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Undecidable fragments of elementary theories 

A. NIES 

Abstract. We introduce a general framework to prove undecidability of fragments. This is applied to 
fragments of theories arising in algebra and recursion theory. For instance, the V3V-theories of the class 
of finite distributive lattices and of the p.o. of recursively enumerable many-one degrees are shown to be 
undecidable. 

1. Introduction 

A fragment of  a first-order theory T is a set Tc~S for some set S o f  sentences 

with a simple prescribed syntactical structure. Since such a set S is decidable, 
undecidability of  a fragment of  a theory implies undecidability of  the whole theory. 

Here we address the converse question: if T is undecidable, which fragments o f  T 
are undecidable? 

A formula is Z k if it has the form ( 3 . . .  3 ) ( g . .  �9 V)(3 ..  �9 3)( - . . )0 ,  with k - 1 
quantifier alternations and 0 quantifier free, and H~ if it has the form 
(V. �9 - g)(~.  - - 3)(V- -. V)( �9 - �9 )0. We only consider the case that  S is the set o f  Xk- 

or / /k -sen tences .  There are several reasons for investigating the decidability ques- 
t ion for such fragments: firstly, theories consist most ly of  sentences which have too 

many  quantifier alternations to be "comprehensible";  so, even if undecidability of  
a theory is known,  the question remains which feasible fragments are undecidable. 
Secondly, it is desirable to obtain a sharp classification of  the quantifier level where 
a theory T becomes undecidable, i.e., to determine a number  k such that  e.g. T c~ Zk 
is undecidable but  T c~ Zk_ 1 is decidable. This is the best result one can hope for if 
T is a complete theory, since T c~ Z k is as complex as T c~/7~ ; but  for incomplete T 
one can even try to determine k such that e.g. T c~Z~ undecidable but  T c~//k 
decidable. Thirdly, sometimes one can give an algebraic interpretation of  the 
sentences in a set S as above, and then a decision procedure usually gives algebraic 
information about  the class. For  instance, the /7~-theory o f  a variety is closely 
connected to the word problem of  its finitely presented members.  
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In this paper we develop a general framework to prove undecidability of 
fragments. This incorporates many ideas used before for plain proofs of undecid- 
ability of theories, e.g. [Tra53], [Er ea 65] and [Bu, Sa75], as well as in undecidabil- 
ity proofs for fragments of special theories in [Ler83] and [A, $93]. The method is 
applied to the classes of finite undirected graphs, finite distributive lattices and finite 
partition lattices. Furthermore, building on these results we obtain undecidability of 
fragments of theories arising in recursion theory. For instance we give a sharp 
classification in the above sense for the theory of the recursively enumerable 
many-one degrees. We begin with some examples. 

Undecidable fragments  

(1) Let T =  Th(N,  +,  x). Then Tc~s 1 is undecidable. To prove this, one uses 
that, by the solution to Hilbert's lOth problem, the set of polynomials 

{p zlxl.(3,  >_ O)[p(n) = o]} 

is undecidable ( " 2 "  denotes a tuple xl . . . .  , xk of variables). Moreover, for 
p e Z[2], p ( ~ ) = 0  ~ p+(r~)=p (r~), where p+ is the part o f p  with positive and 
( - 1 ) p _  the part of p with negative coefficients. Since the sentence 
(3~)[p+(~) =p_(r~)] is XI, this shows that s r~ Th(N,  +,  x, 1) is undecidable. To 
eliminate the constant l from the language, note that 1 can be defined existentially 
as an element x satisfying (3z)[z + z r z /x  xz  = z]. 

(2) If  T is the theory of groups, then T r~/71 undecidable. This follows from the 
fact that there is a finitely presented group with unsolvable word problem. 

(3) Let T be the theory of modular lattices and S be the set of universally 
quantified equations (V~)[t0?) = s()~)], for lattice terms s, t. By [Fre80], the fragment 
T ~  S is undecidable (even if we restrict the number of universal quantifiers to 5). 

Decidable fragments  

(4) Let L be (a) a finite relational language, (b) the language of lattices, 
and let T be (a) the theory of all L-structures (b) the theory of all finite distribu- 
tive lattices. Then T ~ I l z  is decidable: to determine whether a sentence 
(VX1 . . . . .  Xn)(3Yl . . . . .  Ym)@ is in T, for (a), it suffices to test L-structures of 
cardinality _<n. For (b), it suffices to test the distributive lattices of cardinality 
< 22". 
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(5) Let V be a variety such that the finitely presented algebras in V have 
solvable word problem. Suppose further that such a decision procedure is uniform 
in a presentation. Then Th(V) m/71 is decidable. An example of such a variety is the 
variety of lattices (Kinsey; see [Fre, Na79]). To see that this fragment is decidable, 
note that, using conjunctive normal form of r any//1-sentence ( V . - .  V)r in the 
language of V is equivalent to a conjunction of sentences of the form 

(vx)[ A, <i_<. e , - .  V, _<J < J , - ] ,  (1) 

where e i and f;  are equations of the form t(~) = s()~). Thus it suffices to check 
a ~ Th(V) for each such conjunct er. But a e Th(V) iff at least one equationfj  holds 
in the V-algebra presented by ()? : e l , .  �9 �9 en ). 

Other fragments of theories which have been studied to some extent are given by 
taking as S the set of implications ~o 0--+ q~, for some fixed sentence qo o (e.g. the 
conjunction of some finite system of axioms), or the set of relativizations of the 
form qo E{x:~x)/], for some fixed formula ~. 

We now give an outline of the method to prove undecidability of fragments, 
which is developed in detail in the Sections 2 and 3. For a language L, let L-Valid 
be the set of sentences which hold in all L-structures. A set of sentences U is 
hereditarily undecidable (h.u.) if L-Validc~ U _ J( _c U implies that X is undecidable. 
First it is shown that, for some finite relational language L, the set of 2;z-sentences 
which hold in all finite L-structures is undecidable. Then a notion of definability 
with parameters of a class C of structures in a second D class is given, which is 
derived from [Bu, McKS1], but takes into account the number of quantifier 
alternations in the defining formulas. This definability relation makes it possible to 
transfer undecidability of fragments of Th(C) to undecidability of fragments of 
rh(D). 

We use a notion from recursion theory: disjoint sets of natural numbers X, Y 
are called recursively inseparable (r.i.) if there is no recursive set R such that X _ R 
and Yc~R = ~ .  We will make use of the following fact several times. 

Recursion theoretic fact 

If Uo, UI are recursively inseparable, f is a (total) recursive function 
and V0, V1 disjoint, then (2) 

f(Ui) c Vi (i = 0, 1) ~ V o, V 1 recursively inseparable. 

To verify this, note that if a recursive set R separates V0 from V1, then f I(R) is 
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recursive and separates U0 from U1. Observe that a set of sentences U is h.u. iff 

L-Validr~ U and O are r.i. 

