
Advances in Mathematics 197 (2005) 274–305
www.elsevier.com/locate/aim

Lowness properties and randomness
André Nies1

Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand

Received 5 December 2003; accepted 13 October 2004

Communicated by H. Jerome Keisler

Abstract

The set A is low for (Martin-Löf) randomness if each random set is already random relative
to A. A is K-trivial if the prefix complexity K of each initial segment of A is minimal, namely
∀n K(A!n)"K(n) + O(1). We show that these classes coincide. This answers a question of
Ambos-Spies and Kučera in: P. Cholak, S. Lempp, M. Lerman, R. Shore, (Eds.), Computabil-
ity Theory and Its Applications: Current Trends and Open Problems, American Mathematical
Society, Providence, RI, 2000: each low for Martin-Löf random set is !0

2. Our class induces a
natural intermediate "0

3 ideal in the r.e. Turing degrees, which generates the whole class under
downward closure.

Answering a further question in P. Cholak, S. Lempp, M. Lerman, R. Shore, (Eds.), Com-
putability Theory and Its Applications: Current Trends and Open Problems, American Mathe-
matical Society, Providence, RI, 2000, we prove that each low for computably random set is
computable.
© 2004 Elsevier Inc. All rights reserved.

MSC: 68Q30; 03D28

Keywords: Kolmogorov prefix complexity; Randomness; K-trivial; Low for random

1. Introduction

Two classes of sets have been discovered independently by different researchers. We
demonstrate that they coincide. This class also leads to the first example of a natural

E-mail address: andre@cs.auckland.ac.nz.
URL: http://www.cs.auckland.ac.nz/∼ nies

1 Partially supported by Marsden fund of New Zealand, Grant no 03-UOA-130.

0001-8708/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2004.10.006

http://www.elsevier.com/locate/aim
mailto:andre@cs.auckland.ac.nz
http://www.cs.auckland.ac.nz/~nies

A. Nies / Advances in Mathematics 197 (2005) 274–305 275

intermediate "0
3 ideal in the r.e. Turing degrees. (All sets will be sets of natural numbers

unless otherwise stated. They are identified with infinite strings over {0, 1}.)
• Chaitin [7] and Solovay [28] studied the class of K-trivial sets (which we denote

K). The set A is K-trivial if the prefix complexity of each initial segment of A is
minimal. Solovay constructed a non-recursive K-trivial set.

• Zambella [30] introduced the class Low(MLR) of low for random sets, a property
which says the set is computationally weak as an oracle: no regularity can be detected
in a random set when using A as an oracle. Kučera and Terwijn [15] constructed a
non-computable r.e. low for random set.

Muchnik (1998) defined the class M of low for K sets, which as an oracle do not
reduce the prefix complexity of a string. In unpublished work, he constructed a non-
recursive set in M. By an easy argument, M is included in both K and Low(MLR), and
all sets in M are low in the usual sense. We show that Low(MLR) = M and K is closed
downward under Turing reducibility, which leads to a proof that K equals M. Hence
all three classes coincide. However, Low(MLR) and K represent very different aspects
of the same notion. The class Low(MLR) expresses that the set is computationally
weak, while K states that the set is far from random. The part K = M is joint with D.
Hirschfeldt, and can be proved by modifying the argument that K is closed downward.

Our results continue a line of research started by van Lambalgen, Kurtz and others,
joining two areas of computability theory: the complexity of sets, and their randomness
properties. To classify sets by their absolute complexity, one introduces a hierarchy of
classes: computable, recursively enumerable, !0

2, etc. K lies in between computable and
!0

2. The complexity of sets is compared via reducibilities, for example Turing reducibil-
ity "T . To study the classes in this hierarchy and the degree structures arising from
these reducibilities, increasingly difficult forcing arguments and priority constructions
are needed.

The most commonly accepted notion of algorithmic randomness is the one introduced
by Martin-Löf [16]. A MARTIN-LÖF TEST is a uniformly r.e. sequence (Un) of open sets
in Cantor Space 2! such that "(Un)"2−n, where " is the usual Lebesgue measure
on 2!. A set X is MARTIN-LÖF RANDOM if it passes each test in the sense that
X $∈ ⋂

n Un. The class of such sets is denoted MLR. Schnorr [24] proved that a set X

is random in this sense if and only if the algorithmic prefix complexity K of all its
initial segments is large, namely ∀n K(X!n)#n − O(1). The methods used to study
algorithmic randomness have been quite different from the ones mentioned above—they
were effective measure theoretic or, when dealing with K-complexity, combinatorial.

The constructions below share elements from both approaches. The enumeration of
a number into a set is replaced by the enumeration of certain objects (say, clopen sets
of small measure) which can be subdivided arbitrarily much.

The class K induces a "0
3 ideal in the r.e. Turing degrees, which generates the whole

of K under Turing downward closure. As in computational complexity theory, such
closure properties can be taken as further evidence that this common class K is a very
natural one. K is the first known example of a natural intermediate "0

3-ideal, and K
also is the first "0

3-ideal not obtained by a direct construction. The existence of such
an ideal is surprising as Turing reducibility itself on the r.e. sets is only "0

4. Moreover,

276 A. Nies / Advances in Mathematics 197 (2005) 274–305

K, as an operator, is degree invariant, namely, for Turing equivalent sets X, Y , the
relativized classes KX and KY coincide. This relates to Sacks’ question whether there
is a degree invariant solution to Post’s Problem [23]. A degree invariant ideal which is
also principal would give such a solution (at least as a Borel operator). However, we
also prove that KX is not a principal ideal in the r.e. degrees relativized to X.

The classes and concepts: In the following we discuss the relevant classes and con-
cepts in an informal way, deferring the formal definitions to Section 2. More intuition
on the concepts and techniques of this paper can be found in [10].

A LOWNESS PROPERTY of a set A expresses that, in some way, A has low compu-
tational power when used as an oracle. We require that such a property be downward
closed under "T . The usual lowness, A′ ≡T ∅′, is an example. The lowness property
Low(MLR) is itself based on relative randomness: A is LOW FOR MARTIN-LÖF RANDOM
if each random set X is already random relative to A, i.e. X passes all A-r.e. tests.
Terwijn and Kučera [15, submitted 1997] constructed a non-computable r.e. low for
random set.

The class K of K-trivial sets embodies being far from random. While random sets
have high initial segment complexity, for K-trivial sets this complexity is as low as
possible, namely ∀n K(X!n)"K(n) + O(1). Clearly each computable set is K-trivial.
Chaitin [6] proved that K ⊆ !0

2. Solovay (1975), in a widely circulated manuscript [28],
gave the first, rather complicated construction of a non-computable set in K, which was
adapted by Calude and Coles [5] to the r.e. case. Kummer (unpublished) and Downey
(see [9]) independently built an r.e. non-computable set in K via similar, very short
and elegant constructions.

Let KA(y) be the prefix complexity of y relative to the oracle A. We call a set A

LOW FOR K if ∀y K(y)"KA(y) + O(1). In other words, the oracle A cannot be used
to further compress the string y. The class of such sets is denoted M. Andrei Muchnik
(unpublished, 1998) constructed a non-computable r.e. set in this class.

Cost functions: The constructions of a non-recursive set in those apparently very
different classes are quite similar, which was a first indicator that the classes are
the same. We describe a common framework for those constructions, called the cost
function method. A COST FUNCTION is a computable function c : N × N +→ {q ∈
Q : q #0} such that limx lims c(x, s) = 0. Suppose we are building a !0

2-set A, via a
!0

2-approximation (Ar). At stage s, if x is least such that As(x) changes (for instance
to meet a requirement in a list of requirements ensuring that A is non-computable),
the cost of this change is c(x, s). The global restraining requirement is that the sum
of the costs over all stages be finite.

One defines a cost function which ensures that the constructed set is in the relevant
class. For K, one uses c(x, s) = d

∑
x<y " s 2−Ks(y), where Ks(y) denotes the prefix

complexity of y by stage s (the particular choice of the constant d > 0 is irrelevant).
This method is interesting because it has no injury to requirements, thereby giving a
new injury free solution to Post’s problem.

We will see that, conversely, if A ∈ K, then this !0
2 set can be viewed as being

built via the cost function method for K. From this characterization one obtains fur-
ther information about K. For instance, each set A ∈ K is truth-table below an r.e.
set in K.

A. Nies / Advances in Mathematics 197 (2005) 274–305 277

Other randomness notions: A set Z is COMPUTABLY RANDOM if no computable
betting strategy (martingale) which is monotone, i.e. bets on the bit positions in their
natural order, succeeds on Z. If no strategy betting in any order succeeds, the set is
called KOLMOGOROV–LOVELAND RANDOM. Denoting the classes of such sets by CR
and KLR, respectively, the inclusions MLR ⊆ KLR ⊂ CR hold. A persistent open
question is whether the first inclusion is strict as well [2,19].

Given randomness notions C ⊆ D, let Low(C, D) denote the class of oracles A

such that C ⊆ DA. We write Low(C) for Low(C, C). Note that one makes the class
Low(C̃, D̃) larger by decreasing C or increasing D.

In Section 5 we prove that in fact Low(MLR,CR) = M, which implies both
Low(MLR) = M and Low(KLR) ⊆ M. However, it is unknown if non-recursive
sets in Low(KLR) exist. If not, then at least for some oracle X, the relativized classes
KLRX and MLRX are distinct.

Recent history of the results: Kučera and Terwijn [15] had asked if there is a low
for random set outside !0

2. (This is also Problem 4.4. in Ambos-Spies and Kučera [2]).
The work of Terwijn and Zambella on Schnorr low sets [29] suggested the existence of
such a set, since there are continuum many Schnorr low sets, and they are necessarily
outside !0

2. Stephan and Nies showed that {e : We ∈ Low(MLR)} is "0
3. To do so they

gave a characterization of Low(MLR). Using a modified form of this characterization,
the author proved Low(MLR) = M, which implies Low(MLR) ⊆ !0

2, and finally he
strengthened this to Low(MLR, CR) = M, using martingales. Hirschfeldt made an
important step towards understanding K, proving that each A ∈ K is Turing incomplete
(see [9, Theorem 4.1]). The author showed the stronger result that K is closed down-
wards under "T , and gave the characterization of K via the cost function method.
Hirschfeldt conjectured that K = M, and together they developed the modification of
the proof that K is closed downwards which suffices.

Later the author answered Problem 4.8 in [2], showing that each Low(CR) set is
computable. This was first proved directly, but is derived here from Low(MLR, CR) =
M.

Related concepts: Only a few natural ideals are known in the r.e. degrees: the non-
cuppable degrees, the non-promptly simple degrees (which by [1] coincide with the
cappable degrees) and the almost deep degrees (a is almost deep if a ∨ b is low for
each low r.e. degree b [8]). The latter two classes are interesting since, as is the case
for K, their defining property is not directly related to Turing reducibility. However,
only for K is the ideal also "0

3.
An example of a lowness property from the theory of inductive inference which is

analogous to Low(MLR) is the class of sets of trivial EX-degree, i.e. the sets A such
that EX[A] = EX, where EX[A] is the class of sets of computable functions which can
be learned with an oracle A. Slaman and Solovay [26] proved that the non-recursive
sets in this class coincide with the sets Turing equivalent to a 1-generic set in !0

2.
Thus, none of them is r.e.

Plan of the paper: In Section 2 we define the classes K, Low(MLR) and M, and
study their basic properties. In Section 3 we discuss an important tool, the Kraft–
Chaitin Theorem, based on [6]. The tool is first applied in Section 4, where we give an
axiomatic formulation of the construction of a non-computable r.e. set in K from [9]. In

278 A. Nies / Advances in Mathematics 197 (2005) 274–305

Section 5 we prove that Low(MLR,CR) ⊆ M (the converse inclusion is trivial), hence
low for random equals low for K . In Section 6 we show that K is downward closed,
that K = M and that the construction from Section 3 provides a characterization of K.
In a final Section, we relativize K, and we discuss reducibilities related to Low(MLR)
and M.

