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Abstract

We consider structures which are FA-presentable. It is known that an FA-presentable finitely generated
group is virtually abelian; we strengthen this result by showing that an arbitrary FA-presentable group is
locally virtually abelian. As a consequence, we prove that any FA-presentable ring is locally finite; this is
a significant restriction and allows us to say a great deal about the structure of FA-presentable rings. In
particular, we show that any FA-presentable ring with identity and no zero divisors is finite.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we investigate computing in structures. Recall that a structure A is a tuple
(A,R1, . . . ,Rn) where:

• A is a set called the domain of A;
• for each i with 1 � i � n, there is an integer ri � 1 such that Ri is a subset of Ari ; ri is called

the arity of Ri .

There are many naturally occurring examples; for instance, a group can be viewed as a structure
(G,◦, e,−1), where ◦ has arity 3, e has arity 1, and −1 has arity 2, and a ring with identity can
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be viewed as a structure (R,+,−,•,0,1), where + and • have arity 3, − has arity 2, and 0 and
1 have arity 1.

If our structures are finite then we have the important issue as to whether we can compute
efficiently. Some natural questions link, for example, notions of logical definability with compu-
tational complexity. However, in many cases, the structures we deal with are infinite and so we
would wish to extend our notions and techniques to classes of (potentially) infinite structures. Of
course, it is necessary that each structure has a finite description; once we have this, we can then
consider notions of computability.

A natural approach is to take the most general notion, such as the Turing machine (or equiv-
alent) as the model of computation. While this is a natural definition, we would need to look
for alternatives if we want to consider feasible computation. Khoussainov and Nerode pro-
posed in [11] a very interesting restriction of the general idea; they introduced automatic or
FA-presentable structures, which are structures whose domain and relations can be checked by
finite automata as opposed to Turing machines; we define this notion formally in Section 2. An
important point is that FA-presentable structures have nice algorithmic and logical properties
and, as a result, have they been the subject of some very interesting research. In particular, such
structures can be described by a finite amount of information and are closed under first-order
interpretability; moreover, the model checking problem is decidable.

Of course, given any notion of computation in structures, we want to investigate how widely
it can be applied. In particular, given a class � of structures, it is natural to ask which structures
in � are FA-presentable. As any finite structure in � will be FA-presentable, as far as this issue is
concerned we are really only interested in the infinite structures in �. So far, this type of question
has proved to be rather difficult in general, in the sense that, despite appreciable effort, there are
not many cases where such a characterization of the FA-presentable structures exists.

One could ask to what extent it is feasible to obtain such a characterization. Examples
where we do have complete descriptions include the cases of Boolean algebras [12] and or-
dinals [3]. For instance, a countably infinite Boolean algebra is FA-presentable if and only if
it is isomorphic to Bn for some n � 1, where B is the Boolean algebra of finite or cofinite
subsets of N. (Our convention throughout this paper is that N contains 0.) In both these cases
the isomorphism problem is decidable (see [12] for the case of Boolean algebras and [14] for
ordinals). On the other hand, it is impossible to characterize the FA-presentable graphs; here
the isomorphism problem is Σ1

1 -complete [12]. It seems that, as far as FA-presentability is
concerned, some classes are reasonably well behaved, and so there is some possibility of a com-
plete classification, whereas others are wild and there is no reasonable way of characterizing
them.

In general, when one is attempting to characterize the FA-presentable structures in a class,
there are two directions one can take. One is to find various types of examples; the other (and
often harder) line is to establish restrictions on the possible structures that can occur. The main
purpose of this paper is to provide some results in the second direction. We will be particularly
concerned with FA-presentable groups and rings. As far as groups are concerned, a complete
classification in the case of finitely generated groups was given in [19], but the general case
remains open. We also have the notion of an automatic group in the sense of Epstein et al. [4].
This concept captures a wide class of groups and has been very successful for the development of
practical algorithms for solving certain problems in this class (see [7] for example). The notion
has been generalized to semigroups (as in [2,9,20]). The considerable success of the theory of
automatic groups is another motivation to have a general notion of automatic structures; see also
[21,23] in this regard.
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It is interesting [19] to note that, in the case of finitely generated groups, an FA-presentable
group is necessarily automatic in the Epstein sense (although the converse is false). This implica-
tion does not hold for general groups, as any automatic group is finitely generated (in the group
sense) by definition, whereas there are examples of FA-presentable groups that are not finitely
generated (such as the Prüfer group Rp/Z, where p is a prime and Rp is the additive group of
all rationals of the form z/pm with z ∈ Z and m ∈ N; see [12] for example).

Further examples of FA-presentable groups may be found in [17] (also see [16]). For instance,
there is a rank 2 torsion free abelian FA-presentable group that is indecomposable. However, we
still seem to be a long way from being able to characterize the class of FA-presentable groups.
It is interesting to speculate as to whether the class of FA-presentable (abelian) groups might be
well behaved in the sense given above (i.e. in having a decidable isomorphism problem), wild
(in the isomorphism problem being Σ1

1 -complete) or something in between.
As far as other classes of structures are concerned, it is known [12] that no infinite integral

domain is FA-presentable, but the question as to which general rings are FA-presentable is also
still open. The results presented in this paper place some strong restrictions as to which groups
and rings could be FA-presentable.

