reals. In the last section of [4] we show that

A jump traceable ⇔ ∃ p computable A ∈M[p].
Preliminaries. If f : N → N, then we say f is ω-r.e. if f ≤wtt ∅′, that is f can be
computed from ∅′ with recursively bounded use. This is easily seen to be equivalent
to f(e) = limsg(e, s), where g is a computable function such that g(e, s) changes
at most b(e) times, for a computable function b. For instance, if T is a trace in the
sense of Definition 1.2, then f(n) = max T [n] is ω-r.e., via g(n, s) = max T

[n]
s and

b(n) = h(n).
The following notation is also useful. A ∆0

2–approximation (Ar)r∈N of a real A is
an effective sequence of finite sets such that A(x) = limrAr(x). Then A ≤tt ∅′
iff A ≤wtt ∅′ iff the number of changes in such an approximation is recursively
bounded.
Recall that we write JA(e) for {e}A(e). If A is given by a ∆0

2–approximation, we
write JA(e)[s] for {e}As

s (e). The use of the computation JA(e) is denoted j(A, e),
and the use of JA(e)[s] is denoted j(A, e)[s].
Recall that a partial recursive functional is an r.e. set Ψ of “axioms” 〈σ, e, v〉, σ ∈
2<ω such that if 〈σ, e, v〉, 〈σ′, e, v′〉 ∈ Ψ and σ, σ′ are compatible, then v = v′. Given
∆0

2–approximation (As), to define ΨA(e) = v with use u at stage s means to put
the axiom 〈As � u, e, v〉 into Ψ.
While the proof of the following fact is not hard, it depends on the particular
implementation of the universal machine.

Fact 1.4. From a partial recursive functional Ψ, one can effectively obtain a prim-
itive recursive function α, called a reduction function for Ψ, such that

∀X ∀e ΨX(e) ' JX(α(e)).

2. Jump-traceability

In this Section we collect some basic facts on jump-traceability, prove existence of
a perfect class of jump-traceable reals, and place this notion in context.

Jump traceable reals at large.

Fact 2.1. If A is jump-traceable via T , then there is a trace S such that, for each
partial recursive functional Ψ,
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a.e.m[ΨA(m) ↓ ⇒ ΨA(m) ∈ S[m]].

For, define S by S[m] =
⋃

i≤m T [αi(m)]), where (αi) is a listing of all primitive
recursive unary functions. Then S is a trace which is as required by Fact 1.4.

Proposition 2.2. Let A be any jump-traceable real. Then A is generalized low1,
namely A′ ≤T A⊕ ∅′. The reduction procedure can be obtained effectively from an
r.e. index for the trace T . In this reduction, the use on ∅′ is recursively bounded,
and the use on A is ω-r.e.

Proof. Consider the partial A–recursive functional
ΨA(e) = µs [JA(e) ↓ in s steps].

Choose a reduction function α by Fact 1.4. To see if e ∈ A′, first compute t =
max T [α(e)], using ∅′ as an oracle. Then, using A � t, check whether JA(e) ↓ in ≤ t
steps. If so, answer Yes, otherwise No.
Since T is a trace, the use on ∅′ to compute t is recursively bounded. �

Recall that a Π0
1-class P is a subset of 2ω given as the set of paths [B] through a

recursive subtree of B of 2<ω.

Theorem 2.3. There is a perfect Π0
1-class of reals which are jump-traceable via a

fixed trace T , whose bound is h(e) = 2 · 4e.