Subsequent work: After the submission of this paper, a further class that had been
studied in the literature turned out to be equal to K. Let us say that A is a basis
for ML-randomness if A"T Z for some Z ∈ MLRA. This notion was first studied
by Kučera [14], who constructed a non-recursive r.e. basis for ML-randomness via a
variant of his injury-free solution to Post’s problem. Each low for ML-random set A is
a basis for ML-randomness. For, by the Kučera–Gács theorem, there is a ML-random
Z such that A"T Z. Then Z is ML-random relative to A.

In [11] it is proved that each basis A for ML-randomness if K-trivial. The proof
is easily modified to directly reach the conclusion that A is low for K (see [20]).
This gives an alternative, simpler proof of the inclusion Low(MLR) ⊆ M. However,
the proof in the present paper also applies to the cases of lowness for computable
randomness and KL-randomness. The paper [11] also contains the following variant:
if A is r.e., then A"T Z for some ML-random Turing incomplete Z implies that A is
K-trivial. It is open whether the converse holds.

Notation: We identify a string # in 2<! with the natural number n such that the
binary representation of n + 1 is 1#.

KA(y) is the length of a shortest prefix description of y using oracle A. More
formally, an ORACLE MACHINE is a partial recursive functional M : 2! × 2<! +→ 2<!.
We write MA(x) for M(A, x). M is an ORACLE PREFIX MACHINE if the domain of MA

is an antichain under inclusion of strings, for each A. Let (Md)d∈N+ be an effective
listing of all oracle prefix machines. The universal oracle prefix machine U is given by

UA(0d−11#) = MA
d (#).

If UA(#) = y, we say that # is a UA-description of y. Let $A = "(dom UA), and

KA(y) = min{|#| : UA(#) = y}.

When the oracle is ∅, we obtain the usual notions of prefix machine and universal
prefix machine. (We simply write $ and K(y).) Note that K(y) = lims Ks(y), where
Ks(y) = min{|#| : Us(#) = y} (if there is no such #, we let Ks(y) = ∞). For a
string y, K(y) is not far greater than |y|, since a prefix code ŷ for y can serve as a
description of y. Since there is such a code of length |y|+2 log |y| [4, Example 2.4], a
computable upper bound is K(y)" |y|+2 log |y|+cK for a certain constant cK (which
will be used below).

A !0
2-APPROXIMATION (Ar)r∈N of a set A ∈ !0

2 is an effective sequence of finite
sets such that A(x) = limrAr(x). Note that A" t t∅′ iff A"wtt∅′ iff there is such an
approximation where the number of changes is recursively bounded. Reals with that
property are called !-r.e.

For a randomness notion C, Non-C denotes the class of sets not in C.

A. Nies / Advances in Mathematics 197 (2005) 274–305 279

2. The classes and their basic properties

2.1. Far from random: the class K

Note that K(|y|)"K(y) + O(1), since one can compute |y| from y. Thus, the fol-
lowing definition expresses that, up to a constant, the K-complexity of initial segments
of A is as small as possible.

Definition 2.1 (Chaitin [6]). A set A is K-TRIVIAL via a constant b if

∀n K(A!n)"K(n) + b.

Let K denote the class of K-trivial sets.

This notion is opposite to Martin-Löf-randomness since, by Schnorr [24], A is Martin-
Löf-random iff, for some c, ∀n K(A!n)#n − c. Thus, A is Martin-Löf-random if for
each n, K(A!n) is close to its upper bound, and A is K-trivial if K(A!n) is within a
constant of its lower bound K(n). We list some properties of K.

Theorem 2.2 (Chaitin [6]). K ⊆ !0
2.

The proof uses trees of bounded width (also see [9]): the !0
2 tree Tb = {# : ∀% ⊆

K(%)"K(|%|) + b} has width at most O(2b). If A is K-trivial via the constant b,
then A is a path on Tb. All paths on Tb are isolated, so A ∈ !0

2.
For sets A, B, let A ⊕ B = {2x : x ∈ A} ∪ {2x + 1 : x ∈ B}.

Theorem 2.3 (Downey et al. [9], Theorem 6.2). If A, B ∈ K, then A ⊕ B ∈ K.

Let (#e)e∈N be an effective listing of all t t-reduction procedures. The following is
easily checked.

Fact 2.4. {e : #e total & #e(∅′) ∈ K} ∈ "0
3.

As a consequence, there is a u.r.e. listing of all the r.e. K-trivial sets, and this class
has a "0

3 index set. Then, in fact, the index set is "0
3-complete (it is easy to show

that any non-trivial "0
3 class of r.e. sets which is closed under finite differences and

contains the computable sets has a "0
3-complete index set).

2.2. Low computational power: the class Low(MLR)

Note that if B "T A, then KA(y)"KB(y)+O(1). In particular, KA(y)"K(y)+O(1).
Relativizing the above-mentioned result of Schnorr [24], a set X is Martin-Löf-random
relative to A iff, for some c, ∀n KA(X!n)#n− c. Let MLRA denote this class of sets.
Then MLRA ⊆ MLR for each A.

280 A. Nies / Advances in Mathematics 197 (2005) 274–305

Definition 2.5 (Kučera and Terwijn[15]). A set A is LOW FOR RANDOM if MLRA =
MLR. In other words, MLRA is as large as possible. Let Low(MLR) denote the class
of low for random sets.

Note that this is a $1
1 definition, and Low(MLR) is closed downward under "T .

Recall that A is generalized low1 (in brief, GL1) if A′"T A ⊕ ∅′. A result of Kučera
[14, Theorem 2] implies that each low for random A is GL1.

2.3. Both: the class M

We next consider Andrei Muchnik’s class of sets which, when used as an oracle, do
not decrease K .

Definition 2.6. A is LOW FOR K if ∀y K(y)"KA(y) + O(1).
Let M denote this class of sets.

Note that M ⊆ Low(MLR), since MLRX may be defined in terms of KX. Moreover,
M ⊆ K, since ∀n KA(A!n)"KA(n)+O(1), and we may replace KA by K if A ∈ M.
M is closed downward under "T .

We show that the sets A in M satisfy a lowness property saying that UA(#) has
few possible values. (A related property, being recursively traceable, was used in [29]
to characterize the oracles which are low for Schnorr tests.) Given T ⊆ N, let T [x] =
{y : 〈y, x〉 ∈ T }.

Definition 2.7. (i) A r.e. set T ⊆ N is a TRACE if for some computable h, ∀x |T [x]|
"h(x). We say that h is a BOUND for the trace T .

(ii) The set A is U-TRACEABLE if there is an r.e. trace T such that

∀# (UA(#) ↓⇒ UA(#) ∈ T [|#|]).

(Recall the identification of strings with numbers here.) Equivalently, one may require
that there is a trace S such that {e}A(e) is in S[e] in case {e}A(e) defined. It is not
hard to show that U -traceable sets are in GL1 (see [22]).

Proposition 2.8. If a set A is low for K , then A is U -traceable and low.

Proof. For U -traceability, suppose A ∈ M via a constant b. Clearly, if UA(#) is defined
then KA(UA(#))"KA(#)+O(1). Since A ∈ M, this implies ∀# K(UA(#))"K(#)+
cK . Now K(#)" |#|+2 log2(|#|)+O(1), so it is sufficient to let T [n] = {y : K(y)"n+
2 log2(n)+d}, for an appropriate constant d (which can in fact be determined effectively
from b). T is a trace because |T [n]| = O(2nn2).

Since A is in M ⊆ K ⊆ !0
2 and A is GL1, A is low. $

One may also prove that A is GL1 in a direct way: for a stage s, using A we can
check whether {e}As (e) ↓. So all we need is a bound on the last stage where this can

A. Nies / Advances in Mathematics 197 (2005) 274–305 281

happen. If such a stage exists, then its KA complexity, and hence its K-complexity, is
at most e + O(1). Hence ∅′ can compute such a bound.

We summarize the properties of our classes we have seen so far.

K Low(MLR) M
Closed under ⊕ yes ? ?
"T - downward closure ? yes yes
Index set of r.e. members "0

3-complete ? ?
Superclasses !0

2 GL1 Low, U -traceable

3. The Kraft–Chaitin theorem

In this section we review an important tool for our constructions.

Definition 3.1. An r.e. set W ⊆ N × 2<! is a KRAFT–CHAITIN SET (KC set) if∑
〈r,y〉∈W 2−r "1.
If X ⊆ N, the WEIGHT of X (in the context of W) is

wt(X) =
∑

n∈X

∑
{2−r : 〈r, n〉 ∈ W }.

The pairs enumerated into such a set W are called AXIOMS.

Theorem 3.2 (Chaitin [6], Theorem 3.2). From a Kraft–Chaitin set W one can effec-
tively obtain a prefix machine M such that

∀〈r, y〉 ∈ W∃w (|w| = r & M(w) = y).

We say that M is a prefix machine for W .

The advantage of KC sets is that one only has to enumerate the length r of a
desired M-description of y. The Kraft–Chaitin theorem takes care of actually providing
the description. The following proof is based on [6].

Proof of Theorem 2.2. Let 〈rn, yn〉n∈N be an effective enumeration of W . At stage n,
we will find a string wn of length rn, and we set M(wn) = yn. We let D−1 = {&}.
At each stage n#0 we have a finite set Dn−1 of strings all of whose extensions are
unused. We will think of a string x as the half-open interval I (x) ⊆ [0, 1) of real
numbers whose binary representation extends x. Let zn be the longest string in Dn−1
of length "rn. Choose wn so that I (wn) is the leftmost subinterval of I (zn) of length
2−rn , i.e., let wn = zn0rn−|zn|. To obtain Dn, first remove zn from Dn−1. If wn $= zn

then also add the strings zn0i1, 0" i < rn − |zn|.
One checks inductively that for each n#0 the following hold:

(a) zn exists,

282 A. Nies / Advances in Mathematics 197 (2005) 274–305

(b) all the strings in Dn have different lengths,
(c) {I (z) : z ∈ Dn} ∪ {I (wi) : i"n} is a partition of [0, 1).

We prove (a) for n#0, assuming (b) and (c) for n − 1 (these are trivial statements
for n = 0). If zn fails to exist, then rn is less than the length of each string in Dn−1,
so that 2−rn >

∑{2−|z| : z ∈ Dn−1} by (b) for n − 1. Then
∑n

i=0 2−ri > 1 since∑{2−|z| : z ∈ Dn−1}+∑n−1
i=0 2−ri = 1 by (c) for n−1. This contradicts the assumption

that W is a KC-set.
Next, (b) for n holds if wn = zn. Otherwise |zn| < |wn| but also |wn| is less than

the next shortest string in Dn−1, so (b) holds by the definition of Dn. Finally, (c) is
satisfied by the definition of Dn. $

4. Constructing a K-trivial set

Suppose A(x) = limt At (x) for a !0
2-approximation (At)t∈N. We will develop a

sufficient condition on (At)t∈N for the K-triviality of A (based on [9]). Then we meet
this condition in order to construct an non-computable K-trivial r.e. set.