The main result of [19] states that a finitely generated group is FA-presentable if and only
if it is virtually abelian (i.e. has an abelian subgroup of finite index). In Theorem 10 below we
strengthen this result considerably: we show that, given an arbitrary FA-presentable group G,
every finitely generated subgroup H of G is virtually abelian; moreover, we show that there is
a uniform bound on the rank of a finitely generated free abelian subgroup of G, which further
restricts the possible structure of H . However, note that, since a direct power of a countable
collection of isomorphic copies of a fixed finite group is FA-presentable, it is clear that the char-
acterization of FA-presentable as being equivalent to virtually abelian does not generalize from
the finitely generated case to the class of all groups.

We comment that the main result of [19] depends on two deep theorems; Gromov’s classifica-
tion [6] of the finitely generated groups with polynomial growth and the classification of certain
types of group having a decidable first-order theory. With regards to the latter, Eršov showed [5]
that a nilpotent group has decidable first-order theory if and only if it is virtually abelian. This
was generalized by Romanovskii [22] to virtually polycyclic groups and then by Noskov [18],
who showed that a virtually solvable group has decidable first-order theory if and only if it is
virtually abelian. The proof in [19] used the result for virtually nilpotent groups which is a spe-
cial case of Romanovskiı̆’s theorem. In our generalization of [19] we remove the need to appeal
to Romanovskiı̆’s result. We prove that the Heisenberg group UT3

3(Z) does not embed in any
FA-presentable group (see Lemma 8 below) and, given the fact that any virtually nilpotent group
that does not contain UT3

3(Z) is virtually abelian, the generalization of [19] can be established.
Given all this, we go on to consider rings. The main result is that any FA-presentable ring

R with identity is locally finite (i.e. any finitely generated subring is finite); see Theorem 16.
In order to do this, we apply Theorem 10 to the FA-presentable matrix group GL(3,R). Local
finiteness is a considerable restriction and allows us to prove (for example) that an FA-presentable
ring with identity and no zero divisors is necessarily finite; see Corollary 17.

2. FA-presentable structures and preliminary results

To explain what is meant by an FA-presentable structure, we use convolutions as in [11]. If I is
an alphabet, we first choose a padding symbol � such that � /∈ I and then define the convolution
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of (x1, x2, . . . , xn) ∈ (I ∗)n, where xi = xi,1xi,2 . . . xi,pi
(xi,j ∈ I ), to be

conv(x1, . . . , xn) = (x̄1,1, x̄2,1, . . . , x̄n,1) . . . (x̄1,p, x̄2,p, . . . , x̄n,p),

where p = max{pi : 1 � i � n} and

x̄i,j =
{

xi,j , 1 � j � pi,�, pi < j � p.

These elements conv(x1, . . . , xn) are words over the alphabet

In� = ((
I ∪ {�}) × (

I ∪ {�}) × · · · × (
I ∪ {�}))∖{

(�,�, . . . ,�)
}
.

Definition 1. A structure A = (A,R1, . . . ,Rn) is said to be FA-presentable (over an alphabet I )

if

(1) there is a language L (over I ) and a surjective map c : L → A;
(2) L is accepted by a finite automaton over I ;
(3) the language L= = {conv(x, y): c(x) = c(y), x, y ∈ L} is accepted by a finite automaton

over I 2�;
(4) for each relation Ri in A, the language

LRi
= {

conv(x1, . . . , xri ):
(
c(x1), . . . , c(xri )

) ∈ Ri

}
is accepted by a finite automaton over I

ri� .

The tuple (I,L, c,L=, (LRi
)1�i�n) is called an automatic presentation for A.

When referring to a situation such as the one described in Definition 1, we often let |a| denote
the length of an encoding of an element a ∈ A, i.e. the length of a string α such that c(α) = a. In
fact it is well known (see [11]) that we can always choose the mapping c :L → A to be injective,
in which case |a| is unambiguously defined for all a ∈ A. We will normally assume that c is
injective in what follows.

We need the following facts from [11]:

Proposition 2. If A = (A,R1, . . . ,Rn) is an FA-presentable structure, ϕ(x) is a first-order sen-
tence over R1, . . . ,Rn with free variable x and constants in A, B is the set{

x ∈ A: ϕ(x) is true
}

and Si is the restriction of the relation Ri to elements of B for 1 � i � n, then B =
(B,S1, . . . , Sn) is an FA-presentable structure.

Proposition 3. If A1 and A2 are two FA-presentable structures with the same signature, then
A1 ×A2 is also FA-presentable.

Proposition 4. If A = (A,R1, . . . ,Rn) is an FA-presentable structure and if ∼ is a congru-
ence on A which is recognized by a finite automaton, then the quotient structure A/∼ is
FA-presentable.
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We now prove a bound on the rank of a free commutative monoid that can be embedded into
an FA-presentable structure, in terms of the number of states of the relevant automaton. Note
that, in this paper, all logarithms will be taken with the base 2; in particular, 	logn
 is the least
i ∈ N such that 2i � n.

Theorem 5. Suppose that Σ is an alphabet and that the relation R ⊆ (Σ∗)3 is recognized by
a k-state NFA. Let M ⊆ Σ∗ be a set such that R ∩ (M × M × Σ∗) is the graph of a binary
operation f on M where (M,f ) ∼= (N,+)r ; then r � (k + 1) log |Σ |.

