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RANDOMNESS, RELATIVIZATION AND TURING DEGREES 

ANDR? NIES. FRANK STEPHAN. AND SEBASTIAAN A. TERWIJN 

Abstract. We compare various notions of algorithmic randomness. First we consider relativized 

randomness. A set is ?-random if it is Martin-L?f random relative to 0- _1). We show that a set is 

2-random if and only if there is a constant c such that infinitely many initial segments x of the set are 

c-incompressible: C(x) > |x| 
? c. The 'only if direction was obtained independently by Joseph Miller. 

This characterization can be extended to the case of time-bounded C -complexity. 
Next we prove some results on lowness. Among other things, we characterize the 2-random sets as 

those 1-random sets that are low for Chaitin's Q. Also, 2-random sets form minimal pairs with 2-generic 
sets. The r.e. low for Q. sets coincide with the r.e. AT-trivial ones. 

Finally we show that the notions of Martin-L?f randomness, recursive randomness, and Schnorr 

randomness can be separated in every high degree while the same notions coincide in every non-high 

degree. We make some remarks about hyperimmune-free and PA-complete degrees. 

?1. Introduction. The study of algorithmic randomness received a strong impulse 
when Martin-L?f [17] defined his notion of randomness of infinite strings based 
on constructive measure theory. Especially the strong connections with the theory 
of randomness for finite objects made this notion very popular, see, e.g., [15], to 

name only one of the many references that the reader can consult for this. Another 

landmark in the theory of randomness is Schnorr's book [25], containing a thorough 
discussion (and criticism) of several of the randomness notions used in this paper, 
in particular Martin-L?f randomness, recursive randomness and what is now called 

Schnorr randomness. Since all of these notions are defined in terms of basic 

recursion theory, it comes as no surprise that they are often best analyzed in the 
context of that same theory In particular, there has been a clear interest in the 

interplay of the various randomness notions and relative computability, or Turing 

reducibility The reader can e.g. consult the recent survey paper by Ambos-Spies 
and Kucera [1]. In the present paper we prove some new results on randomness 

relating to both Turing reducibility and Kolmogorov complexity. 
The outline of the paper is as follows. In Section 2 we consider relativized 

randomness and Kolmogorov complexity. Ding, Downey and Yu [5] call a set X 

Kolmogorov random if 

(36) (3???) [C(X\n) >n-b], 
where C is the plain Kolmogorov complexity. This notion was studied earlier in 

several equivalent forms by Loveland, Schnorr, Daley and others, see Section 2. 
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Martin-L?f [18] proved that there are no sets X such that (3b) (W) [C(X\n] 
> 

n ? 
b] and he also showed that Kolmogorov randomness implies Martin-L?f ran 

domness. We give a simple proof of this last fact in Proposition 2.4. We then 

compare Kolmogorov randomness with relativized Martin-L?f randomness. The 

first authors to study relativized randomness were Gaifman and Snir [8]. A set is 

n-random if it is Martin-L?f random relative to 0("~l). So it is 1-random if it is 

Martin-L?f random. 2-random if it is Martin-L?f random relative to 0'. etc. Ding. 

Downey and Yu [5] proved that each 3-random set is Kolmogorov random. Indeed 
we can push the result by one level and show that Kolmogorov randomness coincides 

with 2-randomness (Theorem 2.8). This had been conjectured by C. Calude. That 

2-randomness implies Kolmogorov randomness was proven independently (and 

earlier) by Miller [20]. Note that Martin-L?f randomness was characterized by 
Schnorr in terms of the prefix-free Kolmogorov complexity K. whereas the above 

characterization is in terms of the plain Kolmogorov complexity C. It is remark 

able that such a "high-level" notion of randomness as 2-randomness can be thus 

characterized by a "low-lever" notion as C-complexity. Like the characterization of 