Conventions 

We use self-explanatory names for the classes of structures under discussion. 
LStructures is the class of L-structures, and SymGraphs is the class of structures 

(V, E) such that E is a symmetric irreflexive relation on V. POrders is the class of 
partial orders. A class C of structures is always understood in the context of a 

language L, which may or may not contain equality. If  C is a class of p.o., we can 
ignore this difference since equality can be defined without quantifiers. F-C denotes 

the class of finite members of C. Th(C) denotes the set of sentences in the language 
L which hold in every structure in C, and Z ~ -  Th(C) stands for X~c~Th(C). 
Lattices are normally viewed as structures in the language of partial orders. The 
theory of a class C of lattices in the full language is denoted by Thv ^ (C). 

2. A relational language L such that 222 - Th(F-LStructures) is 

hereditarily undecidable 

In this section we give a direct coding of computations in models of a relational 
language L. The proof  of Theorem 2.1 will not be needed in later sections, but is 
crucial for a deeper understanding of undecidability proofs by the method of  coding 
classes of structures. 

T H E O R E M  2.1. There exists a finite relational language L with equality such 
that the Z2-theory of the class of finite L-structures is h.u. 

Proof We will represent computations of  a 3-register machine M with addi- 
tional input and output registers in L-structures. Such a machine is given by m 
instructions which have one of the forms 

i : Reg.-= Reg + 1; goto j, 

i : R e g , = m a x ( R e g -  1, 0); gotoj, 

i : I f R e g  = 0 then goto j else goto k, 

where 0 < i, j, k < m and Reg is one of the registers. We refer to { 0 , . . . ,  m - 1} as 
the set of states of M. A configuration of M is given by 6 natural numbers state, 
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input, output, regO, regl, reg2 which denote the current state and contents of the 
registers. The initial configuration has state 0, and only the input register may have 
nonzero content. The state 1 is called the halting state; if an M-computation 
reaches this state, the computation is finished and the content of the output register 
is regarded as the output. 

A partial successor model is a structure (X,f, 0) such that f is a 1-1 partial map 
and f (x)  r 0 for x e X. The standard part of such a model is the set of elements 
obtained from 0 by iterated applications of f.  The L-structures representing 
computations will be certain finite disjoint unions of partial successor models, 
corresponding to time, state and contents of the registers. If  an M-computation on 
input k converges, the corresponding L-structure will be finite. The relation symbols 
in L are the following. 

(a) The unary symbols Time, State, Input, Output, Reg0, Regl and Reg2, 
(b) A binary relation symbol f x  and unary relation symbols Zerox, where X is 

one of the unary symbols listed in (a). These give the model of partial 
successor on X. (We use a unary predicate Zerox to avoid introducing 
constants.) 

(c) A 7-ary relation symbol R, intended to hold for (t, xl . . . .  , x6) if M reaches 
the configuration (xl . . . . .  x6) at step t. 

We avoid the explicit use of the symbols in (a) by variable conventions: t ranges over 
those x such that Time(x) holds, and the auxiliary variable c ranges over coded con- 
figurations, i.e., 6-tuples of variables ( x l , . . . ,  x6) such that State(x1), . . . ,  Reg2(x6) 
holds. We write Input(e) etc. for the respective components of c, and Zero(Input(c)) 
instead of Zero~nput(Input(c)). 

We will obtain a H2-sentence 7k which expresses that an L-structure codes the 
computation on input k stepwise correctly in the following sense: 

R(t, c)/x ZerOTime(t) implies that c is the initial configuration corresponding to 
the input k and, if R(t, x) holds, then either State(c) is the halting state, or fTim~(t) 
is defined and R(f-rime(t), d) holds for a unique configuration d. Suppose first we 
only want to prove that L-Validc~Z 2 is undecidable. Let M be a 3-register machine 
such that k ~ C ~=~ M(k) -- 0, for some undecidable recursively enumerable set C. 
Let Ok be the sentence 

7~ --' "the computation stops with output 0". 

Note that ~o k has the form " / 7  2 ~ X 1 " and therefore is a g2-sentence. If M(k) = 0 
then ~o k is valid, since each L-structure satisfying 7k must code the actual M-compu- 
tation on its standard part (i.e., the union of the standard parts of the partial 
successor models). On the other hand, if not M(k) = 0, then ~ok fails in the structure 
coding the (possibly diverging) M-computation with input k. Thus k e C ~=> ~o k is 
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valid, and z~ 2 - - T h ( L S t r u c t u r e s )  is undecidable, since the decidability o f  this 

f ragment  would imply the decidability o f  C. 

To obtain the full result, fix a machine M such that { x : M ( x ) = 0 }  and 

{x : M ( x )  = 1} are recursively inseparable. As before, 

M(k)  = o 

N o w  

M(k) = 1 

:::> 

~0k is valid. 

~0~ fails in the finite structure coding this M-compu ta t i on  

(Pk ~ Th(F-LStructures). 

By the recursion theoretic fact (2), Z2 - Th(F-LStructures) in h.u. 

It remains to define the sentences Yk and (Pk formally. To obtain 7k, one has to 

express the following. 

Uniqueness of  the configuration at each step t(II 1): 

(Vt ) (Vc)(Vd)[R( t ,  c ) / ,  R(  t, d)  -~ c = a~. 

Axioms of  partial successor (H~ A Z1): 

"fx  defines a partial I-I map from X into X "  (H 1 ) A 

(Vx)(Vy)[Zerox(x) A Zerox (y )  --* x = y](H1 ) A 

( 3x)[ Zero x( x) ]( Zi ) A ( V x)( Vy)[ f x(x, y) ---, -7 Zerox(y)]( /7,  ). 

Existence of  a correct initial configuration (Zl):  

(3c)(3t[Zerovim~(t) A R(t, c) A Zero(State(c)) A Zero(Output(c))  A " "  A 

Zero(Reg2(c))  A (3i0) ' �9 �9 (3ik)[Zeroinput(i0) A Input(c) = i k A 

mo<_r <kfInput(ir, it+ I)]1. 

Domain of  the successor map for Time and stepwise correctness of  the computa- 
tion ( to express this by a / 7  2 formula,  we need to quantify universally over all the 
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possible states of  M) :  

(VSo) �9 �9 �9 (VSm _, )[Zero~t~te(So) A Ao  _<i< m - ,  fst~t~ (Si, Si+ 1) ----> 

(Vt)(Vc)[R(t, c) ~ (State(c) = s l v  

(3s)(qd)[fVime(t) = S A R(s, d) A Succ(c, d)]]]. 