In Theorem 5 note that, for any x, y ∈ M , there is a unique z ∈ Σ∗ such that (x, y, z) ∈ R,
and this element z is also in M . There is no restriction on R outside M , or on what M is. Since
f is associative, we may handle products of finitely many elements of M in the usual way; thus
we write xy for f (x, y).

Before we prove Theorem 5, we note the following lemma, a weaker form of which was
proved in [12]. The result actually is true for any monoid (M,f ), not only (N,+)r :

Lemma 6. For each s1, . . . , sm ∈ M , we have∣∣∣∣∣
m∏

i=1

si

∣∣∣∣∣ � max
{|si |: 1 � i � m

} + k	logm
.

Proof. By the pumping lemma for regular languages we have that, for each x, y ∈ M ,

|xy| � k + max
(|x|, |y|), (1)

otherwise there would be infinitely many elements z such that (x, y, z) ∈ R.
We use induction on m. For m = 1, the inequality becomes |s1| � |s1|.
If m > 1 let m = u + v where u = 
m/2�. Apply (1) to x = ∏u

i=1 si and y = ∏m
i=u+1 si ; then,

by induction,

∣∣∣∣∣
m∏

i=1

si

∣∣∣∣∣ � k + max
(|x|, |y|)

= k + max
{

max
1�i�u

|si | + k	logu
, max
u+1�i�m

|si | + k	logv

}

� max
i

|si | + k	logm
,

since 1 + max(	logu
, 	logv
) � 	logm
. �
We now prove Theorem 5.

Proof. Since M ∼= (N,+)r , we may choose elements a0, a1, . . . , ar−1 which generate M as a
monoid. For each n � max{|ai |: 0 � i � r − 1} let

Fn =
{ ∏

a
βi

i : 0 � βi < 2n

}
.

0�i<r
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By Lemma 6, each term a
βi

i has length at most

n + k	logβi
 � n(1 + k),

and each product has length at most n(1 + k) + k	log r
. Since all the products are distinct, we
have

2nr � |Fn| � |Σ |(1+k)n+k	log r
+1.

Thus r � [(1+k)+	log r
k/n+1/n] log |Σ |. Since n can be chosen arbitrarily large, this shows
that r � (k + 1) log |Σ | as required. �

The natural DFA-representation of (N,+)r has k = 2r states on a binary alphabet, in which
case our bound for r is a generous 1 + 2r . It would be interesting to see if the bound obtained
above is tighter in some other cases.

3. Groups

We prove our main result restricting the possible structure of an FA-presentable group G and
show that every finitely generated subgroup H of such a group G must be virtually abelian. First,
as in [19], we argue that H has polynomial growth, and hence, by the result of Gromov [6], is
virtually nilpotent. The new idea is to now use what one could call the “Heisenberg alternative”:
either H is virtually abelian, or it embeds the Heisenberg group UT3

3(Z). This simple fact is
verified in the proof of Theorem 10. The main technical ingredient, Lemma 8, is to show that no
FA-presentable group G embeds UT3

3(Z); thus H is virtually abelian.
We first introduce some notation and recall some basic facts.
If G is a group and g ∈ G, then CG(g) (or just C(g) if the context is clear) denotes the

centralizer of g in G, i.e. the set {x ∈ G: xg = gx}. For any group G we let Z(G) denote the
center of G, i.e. the subgroup CG(G) of G.

When we are considering groups, we write xy for y−1xy. The commutator [x, y] is defined
to be the element x−1y−1xy. We will make frequent use of the commutator identity

[xy, z] = [x, z]y[y, z].

We let [x, y, z] denote [[x, y], z] and, in general, let [x1, x2, . . . , xr ] denote

[[x1, x2, . . . , xr−1], xr

]
.

We say that a commutator of the form [x1, x2, . . . , xr ] has weight r . If G is a group and H and K

are subgroups of G, then [H,K] denotes the subgroup of G generated by all elements of the form
[h, k] with h ∈ H and k ∈ K ; in addition, we let (as usual) γ0(G) = G and γi+1(G) = [γi(G),G].

The following fact will be useful in what follows:

Proposition 7. Suppose that G is a group and that a, b, q are elements of G such that q = [a, b]
and

[a, q] = [b, q] = 1.
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Let m,n ∈ N+. Then:

(i) If v is an element of G such that [a, v] = qn then [ai, v] = qin.
(ii) [am,b] = qm and [a−m,b] = q−m, [a, bn] = qn and [am,bn] = qmn.

Proof. (i) For i = 1, this is vacuous. If [ai, v] = qni inductively, then, because a ∈ C(q), we
have that [

ai+1, v
] = [

ai, v
]a[a, v] = qniqn = q(n+1)i .

(ii) The first equation follows from (i), where v = b and n = 1; the next holds as [a, q] = 1
and so [

am,b
][

a−m,b
] = [

am,b
]a−m[

a−m,b
] = 1.