Proof. We will define an effective sequence of 1-1-maps (Fs) such that Fs : 2<ω 7→
2<ω preserving the ordering and compatibility relations, and for each α ∈ 2<ω,
Fs(α) ⊆ Fs+1(α) and limsFs(α) exists. If we let B = {ρ : ∀s ∃α[|α| ≤ |ρ| & ρ ⊆
Fs(α)], then Q = [B] is a perfect Π0

1–class. We define Fs(α), |α| = e in a way
to minimize the number of values JF (α)(e). Any such value we see at some stage
needs to be enumerated into T [e].
Construction. Let F0(α) = α for each α. At stage s + 1 look for the length-
lexicographically least α such that, where |α| = e, there is β � α such that y =
JF (β)(e) ↓ and y 6∈ T [e]. If there is such an α, enumerate y into T [e]. Define
Fs+1(α) = Fs(β) . Moreover, for all ρ 6= λ define Fs+1(αρ) = Fs(βρ).
This ends the construction. A value Fs(α), |α| = e, changes at most 2e+1 − 1
times, and causes the enumeration of at most that many elements into T [e]. Thus
|T [e]| ≤ 2 · 4e. �

This construction could be massaged a bit to obtain a bound close to 2e. However,
it is unknown if there is still a perfect class for much smaller bounds. Below we show
that there is a fixed C such that, if A is low for K via b (i.e., ∀y KA(y) ≥ K(y)−b),
then A is jump traceable via the bound C2bi log i (see Prop. 5.9 below). However,
each low for K set is ∆0

2. In [4] we construct a non-computable r.e. A which
is strongly jump traceable, namely, jump traceable via each unbounded montonic
computable h.

Jump traceable ω-r.e. sets. Next we determine the index set complexity of
jump traceability on the ω-r.e. sets. Recall that (Θe)e∈N is an effective listing of all
(possibly partial) tt-reduction procedures defined on an initial segment of N. Thus
Θe(x) can be viewed as a truth table. Then we obtain an effective listing (Ve)e∈N of
the ω–r.e. sets by letting Ve,s(x) = Θe(∅′;x)[s], which is interpreted as 0 if Θe(x)[s]
is undefined. Now let Ve(x) = limsVe,s(x).
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Proposition 2.4. {e : Ve jump-traceable } is Σ0
3-complete. Similarly,

{e : We jump-traceable } is Σ0
3-complete.

Proof. Ve is jump-traceable iff ∃T ⊆ N ∃h total

(∀n|T [n]| ≤ h(n) & ∀x∀s∃t ≥ s [JVe(x)[t] ↑ ∨ JVe(x)[t] ↓∈ T
[x]
t ]).

The direction “⇒” is clear. For the other direction, note that if JVe(x) ↓ then the
condition implies JVe(x) ∈ T [x].
For each e ∈ N we can effectively obtain ê such that We = Vê. This proves the
second index set is Σ0

3. For Σ0
3-hardness it suffices to consider the r.e. case. But it

is easy to show that any nontrivial Σ0
3-class of r.e. sets which is closed under finite

differences and contains the computable sets has a Σ0
3-complete index set. �

Digression: r.e. traceable reals. A real A is r.e. traceable if there is a
trace S such that ∀Γ(ΓA total ⇒ a.e. m ΓA(m) ∈ S[m]). This was studied in
(Ishmukhametov [5]), who used the term weakly recursive. By Fact 2.1 each jump
traceable real is r.e. traceable. Since the function g(x) = max T [x] is ω-r.e., a
weakly recursive real is array recursive [2], which means that there is an ω-r.e.
function which eventually dominates any A–computable function. For r.e. sets A,
the converse implication holds by [5], a fact which can be proved in the same style
as the proof of Theorem 4.1 below.
The r.e. traceable ∆0

2 reals have an interesting uniformity property. Recall that a
real A is Low2 if TotA = {e : {e}A total} ∈ Σ0

3.

Proposition 2.5. The r.e. traceable ∆0
2-reals (and hence the jump traceable ∆0

2-
reals) are uniformly low2. Thus, from a ∆0

2 approximation (As) to A one can
effectively obtain a Σ0

3-index for TotA.

The point is that the ∆0
2 approximation alone suffices, in case it actually approxi-

mates a r.e. traceable real, to obtain the Σ0
3-index.