Here the quantifier free formula  Succ(c, d) which describes the successor relation 

induced by M on configurations is given by 

Succ(c, d) ~ A0 <i<m [State(c) = si-* r d)], 

where Oi depends on the instruction i as follows: 

Instruction ~t i 

i :  I f  Reg0 = 0 then j else k Input(c) = Input(d)  A" ' - A Reg2((c) = Reg2(d) 

A (Zero(Reg0(c))  A State(d) = sj) v 

( 7 Zero(Reg0(c))  A State(d) = sk). 

Tests on other registers Similar 

i : R e g 0 , = R e g 0  + 1; goto j Input(c) = Input(d)  A Output(c) = Ouptut(d)  A 

fR~o(Reg0(c),  Reg0(d)) A 

Reg l (d )  = Regl(c)  A Reg2(d) = Reg2(c) A 

State(d) = sj) 

i : R e g 0 , = m a x ( R e g 0 -  1, 0); goto j Input(c) = Input(d)  A Output(c) = Output(d)  A 

(fReg0(Reg0(d), Reg0(c)) v (Zero(Reg0(c))  A 

Zero(Reg0(d))))  A 

Regl (d )  = Regl(c)  A Reg2(d) = Reg2(c) A 

State(d) = sj). 

Note  that, in any L-structure A, Succ(c, d) andfvim~(t, s) implies that  t, c are in the 

s tandard part  of  A iff s, d are in the s tandard part. Using this, by induction on the 
s tandard elements in the partial successor model  -for time, one can show that an 

L-structure satisfying 7k codes the actual M-compu ta t ion  on its s tandard part. 
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Let Oh be the S2-sentence 

7k ~ (3c)(3t)[R(t, c) A (3s)[Zerostate(s) Afstate(S, State(c))] A 

Zero(Output(c))]. [] 

REMARKS.  

(1) A similar p roof  shows that for some language L with finitely many function 

symbols and equality, X1 - Th(L) is h.u. 

(2) Let 0-Stop be the sentence used above expressing "the computat ion stops 

with output 0". It cannot be avoided that for some k and some L-structure 

A, 7k A0-Stop holds, but not M(k)= 0. This means that A describes a 

computat ion which stops at a nonstandard stage. Otherwise, for each k, 

M(k) = 0 <:~ 7k ~ "-7 0-Stop ~ L-Valid. 

Then the complement of  {k : M(k) = 0} would be r.e. and hence {k : M(k) = 0} 

would be decidable. 

3. How to transfer undecidability of fragments 

Consider relational languages L 0 and L1 of finite type. Intuitively, to define an 

L0-structure A in an Ll-structure D, we represent the set of  elements of  A by a 

subset S of  D. Then the relations in the L0-structure A (including equality) give rise 

to corresponding relations on this set. It is required that the set S as well as these 

relations and their complements are definable in D with a collection of 2; k-formulas 

and some fixed parameter  list. Such a collection is called a Zk-scheme (for defining 

L0-structures in L~-structures). A class C of L0-structures is Xk-elementarily defin- 
able with parameters (s in a class D of mdoels for L~ if there is a scheme 

s of  s -formulas such that every model A e C is definable in some model D ~ D via 
S. 

We now give a more formal definition. We first assume that one relation symbol 

of  L 0 is the equality symbol. A Z k-scheme s consists of  Xk-formulas in L1 

q)v(X; [J), and 

~0R(Xl, " " ", Xn ; P), q~R(Xl . . . . .  Xn ; 0) for each n-ary R relation symbol in L 0 

(including equality). The following correctness conditions on a n  L l structure and 
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parameters ~ ensure that an L0-structure is defined: 

~ : p} # 

"On {x : ~Ov(X; p)}, the relations defined by (PR and qO~R are complements"  and 

"~o  defines an equivalence relation which is compatible with the relations defined 

by the formulas ~o R and q)~R" 

(i.e. (OR and q0~R depend only on equivalence classes). These conditions can be 

expressed as a universally quantified Boolean combination of Sk-formulas, and 

therefore by a H~+~-formula c~(p). We say that C is Sk-e.d.p. in a class D if for 

some Z k-scheme s, the following holds: for each A ~ C there is D ~ D and a list of  

parameters 3 in D such that D ~ cffd), and, if S = {x : D ~ (pu(X; 3)} and, for an 

n-ary relation symbol R, 

= Snc~{xi . . . .  , xn : D ~ (PR(x~ . . . . .  xn ; d}, then 

A ~- (S, (R)Rrdatio~symbo~orZo)/{X, y : D ~ ~o_(x, y; 3)}. (3) 

If  s is a scheme without parameters, C is called Sk-elementarily definable in D. For  

a simple example, see Proposition 4.1. The idea to define the complements of 

relations separately goes back to [Ler83]. 

T R A N S F E R  L E M M A  3.1. Let  r > 2 and k >_ 1, and suppose that the language 

o f  C contains equality. 

(i) I f  C is Xk-elementarily definable in D, then 

S r - Th(C) h.u. ~ X,.+k_, - Th(D)h.u. 

(ii) I f  C is S~-elementarily definable with parameters in D, then 

/ / r .1  -- Th(C) h.u. -~ IIr+ ~ - Th(D) h.u. 

Proof. The idea is to define an effective map F from Lo-sentences to Ll-sentence s 

and apply the recursion theoretic fact (2). Given an Lo-sentence ~o in normal form, 
the translation ~(Ii) (~5 if no parameters are used in the scheme) is obtained by 

relativizing the quantifiers to { x : ( P v ( x ; p ) }  and replacing atomic formulas 

R(x l ,  �9 �9 �9 , xn) and ~ R ( x  I , . . .  , x~) by (pR(xl . . . . .  X~ : p) and ~0~R(X 1 . . . . .  Xn ; p) in 
a way to get a minimum number of alternations of quantifiers: if the innermost 

quantifier in ~0 is existential, replace R by OR and ~ R  by ~0~R. Otherwise, replace 
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R by the HK-formula ~ o ~  R and replace --nR by the Hk-formula-ncp R. For 

instance, if ~o is 

(3x)(Vy)[Rxy v 7Ryx], then O(p) is 

Note that the translation of  a Xr-sentence is a Z,.+~_ ~-formula and the translation 

of a / / , .+  x-sentence is a Hr +k-formula. 
Let F(cp) = (Vp)[c~(p)~ O(p)] (and F(cp)= e ~ (~ if there are no parameters). 

Clearly, 

q0 e Lo-Valid ~ F(cp) E L I -Valid. Moreover 

~o r Th(C) ~ F((p) ~ Th(D), (4) 

since, if (p fails in some structure A e C, then F(~0) fails in some D s D coding A. 