The third equation is proved similarly to the first; the fourth is again a special case of (i) with
v = bn. �

Mal’cev [15] introduced an existential formula μ(x, y, z;a, b) to give an interpretation of a
ring R in the group UT3

3(R) of 3 × 3 upper-triangular matrices

(1 a b

0 1 c

0 0 1

)

with entries in R. We use a modification of that formula to prove the following criterion:

Lemma 8. Suppose that G is a group and that a and b are elements of G such that q = [a, b]
has infinite order and [a, q] = [b, q] = 1; then G is not FA-presentable.

Note that the Heisenberg group UT3
3(Z) is nilpotent of class 2 and has presentation〈

a, b, q: [a, b] = q, [a, q] = [b, q] = 1
〉
,

and that the element q has finite order in any non-trivial quotient (as each normal subgroup
intersects the center 〈q〉 non-trivially). Thus the hypothesis of Lemma 8 is equivalent to saying
that UT3

3(Z) embeds in G.
In order to prove Lemma 8 we first establish the following result:

Lemma 9. Suppose that G is a group, and that a, b, q ∈ G are as in Lemma 8. There is a first-
order formula η(x, y, z;a, b) with the property that, for any m,n ∈ N+,

∀z ∈ G
[
η
(
qm,qn, z; a, b

) ⇔ z = qmn
]
. (2)

Let

η(x, y, z;a, b) ≡ ∃u,v ∈ C(q)
{
x ∈ C(a) ∧ y ∈ C(b) ∧ C(b) ⊆ C(v)

∧ x = [u,b] ∧ y = [a, v] ∧ z = [u,v]}.
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Note that η can be viewed as a first-order formula; for example, u ∈ C(q) is equivalent to
uq = qu and C(b) ⊆ C(v) is equivalent to

∀w (wb = bw ⇒ wv = vw).

The difference between the original Mal’cev coding and our setting is that the witnesses u

and v are allowed to be taken from anywhere in the group, not just the subgroup generated by
a, b and q; however, the extra condition that C(b) ⊆ C(v) ensures that this does not cause any
damage.

Proof. The direction “⇐” in (2) follows from Proposition 7, where u = am and v = bn.
For the direction “⇒,” suppose that η(qm,qn, z;a, b) holds via the witnesses u and v; we

have to show that z = [u,v] = qmn. Note that [am,v] = qmn by Proposition 7(i) and the fact that
[a, v] = qn; so it suffices to show that [u,v] = [am,v].

Since [u,b]q−m = 1, we have [u,b][a−m,b] = 1. Because [u,b] ∈ C(a), we conclude that

[u,b]a−m[
a−m,b

] = [
ua−m,b

] = 1.

Let s = ua−m; we then have s ∈ C(b) ⊆ C(v), so that [s, v] = 1 and

[u,v] = [
sam, v

] = [s, v]am[
am,v

] = [
am,v

]
.

Thus [u,v] = qmn; this proves Lemma 9. �
We are now in the position to prove Lemma 8. In order to apply Theorem 5, we assume, for a

contradiction, that G is FA-presentable. Let R be the FA-recognizable relation given by

R(x, y, z) ⇔ η(x, y, z;a, b).

Let p1 < p2 < · · · denote the sequence of all prime numbers. Given r ∈ N, let

M =
{
qm: m =

∏
1�i�r

p
ni

i for some ni � 0

}
.

Then, by (2), R ∩ (M × M × Σ∗) is the graph of a binary operation f on M where (M,f ) ∼=
(N,+)r . Since r can be chosen arbitrarily large, this contradicts Theorem 5.

We are now ready to prove our main result on groups.

Theorem 10. Let G be an infinite group with an FA-presentation over an alphabet Σ and let k

the number of states of an NFA recognizing the graph of the group operation.

(i) Every finitely generated subgroup H of G is virtually abelian.
(ii) In fact any such subgroup H is a finite extension of a free abelian group Zr of rank r , where

r � (k + 1) log |Σ |.

Proof. (i) Let H be a finitely generated subgroup of G; we may assume that H is infinite. H has
polynomial growth as in [19], and therefore H has a nilpotent subgroup H ∗ of finite index by [6].
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H ∗ has a torsion-free subgroup K of finite index (see [10, 17.2.2] for example). We are done if
we can show that K is abelian.

Suppose that K is non-abelian and let c � 2 be its nilpotency class. So γc(K) is a non-trivial
subgroup of the center Z(K) of K . By [10, 17.2.1], γc−1(K) is generated by the commutators
[x1, x2, . . . , xc] of weight c. We can choose an element q �= 1 of this form, so that q = [a, b]
where a = [x1, . . . , xc−1] and b = xc. By Lemma 8, G is not FA-presentable, a contradiction.

(ii) By (i) there is an abelian subgroup A of finite index in H . We may assume that A is a free
abelian group Zr of rank r . Let R be the graph of the group operation, and let M = Nr viewed
as a subset of A. Then, by Theorem 5, the required bound on r follows. �
4. Remarks and examples

The first part of Theorem 10 would be an immediate consequence of the main result in [19]
if, for each FA-presentation of a group G and for each finitely generated subgroup S of G, the
set of representations of elements of S was necessarily regular. However, this is not the case: a
counterexample can be derived from recent work of Akiyama, Frougny and Sakarovitch [1]. For
each prime q , there is an FA-presentation of the abelian group

Rq = {
z/qi : z ∈ Z, i ∈ Z

}
where the representations of integers do not form a regular subset. In [1] the authors consider
p/q-representations of positive integers. For primes p > q , a p/q-representation is an expression
of the form

n∑
i=0

ai

q

(
p

q

)i

where 0 � ai < p. Such a representation can be viewed as a string of length n + 1 over the
alphabet {0,1, . . . , p −1}. They show that each positive integer has a unique p/q representation,
and that the set of p/q representations of positive integers is not regular.