To show A is K-trivial, we enumerate a KC set W such that, for each w ∈ N,
〈K(w) + 1, A!w〉 ∈ W . Since neither K(w) nor A!w are known, we have to work
with approximations at stages r . If Kt(w) < Kt−1(w), then we put an axiom 〈Kt(w)+
1, At!w〉 into W . Further, when x < t is minimal such that At−1(x) $= At(x), then for
each w, x < w" t we put an axiom 〈Kt(w)+1, At!w〉 into W . In this case, the axioms
for descriptions of At−1!w we enumerated previously are “wasted”. Thus, each A(x)-
change carries a cost, the weight wasted on descriptions of strings At−1!w, x < w" t .
Suppose we enumerated the axiom 〈Ks(w)+ 1, As!w〉 into W at a stage s < t , adding
a weight of 2−(Ks(w)+1) to W . Since 2−Ks(y) "2−Kt (y), the cost of changing A(x) is
at most

c(x, t) = 1/2
∑

x<y " t
2−Kt (y).

Note that c(x, t) is non-decreasing in t , limt c(x, t)"1/2 for each x, and limx

limt c(x, t) = 0. Our sufficient condition for K-triviality implies that the sum of the
costs of all changes is at most 1/2.

Proposition 4.1. Suppose that A(x) = limtAt (x) for a !0
2-approximation (At) such

that

S =
∑

{c(x, t) : t > 0 & x is minimal s.t. At−1(x) $= At(x)}"1/2. (1)

Then A is K-trivial.

Proof. We enumerate a KC set W in stages s:
Put the axiom 〈Ks(w) + 1, As!w〉 into W in case

(a) Ks(w) < Ks−1(w), or
(b) Ks(w) < ∞ & As−1!w $= As!w.

A. Nies / Advances in Mathematics 197 (2005) 274–305 283

To show W is a KC set, suppose an axiom 〈Ks(w) + 1, As!w〉 is put into W at
stage s.

Stable case: ∀t > s As!w = At!w. The contribution of such axioms is at most $/2,
since at most one axiom is enumerated for each value Ks(w).

Change case: ∃t > s As!w $= At!w. Choose t minimal. Since 2−Ks(w) "2−Kt (w),
the contribution of such axioms for a single t is at most c(x, t), where x is minimal
such that At−1(x) $= At(x) (so that x < w). Our hypothesis in (1) is S"1/2, so the
total contribution is at most 1/2.

Let Me be the prefix machine for W obtained by the Kraft–Chaitin Theorem 3.2.
We claim that, for each w, K(A!w)"K(w) + e + 1. Given w, let s be greatest such
that s = 0 or As−1!w $= As!w. If s > 0 then the axioms in (b) at stage w cause
Ku(A!w)"Ks(w)+ e + 1 for some u > s. If Ks(w) = K(w), we are done. Otherwise
(this includes the case s = 0 as K0(w) = ∞), the inequality is caused by an axiom in
(a) at the greatest stage t > s such that Kt(w) < Kt−1(w). $

Recall that an r.e. set A is PROMPTLY SIMPLE if A is co-infinite and there is an
effective approximation (As)s∈N of A such that, for each e, the requirement

Se : |We| = ∞ ⇒ ∃s∃x [x ∈ We,s − We,s−1 & x ∈ As − As−1]

is met.

Theorem 4.2 (Downey et al. [9]). There is a promptly simple K-trivial set A.

Proof. Define an enumeration (Ar) as follows. Let A0 = ∅. At stage s > 0, for each
e < s, if Se is not met yet and there is x #2e such that x ∈ We,s − We,s−1 and
c(x, s)"2−(e+2), then put x into As .

Condition (1) is satisfied since we need to make at most one change for each e.
If We is infinite, there is an x#2e in We such that c(x, s)"2−(e+2) for all s > x.
Since c(x, s) is non-decreasing in s, we enumerate x ∈ We into A at the stage where
x appears in We if Se has not been met yet. Thus A is promptly simple. $

One can combine this technique with the Robinson guessing method for low sets
(see [27]) to obtain the following.

Theorem 4.3 (Nies [22]). For each low r.e. set B, there is an r.e. A ∈ K such that
A!T B.

Condition (1) is very restrictive. For instance:

Proposition 4.4. A !0
2-approximation Ar(y) satisfying (1) changes at most O(y2)

times.

284 A. Nies / Advances in Mathematics 197 (2005) 274–305

Proof. Given y < r , when Ar−1(y) $= Ar(y), then S increases by at least 2−Kr(y).
Since Kr(y)"2 log2(y)+O(1), we have 2−Kr(y) #O(1)y−2. Since S"1/2, the required
bound on the number of changes follows. $

A modification of the proof of Theorem 4.2 yields the existence of a promptly simple
set in M: we work with the cost function

cM(x, r)

= 1/2
∑

{2−|#| : UA(#) ↓ [r − 1] & x < the use of this computation}.

Running the construction in the proof of Theorem 4.2 with this new cost function,
we obtain an r.e. set A in M, via the KC set W defined as follows: when a new
computation UA(#) = y appears, then enumerate 〈|#| + 1, y〉 into W . To see that W

is a KC set, note that the computations where A is stable below the use contribute a
weight of at most $A/2 (before, it was $/2), while the others contribute at most 1/2.
Our enumeration into W causes K(y)"KA(y) + O(1) for each y.

The cost function method in itself does not provide an injury-free construction. For
instance, one can define a cost function encoding the restraint of the usual lowness
requirements ∃∞s {e}A(e) ↓ [s − 1] ⇒ {e}A(e) ↓ in the canonical construction of a
low simple set [27, Theorem VII.1.1]. If {e}A(e) converges at stage s − 1, then one
defines c(x, s) = max{c(x, s − 1), 2−(e+2)} for each x below the use of {e}A(e). Then
this computation can only be destroyed by the finitely many simplicity requirements
which are allowed to spend 2−(e+2).

The construction in the proof of Theorem 4.2 can be considered injury free because
c(x, s) is defined in advance, rather than depending on As−1.

5. Low for random sets are low for K

Recall that, if C ⊆ D are randomness notions, then Low(C, D) denotes the class of
oracles A such that C ⊆ DA. We review the definition of computable randomness, but
see [2] for more details, and also for a definition of Kolmogorov–Loveland randomness.

Definition 5.1. A MARTINGALE is a function M : {0, 1}∗ +→ R+
0 such that, for all

strings x, M(x0) + M(x1) = 2M(x). M SUCCEEDS on a set Z if lim supn M(Z!n) =
∞. We write S(M) for this success class. Z is COMPUTABLY RANDOM if no computable
martingale M succeeds on Z. This class is denoted CR.

By a result of Schnorr [24], we can restrict ourselves to computable martingales with
values in Q+; if Z is not computably random, then such a martingale succeeds on Z.

Theorem 5.2. A is in Low(MLR,CR) if and only if A is low for K .

If C ⊆ C̃ ⊆ D̃ ⊆ D are randomness notions, then Low(C̃, D̃) ⊆ Low(C, D). So the
following are immediate consequences of the theorem.

A. Nies / Advances in Mathematics 197 (2005) 274–305 285

Corollary 5.3. Each Low(MLR) set is low for K .

Corollary 5.4. Each Low(KLR) set is low for K .

Proof of Theorem 5.2. As remarked after Definition 2.6, each low for K set is in
Low(MLR). It remains to prove the other direction. We apply the usual topological
notions for Cantor space 2!. For a set S of strings, [S] denotes the open set {X : ∃y ∈
S y ≺ X}, which is identified with the set of strings extending a string in S. So an
open set R is called r.e. if the corresponding set of strings closed under extension is
r.e. For a string y, we write [y] instead of [{y}] (so that "[y] = 2−|y|). Given a string
v, "v(X) denotes the measure of X within [v], namely

"v(X) = 2|v|"(X ∩ [v]).

A MARTINGALE FUNCTIONAL is a Turing functional L such that, for each oracle
X, LX is a (total) martingale. Let R be any r.e. open set such that "R < 1 and
Non-MLRand ⊆ R (for instance, let R = {z : ∃w%z K(w)" |w| − 1}, then "R"1/2).
We will define a martingale functional L. If A ∈ Low(MLR,CR) then S(LA) ⊆
Non-MLRand, and we may apply the following lemma to N = LA.

Lemma 5.5. Let N be any martingale such that S(N) ⊆ Non-MLR.
Then there are v ∈ 2<! and d ∈ N such that v $∈ R and

∀x&v[N(x)#2d ⇒ x ∈ R]. (2)

Proof. Suppose the lemma fails. Define a sequence of strings (vm)m∈N outside R, as
follows: let v0 be the empty string, and let vm+1 be some proper extension y of vm

such that N(y)#2m but y $∈ R. Then N succeeds on Z = ⋃
n vn but Z $∈ R, so Z ∈

MLRand. $
Note that v $∈ R implies that "v(R) < 1 (otherwise let X $∈ R be a set extending

v; then X is a random set in a $0
1 class of measure 0, which is impossible). In the

following we fix an enumeration (Rs)s∈N of R (viewed as a set of strings) such that
Rs contains only strings up to length s and is closed under extension within those
strings.

We will independently, but uniformly in m, build martingale functionals Lm for each
m#1 which have value 2−m on any input of length "m. Then L = ∑

m#1 Lm is
a martingale functional (L is Q-valued since the contributions of the Lm, m > |w|,
add up to 2−|w|). We define L in order to ensure that for each A, if N = LA and
S(N) ⊆ Non-MLRand, then A is low for K . Fix an effective listing ('m)m#1 of all
triples 'm = 〈v, d, u〉, where v is a string, and d, u ∈ N. Given 'm, we let q = 2−u.
If 'm represents witnesses v, d in Lemma 5.5 and 0 < q < 1−"v(R), then we will be
able to define a KC set W showing A is low for K . So only Lm matters in the end.
However, we need to consider all the possible witnesses 'm, since we do not know
the correct one in advance. Fix m. We will define an effective sequence (Ts)s∈N of
finite subtrees of 2<! (viewed as characteristic functions). The limit tree T given by

286 A. Nies / Advances in Mathematics 197 (2005) 274–305

T (() = limsTs(() exists, and if 'm is a witness, the set A is a path of T . Roughly
speaking, (is on Ts if condition (2) looks correct at stage s for N = L

(
m (the partial

martingale where only (is used as an oracle). Each path of T is low for K , since
we enumerate a KC set W such that, for some constant c determined below, if (∈ T

and K((y) = r , then 〈r + c, y〉 ∈ W (so that K((y)"r + O(1) by the Kraft–Chaitin
theorem).

Given 'm = 〈v, d, u〉, let c = m + d + u + 3. A PROCEDURE) is a triple 〈#, y, (〉,
where #, y, (∈ 2<!, |y| < |(| and |#|" |y| + 2 log |y| + cK (cK was defined near the
end of Section 1). We start) at a stage s which is least such that (∈ Ts & U

(
s (#) = y,

and (is the shortest among such strings at s. Now) wants to put 〈r + c, y〉 into W ,
where r = |#|. It first causes a clopen set C ⊆ [v] of measure "v(C) = 2−(r+c) to
go into R. Simplifying,) chooses a clopen set C̃ = C̃()) of that measure, which is
disjoint from Rs and the sets chosen by other procedures, and causes (in a way to
be specified) LX

m(z)#2d for each X&(and each string z ∈ C̃ of minimal length. If
at a stage t > s, once again (∈ Tt , then C̃ ⊆ Rt , and) now has permission to put
〈r + c, y〉 into W . In short, the weight of axioms put into W is charged against the
measure of new enumeration into R. If the sets belonging to different procedures are
disjoint, then W is a KC set.