The counterexample for (Vp)[ - --]  is provided by the list of parameters used for the 

coding. 
For  the proof  of (i), note that, if (p is Zr, then F(q~) is in an obvious way 

equivalent to a ~r + k- 1 -sentence, since r + k - 1 > k + 1 and c~ is a E1 k + 1-formula. 
Then, an application of (2) to the recursively inseparable set Zrc~Lo-Valid and 

{~o : q) q~ Zr-Th(C)} yields the desired result. For (ii) we argue similarly, using the 

fact that ~o ~ Elr+l implies that F(~o) is equivalent to a Elr+g-sentence. [] 

The equivalent of the Transfer Lemma also holds if the language of C does not 

contain equality. In this case we need a somewhat different notion of Zk-e.d.p. Let 

(peq(X, y) be the formula expressing that x and y behave in the same way w.r.t, all 

elements in the structure, i.e. ~Oeq(X, y) is the conjunction of formulas of the kind 

(Vz)[(Rxz ~=> Ryz)A  (Rzx <:~ Rzy)] 

for each relation symbol R of Lo. Given an L0-structure A, let eq(A) be 

{<x , y>:A  ~Oeq(X,y)} and let A/eq(A) be the structure defined on equivalence 

classes in the obvious way. By induction on the number of  quantifiers, it is easy to 

verify that 

A ~ c~ r A/eq(A) # ~p for each Lo-formula ~b. (5) 

In defining the notion of Zk-e.d.p., we omit the part of e concerned with equality 
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and replace (3) by 

A/eq(A)  ~ D/eq(D),  where 

D = (S,  R)R relation symbol of L0)' 

Then (5) implies that (4) still holds. This proves the following. 

TRANSFER LEMMA WITHOUT EQUALITY 3.2. The equivalent o f  the 

Transfer Lemma holds i f  the language o f  C does not contain equality. [] 

4. Applications to classes of algebraic structures 

In this section we apply the method developed in the previous section to give 
undecidability results for fragments of elementary theories given by classes of 

algebraic structures. The main applications are concerned with classes of finite 
lattices. Recall that we view lattices as partial orders. 

PROPOSITION 4.1. F-POrders is Zz-e.d. in F-DistrLattices. 

Proo f  By [Gr78], for any P c F-POrders,  there exists a finite distributive lattice 
L with least element 0 such that P ~- ({x e L - {0} : x is join irreducible}, < }. Since 
we can take q)< (x, y) = x _< y and (p ~ (x, y) = x g y, it suffices to define the nonzero 

join irreducible elements in any finite (distributive) lattice by a s in the 
language of partial orders: if x ~ 0, then 

x is join irreducible r (Vu)(Vv)[x = u v v ~ x  = u v x = v] 

V { y : y < x } # x  <=> ( 3 z ) ( g y ) [ y < _ z ~ + y < x ] .  [] 

We now consider undirected graphs (in the language without equality). The 

following Theorem apparently follows from [Tra53]. In [Ler83] a similar Theorem 
for directed graphs with equality was proved. Definability in directed graphs 

without equality was recently considered in [Pa93]. 

T H E O R E M  4.2. Z2 - Th(F-SymGraphs) is h.u. 

Proof. Using some ideas from [Ler83], we show that F-LStructures is 2;1-e.d. in 
F-SymGraphs,  for any finite relational language L. Then, Theorem 2.1 and (i) of the 
Transfer Lemma imply the result. 



Vol. 35, 1996 Undecidabte fragments of elementary theories 19 

Suppose the non-equality relation symbols of  L are R~ . . . .  , R,,. We write 
R0(x, y) for x = y. Given an L-structure A, if 0 _< n _< m, we denote the complement 
of the relation R A by A n n n + m + l .  

For each k _> 3, let Cyck(x) express that x is an element of  a 2k-cycle: 

Cyck(x ) - -  ( ~ u , )  " . . ( 3 u 2 k _  , ) 

[XU 1 A /d  I / /2 A " " " A b12k _ ! X A 

" n o  o t h e r  e d g e  r e l a t i o n s  h o l d  o n  { x ,  u I . . . .  , u 2 e _  ~ }"]. 

(We write xy instead of  E x y . )  Note that all the vertices x, u~ . . . . .  u2k_ ~ must be 
unequal, otherwise some further edge relation would hold. The restriction to cycles 
of  even cardinality is necessary for later extensions. The formulas of  this kind make 
it possible to define sets in an (undirected) graph existentially as 

{x : Cyck(x) A Cych(x)}, 

for some fixed numbers k Ch:  to distinguish a set of  elements {v~ . . . . .  vm} in a 
graph without 2k-cycles or 2h-cycles, add new vertices and edges so that v~ . . . . .  Vm 

are the unique elements in the intersection of  a 2k-cycle and a 2h-cycle. We write 
Cyck,h(X) for Cyc~(x) A Cych(x). 
A graph GA coding an L-structure A is constructed as follows (see Fig. 1): 

-define a set UA corresponding to the universe of  A by 

( P u ( X )  =-- Cyc3,4(x ) 

'.-2'-".," ,, ', 24/.~.+4) 
ON+2) ~ 24 j ' "~/'<(" 22 ) 

(...22 ~ - 1  _ ~  .. J 

Figure 1. Coding the fact that (al, a2) e R). 



20 A. NIES ALGEBRA UNIV. 

for each n, 0 _< n _< 2m + 1, add a set of elements T, and appropriate cycles so 

that T n is defined by the formula CyC4n+5,4n+6(x) .  The elements of Tn 
represent the tuples in R2. 

for each t e Tn representing a tuple (al . . . . .  ak) e R2 and for each i _< k, add 

a chain of length N + 2i from t to xi, where N is some sufficiently large fixed 

number depending only on the language L. To be able to distinguish between 

elements of chains for different relations R2, we attach cycles of cardinality 

4n + 7 and 4n + 8 to each element of a chain for R2 which is not an endpoint. 

We choose N = 4 �9 (2m + 1) + 8 as the largest cardinality of cycles used to 

define a set U A or Tn, or to mark elements of a chain. In this way, we achieve 

that by coding several relations, no new cycles are introduced which have so 

small cardinality that they might interfere with the definitions of the sets T n or 

of UA or the marking. 
For  each n, 0 <_ n _< 2m + 1, if R2 is k-ary, the following Zl-formula defines R~ 

in GA : 

(tgn(Xl, ' ' '  , Xk)  =--(/~1 <_i<k C y c 3 , 4 ( x i ) )  A ( 3 t ) [ C y c 4 n +  5,4n+6(t) A 

A 1  <_iNk ( 3 Y l )  " ' " ( ~ Y N + 2 i - 1 )  

[ / ~ 1  <j<N+ 2 i - I  CyCan+ 7 ,4n+s(Y j )  A 

t y  1 A " " " A Y N  + 2i_ 1Xi /~ " n o  other relations 

hold on { t , y  1 . . . . .  YN+2i  1 , X i } " ] "  

We complete the X 1 -scheme by setting, for 0 < n < m, 

qoRn(xl . . . .  , xk)  =- q~n(xl . . . . .  xk)  and 

(PnRn(Xl . . . . .  Xk) -- (]?n+rn+ l(X 1 . . . . .  Xk). 