The non-negative rationals with a p/q expansion form a cancellative semigroup, and, by
adding representations via a carry algorithm, we obtain an FA-presentation of that semigroup.
Hence we obtain an FA-presentation of the abelian group G via the usual difference group con-
struction. The group G can be viewed in a natural way as a subgroup of Rq . It is easy to see
that, in fact, G = Rq : for each i > 0 there are k, � ∈ Z such that kpi + �qi = 1, and therefore
k(p/q)i + � = 1/qi . In this presentation of Rq , the set of representations of the integers is not
regular.

In the same vein, in [17] a presentation of the abelian group Z×Z is given where a non-trivial
cyclic subgroup is not regular.

In the direction of a complete structure theorem, one could conjecture that any FA-presentable
group has a finitely generated abelian subgroup that is normal such that the quotient by this
normal subgroup is locally finite. The following fact lends some evidence to the conjecture:

Proposition 11. Let G be FA-presentable, and let R be a free abelian subgroup of G of maximal
rank r . Then R has finite index in any finitely generated subgroup H such that R � H � G.
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Proof. Suppose R has infinite index in H . By (i) of Theorem 10, we can choose an abelian
torsion-free subgroup A of H of finite index in H . Then R ∩ A has finite index in R, and so
R ∩ A has rank r as well. Since R has infinite index in H , R ∩ A has infinite index in A, and so
A has rank larger than r , a contradiction. �
Example 12. In the situation described in Proposition 11, R need not be normal in H ; in fact,
there is an FA-presented group H such that R has infinite index in the normal closure of R in H .

Proof. The group H has the set of generators

{x} ∪ {
yi : i ∈ N+} ∪ {

zi : i ∈ N+}
and the following set of relations:

[x, yi] = 1 for all i; y2
i = z2

i = 1 for all i;
z−1
i xzi = xyi for all i; [yi, zj ] = 1 for all i, j ;

[yi, yj ] = 1 for all i, j ; [zi, zj ] = 1 for all i, j.

We see that N = 〈{x} ∪ {yi : i ∈ N+}〉 is a normal subgroup of H and that N is the normal
closure of R = 〈x〉 in H . R is a free abelian group of rank 1 and R has infinite index in N .

However, note that the subgroup 〈x2〉 is normal and the quotient is locally finite, so that H

does not refute the conjecture above.
Next we show that the group H is FA-presentable. For any element g of H there exist α ∈ Z,

k � 0 and

p(1),p(2), . . . , p(k), q(1), q(2), . . . , q(k) ∈ {0,1}
such that

g = xαy
p(1)

1 y
p(2)

2 . . . y
p(k)
k z

q(1)

1 z
q(2)

2 . . . z
q(k)
k , (3)

and, provided we have that at least one of p(k) and q(k) is non-zero, there is a unique expression
of the form (3) for any given element g.

In showing that H is FA-presentable we use three “tracks” on our tape. We imagine that each
cell of the tape is divided into three parts; a top part, a middle part and a bottom part. Reading
the symbols from the top part of each cell (i.e. the top part of the first cell, followed by the top
part of the second cell, and so on) gives us the first track; we have a similar situation for the other
two tracks. Formally, we are using triples as our input symbols here.

We represent g on a tape with three tracks as follows. The first track represents α; we start
with + if α � 0 and − otherwise, and then represent |α| in reverse binary notation. We then have
two tracks, one representing p(1),p(2), . . . , p(k) and the other q(1), q(2), . . . , q(k); on each of
these two tracks we have a word in {0,1}∗ of length k.

We note that, if

g = xmy
p(1)

1 y
p(2)

2 . . . y
p(k1)
k z

q(1)

1 z
q(2)

2 . . . z
q(k1)
k ,

h = xny
s(1)

y
s(2)

. . . y
s(k2)z

t (1)
z
t (2)

. . . z
t (k2),
1 2 k 1 2 k
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and if � = max{k1, k2}, then

gh = xm+ny
p(1)+q(1)n+s(1)

1 . . . y
p(�)+q(�)n+s(�)

� z
q(1)+t (1)

1 . . . z
q(�)+t (�)

�

with the obvious conventions. The set of encodings of triples (g,h, gh) is readily seen to be
recognizable by a finite automaton; apart from ordinary and binary addition, we only need to
calculate the q(i)n modulo 2, and the parity of n follows from the first digit after the +/−
symbol on the first track of the second tape. Thus H is FA-presentable. �

One might think that the situation in FA-presentable groups somehow mirrored the situation in
FA-presentable Boolean algebras as described in [12] with, perhaps, commutators corresponding
in some way to joins. That this is not the case can be seen by considering the following example
of a virtually abelian group H which is perfect (i.e. which satisfies [H,H ] = H ).