We discuss how to guarantee disjointness. Suppose * $=) is a procedure which chose
its set C̃(*) at a stage before stage s. If (*)2, the third component of *, has reappeared
on the tree, then C̃(*) ⊆ Rs , so there is no problem since) chooses its set disjoint
from Rs . However, if (*)2 has not reappeared (and it possibly never will), then * keeps
away its set from assignment to other procedures. The solution to this problem is to
build up the set C̃()) in small portions D̃, whose measure is a fixed fraction of 2−(r+c),
and only assign a new set D̃ once the old one is in R. If) always reappears on the tree
after assigning such a set, then eventually C̃()) reaches the required measure 2−(r+c),
in which case) is allowed to enumerate the axiom 〈r + c, y〉 into W . Otherwise,)
keeps away only one single set D̃, whose measure is so small that the union (over
all procedures) of sets kept away is at most q/4 (recall that q = 2−u). In the formal
construction, Ẽt denotes the union of sets of strings appointed by procedures by stage
t . Then the measure of Ẽt − Rt is at most q/4 at any stage.

The procedure) = 〈#, y, (〉 appoints certain strings z and ensures LX
m(z)#2d , for

each X&(. Once activated, namely when U
(
s (#) = y, the procedure) can claim the

amount + = 2−(r+m) of the initial capital 2−m of LX
m, for any oracle X&((recall that

r = |#|). So given X, the total capital claimed by all activated procedures is 2−m$X <

2−m. The procedure appoints strings z of the form x01+r+m+d , and “withdraws” its
capital at x, increasing LX

m(x0) by + for oracles X&(. To maintain the martingale
property, it also has to decrease LX

m(x1) by +. Now it doubles the capital along z,
always betting all the capital on 0, and reaches an increase of 2d at z. Any string in
[y] is called USED by).

The procedure) has to obey the following restrictions.

1. Choose the extension z outside [Ẽs−1], where Ẽs−1 is the set of strings previously
appointed by other procedures *, since the open sets generated by the strings ap-
pointed by different procedures need to be disjoint.

A. Nies / Advances in Mathematics 197 (2005) 274–305 287

2. Let Ct()) denote the set of strings x′ used by) up to stage t . The procedure
) must ensure x $∈ [Cs−1())] so that)’s capital is still available at x. Such a
choice is possible for sufficiently many x, since for all t , "v[C̃t ())]"2−(r+c), so
that "v[Ct())]"2−(r+c)21+r+d+m = q/4.

There is no conflict between) and other procedures * as far as the capital is
concerned: if (′ = (*)2 is incomparable with (then (and (′ can only be extended by
different oracles X. Otherwise) and * own different parts of the initial capital of LX

m,
for any X extending their third components.

We are now ready for the formal definition of the martingale functional Lm. The
notation is summarized in a table below. For a procedure) = 〈#, y, (〉, let n) >

max(|#| + m + d + 1, |(|, |v|) be a natural number assigned to) in some effective
one-one way. Each procedure) defines an auxiliary function F) : 2<! +→ Q. The set
C̃()) of appointed strings coincides with the set of minimal strings in {w : F)(w)#2d}.
For each oracle X, let

LX
m(w) = 2−m +

∑
{F)(w) : ())2%X}. (3)

Given) = 〈#, y, (〉, let r = |#|. We ensure

(F1) F)(w) = 0 if |w|" |(|,
(F2) F)(w)# − 2−(r+m), and F)(w) = 0 unless U

(
s (#) = y,

(F3) ∀w F)(w0) + F)(w1) = 2F)(w).

Based on those properties, we check that LX
m is a martingale functional. Firstly, LX

m(w)

is a rational for each X, since by (F1) only the finitely many procedures) such that
|())2| < |w| contribute to the sum in (3). Next, for p = |w|,

LX
m(w0) + LX

m(w1) = 2−m+1 +
∑

{F)(w0) + F)(w1) : ())2%X!p + 1}

= 2(2−m +
∑

{F)(w) : ())2%X!p + 1})

= 2LX
m(w)

(for the last equality we used (F1)). Finally, LX
m(w)#0, since F)(w)# − 2−(r+m), and

) contributes to sum (3) only if the computation U ((#) = y converges, where r = |#|
and (%X. So, for each w, LX

m(w)#2−m(1 − $X)#0.
Let 'm = 〈v, d, u〉, q = 2−u. The construction for m works at stages which are

powers of 2; letters s, t denote such stages. At stage s we define Ts and extend the
functions F)(w) to all w such that s" |w| < 2s. For each w such that s" |w| < 2s and
each string , (which may be shorter that w), by the end of stage s we may calculate

Lm(,, w) = 2−m +
∑

{F)(w) : ())2%,}.

288 A. Nies / Advances in Mathematics 197 (2005) 274–305

We summarize the notation.

R Given r.e. open set such that "R < 1, Non-MLRand ⊆ R

'm witness for Lemma 5.5, of the form 〈v, d, u〉
c m + d + u + 3
q 2−u

Lm martingale functional for witness 'm

) procedure, of form 〈#, y, (〉 where U ((#) = y, r = |#|
n) code number of)
F) auxiliary function defined by)
Ct()) set of strings x used by) up to (the end of) stage t

C̃t ()) set of strings appointed by) up to stage t , of form x0r+m+d+1

Tt tree for m at the end of stage t

W KC set for m

Ẽt set of strings appointed by procedures up to stage t

Stage 1: Let T1 contain only the empty string and let F)(w) = 0 for each) and
each w, |w|"1. Let Ẽ1 = ∅.

Stage s > 1: Suppose Tt has been determined for t < s, and the functions F)(w)

have been defined for all w, |w| < s. Let

Ts = {(: ∀w&v[(|w| < s & Lm((, w)#2d) ⇒ w ∈ Rs]}.

(1) If "v(Rs) > 1 − q goto (4) (If 'm is a witness this case does not occur.)
(2) For each) = 〈#, y, (〉, n) < s, if U

(
s (#) = y, U

(
s/2(#) is undefined and, for #, y,

the string (is the shortest such string, then START the procedure).
(3) Carry out the following for each procedure) = 〈#, y, (〉 in the order of n) < s.

Let r = |#|.
(3a) If) has been started and (∈ Ts , first we check if the goal has been reached,

namely "vC̃s/2()) = 2−(|#|+c). In that case we put 〈|#| + c, y〉 into W , and
we say that) ENDS. Otherwise we say that) ACTS, and we choose a set
D = D) ⊆ [v] of strings of length s such that "vD = 2−(n)+u+2) and

[D] ∩ [Rs ∪ Ẽs/2 ∪ G ∪ Cs/2())] = ∅,

where G = ⋃{D* : * has acted at stage s so far}. (We will verify that D

exists.) Let D̃ = {x0m+d+r+1 : x ∈ D}, put D into Cs()), and put D̃ into C̃s())

and Ẽs . Note that |w| < 2s for all strings w ∈ D̃, since m+d+r+1 < n) < s.
(3b) For each x ∈ D, let F)(x) = 0, F)(x1) = −+ and F)(x0) = +, where + =

2−(r+m). Now we double the capital along x0r+d+m+1: for each string p,
|p|"r + m, let F)(x0p) = +2l if p = 0l , and F)(x0p) = 0 otherwise. (This
causes Lm((, w)#2d for each w ∈ D̃.)

A. Nies / Advances in Mathematics 197 (2005) 274–305 289

Go on to the next).
(4) For each string w, s" |w| < 2s such that F)(w) is still undefined, let F)(w) =

F)(w
′), where w′%w is longest such that F)(w

′) is defined.
End of Stage s.
Verification: We go through a series of Claims. Let) = 〈#, y, (〉.

Claim 1. Properties (F1)–(F3) are satisfied.

(F1) holds because when we assign a non-zero value to F)(w) at stage s, then
|w|#s > n) > |(|. (F2) and (F3) are satisfied since each x chosen in (3b) goes
into C()). So by choice of D in (3a), no future definition of F) on extensions
of x is made except for by (4)

Claim 2.) is able to choose D) in (3a).

• By definition of Ts , for each * = 〈#′, y′, (′〉 and each t #2, if (′ ∈ Tt , then C̃t/2(*) ⊆
Rt . Thus for each procedure *, "v(C̃t (*) − Rt)"2−(n*+u+2) as C̃t (*) − Rt consists
of a single set D̃*. Then, letting t = s/2, "v(Ẽs/2 − Rs)"2−(u+2) = q/4.

• Each set D* chosen during stage s satisfies "v(D*)"2−(n*+u+2), hence "vG never
exceeds q/4.

• For each s, "vC̃s())"2−(r+c), and hence "vCs())"2r+d+m+12−(r+c) = q/4.

Since the test in (1) failed, "v(Rs)"1−q, so relative to [v] a measure of q/4 is available
outside [Rs ∪ Ẽs/2 ∪ G ∪ Cs/2] for choosing D). All strings in Rs ∪ Ẽs/2 ∪ G ∪ Cs/2
have length < s (for strings in Ẽs/2, this holds by the comment at the end of (3a)),
so the strings in D) can be chosen of length s.

Claim 3. Each procedure) acts only finitely often.

Each time) acts at s and s′ > s is least such that (∈ Ts′ , we have increased
"v(C̃())) by the fixed amount 2−(n)+c+r). So eventually (is not on the tree or) ends.

Claim 4. For each string ,, there is a stage s, such that no procedure), ())2%,, acts
at any stage #s,. Moreover, for each w&v, |w|#s,, Lm(,, w) = Lm(,, w′) for some
w′ such that v%w′%w and |w′| < s,.

This follows because there are only finitely many procedures) such that ())2%,.
By Claim 3, there is a stage s, by which those procedures have stopped acting, and
further definitions F)(w) are only made in (4)

Claim 5. T (,) = limsTs(,) exists.

Suppose s#s, is least such that , ∈ Ts . We show , ∈ Tt for each t #s. Suppose
v%w, |w|" t and Lm(,, t)#2d . By Claim 4, Lm(,, w) = Lm(,, w′) for some w′%w

of length < s,. Then w′ ∈ Rs since , ∈ Ts , and hence w ∈ Rt .

290 A. Nies / Advances in Mathematics 197 (2005) 274–305

In the following we assume 'm is a witness for Lemma 5.5, where N = LA.

Claim 6. A is on T .

Given l, let , = A!l. Suppose |w′| < s, and Lm(w′, ,)#2d . Then LA(w′)#2d ,
since LA(w′)#LA

m(w′)#Lm(w, ,). By (2), w′ ∈ R. Let s be a stage so that all such
w′ are in Rs . Then by Claim 4, , ∈ Tt for all t #s.

Claim 7. Each path of T is low for K .

We first verify that W is a KC set. Note that

∑
s

∑
{2−(|#|+c) : 〈|#| + c, y〉 is put into W by 〈#, y, (〉 at stage s}""vR.

For, when) ends at s then "vC̃s/2()) = 2−(|#|+c) and C̃s/2()) ⊆ R. The sets
[C̃())] are pairwise disjoint by the choice of D in (3a). Hence the required inequality
holds.

Let Me be a prefix machine for W according to Theorem 3.2. We claim that, for
each path X of T and each string y, K(y)"KX(y) + c + e. For choose a shortest
UX-description # of y, and choose (⊆ X shortest such that |(| > y and U ((#) = y.
Since (∈ T , at some stage t , we start the procedure 〈#, y, (〉, and the procedure ends.
At this stage we put 〈|#| + c, y〉 into W , causing K(y)"KX(y) + c + e. $

By Theorem 5.2 and Proposition 2.8, each A ∈ Low(MLR,CR) is low in the usual
sense. This answers Problem 4.4 in [2] in the negative. It was first asked in [15,
p.1400].

Corollary 5.6. Any low for Martin-Löf random set is low, and hence !0
2.

The following answers Problem 4.8 in [2] in the negative.

Theorem 5.7. Each Low(CR) set is computable.