Proof. Using the same argument as in [11, Fact 1], if a real A is weakly
recursive, then it is irrelevant what the actual bound h for the trace is, as long as
limnh(n) = ∞. Thus there is a trace S such that |S[m]| ≤ m. Let Si be a u.r.e.
list of all traces with bound h(m) = m, and let V [e] =

⋃
i≤e S

[e]
i , so that V is a

trace which works for all r.e. traceable reals. Let g(m, s) = max V
[m]
s . Then {e}A

is total iff

∃x∃s ∀t ≥ s ∀z < x eA(z) ↓ [t] & ∀z ≥ x∃v ≥ t u(A; e, z)[v] ≤ g(z, v).

The direction from left to right holds since u(A; e, z), the use of {e}A(z) is an A–
recursive function. The converse direction holds because, for each z, there are only
finitely many possibilities for {e}A(z)[v].
The right hand side gives a Σ0

3 index for TotA, which was obtained uniformly in
the ∆0

2-approximation to A. �

3. Super-low reals

Jockusch and Soare [6] proved that each non-empty Π0
1 class has a low member.

An analisis of their proof yields

Proposition 3.1. Each non-empty Π0
1 class has a super-low member.
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Proof. Suppose P = [B], where B is an infinite recursive subtree of 2<ω. For
each finite set F , let BF = {σ ∈ B : ∀e ∈ F Jσ(e) ↑}. Since being finite is a
Σ0

1-property of recursive trees, there is a computable g defined on (strong indices
for) finite subsets of N such that

BF finite ⇔ g(F ) ∈ ∅′.

As in [6], let B = BF0 ⊇ BF1 ⊇ . . . be a sequence of recursive trees defined as
follows: let F0 = ∅, and Fi+1 =Fi if BFi∪{i} is finite, and Fi+1 =Fi∪{i} else. Then
one can compute Fi from ∅′, where the use is bounded by the computable function
max{g(F ) + 1 : F ⊆ {0, . . . , i} }.
By compactness, there is a (unique) path A ∈

⋂
i[BFi ]. This path satisfies

JA(e) ↑ ⇔ e ∈ Fe+1. Thus A′ ≤wtt ∅′ and hence A′ ≤tt ∅′. �

Corollary 3.2. There is a Martin-Löf random super-low real.

Proof. This follows since the set of random reals forms a union of Π0
1-classes

(given by a universal Martin-Löf test). �

In contrast, a Martin-Löf random real R is not of n-r.e. degree unless R ≡T ∅′.
This is because there is a fixed point free f ≤T R (i.e., ∀e We 6= Wf(e)), and the
Arslanov completeness criterion applies to n-r.e. sets (see [10, p. 277]).
Recall that, by the Sacks Splitting Theorem, there are low r.e. sets A0, A1 such
that ∅′ ≤T A0 ⊕A1. Again, we strengthen this to super-low. This was first proved
in [1].

Theorem 3.3. [1] There are super-low r.e. sets A0, A1 such that ∅′ ≤T A0 ⊕A1.

Proof. We enumerate A0, A1 and also build a Turing functional Γ such that
∅′ = Γ(A0 ⊕A1). The use of Γ(A0 ⊕A1; p) is denoted γ(A0 ⊕A1; p) (and pictured
as a movable marker). For the duration of this proof, k, l denote numbers in {0, 1},
p, q denote numbers in N and [p, k] stands for 2p + k.
To avoid that JAk(p) change too often, we ensure that at each stage s, for each p,
k such that [p, k] ≤ s,

(1) JAk(p)[s] ↓ ⇒ γ(A0 ⊕A1)([p, k]) > j(Ak, p)[s]

Construction. At stage s, define Γ(A0⊕A1; s) with large use, and do the following.

a) If there is [p, k] such that JAk(p)[s−1] ↑ and JAk(p) ↓ at the beginning of
stage s, choose [p, k] minimal such. Put γ(A0 ⊕ A1; [p, k]) into A1−k and
redefine Γ(A0⊕A1; q), s ≥ q ≥ [p, k], with the correct value and large use.

b) If n ∈ ∅′s − ∅′s−1, then put γ(A0 ⊕A1;n) into A1−k.

A typical set-up looks like this:

�� ��
j(A0, p) j(A1, p)γ(2p) γ(2p + 1)
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(Here, JA1(p) converged after JA0(p).)