Let A be a free abelian group of rank 5 generated by {x1, x2, x3, x4, x5} and let F be the finite
group A5 of order 60 (the alternating group on five symbols). We can form a semidirect product
A � F in a natural way; if σ is an element of A5, let σ−1x

i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 σ be

x
i1
σ(1)x

i2
σ(2)x

i3
σ(3)x

i4
σ(4)x

i5
σ(5).

The cyclic subgroup N of A � F generated by n = x1x2x3x4x5 is normal in A � F ; let G be
the factor group (A � F)/N = (A/N) � F . Let B be the subgroup of A consisting of all the
elements of the form x

i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 where the exponent sum i1 + i2 + i3 + i4 + i5 is divisible

by five, and then let H be the subgroup (B � F)/N = (B/N) � F of G.
Each element b of B is of the form x

i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 with i1 + i2 + i3 + i4 + i5 = 5k for some k.

Replacing b by bn−k gives an element with exponent sum zero; so we may assume (by choosing
our coset representative appropriately) that each element of B/N has exponent sum zero when
expressed in this form.

If b = x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈ B/N with i1 + i2 + i3 + i4 + i5 = 0, then we may write b in the form

x
i1
1 x

−i1
2 . x

i1+i2
2 x

−(i1+i2)
3 .x

i1+i2+i3
3 x

−(i1+i2+i3)
4 .x

i1+i2+i3+i4
4 x

−(i1+i2+i3+i4)
5 . (4)

Now, if {i, j, k, l,m} = {1,2,3,4,5} and we consider the elements (ij)(kl) of F and xkx
−1
m

of B/N , then we see that [(ij)(kl), xkx
−1
m ] = xkx

−1
l . Looking at (4), we see that any element of

B/N lies in [H,H ]. However, F = [F,F ] � [H,H ]; so H = (B/N)�F � [H,H ], and so H is
perfect. In addition, H is finitely generated and virtually abelian, and hence H is FA-presentable
by [19].

5. FA-presentable rings

We prove that each FA-presentable ring with identity is locally finite. As mentioned in the
introduction, we are using the term “locally finite” with respect to rings to mean that every
finitely generated subring is finite. In [8], the authors take an alternative definition; they call a
ring “locally finite” if every finite subset generates a finite semigroup multiplicatively. However,
as they point out, their definition is equivalent to the one we are using here. The point is that,
if every finite subset generates a finite semigroup multiplicatively, then the ring must have finite
characteristic k (else 2 = 1 + 1 generates an infinite subsemigroup). Now any finite subset A
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generates a finite semigroup {a1, a2, . . . , an} multiplicatively; every element of the subring S

generated by A is then of the form x1a1 + · · ·+ xnan for some 0 � xi < k, and so S is finite. Our
definition is the same as that given explicitly elsewhere; see [24] for example.

For any ring S with identity, we let GL(n,S) denote the group of all n × n invertible matrices
with entries in S. The following result holds since FA-presentable structures are closed under
interpretations:

Proposition 13. If S is an FA-presentable ring with identity then GL(n,S) is FA-presentable for
any n � 2.

Let S be a ring with identity. For 1 � i, j � n with i �= j and r ∈ S, let εi,j (r) denote the
matrix with r in position (i, j) and 0 elsewhere. We let In denote the identity matrix and ei,j (r)

denote the matrix In + εi,j (r); the matrices ei,j (r) are called transvections.
The following basic facts about transvections are easily verified (or see [10] for example):

Proposition 14. Let S be a ring with identity; then, for r, s ∈ S and distinct elements i, j, k ∈
{1,2,3}, we have:

(1) ei,j (r)
−1 = ei,j (−r).

(2) ei,j (r)ei,j (s) = ei,j (r + s).

(3) [ei,j (r), ej,k(s)] = ei,k(rs).

We let E(n,S) denote the subgroup of GL(n,S) generated by the set of transvections in
GL(n,S). This is usually a proper subgroup of SL(n,S); equality only holds in some special
cases, for instance if S is Euclidean. Proposition 14 implies the following:

Proposition 15. If S is a finitely generated ring with identity then E(n,S) is a finitely generated
group.

We now prove:

Theorem 16. If R is an FA-presentable ring with identity then R is locally finite.

Proof. Let R be an FA-presentable ring with identity and let S be a finitely generated subring
of R; we want to show that S is finite.

The group G = GL(3,R) is FA-presentable by Proposition 13; as S is a subring of R we have
that GL(3, S) is a subgroup of G. So E = E(3, S) is a subgroup of G; moreover, E is finitely
generated by Proposition 15, and so is virtually abelian by Theorem 10. Let A be a normal abelian
subgroup of E such that A has finite index in E.

For each i �= j in {1,2, . . . , n}, let Si,j denote the set{
s ∈ S: ei,j (s) ∈ A

}
.

Using Proposition 14, we see that (Si,j ,+) is a subgroup of (S,+). We have a natural embedding
ϕ : (S,+) → (E,×) defined by s �→ ei,j (s). We see that (Imϕ ∩A)ϕ−1 = Si,j ; since A has finite
index in E, it follows that Si,j has finite index in S.
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Let I = ⋂{Si,j : i �= j}. Since each (Si,j ,+) is a subgroup of finite index in (S,+), we have
that (I,+) is also a subgroup of finite index in (S,+). Moreover, if s ∈ I and r ∈ S and if i �= k

in {1,2,3}, then ei,j (s), ej,k(s) ∈ A (where {i, j, k} = {1,2,3}) and we have

ei,k(sr) = [
ei,j (s), ej,k(r)

] ∈ A, ei,k(rs) = [
ei,j (r), ej,k(s)

] ∈ A

(as A is a normal subgroup of E); so sr, rs ∈ Si,k . Since this holds for all i and k, we see that
sr, rs ∈ I , and so I is an ideal of S.