Proof. On the one hand, Low(CR) ⊆ Low(MLR,CR) = M ⊆ !0
2. On the other hand,

Bedregal and Nies [3] have shown that if A is Low(CR) then A has hyperimmune-free
degree (also see [13]). The only !0

2 sets of hyperimmune-free degree are the computable
ones, by Miller and Martin [18]. $

The author first gave a direct proof of Theorem 5.7, which will appear in [20]. Its
advantage is that it can be extended to the resource bounded setting, and also to show
that in fact each set in Low(PrecR,CR) is computable. Here PrecR is the class of
sets on which not even a partial recursive martingale succeeds (i.e., no martingale that
may choose to be undefined on strings off the set succeeds).

A. Nies / Advances in Mathematics 197 (2005) 274–305 291

6. K-trivial sets

We prove that the class K is closed downward under Turing reducibility, and give
the modifications needed to prove that K = M. The first version of the proof also
shows that Proposition 4.1 in fact provides a characterization of the K-trivial sets. This
yields some corollaries which further restrict the sets in K.

Theorem 6.1. If A is K-trivial and B "T A, then B is K-trivial.

As noted in [9], the corresponding fact is easily verified for weak truth table re-
ducibility: Suppose B "T A via a Turing reduction % such that the use of % is bounded
by a recursive function g. Then, up to constants,

K(B!n)"K(A!g(n))"K(g(n)) = K(n).

Hirschfeldt and Nies modified the proof of Theorem 6.1 to obtain a stronger result.
However, the original version of the proof is also needed for the characterization of K.

Theorem 6.2 (with Hirschfeldt). Each K-trivial set A is low for K .

We note the modifications needed to obtain a proof of Theorem 6.2 in brackets [...].

Proof of Theorem 6.2. Suppose A is K-trivial via a constant b. For Theorem 6.1, let
B = %A, where % is a Turing functional whose use is non-decreasing in the input.
Let (Ar)r∈N be a !0

2-approximation of A. For each s, one can effectively determine
an f (s) > s such that ∀n < s K(A!n)"K(n) + b [f (s)], i.e., the inequality holds
at stage f (s). Let s0 = 0 and si+1 = f (si). The construction is restricted to stages
in {si : i ∈ N}. We use italics to emphazise this. In the following, s, t, u always will
denote such stages. We may modify the approximation (Ar) so that Ar(x) = Asi (x)

for all r , si "r "si+1 − 1. We say that A(x) CHANGES AT s if As−1(x) $= As(x).
We will determine a KC set W in order to show that B is K-trivial [A is low for K].

We also enumerate an auxiliary KC set L to exploit the hypothesis that A is K-trivial.
For certain n, an axiom 〈r, n〉 will be enumerated into L (at most one for each n).
Putting 〈r, n〉 into L causes K(n)"r + O(1) and hence K(A!n)"r + O(1).

We may assume that an index d for a machine Md is given, and we can think of
Md as being a prefix machine for L: From an index for an r.e. set Q ⊆ N × 2<!, we
can effectively obtain an index for a KC set Q̃ such that Q̃ = Q in case Q already is
a KC set. Let Md be the machine effectively obtained from Q̃ via the Kraft–Chaitin
theorem. Our construction effectively produces a KC set L from d. Thus, if Q = L,
which will happen for some Q by the recursion theorem, then Q is a KC set and Md

is a machine for L. Of course, first we have to show that L is a KC-set, no matter
what d is.

For the remainder of this proof, let c = b + d and k = 2c+1. When we put 〈r, n〉
into L, then K(n)"r + d and hence K(A!n)"r + c, assuming Md is a machine
for L.

292 A. Nies / Advances in Mathematics 197 (2005) 274–305

To gain some intuition, we first give a direct proof that no K-trivial set A satisfies
∅′"wttA (which also follows from the downward closure of K under "wtt and the
fact that the wtt-complete set $ is not K-trivial). Suppose ∅′"wttA. Now we build
an r.e. set B, and by the Recursion Theorem we can assume we are given a total
wtt-reduction % such that B = %A, whose use is bounded by a computable function
g. We wait till %A(k) converges, let n = g(k) and put the single axiom 〈r, n〉 into L,
where r = 1. Our total cost is 1/2. Each time the opponent has a U -description of
A!n of length "r + c we force A!n to change, by putting into B the largest number
"k which is not yet in B. If we reach k + 1 such changes, then his total cost is
(k + 1)2−(r+c) > 1, which is a contradiction.

In the proof of Hirschfeldt’s more general result that K-trivial sets are T-incomplete
(see [9, Theorem 4.1]), there is no recursive bound on the use of %A(k). The problem
now is that the opponent might, before giving a description of As!n, move this use
beyond n, thereby depriving us of the possibility to cause further changes of A!n. The
solution is to carry out many attempts, based on different computations %A(m). Each
time the use of such a computation changes, the attempt is cancelled. What we placed
in L for this attempt now becomes “garbage” but as the reduction % is total, this does
not happen always. We have to ensure that the total weight of the garbage produced
by all attempts is limited, otherwise L is not a KC set. $

Ingredients: Our proof combines three main ideas. The essence of the first one, and
some elements of the third, first appeared in the proof of Hirschfeldt’s result. Roughly
speaking, for an axiom 〈r, n〉 ∈ L, either n reaches a k-set (as defined below) or n is
garbage. The weight of numbers of either type is at most 1/2. The first idea is already
present in the proof of wtt-incompleteness above. The third is a way to deal with the
garbage. Both together ensure that L is a KC set.

The second idea is needed to identify W . We use a tree of runs of procedures, where
the branchings are determined by U -descriptions (UA-descriptions). At branching nodes
the construction of a K-trivial (low for K) set is emulated. That is, B ∈ K [A ∈ M]
for the same reason as in the proof of Theorem 4.2 (in the construction outlined after
Proposition 4.4). We discuss these ideas in detail.

6.1. The concept of a j -set

Recall that k = 2c+1. For 1"j "k, we say that a finite set E ⊆ N is a j -SET at
stage t if, for all n ∈ E, at some stage u < t we put an axiom 〈rn, n〉 into L, and now
there are j distinct strings z of the form Av!n for some stage v, u"v" t , such that
Kv(z)"rn + c. An r.e. set with an enumeration E = ⋃

Et is a j -set if Et is a j -set
at each stage t . Since the opponent has to match a description of n we provide via L

by descriptions that are at most c longer of strings of length n, we have the following
important fact.

Fact 6.3. If the r.e. set E is a k-set, then wt(E)"1/2.

Proof. For all n ∈ E, there is an axiom 〈rn, n〉 in L and there are k distinct strings z

of length n such that K(z)"rn + c. Hence 1#$ = "(dom(U))#k
∑

n∈E 2−(rn+c) =

A. Nies / Advances in Mathematics 197 (2005) 274–305 293

k2−cwt (E). Because k = 2c+1, this implies wt(E)"1/2. Note that we did not assume
here that Md is a machine for L. $

6.2. The golden run, and indexing procedures by descriptions

As in the proof of wtt-incompleteness, we attempt to enumerate a k-set Ck of weight
1. Now we use a tree of runs of procedures. The successor relation is given by recursive
calls. Each run of a procedure enumerates a set and has a goal, the weight this set has
to reach so that the run can end. Runs may also be cancelled by runs of procedures
which are above this run on the tree. The root procedure is Pk , which has goal 1. It
calls several procedures of type Qk−1. These call a single procedure Pk−1 and so on
till we reach the bottom level, consisting of procedures of type Q1. All procedures have
further indices or parameters, discussed below. The failure of Pk to reach wt(Ck) = 1
implies that there is a level i and a run of a procedure of type Pi which does not
return, though all its subprocedures (of type Qi−1) return unless they are cancelled.
Using this “golden run” we are able to define a KC set W as desired. (However, one
cannot effectively determine a golden run.)

Pk

. . .
Q k _ 1,#,y ,w

golden run

. . .
. . .

. . .

Ck

. . .

C2P2

Q 1,#,y ,w

Pk _ 1

C1

D1

Ck _ 1

Dk _ 1

To reach Ck , a number has to pass through j -sets Cj (1"j < k) and j -sets Dj

(1"j < k), in the order C1, D1, . . . , Dk−1, Ck . The procedures of type Pi (1 < i"k)

move numbers n from Di−1 into Ci upon A!n change. This adds an ith string z of
length n as in the definition of j -sets, hence Ci is an i-set. The procedures of type Qj

(1"j < k) enumerate C1 for j = 1, and move numbers from Cj to Dj . C1 simply is
the right domain of L, namely {n : ∃r 〈r, n〉 ∈ L}.

We index the procedures of type Qj by descriptions #, and also by the object
y being described and a certain A-use w. Each procedure Pi may call procedures
Qi−1,#,y,w for all # such that U(#) = y [UA(#) = y]. Ultimately we want to show
K(B!y)" |#|+O(1) [K(y)" |#|+O(1)], provided the run of Pi is a golden one, since
this would make B K-trivial (it would make A low for K). We prove the K-triviality
of B by emulating the construction of a K-trivial set. The failure of Pi to reach its

294 A. Nies / Advances in Mathematics 197 (2005) 274–305

goal means that there are few A-changes, hence the weight of axioms placed in W for
which the change case in Proposition 4.1 applies is small.

To give an outline of the procedures, let us pretend that k = 2. Now the single
run of the root procedure P2 attempts to enumerate a 2-set C2 of weight 1, but never
completes this task. It proceeds as follows. Each string # is AVAILABLE in the beginning.
At a stage s, for each available #, if U(#) = y and %A(y′) converges for each y′ < y

[if UA(#) = y], then declare # UNAVAILABLE. Let w = (A(y − 1). Start a procedure
Q1,#,y,w attempting to obtain a 1–set D, w" min(D), of weight 2−r , where r = |#|. In
this simplified outline, D is a singleton. The procedure Q1,#,y,w picks a large number
n > w and puts the axiom 〈r, n〉 into L. Then at some later stage s, D = {n} is a 1-set
(since we see a description of As!n of length "r + c). If A!w has not changed by
stage s, then Q1,#,y,w returns the set D. Now P2 waits for an A!w change, since this
would make D a 2-set. If it obtains the change, then it puts D into C2 and declares #
available again. If A!w changes before we see such a description, we cancel the run
of Q1,#,y,w and declare # available.

The KC set W is defined as follows. When a run Q1,#,y,w returns at stage s, then
put the axiom 〈|#|+1, Bs!y〉 into W [put 〈|#|+1, y〉 into W]. Note that %A!y did not
change, hence still w = (A(y − 1). We have the same two cases as in the construction
of a K-trivial set in Proposition 4.1.

Stable case: A!w is stable from s on. Then B!y is stable [the computation UA(#) =
y is stable]. So the axiom is as desired, assuming that # is a shortest description. For
each #, this case can occur at most once, so the total contribution to W in this case
is "$/2 ["$A/2].

Change case. A!w changes after s. Then B!y may change [UA(#) = y may be
destroyed], in which case the axiom we placed into W is wasted. However, its weight
is added to C2, so that in the construction, P2 makes progress towards reaching its
goal. Assuming that wt(C2) never exceeds 1/2, the contribution of those axioms is
bounded by 1/2.

We now discuss the general case where k = 2c+1. At each stage we have a finite tree
with 2k −2 levels of runs of procedures. The leaves are the runs of procedures of type
Q1, which act in the way indicated above. Each n enumerated by such a procedure into
C1 at stage t corresponds to a unique run of a procedure at each level at stage t (we
say n BELONGS to that run). Since n is chosen large, it is bigger than the parameter w

of any run of a Q-type procedure n belongs to. Thus A!w-changes contribute to the
aim that n reach the k-set Ck .