Martin-L?f randomness, this is a new connection between the theory of randomness 

of finite and that of infinite objects. It also vindicates the notion of C-complexity 
as more than a mere "historical accident" (Chaitin). We extend the characteriza 

tion by showing that 2-randomness is also equivalent to time-bounded Kolmogorov 
randomness. This notion is defined in the same way. using C8 instead of C. where 

O'(a') is tne plain Kolmogorov complexity of a with time bound g. The particular 
choice of g does not matter for our results. Although in this paper we are mainly 
concerned with infinite random sequences. Section 2 also contains some relevant 

material about finite random strings. 
In Section 3 we discuss lowness for Chaitins Q. Note that we can interpret 

every set like Q also as the real number X^eq 2-""1. Fixing a universal prefix-free 
machine U. Ci is that number which represents the halting probability of U. that is. 

the probability that an infinitely chosen sequence of 0s and Is extends a program p 
such that U(p) halts. The main reason for being interested in Cl is that Q is a natural 

example for a left-r.e. random set and in a certain sense the only one: Kucera and 

Slaman [13] showed that all random left-r.e. sets are Q-numbers. that is. represent 

the halting probability of some universal prefix-free machine. 

At the beginning of Section 3 we discuss lowness for random sets and we prove 
a restriction on the complexity of sets that are low for Q. We show that on the r.e. 

sets "low7 for Q" is equivalent to being ^-trivial. Since a set is ̂ -trivial precisely 
when it is low for the Martin-L?f random sets, this means that, for r.e. A. when Q 

is ^-random then all random sets are A -random. 

We then characterize the 2-random sets as those 1-random sets that are low for 

Q (Theorem 3.10). This may be counterintuitive at first sight, since 2-random sets 

are "more random11 than 1-random sets, but "low for Cl" is a restriction rather than 

a strengthening. One way of understanding this is that computational power and 

randomness are in fact orthogonal to each other. Another example of this is that 

2-random sets are GLi. i.e.. satisfy A' <p A ? 07 (Corollary 3.12). 
At the end of Section 3 we discuss the relation between 2-generic and 2-random 

sets. From an earlier result of Demuth and Kucera it was known that a 2-random 

cannot reduce to a 2-generic set. We show that the converse is also true. In fact 
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every 2-random set forms a minimal pair with every 2-generic set. This even holds 

for sets that are low7 for Q (Theorem 3.14). 
In Section 4 we discuss the separation of the notions of Martin-L?f randomness, 

recursive randomness, and Schnorr randomness. It was known that all of these 

notions are different (see Schnorr [25] and Wang [34]). Here we indicate precisely 
what computational resources are needed to separate them: we show that the three 

notions can be separated in every high degree, and conversely that if a set separates 

any two of these notions then this set must be high (Theorem 4.2). Moreover, if 

the high degree is r.e. then the notions can be separated by a left-r.e. set. Here 

a set is called left-r.e. if the set of all finite strings at the left of the characteristic 

function with respect to the length-lexicographic order is recursively enumerable. 

Downey and Griffiths [6] independently proved that Schnorr randomness and recur 

sive randomness can be separated by a left-r.e. set. At the end of Section 4 we make 

some remarks on Kurtz-randomness, hyperimmune-free degrees, and PA-complete 

degrees. 

We now list the preliminaries and notation for this paper. 
Our notation for Kolmogorov complexity follows Li and Vit?nyi [15]. Thus C 

denotes the plain Kolmogorov complexity function and K the prefix-free complexity. 

Usually, we use V to denote a universal plain machine (for the definition of C ) and U 
to denote a universal prefix-free machine (for K). Our recursion theoretic notation 

is standard and follows [23. 27]. As usual, subsets A ? N can be identified with 

infinite binary sequences and sometimes we interpret an A ? N as the real number 

IzZneA 2~/7_1- d tfl is the initial segment o? A of length n and o -< A denotes that a 

is a finite initial segment of A. o x denotes string concatenation. {0.1}* is the set 

of finite binary strings and / is the empty string. 
As mentioned above, a set A is left-r.e. if the set of finite strings lexicographi 

cally left (= below) of A is an r.e. set. Equivalently one can define that the real 

number defined by A is approximable from below by a recursive sequence of ra 

tional. Another straightforward characterization is that { q G Q : q < A } is an 

r.e. set. 