Now, if s1, s2 ∈ I , then e1,2(s1), e2,3(s2) ∈ A, and so

e1,3(s1s2) = [
e1,2(s1), e2,3(s2)

] = I3.

So s1s2 = 0 for all s1, s2 ∈ I .
Since (I,+) has finite index in (S,+), we have a finite set {t1, t2, . . . , tp} of coset represen-

tatives for I in S; each S is then of the form a + ti for some a ∈ I and some i with 1 � i � p.
Since S is finitely generated, there exists a finite subset {a1, a2, . . . , am} of I such that

X = {a1, a2, . . . , am, t1, t2, . . . , tp}

generates S (as a ring).
Every element of S is now a sum of products of the form x1x2 . . . xk with xi ∈ X for all i. If (at

least) two of the xi lie in I , then x1x2 . . . xk = 0 (as I is an ideal and s1s2 = 0 for all s1, s2 ∈ I ). So
we need only consider sums of products of the form x1 . . . xraj xr+1 . . . xk and x1 . . . xrxr+1 . . . xk

with xi ∈ {t1, t2, . . . , tp} for all i.
We will show that there are only finitely many (sums of) products of the form x1 . . . xk with

xi ∈ {t1, t2, . . . , tp} for all i. As we commented at the start of this section, if every finite subset of
our ring generates a finite semigroup multiplicatively, then every finite subset generates a finite
subring. So, if there are only finitely many products of the form

x1 . . . xk with xi ∈ {t1, t2, . . . , tp},

then there are also only finitely many products of the form x1 . . . xraj xr+1 . . . xk with xi ∈
{t1, t2, . . . , tp}, and this is sufficient to establish the result.

Since (I,+) is a subgroup of finite index in (S,+), the quotient ring S/I is finite; let c > 0
be the characteristic of S/I . If we consider sums of products of the form x1 . . . xk as above, then
there exists N such that we get no new elements in S/I by considering such sums with terms
where k � N (i.e. any such sum is equal in S/I to another such sum with k < N for all terms).
For any sequence ρ = (i1, i2, . . . , ik) of non-zero natural numbers, let tρ denote ti1 ti2 . . . tik ; then,
for each such sequence ρ of length N , we have

tρ = bρ + tσ (5)

for some bρ ∈ I and some sequence σ of length less than N .
We now show that, if τ is any sequence of length at least N , then

tτ =
∑

αρtρ

|ρ|<N
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where each αρ is either in Z/cZ or bρZ/cZ for some sequence ρ of length less than N . Note
that, if ρ is the empty sequence, we are taking tρ to be 1.

We can argue inductively here. If τ has length N , then the result is true by the above. Now
assume that the result is true for sequences τ of length n (for some fixed n � N ), and let τ be
a sequence of length n + 1. Let tτ be ti1 ti2 . . . tin+1 . By hypothesis, we may write ti1 ti2 . . . tin in
the form

∑
|ρ|<N αρtρ as above; so tτ = ∑

|ρ|<N αρtρtin+1 . Terms αρtρtin+1 with ρ of length less
that N − 1 are already of the required form. If ρ has length N − 1, then we may use (5) to write
tζ = tρ tin+1 in the form bζ + tσ where ζ has length N , bζ ∈ I and σ has length less than N . Given
that the product of any two elements of I is zero, αρ(bζ + tσ ) is of the required form.

So there are only finitely many sums of products of the form x1 . . . xk (with xi in {t1, t2, . . . , tp}
for all i) as required. �

As we mentioned above, an FA-presentable integral domain is necessarily finite. We general-
ize this result to arbitrary rings without zero divisors (i.e. we drop the assumption of commuta-
tivity). To be more precise, we prove the following:

Corollary 17. An FA-presentable ring with identity and no zero divisors is finite.

Proof. Let R be an FA-presentable ring with identity and no zero divisors and let x, y ∈ R. Since
R is locally finite by Theorem 16, the subring S generated by x and y is finite.

The non-zero elements of S form a finite cancellative monoid under multiplication, and hence
a group; as a result, S is a finite division ring. Given Wedderburn’s theorem that any finite division
ring is a field, we have that xy = yx and that the non-zero elements of S are all invertible. Since
this holds for all x and y, R is an FA-presentable field, and hence R is finite. �

Theorem 16 does enable us to say a great deal about FA-presentable rings, although, in con-
trast with Corollary 17, such a ring need not be finite as the following example shows:

Example 18. Let F be any finite ring and choose an automatic presentation for F over an alpha-
bet I in which the encoding of every element of F has the same length; let K denote the set of
encodings. Let R be the direct sum of countably many copies of F , say R = ⊕

i∈N+ Fi , so that
every element r of R is of the form f1 + f2 + · · · + fn with n � 0 and fi ∈ Fi for each i. If αi is
the encoding of fi in I ∗, then we encode r as �α1�α2 � · · · � αn� where � is a new symbol (i.e.
� is not an element of I ). If we let

L = {�}K{�} ∪ {�}K{�}K{�} ∪ · · · ,
then we see that L is a set of encodings for R in (I ∪ {�})∗ and that we get an automatic presen-
tation for R.