Clearly, in GA the formula ~0Ro gives the identity on U A. Hence the structure defined 

in GA by this scheme is isomorphic to A. [] 

T H E O R E M  4.3 (J. Schmerl). $2 - Th(F-Lat t ices)  and $2 - Th(F-POrders)  is 

h.u .  

Proof.  Let F-SymGraphs >3 be the class of finite undirected graphs (V, E) such 

that IVI >3 .  The Proof  of Theorem 2.1 shows that F-LStructures is El-e.d. in 
F-SymGraphs >-3. By Appendix A in [Ler83], the class F-SymGraphs >3 is El-e.d. in 

F-Lattices and therefore also in F-POrders. [~ 
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COROLLARY 4.4. z~" 3 - -  Th(F-DistrLattices) is h.u. 

Proof. By Proposition 4.1 and Theorem 4.3, applying (i) of  the Transfer 
Lemma. [] 

We next show that Hs - Th(F-DistrLattices) is also h.u., a result which will have 
an application in computability theory. We introduce the auxiliary class of bipartite 
graphs. A bipartite graph is a structure for the language L(Le, Ri, E) where Le, Ri 
are unary and E is a binary predicate symbol, which satifies the axioms 

(Vx)[(Le x ~ -7 Ri x)] and 

(Vx)(Vy)[E xy --* (Le x A Ri y)]. 

The predicates Le and Ri denote the left and the right domain of the graph. Given 
a bipartite graph G, we write e instead of Le ~ etc. Let BiGraphs denote the class 
of bipartite graphs. 

COROLLARY 4.5. Z 2 - Th(F-BiGraphs) is h.u. 

Proof It suffices to build the graph GA in the proof  of Theorem 4.2 as a bipartite 
graph. The only change is that we construct UA and the sets T n as subsets of the left 
domain of GA. This causes no problems since all the cycles we use have even 
cardinality and all the chains have even length. [] 

The graph G(U, V) associated with equivalence relations U, V on a set F was 
introduced in [Ore42] (also see [Gr78], p. 200). This graph has the disjoint union of 
F~ U and F~ V as vertex set, F~ U and F / V  as left and right domain, respectively, and 
the set of edges is 

{(C, D )  : C is U-class AD is V-class A Cc~D r (25}. 

LEMMA 4.6. Let G = (Le, Ri, E) be a finite bipartite graph without isolated 
points. Then there exist a finite set F and equivalence relations U, V on F such that 
G ~ G(U, V) via an isomorphism that maps Le to F / U  and Ri to F/V. Moreover, given 
a number N >_ 1, it can be achieved that all the U- and the V-classes have cardinality 
>N. 

Proof. First let F = E and let U, V be the equivalence relations on F induced by 
the projections F ~ L e  and F ~ R i ,  i.e, 

( x , y ) U ( x ' , y ' )  ~ x = x '  and 

( x , y ) V ( x ' , y ' )  ~ y = y ' .  
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Since G has no isolated points, the projections are onto. Hence 

~ ( x ) = { ( x , y ) : ( x , y ) E E }  and /3(y) = {(x, y )  : (x,  y )  ~ E} 

give bijections Le ~ F /U and Ri --, F~ V. Clearly 

(x ,  y S e E  ~ c~(x)c~B(y) # ~ .  

To obtain equivalence classes of cardinality _> N, note that, by expanding F, it is 

possible to add arbitrarily many new elements to a nonempty intersection of an 

U-class with a V-class. Doing this successively for all the nonempty intersections, 
we obtain the desired result. [] 

For the proofs of the following two Theorems, we work with a subclass of 

BiGraphs. Let BiGraphs* denote the class of bipartite graphs G = (Le, Ri, E) such 

that ILe I >_ 3, iRi[ > 3, each vertex of G is connected to at least two other vertices 
and the complement graph (Le, Ri, Le x Ri - E) has no isolated vertices. Note that 

the graph G,  in the proof of Corollary 4.5 is actually in F-BiGraphs*, since each 

vertex of GA is in some cycle of cardinality _> 6. This implies the following 

COROLLARY 4.7. X2 - Th(F-BiGraphs*) is h.u. [] 

T H E O R E M  4.8. H3 - Th(F-DistrLattices) is h.u. 

Proof We show that F-BiGraphs* is S l-e.d.p, in F-DistrLattices. Since H 3 - 
Th(F-BiGraphs*) is h.u. by Corollary 4.7, the Theorem follows by an application of 

(ii) of the Transfer Lemma. 
(1) As a first approximation, we give a quantifier free formula cp(y, P, Q) with 

the property that, for each n >_ 2 there exists a finite distributive lattice L and some 
P, Q ~ L such that cp is satisfied by exactly n incomparable elements of L. A 
modification of cp will lead to the formula cpr :. Let 

o(Y ,P ,  Q) =-P ~ Y A  Y N  Q. 

In this first approximation actually P = Q, but for the full proof  it will be the 
case that P < Q. Given n > 2, we determine finite sets Ai (1 _< i _< n) and P -- Q, 
and let L be the distributive lattice generated by these sets under union and 
intersection. It will be the case that, in L, A ~ , . . . ,  An are precisely those Y 
satisfying the formula cp(Y; P, Q). The finite sets generating L will be subsets of a 
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disjoint union D of two copies of { 1 , . . . , n } ,  denoted by {1t . . . .  ,n+} and 
{b i , . . . , n++} .  If  S _ { 1  . . . . .  n}, S+ denotes the corresponding subset of 
{ 1i . . . . .  nz} etc. Let S = { 1 . . . . .  n}, and let 

A~ = (N1 - {i,}w{iH} 

P = Q = N + .  

The distributive lattice generated by these sets consists of two copies of the 
2n-element Boolean algebra, one on top of the other, and for each i, 1 _< i < n, an 

additional element Ag inserted between the i-th coatom of the lower and the i-th 
atom of the upper Boolean algebra (see Fig. 2). 

Since i I ~ P - A +  and i 1 1 c A ~ - Q ,  L ~ o ( A i ; P , Q ) .  Now suppose that 
L ~ (p(Y; P, Q). We show that, for some k, h, A~ < Y and Y _< A h. Since A k and A h 
are incomparable for k r h, this implies that Y ~ {A~ . . . . .  A n }. 