Verification We first check (1) by induction on s. The condition holds for s = 0.
If s > 0, we may suppose there is [p, k] minimal such that JAk([p, k])[s − 1] ↑ and
JAk(p)[s] ↓ (else there is nothing to prove), in which case we put v = γ(A0 ⊕
A1; [p, k]) into A1−k.

• If [q, l] < [p, k], then v > γ(A0 ⊕ A1; [q, l]) ≥ j(Al, q)[s] by inductive
hypothesis, so that (1) remains true for JAl(q)[s].

• Since we enumerate v into the “other” side, JAk(p)[s] remains convergent,
so we ensure γ(A0 ⊕A1; [p, k]) > j(Ak, p)[s].

• For [q, l] > [p, k], computations JAl(q)[s] have their use below the new
value of γ([q, l]).

Next we show that both A0 and A1 are super-low. As in the standard construction
of a (super-)low simple set, let gk(p, s) = 1 if JAk(p)[s] ↓ and let gk(e, s) = 0
otherwise. We define a computable function c such that c([p, k]) is a bound on the
number of times JAk(p) can become defined. Then bk(p) = 2c([p, k]) + 1 bounds
how often gk(p, s) changes.
By (1), JA0(p) becomes undefined at most 2p times due to change of ∅′ � 2p.
Otherwise, JAk(p) becomes undefined only when some computation JA1−k([q, 1−k])
becomes defined, where [q, 1 − k] < [p, k]. Thus the recursive function c given by
c(0) = 1, c([p, k]) = 2p +

∑
{c([q, 1− k]) : [q, 1− k] < [p, k]} is as desired.

As a consequence, each marker γ(A0 ⊕ A1;m) reaches a limit. Thus ∅′ = Γ(A0 ⊕
A1). �

In contrast to the case of the Sacks Splitting theorem, we cannot achieve that Γ
above is a wtt-reduction. Bickford and Mills [1, Thm. 4.1] show that, in fact, no
super-low r.e. set is cuppable in the r.e. wtt-degrees.

4. Traceability versus super lowness

Theorem 4.1. Let A be r.e. Then the following are equivalent.
(i) A is jump traceable
(ii) A is super-low.

Both directions are effective.

Proof. (i) ⇒ (ii). Suppose A is jump traceable via a trace T with bound h.
By convention, for each s, Ts ⊆ [0, s). Consider the following partial A–recursive
function:

q(e) = µs(JA(e)[s] ↓ & As � j(As, e, s) = A � j(As, e, s)).

By Fact 1.4 there is a total computable α such that, for all e, q(e) ' JA(α(e)).
Then, for each s,

(2) (JA(e)[s] ↑ & JA(e) ↓) ⇒ JA(α(e)) ≥ s,

since JA(α(e)) < s implies that JA(e) has reached a final value by stage s.
We define computable functions g(e, s), b(e) as in Definition 1.1 witnessing that A
is super-low. Let g(e, 0) = 0. For t > 0, if JA(e)[t] ↑ then let g(e, t) = 0. Now
suppose JA(e)[t] ↓. If g(e, t− 1) = 1 then let g(e, t) = 1. If g(e, t− 1) = 0, then we
first test the stability of the computation JA(e)[t] before allowing g(e, t) = 1: let
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s < t be the greatest stage such that JA(e)[s] ↑. If v = JA(α(e))[t] ↓, s ≤ v and
v ∈ T

[e]
t then let g(e, t) = 1, otherwise g(e, t) = 0.

We claim that g(e, t) changes at most 2h(α(e)) + 2 times. It suffices to show that
g(e, t) changes from 1 to 0 and back to 1 at most h(α(e)) times. Thus, suppose
s > 0, g(e, s − 1) = 1, g(e, s) = 0 (so that JA(e)[s] ↑) and t > s is least such that
g(e, t) = 1. Then v = JA(α(e))[t] ↓ and s ≤ v. Since Ts ⊆ [0, s) and v ∈ T

[e]
t ,

T
[e]
t − T

[e]
s 6= ∅. This can happen at most h(α(e)) times.