Any FA-presentable ring R with identity is locally finite; in particular, 1 generates a finite sub-
ring, and so R has characteristic c > 0. In the next result we see that, without loss of generality,
we may assume that c is a prime power:

Proposition 19. If R is an FA-presentable ring, then there exist k � 1 and primes p1,p2, . . . , pk

such that R = R1 ⊕ R2 ⊕ · · · ⊕ Rk where Ri is an FA-presentable ring of characteristic p
ni

i ( for
some ni � 1).
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Proof. Suppose that c = mn with m and n coprime, and choose integers x and y such that
mx + ny = 1. If r ∈ R, then r = (mx + ny)r = xs + yt , where s = mr , t = nr and ns = mt = 0.
If

R1 = {u ∈ R: mu = 0} and R2 = {u ∈ R: nu = 0},
then we have R = R1 + R2. However, if u ∈ R1 ∩ R2, then mu = nu = 0 and so

u = (mx + ny)u = 0;
so R = R1 ⊕ R2.

Note that R1 and R2 are first-order definable subrings of R and hence are FA-presentable;
continuing in this way gives a direct sum decomposition of R in the required form. �

By Proposition 19, if we wish to classify FA-presentable rings, then we can assume that the
characteristic is of the form pa for some prime p and some a � 1 (as the FA-presentable rings
are precisely the finite direct sums of such rings).

Given the fact that, if R1 and R2 are FA-presentable rings, then R1 ⊕ R2 is FA-presentable,
we might consider FA-presentable rings which are not direct sums of two FA-presentable rings.
The following result imposes some strong restrictions on the structure of such a ring:

Proposition 20. If R is a FA-presentable ring with identity which is not the direct sum of two
non-trivial FA-presentable rings, then R is the disjoint union of the subsets

N = {
a ∈ R: ∃k ∈ N+ such that ak = 0

};
G = {

a ∈ R: ∃k ∈ N+ such that ak = 1
}
.

G is the set of units and N = R − G.

Proof. Suppose that R is such a ring and that e is an idempotent in R with e /∈ {0,1}. We see
that r = (1 − e)r + er for any r ∈ R and that 1 − e is also an idempotent; so R = (1 − e)R + eR.
However, if x ∈ (1 − e)R ∩ eR, say x = (1 − e)r = es, then

x = (1 − e)x = (1 − e)es = es − e2s = 0.

So R = (1 − e)R ⊕ eR. Moreover, since 1 − e ∈ (1 − e)R and e ∈ eR, neither (1 − e)R nor eR

is trivial.
Whilst it is not known in general that R1 ⊕ R2 being FA-presentable would imply that R1

and R2 are both FA-presentable, we would have this here, as uR is first-order definable for any
u in R, being the set of elements x satisfying the first-order sentence ∃v (x = uv); so R is the
direct sum of two non-trivial FA-presentable rings and we have a contradiction.

So we may assume that the only idempotents in R are 0 and 1. If r is any element of R, then,
as R is locally finite, there exist n,m ∈ N+ such that rn+m = rn. If we choose k such that km > n,
then (akm)2 = a2km = akm; so akm is an idempotent, and hence akm = 0 or 1. So R = N ∪ G.

Clearly elements of G are invertible (if ak = 1 then a has inverse ak−1) and elements of N

are not (if ak = 0 and ab = 1 then 0 = akbk = 1), and so G = {a ∈ R: ∃b ∈ R such that ab = 1}
is first-order definable and N = R − G. �
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We see that N is the set of nilpotent elements of R. If R is commutative then N is an ideal
of R. In fact it is the Jacobson radical J (R) of R; in particular it is a ring and is itself FA-
presentable. In this situation N is the unique maximal ideal of R and so R is a local ring. The
quotient R/N is an FA-presentable field, and hence finite; so G is finite. Since 1 + x is a unit for
any x ∈ N , 1 + N ⊆ G, and so N is finite as well. We record this fact as a corollary:

Corollary 21. If R is an FA-presentable commutative ring with identity which is not the direct
sum of two non-trivial FA-presentable rings, then R is finite.

Theorem 16 does not extend to rings without an identity element as the following example
shows:

Example 22. Consider any abelian group A with operation + and identity 0, and make A into a
ring by defining the product x •y to be 0 for any x, y ∈ A. Clearly (A,+,0,−1) is FA-presentable
as a group if and only if (A,+,−,•,0,1) is FA-presentable as a ring. We then simply choose
(A,+) to be any abelian FA-presentable group that is not locally finite, and the corresponding
ring is not locally finite either.

Given Example 22, a complete characterization of all FA-presentable rings would include a
characterization of all FA-presentable abelian groups which seems, at the moment, to be a rather
difficult problem. In particular, it is not known whether the group (Q,+) is FA-presentable; see
[13] for example. Even characterizations as to which groups in certain natural subclasses of the
class of abelian groups (such as the torsion-free abelian groups) are FA-presentable would be of
significant interest.
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