Note that for each sequence of elements (X+)~<i<k such that X+e 
{ A ~ , . . . ,  An, P} and X,. +a X/ fo r  i C j, the following holds: 

O~<~<~X~NQ ~ k = l  and P N  ~ s _ < k X , .  ~ k = l .  (6) 

Now suppose P :~ YA Yzg Q. To show that (3k) [A k < Y], let Y =  Ui A~ <i_<niRij, 
where the sets Rid are among {A~ . . . . .  An, P} and Ri , /CR/j ,  for j Cj ' .  Since 
Y g Q, there is an Y such that 

(~ 1 <j < n~ N~,,j ~ Q. (7) 

P=Q .. .  A n 

Figure 2. The lattice L. 
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Therefore n ; = l  and R;.~r Hence R,~I=Ak for some k and A~_<Y. The 
argument for (3h) [Y _< Ah] is similar: let Y = 0 i  U l<j<n, Rij, where again the sets 
Rid are among the generating sets and Ri. i r Rij, for j # j ' .  Since P g Y, for some 

h , n ~ = l  andR,~l=Ah,  so Y < A  h. 
(2) Now suppose a graph G = (Le, Ri, E) in FBiGraphs* is given. W.l.o.g. 

assume that Le = {1 . . . . .  n}, Ri = { 1 ' , . . . ,  n'}. Let the variables i, j, k range over 
{1 . . . .  , n} and let i', j ' ,  k' range over {1', . . . .  n'}. Lemma 4.6, applied to (Le, Ri, 

E) and (Le, Ri, E) (where/~ = Le • Ri - E) gives equivalence relations Ue, VE on 
a set F 1 and U~, VE on a set F2 such that (Le, Ri, E ) ~ G ( U E ,  VE) and 
(Le, Ri, E)"~ G(UL. , V~). We can assume that F1, F2 are disjoint. Under the 
canonical isomorphism, i ~ Le corresponds to a UE-class C, and a UE-class D~. 
Similarly, j '  ~ Ri corresponds to a Ve-class Cj. and a V~-class D;. The distributive 
lattice L coding G will consist of certain subsets of a disjoint union of finite sets 
DvoD'voFIwF2. Here D is as in (1), N ' =  {1', . . . .  n'} and D' is a disjoint union of 
two copies of N'. We refer to the sets D, D', F~ and F 2 as regions. (The regions are 
not elements of L.) The sets generating L are given in Table 1 by their intersections 
with the regions. We let i = N - { i }  (1 _<i<n)  a n d f  = U ' - { j ' }  ( l ' _ < j ' <  n'). 

The left domain of G is represented by the sets A~ . . . . .  A,,, which are defined 
from the parameters P, Q as in (1), using the region D. Similarly, the right domain 
of G is represented by Av, . . . .  An,, using the parameters P', Q' and the region D'. 
To code the edge relation, we use the region F~: we let 

A i  ~ F 1  = F1 - -  Ci, 

Ay~F,  = F 1 -- Cj,. 

T a b l e  1 

D D '  

I / /  I H F 1 F 2 

A i i i N'  ~ F 1 - C i F 2 - D i 
A ;  N ~j j '  j '  g 1 Cs F 2 -  D f 

P N 25 (]25 ~ 

Q N ~3 D' F~ F 2 

Q' D N'  2J F, F 2 

CE N (,~ N'  ~25 F, (25 
C~ N ~ N'  (~3 ~5 F 2 
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Then 

( i , j ' )  ~ E 

(F~ - C ) u ( F ~  - c s )  # F ~  

F, ~ A~uA s. (8)  

To code/~, we use the region F 2 in a similar way. The actual parameters used to 

recover E and/~  are sets Ce ~ F~ and Ci  _ F2 which are elements of L. These sets 
are defined in a way that (8) remains true, i.e., 

( i , j )  <=> C e N A i w A j , .  

<=> (3Z)[A~, Ay _c Z/x CE ~ Z]  

and similarly for /~. Thus, the relations E and /~ can be defined in L by a 
s However, CE and CE must both contain NI and be disjoint from NH in 

order to ensure an analog of (6). In a similar way we define Av, . . . .  An, on the 
region D. Also, to maintain the first-order definition of {A~ . . . .  ,An} while 
extending these sets to the regions Fl and F2, we must P small and Q big on these 

regions. Thus P has empty intersection with the regions and Q contains them. 
Moreover we ensure that P < A j, _< Q for each j ' .  

We verify that the formulas 

(PLe(Y, P, Q) = q0(Y, P, Q), 

~om(Y, P', Q') - ~o(Y, P', Q'), 

qou(Y, P, Q, P', Q') - ~OLe(Y, P, Q) v ~oRi(Y, P', Q') 

~oe(Y, Y', cE) =(~Z)[Y < Z  A Y' < Z  ACE g Z ]  and 

q,~(Y, Y', c~) = q,~(:~, Y', c~) 

give a s 1 -scheme for defining F-BiGraphs* in F-DistrLattices. It G ~ F-BiGraphs*, 
construct L as above. First we have to check that 

L b q ~ r e ( Y , P , Q )  ~ Y c { A 1  . . . . .  An}. 

We proceed as in (1), keeping track of the effect of the additional generating 
elements. Note that Q is above each additional generating element except for Q'. To 
obtain an analog of (6), if (Xi)l ~<i_<k is a sequence of generating elements such 
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that ~ # ~ for i # j ,  then ('/~ <~<k X~ ~; Q implies that the expression N l _<~_<k Xs is 
Ak or A ~ Q '  for some k, 1 <_k<n. But Akc~Q'=A k. Thus, in (7), if 

0 ~ <_j < ,z R,d ~ Q, as before this implies Ak --- Y for some k. 

To show (~h)[Y _ Ah], we use a similar modification. P is below each additional 
generating element except P'. Then P :~ U~_<~<~ Xi implies that the expression 

U1<~<~X~ is A h or AhuP'  for some k. Since AhwP' =Ah, we can now argue as 
before. 

A similar argument shows that L ~(pm(Y, P', Q') "*~ Y 6  { A v , . . .  ,A~,}. Fi- 
nally, we ensured that, for each i, j', CE~(DwD') ~A~A~, .  Then, by (8), 

(pE(Ai, Af, CE) ~> CE~Ai tJAf  ~*" CE~F172(AiwAf)~F 1 "*~ ( i , j '>6E.  

Hence, cpE defines the edge relation correctly, and, by the same argument, ~o E defines 
the complement of the edge relation correctly. [] 

If k _> 1, let P~ be the lattice of equivalence relations on {1 . . . . .  k} (we also use 
the term "partit ion" and the notion for partitions). In [Bu, Sa75] it is shown that 
Th({P~:k > 1}) is h.u. In the following theorem, using an efficient coding we 

obtain undecidability of / ~ 4 -  Th({P~ :k  _> 1 }). 

T H E O R E M  4.9. M 4 - -  Th({Pk :k  > 1}) is h.u. 