s t

g(e, s− 1) = 1, g(e, s) = 0 g(e, t) = 1

JA(e) ↑

v = JA(α(e))

v ∈ T
[e]
t

It remains to be shown that A′(e) = limsg(e, s). If JA(e) ↑, then g(e, s) = 0 for
infinitely many s, so limsg(e, s) = 0. Now suppose JA(e) ↓. Let s be greatest
such that JA(e)[s] ↑. Since JA(α(e)) ↓, there is a t ≥ s such that the computation
v = JA(α(e)) is stable and v ∈ T

[e]
t . Then s ≤ v by (2). So we define g(e, t′) = 1

for each t′ ≥ t.
Note that we have obtained g and b effectively in the trace T and its bound.
(ii) ⇒ (i). Suppose A is super-low. Thus A′ is ω-r.e. via some functions g, b. We
enumerate a trace T to show A is jump traceable, and also define an auxiliary partial
recursive functional Ψ, which copies computation of the jump J with some delay.
We assume a partial recursive functional Ψ̃ is given, and let α be the reduction
function for Ψ̃ according to Fact 1.4. Since we produce Ψ effectively from α, by
the Recursion Theorem we can assume that Ψ̃ = Ψ, so that α is also a reduction
function for Ψ.
Given e, let ê = α(e). At stage s = 0, Ψ is totally undefined. For s > 0, we
distinguish two cases.

a) g(ê, s) = 0. If ΨA(e)[s− 1] ↑ and JA(e)[s] ↓= v, define ΨA(e)[s] = v with
use j(As, e, s).

b) g(ê, s) = 1. If ΨA(e)[s] ↓ then enumerate y = JA(e)[s] into T [e].

Note that, since Ψ just copies computations of J at a later stage, when a new
computation JA(e)[s] appears, then no computation ΨA(e)[t] which was defined at
t < s still applies at stage s.
Suppose JA(e) = z, and let s be the least stage where this (final) computation
appears. We show z ∈ T [e]. At a stage t ≥ s, we may only define a new computation
ΨA(e)[t] in case g(ê, t) = 0. Since ΨA(e)[t] remains undefined till this happens, by
the definition of α, in fact there must be such a stage t ≥ s. Since the use for
ΨA(e)[t] is j(As, e, s) and As � j(As, e, s) is stable, ΨA(e) ↓. Hence g(ê, r) = 1 for
some r > t, at which point we enumerate z into T [e].
Next we show T is a trace with bound h(e) = b 1

2b(α(e))c. Suppose q < r are stages
where distinct elements y, z are enumerated into T [e]. Then y = JA(e)[q], z =
JA(e)[r], and g(ê, q) = g(ê, r) = 1. Since Aq � j(Aq, e, q) 6= Ar � j(Aq, e, q), no
definition ΨA(e)[q′] issued at a stage q′ ≤ q is valid at stage r. (Here is where we
need that A is r.e.) So we must have made a new definition ΨA(e)[t] at a stage t,
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q < t < r, whence g(ê, t) = 0. Since g(ê, s) can change from 1 to 0 and back at
most h(e) times, this proves that |T [e]| ≤ h(e).
Using the Recursion Theorem with indices for g and b as parameters, we obtain T
and h effectively in those indices. �

We obtain an interesting consequence which is not obvious from the definition.

Corollary 4.2. {e : We super-low } is Σ0
3-complete.

Proof. This follows from the corresponding fact for jump-traceability, Propo-
sition 2.4. �

Theorem 4.3. There is a super-low real A which is not jump-traceable.

Proof. In [7] we show that no r.e. traceable set is diagonally non-computable.
Since a ML-random set is diagonally non-computable, the Martin-Löf random real
obtained in Corollary 3.2 is not jump-traceable. �

Theorem 4.4. There is an ω-r.e. jump-traceable real A which is not super-low.

Notice however that A is low by Proposition 2.2.