A procedure Pi has a parameter p, its GOAL, which is the weight it wants to transfer
from Di−1 to Ci . Similarly, a procedure Qj has goal q, the weight it wants to transfer
from Cj to Dj . Pi calls several procedures Qi−1,#,y,w which enumerate i − 1-sets
D ⊆ Di−1 where min(D)#w. Eventually such a Qi−1 type procedure may reach its
goal and return its set D. In this case Pi waits for an A!w change, and then puts D

into Ci . Note that D is now an i-set. If A!w changes before Qi−1,#,y,w returns, then
this very change turns the current set D into an i-set, so Pi is entitled to put D into
Ci . However, Pi also has to cancel the run of Qi−1,#,y,w.

Identifying strings with numbers, we may view the tree at stage s as a subtree of
{(∈ !<! : |(|"2k − 3 & ∀i < k ((2i + 1) = 0}.

A. Nies / Advances in Mathematics 197 (2005) 274–305 295

6.3. Waste management

A number n ∈ Cj may not be promoted to Dj if the run Qj,#,y,w during which it
was placed into Cj is canceled. Similarly, a number from Di−1 may fail to go into
Ci if the required A!w-change does not occur. These ‘garbage numbers’ jeopardize the
requirement that L be a KC set. To avert this, each run of a procedure is equipped
with a GARBAGE QUOTA, assigned in an effective (if somewhat arbitrary) way during
the construction. A procedure Pi has as a further parameter a garbage quota), the
amount it is allowed to waste by leaving it in Di−1 − Ci . Similarly, Qj,#,y,w has a
garbage quota *, the amount it may leave in Cj −Dj . All goals and all garbage quotas
are of the form 2−l , l ∈ N. We denote runs of Pi-procedures with such parameters by
Pi(p,)), and runs of Qj -procedures by Qj,#,y,w(q,*). The goal parameter of a run
must be chosen small enough to meet the garbage quota of the run immediately above
on the tree which called it.

The procedures proceed as follows, making sure not to exceed their garbage quotas.
Qj,#,y,w(q,*): If j = 1, the procedure chooses n large, puts an axiom 〈r, n〉 into L,

where 2−r = *, and waits for Kt(n)"r + d at a later stage t , at which point n is put
into D1. This is repeated till the goal has been reached. If j > 1, while the goal q has
not been reached, the run Qj,#,y,w(q,*) continues to call a single procedure Pj (*,))

for decreasing values of), and waits till it returns a set C′, at which time C′ is put
into Dj . Thus the amount of garbage left in Cj − Dj is produced during a single run
of a procedure Pj , which does not reach its goal *. So it is bounded by *.

Pi(p,)): this procedure calls procedures Qj,#,y,w(2−|#|),*) for an appropriate value
of *. Then the weight left in Di−1 − Ci by all the returned runs of Qi−1-procedures
which never receive an A-change adds up to at most $) [$A)], since this is a one-
time event for each #. The runs of procedures Qi−1 which are cancelled and have
enumerated D so far do not contribute to the garbage of Pi , since D goes into Ci

upon cancellation.
To assign the garbage quotas, at any substage of stage s, let

)∗
i = 2−(2i+3+nP,i), (4)

where nP,i is the number of runs of Pi-procedures started prior to this substage of
stage s. Let

*∗
j = 2−(2j+2+nQ,j), (5)

where nQ,j is the number of runs of Qj -procedures started so far. Then the sum of
all the)∗

i values and *∗
j values is "1/2. When Pi is called at a substage of stage s,

its garbage quota) is at most)∗
i . Similarly, Qj ’s garbage quota * is at most *∗

j . This
ensures wt(C1 − Ck)"1/2. Since wt(Ck)"1/2 by Fact 6.3, L is a KC set.

The construction in the proof of Theorem 5.2 is similar to the portion of the present
construction consisting of the Qj -type procedures called by a run of Pj+1. The pro-
cedure) = 〈#, y, (〉 closely corresponds to a procedure Qj,#,y,w. Both are based on

296 A. Nies / Advances in Mathematics 197 (2005) 274–305

a description of y, U ((#) = y in the first case, and UA
s (#) = y in the second. Both

are stopped when their guess about A turns out wrong. Both carry out their actions
in small bits to avert too much damage in case this happens. Reserving only a small
set D) of measure 2−(n)+r+c) at a time corresponds to calling a procedure Qj with a
small goal. A procedure waiting to reappear on a tree Ts corresponds to Pj+1’s waiting
for an A!w change after Qj,#,y,w returned.

We give the formal description of the procedures and the construction.
The procedure Pi(p,)) (1 < i"k, p = 2−l ,) = 2−r for some r # l).
It enumerates a set C. Begin with C = ∅.
At stage s, declare each #, |#| = s, available (availability is a local notion for each

run of a procedure). For each #, |#|"s, do the following.

(P1#) If # is available, and U(#) = y for some y, y < s, %A(y′)[s] ↓ for each
y′ < y [and UA(#)[s] = y for some y < s] let w = (A(y − 1) [let w be
use of this computation] and call the procedure Qi−1,#,y,w(2−|#|),*), where
* = min(2−|#|),*∗

i−1). Declare # unavailable.
(P2#) If # is unavailable due to a run Qi−1,#,y,w(q,*), and As!w $= As−1!w, declare

available.
(a) Say the run is RELEASED. If wt(C ∪Di−1,#) < p, then put Di−1,# into C and

go on to (b). Otherwise, choose a subset D̃ of Di−1,# such that wt(C∪D̃) = p,
and put D̃ into C. Return the set C, cancel all runs of subprocedures and
end this run of Pi . (D̃ exists since p = 2−l for some l, and rn > l for each
n ∈ D-now order the numbers rn in a non-decreasing way.) If we inductively
assume that Di−1,# was an i − 1-set already at the last stage, then C is an
i-set, as will be verified below.

(b) If the run Qi−1,#,y,w has not returned yet, cancel this run and all the runs of
subprocedures it has called.

The procedure Qj,#,y,w(q,*) (0 < j < k, * = 2−r , q = 2−l for some r # l).
It enumerates a set D = Dj,#. Begin with D = ∅.

(Q1) Case j = 1. Pick a number n larger than any number used so far. Put n into
C1, and put 〈rn, n〉 into L, where 2−rn = *. Wait for a stage t > n such that
n < t ′ < t for some stage t ′ and Kt(n)"rn + d , and go to (Q2). (If Md is a
machine for L, then t exists.)
Case j > 1. Call Pj (*,)), where) = min(*,)∗

j), and goto (Q2).
(Q2) Case j = 1. Put n into D (D remains a 1-set).

Case j > 1. Wait till Pj (*,)) returns a set C′. Put C′ into D.
In any case, if wt(D) < q then goto (Q1). Else return the set D. (Note that in
this case, necessarily wt(D) = q. Also, D is a j -set, assuming inductively that
the sets C′ are j -sets if j > 1.)

At stage 0, we begin the construction by calling Pk,0(1,)∗
k). At each stage, we

descend through the levels of procedures of type Pk , Qk−1 . . . P2, Q1. At each level
we start or continue finitely many runs of procedures. This is done in some effective
order, say from left to right on that level of the tree of runs of procedures, so that the
values)∗

i and *∗
j are defined at each substage. Since we descend through the levels,

A. Nies / Advances in Mathematics 197 (2005) 274–305 297

a possible termination of a procedure in (P2#) (b) occurs before the procedure can
act.

Verification: Before Lemma 6.6, we do not assume that Md is a machine for L. C1,
the right domain of L, is enumerated in (Q1). For 1"j < k, let Dj,t be the union of
sets D enumerated by runs of a procedure Qj,#,y,w up to the end of stage t . Let Ci,t

be the union of sets C enumerated by runs of a procedure Pi (1 < i"k) by the end
of stage t .

Lemma 6.4. The r.e. sets Ci are i-sets.

Proof. By the wait in (Q1) and the definition of stages, D1 is a 1-set: if n enters D at
stage t , then K(At!n)"Kt(n) + b"rn + d + b. For 2" i"k, assume inductively that
Di−1 is an i − 1-set. To see that Ci (and hence Di in case i < k) is an i-set, assume
that during stage s a number n is moved from Di−1 to Ci . This happens at (P 2#)

for some #. Let s′ be the last stage before s. Then n ∈ Di−1,#[s′] since no Qi−1-type
procedure has been active yet at s. Also min Di−1,# > w, and inductively Di−1,# was
an i − 1-set already at s′. Thus at a stage t "s′, 〈r, n〉 was enumerated into L by a
sub-procedure of type Q1 of this run Qi−1,#,y,w, and there are i − 1 distinct strings z

of the form Av!n for some stage v, t "v < s such that Kv(z)"r +c. Moreover, n < s′

and hence Ks(As!n)"r + c by the definition of stages, the wait in (Q1) and because
n ∈ D1. Also, A!w did not change from t to s − 1, else the run of Qi−1,#,y,w would
have been canceled before s. Since As−1!w $= As!w, we have a new string z = As!n
as required in order to show that Ci is an i-set. (Informally, we have verified that the
change at s is not a change back to a previous configuration). $

We next verify that L is a KC set. First we show that no procedure exceeds its
garbage quota.

Lemma 6.5. (a) Let 1"j < k. The weight of the numbers in Cj − Dj which belong
to a run Qj,#,y,w(q,*) is at most *.

(b) Let 1 < i"k. The weight of the numbers in Di−1 − Ci which belong to a run
Pi(p,)) is at most).

Proof. We actually obtain the bounds at any stage of the run. This suffices for the
lemma, even if the run gets cancelled.

(a) For j = 1 the bound holds since the run has at most one number n in C1 − D1
at any given stage. So if the run gets stuck waiting at (Q1), it has left weight * in
C1 − D1. If j > 1, all numbers as in (a) of this Lemma belong to a single run of a
procedure Pj (*,)) called by Qj,#,y,w(q,*), because, once such a run returns a set C′,
this set is put into Dj . The run of Pj does not return, so it does not reach its goal *.
Thus the weight of such numbers is "* at any stage of the run of Qj,#,y,w.

(b) Suppose n belongs to a run Pi(p,)) and n ∈ Di−1,t at stage t . Then n was put
there during a run of a procedure Qi−1,#,y,w(2−|#|),*) called by Pi . We claim that,
if n does not reach Ci , then no further procedure Qi−1,#,y′,w′ is called after stage t

298 A. Nies / Advances in Mathematics 197 (2005) 274–305

during the run of Pi . Firstly assume that As!w $= As−1!w for some stage s > t . The
only possible reason that n does not reach Ci is that the run of Pi did not need n to
reach its goal in (P2#) (i.e., n $∈ D̃), in which case the run of Pi ends at s. Secondly,
assume there is no such s. Then the run of Pi , as far as it is concerned with #, keeps
waiting at (P2#), and # does not become available again. This proves the claim.

The claim implies that, for each # there is at most one run Qi−1,#,y,w(2−|#|),*)

called by Pi(p,)) which leaves numbers in Di−1 −Ci . The sum of the weights of such
numbers over all such # is at most $). (For Theorem 6.2, we distinguish two cases. If
the run of Pi returns at stage s, then the sum of the weights is bounded by the value
of $A) at the last stage before s. Otherwise the sum is bounded by $A).) $

By the previous lemma and the definitions of the values)∗
i ,*

∗
j at substages,

wt(C1 − Ck)"
∑k−1

j=1
wt(Cj − Dj) +

∑k

i=2
wt(Di−1 − Ci)"1/2.

By Fact 6.3, wt(Ck)"1/2. We conclude that wt(C1)"1, and hence that L is a KC-set.
From now on we may assume that Md is a machine for L, using the recursion

Theorem as explained above.

Lemma 6.6. There is a run of a procedure Pi , called a GOLDEN RUN, such that

(i) the run is not cancelled,
(ii) each run of a procedure Qi−1,#,y,w started by Pi returns unless cancelled,

(iii) the run of Pi does not return.