Proof. We show that F-BiGraphs* is X2-e.d.p. in {Pk :k  > 1}. Given a bipartite 

graph G -- (Le, Ri, E) in F-BiGraphs*, let U, V be the equivalence relations on a set 
F (w.l.o.g. F = {1 . . . . .  k}) given by Lemma 4.6 such that G ~ G(U, V). We define 

G in Pk, using the parameters U, V and additional parameters /), t 7. As before, 
suppose that Le = {1 . . . .  ,n} and Ri = {1', . . . .  n'}. Let Ci(Di,) be the U-class 
(V-class) corresponding to i (i'). We verify that, by the definition of the class 
F-BiGraphs*, if C is a U-class and D is a V-class, then 

CnD, Cc~D, Cc~D # ~ .  (9) 

Suppose C = C~ and D = D s ( 1 < i _< n, 1' _<j' <_ n'). Since the vertex i is connected 
to a vertex other than j ' ,  C~/5  # ~ .  Similarly Cc~D # ~ .  Since there is an edge 

between vertices other than i and j', Cc~D # ~ .  
Note that coatoms in Pk are partitions of the form {X, X}, ~ ~ X c {1, . . . ,  k}. 

We represent the set Le by the set of coatoms of the form {Ci, Ci}, and Ri by the 
coatoms {Di, Dr}. Since ILel > 3  and IRil >_ 3, the sets Le and Ri are in 1-1 
correspondence with the appropriate sets of coatoms. Let the variables H, K range 
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over coatoms and let 

Hi= { Ci, Ci} and 
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H r = { D i ,  , /)i '}- 

We say that H, K are compatible if H ~ K  has at most 3 equivalence classes, and 

incompatible else, i.e. if H n K  has 4 equivalence classes. By (9), 

(i, i ' )  e E <=> Hi, Hr  are incompatible. 

We obtain the desired definability result by giving Zz-definitions with parameters of  

the sets of  coatoms 

{ H i : l < i < n }  and { / - / r : l ' < i ' < n ' } ,  (10) 

as well as of  

{(H, K )  : H, K incompatible} and (11a) 

{ ( H, K)  : H, K compatible}. ( l l b )  

First note that, in the absence of a constant symbol for the greatest element of  Pk, 

to formulate "X is a coa tom" one needs Z1A/71 . Then the formula 

Closed(P, H)  -= P < H A "H is a coa tom" 

is Z 1 A/71 as well. Clearly, P~ ~ Closed(P, H)  iff H = {X, X} for some nontrivial set 

X which is the union of P-classes. To give Z2-definitions for the sets (11a) and 
/ - - \  

note that H, K are incompatible iff there are 7 - - 4  + 1/2(~)dis t inct  ( l lb ) ,  coatoms 
N - - /  

above HnK.  In the language of p.o., this statement is equivalent to 

(3H1) - �9 (3Hv)[]{H1 . . . . .  H7}[ = 7 A (VR)[R < H, K--* A i = l . . . 7  R </7,.]]. 

Moreover, H, K are compatible iff the interval [HnK, H] contains at most two 
elements, i.e. 

(3I)(VR)[(R < I ~ R < H, K) A (I  < R < H ~ I = R v H = R)]. 
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For defining the sets in (10) with parameters, we need the following combinatorical 
Lemma. 

LEMMA. Suppose that {X~ . . . . .  X r } is a partition of  a set E such that Ixil r 
for each i. Then there is a partition {Yi . . . .  , Yr+~} of  E such that Xic~ ~ = 

(25"~ i = j .  

Proof. Inductively, for j, 1 < j  < r, put into ~ exactly one new element of each 
set ~ ,  i C j .  Put the remaining elements of E into Yr+~. Since ]xil>_r, 
Y~+1r~Xi v a ~  for each i. [] 

By Lemma 4.6, we can assume that the U- and the V-classes are sufficiently 
large. Let U and l? be the equivalence relations on F obtained by an application of 
the preceding Lemma to U and V. We claim that 

H = {X, J(} for some U-class X ~- 

Closed(U, H) A (3K)[Closed(t~, K)/x H, K compatible]. (12) 

The direction from left to right is obvious. For the other direction, suppose that 
Closed(U, H), H = [Z, 2}, but neither Z nor 2 is a U-class. Then X~, )(2--Z, 
X3, )(4 ~_ 2 for distinct U-classes )(1 . . . . .  X4 and, by the definition of U, each 
U-class meets Z and Z. Hence for each K that Closed(U,K), H A  K has 4 
equivalence classes, and (12) is violated. 

By the Z2-definability of ( l lb) ,  (12) can be expressed by a Z2-formula. [] 

REMARK. The same proof shows the /74-theory of each infinite subclass of 
{Pk :k  > 1} is h.u. 

5. Applications to structures arising in recursion theory 

We use the results of the previous section to obtain undecidability of fragments 
for the theories of degree structures which arise in recursion theory. Studies of this 
kind were initiated by M. Lerman and J. Schmerl. They showed that the H3-theory 
of the p.o. D of all Turing degrees is undecidable. Lerman also gives a decision 
procedure for the H2-theory of D, thereby obtaining a sharp classification in the 
sense of the introduction. By [Jo, S193], even /72 -  Thv(D), the fragment of the 
theory in the language of upper semilattice, is decidable. We will consider similar 
problems for r.e. degree structures. First we review some basic concepts. 
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A reducibility gives a method to compare sets of natural numbers w.r.t, their 

computational complexity. Turing-reducibility is the most general one considered 
here: for sets of natural numbers X, Y, X _< r Y if some oracle Turing machine 
computes X with oracle Y. The finest reducibility we consider here is m-reducibility: 

X ~ m Y if Z e X <:~ f ( z )  ~ Y for some recursive function f In between them are 
bounded truth table (btt), truth-table (tt) and weak truth-table (wtt) reducibility. 

Given a reducibility <r, write Y=r X if J(--<r YA Y _<rX. The r-degree deg~(X) 

of a set X is the equivalence class { Y : Y --r X}, and --<r induces a partial order on 
the r-degrees. This p.o., denoted by D r, forms an upper semilattice, since 

sup(degr(X), degr(Y)) = degr(X @ Y), 

and possesses a least element 0 = degr({0}). 

R r is the p.o. of r-degrees of r.e. sets. This p.o. is a subsemilattice of Dr and 
possesses also a greatest element. (Here we ignore the degrees of ~ and co in the 
case of  m-degrees.) For more information on reducibilities, see Ch. 3 of [Od89]. 

In [De79], A. Degtev proves that 112 - T h v ( D m )  and H 2 -  Thv(Rm) is decid- 
able. We show that the theory of these degree structures in the language of p.o. 

becomes undecidable at the next level, thereby answering a question in [Od84] 

about Dm.  

T H E O R E M  5.1. The fragments  H 3 - -  T h ( D m )  and H3 - Th(R,,) are h.u. 