Proof. Fix an effective listing (ge, be)e∈N of all pairs consisting of a binary
and a unary partial recursive function, such that for all w, {q : ge(w, q) ↓} is an
initial segment of N. Then we can assume the same property for the approximation
at a stage s, ge(w, q)[s].
To ensure A is not super-low, we meet the requirements
Pe : ge, be total & ∀x ge(x, q) changes at most be(x) times ⇒

∃y ¬A′(y) = limqge(y, q).
We define an auxiliary binary p.r. functional Ψ. As usual, by the Recursion Theo-
rem, we are given a reduction function α such that ΨX(e, y) = JX(α(〈e, y〉)). The
strategy for Pe is as follows.

(1) Pick a fresh candidate y at stage t. Let ỹ = α(e, y). Wait till be(ỹ) ↓ at a
stage t.

(2) Pick a fresh number z (thus, z ≥ be(ỹ)), called the parameter of Pe. From
now on, ensure that

ΨA(e, y) ↓ ⇔ z ∈ A.

To do so, for all strings σ of length z, define Ψσ1(e, y) = 1. This is allowed,
since there have been no definitions with arguments e, y so far.

Do the following at most be(ỹ) times at stages s ≥ t: Whenever
ge(ỹ, q)[s − 1] ↑, ge(ỹ, q)[s] ↓, and ge(ỹ, q − 1) 6= ge(ỹ, q), then declare
As(z) = 1− ge(ỹ, q). Otherwise As(z) = As−1(z).

Then, if the hypothesis of Pe is satisfied,

ỹ ∈ A′ ⇔ ΨA(e, y) ↓ ⇔ limsge(ỹ, s) = 0

Moreover, As(z) changes at most z times (since z ≥ be(ỹ)), so that A is ω-r.e. To
ensure A is jump traceable, we enumerate a trace T . We meet the requirements

Qe : |T [e]| ≤ h(e) & (v = JA(e) ↓ ⇒ v ∈ T [e]),
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where h(e) is a recursive bound to be determined below.
The priority ordering of requirements is Q0 < P0 < Q1 < . . .. The strategy for Qe

is simple: whenever a computation JA(e) = v appears at stage s which has not
been seen before, then

(1) put v into T [e]

(2) initialize the requirements Pi, i ≥ e.
We say that Qe acts. In that case, A(z) retains its value, for any parameter z
of a lower priority requirement Pj . Therefore, unless also a higher priority Pi is
initialized, for t ≥ s, At � j(At, e, t) only depends on the values A(z), where z
is the parameter of a higher priority Pi, which gives at most 2e possibilities for
At � j(At, e, t) (here we need that Pi only needs to change A(z) for a single number
z, which would fail if we had to make A r.e.).
Construction. Let A0 = ∅. At stage s > 0, go through the requirements
Q0, P0, . . . , Qs, Ps and let them carry out one step of their strategies. At the end, if
y ≤ s and no value has been assigned yet to As(y), retain the value at stage s− 1.
Verification. Let h(0) = 1 and, for e > 0, let h(e) = h(e− 1)(2e + 1)

Lemma 4.5. Let e ≥ 0. Then
(i) Qe is met
(ii) Pe is initialized at most h(e) times and met.

Proof. For e = 0, (i) and (ii) hold, since P0 is initialized at most once, when JA(0)
converges for the first time. Assume e > 0.
(i) While Pe−1 is not initialized, the requirements Pi, i < e pick at most one
number z. If Fs is the set of such numbers at a stage s, then there are at most 2e

possibilities for As ∩Fs. Hence Qe enumerates at most 2e numbers into T [e] before
Pe−1 is initialized another time. Hence, by inductive hypothesis (ii) for e − 1,
|T [e]| ≤ 2eh(e− 1) ≤ h(e).
(ii) If Pe is initialized, then either Pe−1 is also initialized, or Qe acts. So Pe

is initialized at most h(e) times. Once it is no more initialized, Pe diagonalizes
successfully. �

5. A construction of a K-trivial r.e. real

The following theorem was considered in discussions with Downey and Hirschfeldt.

Theorem 5.1. For each low r.e. set B there is an r.e. K-trivial set A such that
A 6≤T B.