Proof. Assume no such run exists. We claim that each run of a procedure returns
unless cancelled. This yields a contradiction, since we call Pk with goal 1, this run
is never cancelled, but if it returns, it has enumerated weight 1 into Ck , contrary to
Fact 6.3.

To prove the claim we use induction on levels of procedures of type Q1, P2, Q2,
…, Qk−1, Pk . Suppose the run of a procedure is not cancelled.

Qj,#,y,w(q,*): In case j = 1, by the hypothesis we always reach (Q2) after putting
n into C1, because the run is not cancelled and Md is a machine for L. In case j > 1,
inductively each run of a procedure Pj called by Qj,#,y,w returns, as it is not cancelled.
In any case, each time the run is at (Q2), the weight of D increases by *. Therefore
Qj,#,y,w reaches its goal and returns.

Pi(p,)): The run satisfies (i) by hypothesis, and (ii) by inductive hypothesis. Thus,
(iii) fails, i.e., the run returns. $

Lemma 6.7. B is K-trivial. (A is low for K).

Proof. Choose a golden run of a procedure Pi(p,)) as in Lemma 6.6. We enumer-
ate a KC set W . Note that p/) = 2g for some g ∈ N. At stage s, when a run
Qj,#,y,w(2−|#|),*) returns, then put 〈|#| + g + 1, Bs!y〉 into W (put 〈|#| + g + 1, y〉

A. Nies / Advances in Mathematics 197 (2005) 274–305 299

into W) . We prove that W is a KC-set, namely,

SW =
∑

s

∑
{2−r : 〈r, z〉 ∈ Ws − Ws−1}"1.

Suppose 〈r, z〉 enters W at stage s due to a run Qi−1,#,y,w(2−|#|),*) which returns.
Stable case: The contribution to SW of those axioms 〈r, z〉 where A!w is stable from

s on is bounded by 2−(g+1)$ [2−(g+1)$A], since for each # such that U(#) is defined
(UA(#) is defined) this can only happen once.

Change case: Now suppose that A!w changes after stage s. Then the set D returned
by Qi−1,#,y,w, whose weight is 2−|#|), went into Ci . Since the run of Pi does not return,

∑
s

∑
{2−|#| : Qi−1,#,y,w returns at s & A!w changes at some t > s} < 2g,

otherwise the run of Pi reaches its goal p = 2g). Thus the contribution of the corre-
sponding axioms to SW is less than 1/2.

Let Me be the machine for W according to the Kraft–Chaitin theorem. We claim
that, for all y,

K(B!y)"K(y) + g + e + 1

[K(y)"KA(y)+g+e+1]. Suppose that s is the minimal stage such that Us(#) = y,
%A!y ↓ [s] and As!((y−1) is stable (a stable computation UA

s (#) = y appears), where
is a shortest description of y. Let w be as in (P1#), namely, w = (A(y −1) (let w be
the use of this computation). Then # is available at s: otherwise some run Qi−1,#,y′,w′

is waiting to be released at (P2#). In that case, A!w′ has not changed since that run
was started. Then w = w′ and y = y′, contrary to the minimality of s. So we call
Qi−1,#,y,w. Since A!w is stable and the run of Pi is not cancelled, this run is not
cancelled, so it returns by (ii) of Lemma 6.6. At this stage we put 〈|#| + g + 1, Bs!y〉
into W [we put 〈|#| + g + 1, y〉 into W], causing the required inequality. $

7. Further results on K

In this section we study further properties of K and its role within the Turing degrees.
We also show that any proof of Theorem 6.1 is necessarily non-uniform. First we show
that Proposition 4.1 actually provides a characterization of K-trivial sets.

Theorem 7.1. The following are equivalent.

(i) A is K-trivial,
(ii) There is a !0

2-approximation (Ãr)r∈N of A such that

S =
∑

{c(x, r) : x is minimal s.t. Ãr−1(x) $= Ãr (x)} < 1/2, (6)

where c(x, r) = 1/2
∑

x<y " r 2−Kr(y).

300 A. Nies / Advances in Mathematics 197 (2005) 274–305

By (ii) and Fact 4.4, any A ∈ K is !-r.e.

Proof of Theorem 7.1. (ii) ⇒ (i) is Proposition 4.1, with (Ãr)r∈N instead of (Ar)r∈N.
(i)⇒ (ii). We extract some additional information from the proof of Theorem 6.1, for

the special case that B = A and % is the identity functional, where ((y) is defined to
be y + 1. Let (As) be the modified !0

2-approximation from the beginning of the proof
of Theorem 6.1. We first prove that there a constant g ∈ N and a recursive sequence
of stages q(0) < q(1) < · · · such that

Ŝ =
∑

{̂c(x, r) : x is minimal s.t. Aq(r+1)(x) $= Aq(r+2)(x)} < 2g, (7)

where ĉ(z, r) = ∑
z<y "q(r) 2−Kq(r+1)(y).

By Lemma 6.6, choose a golden run Pi(p,)).

Claim 7.2. For each stage s, there is a stage t > s such that, for all y < s, if # is
a shortest description of y at t , then a run Qi−1,#,y,y+1 has returned by t and is not
released yet, that is, Pi waits at (P2#).

Such a t exists because, for each y, there are only finitely many possible #’s. Once
A!y + 1 has settled, a run of a procedure Qi−1,#,y,y+1 is not canceled, therefore it
returns by property (ii) of golden runs. This proves the claim. Note that the least such t

can be determined effectively. Let q(0) = 0. If s = q(r) has been defined, let q(r + 1)

be the least t satisfying this condition for s.
As before, let g ∈ N be the number such that p/) = 2g . We show that Ŝ < 2g .

Suppose x is minimal such that Aq(r+1)(x) $= Aq(r+2)(x). Then As−1(x) $= As(x) for
some stage s with q(r + 1) < s"q(r + 2). No later than s, the runs of procedures
Qi−1,#,y,y+1 with x"y < q(r) which are still waiting at (P2#) are released. This adds
a weight of at least ĉ(x, r) to Ci . Thus Ŝ < 2g , otherwise the run of Pi reaches its
goal.

We obtain the required !0
2-approximation Ãr (x) after some manipulations. First let

A∗
r (x) = Aq(r+2)(x). Note that, for z < r , c(z, r) = 1/2

∑
z<y " r 2−Kr(y) " ĉ(z, r),

so that
∑{c(x, r) : x is minimal s.t. Ar−1(x) $= Ar(x)}" Ŝ < 2g . Now choose r0 so

large that the sum over all r #r0 is at most 1/2. Let Ãr (x) = A∗
r0(x) for r "r0, and

Ãr (x) = A∗
r (x) else. This shows (i)⇒ (ii). $

In [9] it is shown that there is a uniform listing of K that includes the constants
via which K-triviality holds. The proof is based on recursive sequences of stages
satisfying (7).

Theorem 7.3 (Downey et al. [9]). There is an effective list ((Be,s(x))s∈N, de) of !0
2-

approximations and constants such that each K-trivial set occurs as a set Be =
limsBe,s , and each Be is K-trivial via the constant de.

A. Nies / Advances in Mathematics 197 (2005) 274–305 301

Each K-trivial set is truth-table below an r.e. one:

Theorem 7.4. For each K-trivial set A, there is an r.e. K-trivial set D such that
A" t tD, via a polynomial time t t-reduction.

Proof. Let (Ãr)r∈N be the !0
2-approximation from (ii) of Theorem 7.1. Recall that,

by Proposition 4.4, one may choose a constant c such that Ãr (y) changes at most
cy2 times. Let f (x) = c

∑
0"z<x z2. Define the r.e. set D as follows: when Ãr (x) $=

Ãr+1(x) for the i + 1st time, then enumerate f (x) + i into D. Then A" t tD, via a
polynomial time tt-reduction (where numbers are identified with strings): if the greatest
i < cy2 such that f (y)+ i ∈ D is even, then A(y) = 1− Ã0(y). If the greatest i < cy2

such that f (y) + i ∈ D is odd or there is no such i, then A(y) = Ã0(y).
To see that D is K-trivial, note that for each r and each x < r ,

Dr−1!x $= Dr!x ⇒ Ãr−1!x $= Ãr!x.

Thus the sum in (6) for (Dr) is no greater than the sum for (Ãr). $

Definition 7.5. The set A is SUPER-LOW if A′" t t∅′.

Of course, super-low sets A are !-r.e., that is, A" t t∅′. In Nies [22] it is proved
that super-lowness and U -traceability coincide on the r.e. sets, in a uniform way (but
no inclusion holds between the classes on the !-r.e. sets).

The following could also be proved directly via a modification of the proof of
Theorem 6.1 (see [20]). However, we prefer to use Theorem 6.2 and Proposition 2.8.

Corollary 7.6. Each K-trivial set A is super-low.

Proof. It suffices to show that the r.e. set D obtained via Theorem 7.4 is super-low. D

is low for K by Theorem 6.2, hence U -traceable by Proposition 2.8 (which is uniform).
Thus D is super-low by [22]. $

It is not hard to show that there are super-low r.e. sets A,B such that A ⊕ B is
Turing complete [22]. Thus not all super-low r.e. sets are K-trivial.

The following corollary shows that some non-uniformity as the one in the proof of
Theorem 6.2 is necessary.

Corollary 7.7. There is no effective way to obtain from a pair (A, b), where A is an
r.e. set that is K-trivial via b, a constant c such that A is low for K via c.

Proof. Otherwise, by Theorem 7.3 above we would obtain a listing (Be, ce) of all the
low for K sets with appropriate constants. But such a listing does not exist: If A is an
r.e. set in M, then an index of a reduction showing the super-lowness can be obtained
uniformly from an index for A and the constant via which A ∈ M (by the uniformity
of Theorem 2.8 and of the equivalence of U -traceability and super-lowness for r.e.

302 A. Nies / Advances in Mathematics 197 (2005) 274–305

sets). So one could extend the listing to include (super-) lowness indices. But an easy
extension of Theorem 4.3 gives a set C ∈ K = M not Turing below any Be. The
details are in [22, Theorem 5.9]. $

Note that, by a similar argument, Theorem 7.6 is non-uniform, even for lowness
instead of super-lowness. The non-uniformity in the proof of Theorem 6.2 is easily
detected: the constant via which A is low for K given by that proof is g + e + 1,
and g depends on what the golden run is. Thus we cannot determine the golden run
effectively.

The restriction on the number of changes in Proposition 4.4 can be improved. Each
K-trivial set has a !0

2-approximation which changes as little as desired (we thank Frank
Stephan for pointing this out).

Corollary 7.8. Let A ∈ K. Given a non-decreasing recursive h such that limn h(n) =
∞, there is a !0

2-approximation (Ar)r∈N of A such that Ar(y) changes at most h(y)

times.

Proof. By Theorem 7.4, there is an r.e. D ∈ K such that A = &D for a t t-reduction
& with recursive use -. D is U -traceable by Theorem 7.6 and [22]. By the method
of [29, Fact1], there is an r.e. trace T with bound h for the total D-recursive function
p(y) = "s Ds!-(y) = D!-(y), that is, ∀y p(y) ∈ T [y]. Now let Ar(y) = 1 if
&Dv (y) = 1 where v = max T

[y]
r , and let Ar(y) = 0 otherwise. $

Theorem 7.9. The K-trivial sets form a "0
3 ideal in the !-r.e. T-degrees, which is

generated by its r.e. members. Moreover, this ideal is non-principal.

Proof. By Theorems 6.1, 2.3 and 7.4 the K-trivial sets induce an ideal generated by
the r.e. members. This ideal is "0

3 by Fact 2.4. Suppose the ideal equals [0,b] for some
degree b. Then b is r.e. and low by Theorem 7.6. This contradicts Theorem 4.3. $

Corollary 7.10. There is an r.e. low2 set E such that A"T E for each K-trivial
set A.