Proo f  F-DistrLattices is Xi-e.d.p. in D m and Rm by the results of Lachlan in 
[La70] and [La72] that each finite distributive lattice is isomorphic to an interval 

[a, b] of the degree structure (actually, Lachlan shows this for a = 0). The result 
follows by Theorem 4.8 and an application of (ii) of the Transfer Lemma. [] 

T H E O R E M  5.2. / ~ 4  - -  T h ( R , ) ,  a n d / / 4  - -  Th(Rb,t) are h.u. 

Proo f  In [Ht, $90] it is shown that for each k > 1, P~ with the reverse partial 
order is isomorphic to an interval [a, b] in the r.e. tt-degrees. In [N92], the same 

result is obtained for r.e. btt-degrees. Hence {P~ : k > 1 } is X l-e.d.p, in R ,  and Rb,. 

The result follows now by Theorem 4.9 and (ii) of the Transfer Lemma. 

[Lem, N ta] contains a proof  that F-BiGraphs is S2-e.d.p. in Rwt t. This proof  
extends to R r. In [Lem, N ta] we conclude that these two degree structures have 
hereditarily undecidable H4-theory. For R r  this also follows from an unpublished 
proof  of Slaman and Woodin, as noted in [A, $93]. It is known that/72 - Th(Rwtt) 
is decidable ([A e.a. ta]). 
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6. Open problems and a final note on Boolean pairs 

We summarize how close one can presently come to the goal formulated in the 
introduction to determine the quantifier level where the theories considered here 
become undecidable. For  most classes, the exact level remains unknown. We also 
briefly consider the lattice E of r.e. sets under inclusion (see [So89]), where a gap of 
5 quantifier alternations remains. As in [Bu, Sa81], BP denotes the class of Boolean 
pairs. 

Table 2 

Class Decidable Undecidable Best possible? 

F-Graphs /72 X2 
F-POrders //2 S2 
Groups 2; 1 /71 
Lattices, F-Lattices / /1  - T h v  ^ ,  XI  - T h v  A X2  

F-DistrLattices //2 -- T h  v A s  

{Pk :k _> 1} / /1  - T h , ,  ^ ,  Z j  - T h  v ^ /74  

R,,~ H 2 - -  T h  v /73 

Rtt, Rbtt, R r  / /1  - Z h v  /74  

Rwtt /72 TI4 
E 1I 2 --  Th~ ^ /78 

/73 

,/  

,/  

We indicate how to obtain the results in Table 2 which are not covered by the 
previous sections. The decidability of S l - Th(Groups) is immediate since a N 1-sen- 
tence holds in all groups iff it holds in the one-element group. A similar argument 
applies to classes of lattices containing the one-element lattice. The decidability 
results for the /71-theories of classes of finite lattices and finite partition lattices 
follow from Example 5 in Section 1 and the fact that 

17][1 - -  T h v  ^ ({Pk  ] k ~ 1}) = / / 1  - T h v  A (F-Lattices) =171 - T h  v A (Lattices). 

The first equation uses the result of Pudlak and Tuma that every finite lattice can 
be embedded in a finite partition lattice. For the second, by the argument used for 
Example 5 in Section 1, it suffices to show that, if (1) holds in all finite lattices, then 
Vl_<j_<m~ holds in the lattice L presented by (~2 :ex . . . . .  en) (the converse is 
obvious). Suppose fj is the equation dj (2) = ~ (2). By a slight extension of Lemma 
1 in [Fre, Na 79], there exists a finite lattice B and a homomorphism f of L onto B 
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such that f- l(f(dj))= {4} for each j. Since some equation fj is satified in B, this 
implies that fj  holds in L for some j. We note that, by Example 3 in Section 1, the 
fragment of Thv A (Lattices) given by sentences of the form H ~ / / ~  is undecidable. 

The decidability o f / / 2  - ThA v (E) was shown in [La 68]. The hereditary unde- 
cidability of 17s - Th(E) is obtained as follows. Let R B P  be the class of effective 
Boolean pairs. The proof  of Theorem 6.1 in [Bu, McKSI] can be used to show that 
X 5 - T h ( R B P )  is h.u. By a result of L. Harrington (see [So89], p 382) R B P  is 
S3-e.d. p. in E. Then (ii) of the Transfer Lemma gives the result. 

We summarize the main questions left open in Table 2. 

6.1. Open questions 

(i) Is /72 -Th(La t t i ces )  undecidable? 

(ii) Is X 2 - Th(F-DistrLattices) undecidable? 

(iii) Are II 3 -- Th(E), H 3 -- Th(Rr) ,  1 //3 - Th(Rtt)= and I-13 - Th(libtt) undecid- 

able? 

The class BP contrasts with the classes considered above by the fact that 
T h ( F - - B P )  is decidable. This was shown by Comer [Co69], using topological 
methods. In this final note, we give a more direct proof  of this result. In the 
following, let W MT h(N ,  <_) be the weak monadic theory of (N, <),  i.e. the set of 
sentences with quantification over finite sets which hold in (N, <).  This theory is 
decidable by [Bue60]. 

T H E O R E M  6.2. T h ( F -  BP) can be interpreted in WMTh(N ,  <_). 

Proof  We first give a representation of finite Boolean pairs (B, U) by finite 
subsets of N, using a finite set X as a parameter. Suppose u~ . . . . .  u~ are the atoms 
of U. Choose closed intervals I, . . . . .  I k of (N, _<) such that [L I=  I{b < u r : b  
B-atom} 1 (I _<r _<k) and 1 +max(/ ' .)  < min(/,.+l) (1 < r  <k) .  

Let X = I ~ u . . .  uIk,  B x = P ( X )  and let Ux be the set of finite unions of 
intervals among I1 . . . . .  Ik. Clearly (Bx, U x ) ~  (B, U). Moreover, each finite 
nonempty set X defines a finite Boolean pair in this way. We show that the relation 
" Y  e Ux"  can be defined in the weak monadic language of (N, _<). Let 

ClosedInterval(Z) - (gn)(gm)(Vp) 

[ n e Z A m e Z A n < _ p < m  ~ p e Z ] .  

~Added in proof.' Lempp, Slaman and the author have recently given an affirmative answer for R r. 
2Added in proof: the author can now show that/73 - Th^({pk:k > 1}) and hence/13- T//v(litt) is 

h.u. 
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Then Y ~ Ux if 

Y _ X/x (VZ)[Closedlnterval(Z)/x Z _ X ~ Z _~ Y v Zc~ Y = ~] .  

Now for each formula (p in the language of Boolean pairs, we can effectively obtain 
a formula ~5(X) such that, for each nonempty finite X c_ N,  (Bx ,  U x ) ~  (p 

(N, _<) ~ ~(X). Hence 

cp ~ Th(F - B e )  ~ (VX)[(2n)n ~ X ~ ~5(X)] c W M T h ( N ,  <_). [] 
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