Proof. Let N〈e〉 denote the set of numbers of the form 〈y, e〉. We meet the
requirements

Pe : A 6= {e}B ,

by enumerating numbers x ∈ N〈e〉 into A. To ensure A is K-trivial, we apply the
criterion implicit in [3, Theorem 3.1] in the form presented in [9, Prop. 3.3.]. This
is actually a characterization of K, as proved in [9, Theorem 5.12]. We refer to
those papers for motivation, and to [9] for a proof.
Note that K(y) = limsKs(y), where Ks(y) = min{|σ| : Us(σ) = y}. One uses the
“cost function”

c(x, s) = 1/2
∑

x<y≤s 2−Ks(y),
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which bounds the cost of changing A(x) at stage s. Note that c(x, s) is nondecreas-
ing in s, limsc(x, s) ≤ 1/2 for each x, and limxlimsc(x, s) = 0 by the definition of
prefix Kolmogorov complexity.

Fact 5.2 ( [9]). Suppose that A(x) = limsAs(x) for a ∆0
2–approximation (As) such

that

(3) S =
∑

{c(x, s) : s > 0 & x is minimal s.t. As−1(x) 6= As(x)} ≤ 1/2.

Then A is K-trivial.

To meet the requirements Pe, we use a Robinson type procedure, using the lowness
of B to “certify” computations {e}B(x)[s] = 0. We may ask a a Σ0

1(B)-question
about the enumeration of A, and we have a ∆0

2-approximation to the answer. But
which enumeration? We may assume that it is given, by the recursion theorem.
Formally, an enumeration is an index for a partial recursive function A defined on
an initial segment of N such that, where A(t), is interpreted as a strong index for
the part of A enumerated by stage t, A(s) ⊆ A(s + 1) for each s. We write At

for A(t). Given any (possibly partial) enumeration Ã, we effectively produce an
enumeration A, asking Σ0

1(B)-questions about the given enumeration Ã. We must
show that A is total in the interesting case that A = Ã (by the recursion theorem),
where these questions are actually about A.
Here is the Σ0

1(B)-question for requirement Pe:
Is there a stage s and an x ∈ N〈e〉 such that Ã is defined up to s− 1, and

• {e}B(x) = 0[s], where Bs � u(Bs, e, x, s) = B � u(Bs, e, x, s) (B is correct
on the use of the computation), and

• c(x, s) ≤ 2−(e+n+3),

where n = |N〈e〉 ∩ Ã(s− 1)| is the number of enumerations for the sake of Pe prior
to s.
Since B is low, there is a total computable function g(e, s) such that lim g(e, s) = 1
if the answers is Yes, and lim g(e, s) = 0 otherwise. (The function g(e, s) actually
depends on a further argument which we supress, an index for Ã.)
Construction. We define As, assuming As−1 has been defined or s = 0.
For each e < s, if there is an x < s, x ∈ N〈e〉 satisfying

{e}B(x) = 0[s] & c(x, s) ≤ 2−(e+n+3),

where n = |N〈e〉 ∩ As−1|, then choose x least and search for the least t ≥ s such
that g(e, t) = 1, or Bt � u 6= Bs � u, where u = u(Bs, e, x, s) is the use at s. In the
first case, enumerate x into A (at the current stage s). If the search does not end
for some e < s, then we leave As undefined.
Verification. We may assume A = Ã by the recursion theorem.

Lemma 5.3. A is total.

Proof. Assume that As−1 is defined or s = 0. Since A = Ã and by the
correctness of limtg(e, t), the search at stage s ends for each e. So we define As. �

Lemma 5.4. A is K–trivial.
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Proof. We apply the Fact 5.2. At stage s, suppose x is minimal s.t. As−1(x) 6=
As(x). We enumerate x for the sake of some requirement Pe, which so far has
enumerated n numbers. Then c(x, s) ≤ 2−(e+n+3), hence S ≤

∑
0≤e,n 2−(e+n+3) =

1/2. �

Lemma 5.5. Each requirement Pe is met.