Proof. By Theorem 7.4, it suffices to give such a bound E for the r.e. K-trivial sets.
By [21], any proper "0

3 ideal in the r.e. degrees has a low2 upper bound. $

By Theorem 4.3, no such E is low1.

8. Relativizations, operators, and reducibilities

We review some extensions and related notions.
Operators: Let K(X) be the class of sets which are K-trivial relative to X, that is,

K(X) = {A : ∀n KX(A!n)"KX(n) + O(1)}. The relativization of the class of low
for K sets is M(X) = {A : ∀y KX(y)"KA⊕X(y) + O(1)}.

A. Nies / Advances in Mathematics 197 (2005) 274–305 303

We show that K is an operator with good closure properties and a very simple
representation. Firstly, K is degree invariant as an operator, since

X ≡T Y ⇒ ∀z |KX(z) − KY (z)|"O(1) ⇒ K(X) = K(Y).

All the results on K we have discussed relativize (the coincidence with Low(MLR) will
be addressed later on).

Theorem 8.1. (i) K(X) is closed under ⊕ and closed downward under "T .
(ii) There is an r.e. index e such that, for each X, WX

e ∈ K(X) and X <T WX
e .

(iii) M(X) = K(X).
(iv) A ∈ K(X) ⇒ A is t t-below some D ∈ K(X) which is r.e. in X, via a polynomial

time t t-reduction as in Theorem 7.4.
(v) A ∈ K(X) ⇒ A′" t tX

′.

Proof. One obtains (i)–(iv) by examining the proofs of Theorems 2.3, 6.1, 6.2, 4.2
and 7.4. For (v), suppose that A ∈ K(X). By (iv) we can suppose A is r.e. in X.
Since A ⊕ X ∈ K(X), A ⊕ X ∈ M(X) by (iii). Relativizing Proposition 2.8, A ⊕ X is
U -traceable relative to X. Then, relativizing the fact from [22] that each U -traceable
set is super-low, A′" t tX

′. $

Theorem 8.2. There is an effective listing (%e)e∈N of t t-reduction procedures such
that, for each X, K(X) = {%e(X

′) : e ∈ N}.

Proof. Since {e : WX
e ∈ K(X)} is "0

3(X) via a fixed index, there is an effective listing
(Vj) of oracle enumeration procedures such that for each X, {V X

j : j ∈ N} equals
the class of sets in K(X) which are r.e. in X. Let (&i) be an effective listing of
the t t-reduction procedures needed in (iv) of Theorem 8.1. For each pair i, j we can
effectively determine a t t-reduction %e, e = 〈i, j〉 such that %e(X

′) = &i (V
X
j). $

Slaman [25] studied Borel operators S : P(N) +→ P(P(N)) such that, for each
X, Y , S(X) is an ideal in the Turing degrees containing X, but not all sets, and S
is MONOTONE, that is, for each X, Y , X"T Y ⇒ S(X) ⊆ S(Y), a property stronger
than degree invariance. Slaman proves that, on an upper cone in the Turing degrees,
any such operator is given by (possibly transfinite) iterates of the jump. Possibilities
for S(X) include {Y : Y "T X}, {Y : Y "T X′}, or {Y : ∃n ∈ N Y "T X(n)}.

Since the operator K is not given by such iterates, it fails to be monotone. An explicit
example of non-monotonicity was pointed out by R. Shore: By Theorem 4.2, let A

be a promptly simple set in K(∅) = K . Then A is low cuppable, i.e. there is a low
r.e. G such that ∅′"T A ⊕ G (see [27, Theorem XIII.4.2]). Hence A ∈ K(∅) − K(G),
otherwise A ⊕ G ∈ KG and hence (A ⊕ G)′"T G′ by Theorem 8.1 (v), which is a
contradiction.

304 A. Nies / Advances in Mathematics 197 (2005) 274–305

Reducibilities: For sets A, B, let A"LKB ⇔ ∀y KB(y)"KA(y) + O(1), and
A"LRB ⇔ MLRB ⊆ MLRA. Clearly, "T implies "LK , which in turn implies
"LR . Note that the result Low(MLR) = K relativizes, as follows: A ⊕ X"LRX ⇔
A ∈ K(X). In [20] it is shown that, for r.e. A, B, A"LRB implies A′" t tB

′. More-
over, applying the technique of pseudo-jumps in [12] to the r.e. operator given by
the construction of a low for K set, there is an r.e. A which is T -incomplete but
"LK -complete.

Let LeftLK(X) = {A : A"LKX} and LeftLR(X) = {A : A"LRX}.

Proposition 8.3. (i) K(X) ⊆ LeftLK(X).
(ii) If G is as above, then K(G) is a proper subclass of LeftLK(G).

(iii) A ≡LK B ⇔ A ∈ K(B) & B ∈ K(A).

Proof. For (i), since K(X) = M(X), for each A ∈ K(X), ∀y KX(y) = KA⊕X(y)

"KA(y) up to additive constants. (ii) holds since A ∈ LeftLK(∅) = M(∅), so that
A ∈ LeftLK(G) − K(G). For (iii), by (i) it only remains to show the direction from
left to right: for each n, KA(A!n)"KA(n) + O(1). If A ≡LK B we may replace the
oracle A by B, which shows that A ∈ K(B). $

By relativizing (ii), we see that for each X there is a G#T X such that K(G) is
a proper subclass of LeftLK(G). Then, since the operators K and LeftLK are degree
invariant, by arithmetic determinacy, this holds on an upper cone of Turing degrees.

Just as K, LeftLK and LeftLR are "0
3 operators (see [20] for LeftLR), but unlike

K, they are monotone in the sense of Slaman. Since each image is downward closed
under "T , by Slaman’s result, the image of X cannot be an ideal for all X. The
explicit counterexample used above for K works once again (say for "LR): note that
A ∈ LeftLR(∅). Thus A"LRG, and trivially G"LRG, but ∅′ ≡T A ⊕ G!LRG by the
result in [20], since G is low. In particular, ⊕ does not determine a supremum in the
r.e. "LR-degrees.

Using Theorem 8.1 (v) and Proposition 8.3 (ii), A ≡LK B implies A′ ≡t t B ′ for all
sets A, B. We do not know if this holds for ≡LR in place of ≡LK . The recent paper
[17] contains further work on reducibilities, for instance that A"KB implies A#LRB

for A, B ∈ MLR (here X"KY ⇔ ∀n K(X!n)"K(Y !n) + O(1)).
Many other questions remain. For instance, is K definable in the (r.e.) Turing de-

grees?

References

[1] K. Ambos-Spies, C.G. Jockusch jr, R.A. Shore, R.I. Soare, An algebraic decomposition of the
recursively enumerable degrees and the coincidence of several degree classes with the promptly
simple degrees, Trans. Amer. Math. Soc. 281 (1984) 109–128.

[2] K. Ambos-Spies, A. Kucera, Randomness in computability theory: current trend and open problem,
in: P. Cholak, S. Lempp, M. Lerman, R. Shore (Eds.), Computability Theory and Its Applications:
Current Trends and Open Problems, American Mathematical Society, Providence, RI, 2000.

A. Nies / Advances in Mathematics 197 (2005) 274–305 305

[3] A. Nies, B. Bedregal, Lowness properties of reals and hyper-immunity, in: Wollic 2003,
Electronic Notes in Theoretical Computer Science, vol. 84, Elsevier, Amsterdam, 2003.
http://www.elsevier.nl/locate/entcs/volume84.html.

[4] C. Calude, Information and randomness, Monographs in Theoretical Computer Science, An EATCS
Series. Springer, Berlin, 1994. An algorithmic perspective, With forewords by Gregory J. Chaitin and
Arto Salomaa.

[5] C.S. Calude, R.J. Coles, Program-size complexity of initial segments and domination reducibility, in:
Jewels are Forever, Springer, Berlin, 1999, pp. 225–237.

[6] G. Chaitin, A theory of program size formally identical to information theory, J. Assoc. Comput.
Mach. 22 (1975) 329–340.

[7] G. Chaitin, Information-theoretical characterizations of recursive infinite strings, Theoret. Comput.
Sci. 2 (1976) 45–48.

[8] P. Cholak, M. Groszek, T. Slaman, An almost deep degree, J. Symbolic Logic 66 (2) (2001)
881–901.

[9] R.G. Downey, D.R. Hirschfeldt, A. Nies, F. Stephan, Trivial reals, in: Proceedings of the 7th and
8th Asian Logic Conferences, Singapore University Press, Singapore, 2003, pp. 103–133.

[10] R. Downey, D. Hirschfeldt, A. Nies, S. Terwijn, Calibrating randomness, Bull. Symbolic Logic., to
appear.

[11] D. Hirschfeldt, A. Nies, F. Stephan, Random Oracles, to appear.
[12] C.G. Jockusch Jr, R.A. Shore, Pseudo-jump operators I: the r.e. case, Trans. Amer. Math. Soc. 275

(1983) 599–609.
[13] B. Kjos-Hanssen, F. Stephan, A. Nies, Lowness for the class of Schnorr random sets, to appear.
[14] A. Kucera, On relative randomness, Ann. Pure Appl. Logic 63 (1993) 61–67.
[15] A. Kucera, S. Terwijn, Lowness for the class of random sets, J. Symbolic Logic 64 (1999)

1396–1402.
[16] P. Martin-Löf, The definition of random sequences, Inform. and Control 9 (1966) 602–619.
[17] J. Miller, L. Yu, On initial segment complexity and degrees of randomness, to appear.
[18] W. Miller, D.A. Martin, The degree of hyperimmune sets, Z. Math. Logik Grundlag. Math. 14 (1968)

159–166.
[19] A.A. Muchnik, A.L. Semenov, V.A. Uspensky, Mathematical metaphysics of randomness, Theoret.

Comput. Sci. 207 (2) (1998) 263–317.
[20] A. Nies, Computability and randomness, to appear.
[21] A. Nies, Ideals in the recursively enumerable degrees, to appear.
[22] A. Nies, Reals which compute little, to appear.
[23] Gerald E. Sacks, Degrees of Unsolvability, Annals of Mathematical Studies, vol. 55, Princeton

University Press, Princeton, NJ, 1963.
[24] C.-P. Schnorr, Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der

Wahrscheinlichkeitstheorie, Lecture Notes in Mathematics, vol. 218, Springer, Berlin, 1971.
[25] T.A. Slaman, Aspects of the Turing jump, in: Logic Colloquium 2000, Lecture Notes in Logic, to

appear.
[26] T. Slaman, R. Solovay, When oracles do not help, in: Fourth Annual Conference on Computational

Learning Theory, Morgan Kaufman, Los Altos, CA, 1991, pp. 379–383.
[27] R. Soare, Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic, Omega

Series, Springer, Heidelberg, 1987.
[28] R. Solovay, Draft of a paper (or series of papers) on chaitin’s work, IBM Thomas J. Watson

Research Center, Yorktown Heights, NY, 1975, 215p.
[29] S. Terwijn, D. Zambella, Algorithmic randomness and lowness, J. Symbolic Logic 66 (2001)

1199–1205.
[30] D. Zambella, On sequences with simple initial segments, ILLC Technical Report ML 1990–05,

University Amsterdam, 1990.

http://www.elsevier.nl/locate/entcs/volume84.html

	Lowness properties and randomness
	Introduction
	The classes and their basic properties
	Far from random: the class K
	Low computational power: the class Low(MLR)
	Both: the class M

	The Kraft--Chaitin theorem
	Constructing a K-trivial set
	Low for random sets are low for K
	K-trivial sets
	The concept of a j-set
	The golden run, and indexing procedures by descriptions
	Waste management

	Further results on K
	Relativizations, operators, and reducibilities
	References