Proof. Suppose for a contradiction that A = {e}B . First assume limsg(e, s) =
1. Choose witnesses x, s for the affirmative answer to the Σ0

1(B) question for Pe.
Since B � u does not change after s where u = u(Bs, e, x, s), we search for t till we
see g(e, t) = 1. Then Pe enumerates x at stage s.
Now consider the case g(e, s) = 0 for all s ≥ s0. Then we do not enumerate numbers
for the sake of Pe after stage s0. Then there is n such that Pe puts just n numbers
into A. Since A = {e}B , there is x ∈ N〈e〉 and s ≥ s0 such that {e}B(x) = 0[s] and
c(x, s) ≤ 2−(e+n+3), where n = |N〈e〉 ∩A|. So the answer to the Σ0

1(B) question for
Pe is Yes, contradiction. �

Note that the action of Pe may be infinitary, which is harmless here, but could be
avoided by refining the Σ0

1(B) question.
Also note that the argument in the proof of Lemma 5.5, in the case lims g(e, s) =
1 breaks down if B is merely ∆0

2. The opponent can now present the correct
computation {e}B(x) = 0 at a stage s where the limit lims g(e, s) has not yet
been reached. Then he temporarily changes B below the use at stage t > s while
keeping g(e, t) = 0, and we do not put x into A at s. At a later stage where the
old computation {e}B(x) = 0 comes back, he has increased the cost function above
2−(e+n+3). Thus the following question remains:

Question 5.6. Does Theorem 5.1 hold for ∆0
2 low sets B?

We may replace B by a u.r.e. sequence of uniformly low sets Bi and obtain a
stronger result, which is proved by making the appropriate notational changes in
the proof of Theorem 5.1.

Corollary 5.7. For each u.r.e. sequence of uniformly low sets Bi, there is an r.e.
K-trivial set A such that A 6≤T Bi for each i.

We apply this to a class first studied by Andrei Muchnik (1998).

Definition 5.8 ([9]). A is low for K via a constant b if

∀y K(y) ≤ KA(y) + b.

Let M denote this class of reals.

In [9] it is proved as a main result that K = M.
Note that M ⊆M[p] for reach p as in Definition 1.3. Thus each A ∈ M is jump
traceable. Here is a uniform version of this.

Proposition 5.9. There is a fixed C such that, if A is low for K via b, then
A is jump-traceable, where the trace Tb is obtained effectively in b and has bound
C2bi log i.

Proof. Up to constants, for each i such that JA(i) is defined,

K(i) ≥ KA(i) ≥ KA(JA(i)) ≥ K(JA(i))− b,
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and hence JA(i) ∈ {y : K(y) ≤ K(i) + b + d}, for some fixed d. Since K(i) ≤
log i + 2 log log i + d′ for some fixed constant d′, the trace Tb given by T

[i]
b = {y :

K(y) ≤ log i + 2 log log i + b + d + d′} is as required. �

The class M is Σ0
3 on both the ω-r.e. and the r.e. sets. Since it includes all finite

sets, there is a u.r.e. listing of the r.e. sets in M. However, there is no way to
determine a constant for being low for K:

Theorem 5.10. There is no effective sequence (Bi, bi) of pairs of an r.e. set and a
constant such that each Bi is low for K via bi, and for each r.e. set A,

A ∈M ⇒ ∃i A ≤T Bi.

In particular, there is no such sequence listing all the r.e. sets in M.

Proof. By Proposition 5.9, each Bi is jump-traceable, where the trace and its
bound are obtained effectively in bi. By Theorem 4.1, we obtain a witness for the
(super)-lowness of Bi, effectively in i. The result follows by Corollary 5.7 �

We close with a further question.

Question 5.11. Find an elementary property which distinguishes the classes of
low and super-low r.e. degrees. For instance, is there a noncappable (hence, low
cuppable) degree which does not cup with a super-low r.e. degree to 0′? Is there a
degree which is not the supremum of two super-low degrees?

It would also be interesting to see to what extent Theorem 4.1 holds for d.r.e. sets.
Acknowledgement. The author thanks Frank Stephan and Sebastiaan Terwijn
for helpful comments.
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