We will now list very briefly some preliminaries from effective measure theory. 
More discussion on these notions can be found, e.g.. in [1. 31]. We also refer 

there for complete references and suppress these in the following. A martingale 
is a function M : {0. 1}* 

?> R+ that satisfies for every a e {0.1}* the averaging 
condition 

2M(a) 
= 

M{a0)-\-M{crl). 

A martingale M succeeds on a set A if lim sup,,^^ M (A \n) 
= oc. and M succeeds 

on a class j/ of subsets of N if M succeeds on every A e stf. The success class S[M] 
o? M is the class of all sets on which M succeeds. The basic theorem of Ville is that 
a class has Lebesgue measure zero if and only if it is included in a set of the form 

S[M). 
We now use effective martingales to introduce the three basic notions of random 

ness. A martingale M is r.e. if it is recursively approximable from below. An r.e. 

martingale is recursive if and only if M (a) is a recursive real number. In those cases 

where recursive martingales are needed, one can without loss of generality assume 

that M (a) 
= 1 and that M outputs a rational number [25]. 
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D?finition 1.1. Let A be any subset of the natural numbers. 

A is Martin-L?f random if there is no r.e. martingale M such that A G 5[M]. 
A is recursively random if there is no recursive martingale M such that A G 

S[M]. 
A is Schnorr random if there is no recursive martingale M and no recursive non 

decreasing and unbounded function r such that M(A \n) > r{n) for infinitely 
many n. 

In the remainder of this section we discuss a number of equivalent definitions 

that will be used throughout the paper. 

Discussion 1.2. A test is a sequence of open classes Tn ? {0,1}?? such that 

the Tn are uniformly Si. Here the T? are uniformly in Si if there is a recursively 
enumerable array onjn of strings with 

(\fn) [AeTn 
*=> 

(3m)[anjn^A]\. 

The following statements are equivalent and characterize Martin-L?f randomness. 

A is not Martin-L?f random. 

There is a Si-test Tq,T\, ... such that, for all n, A G Tn and ju{Tn) < 2~n. 

There is all-test 7o, Tu... suchthat (3 ??n) [A G Tn] and(Vrc) [p{Tn) <2~n]. 

(Vc) (3a <A) [K(x) < \x\-c]. 
In the case of Schnorr randomness there are besides the test characterization and 

the standard martingale characterization some further martingale characterizations. 

The following statements are equivalent and characterize Schnorr randomness. 

A is not Schnorr random. 

A is covered by a Schnorr test. That is, there is a test To, T\,... such that for 

all?, AeTn and//(rw) =2~n. 

For every recursive function r, there is a recursive martingale M and a recursive 

function h suchthat (3??n) [M{A\h(n)) > r(n)]. 
For every recursive function r, there is a recursive martingale M and a recursive 

function h such that (3 ??n) [M{A\h{n)) > r(w)] and M(x) < M{xy) + 1 for 
all a, y G {0,1}*. 

The last condition in the last statement says that the martingale never looses more 

than the amount 1. That is. if a gambler is betting according to the strategy of this 

martingale then he knows that after accumulating sufficient wealth he will never be 

poor again. The price the gambler pays for this strategy is that the growth-rate of the 

capital may be logarithmic compared to the growth rate of less reliable martingales. 
We refer to Schnorr's book [25] for further information about tests. Proofs of the 

various equivalences mentioned here can be found there, as well as in [31, 34]. 

?2. Relativized randomness and Kolmogorov complexity. In this section we com 

pare sequences that have infinitely often high C-complexity with relativized Martin 

L?f random sequences. We start off with some observations about the complexity 
of finite strings. The method used to prove the following inequality goes back to 

Solovay's manuscript [28], and was further used in [5]. 

Proposition 2.1. For all strings x andy, C(xy) < K{x) + C{y) + 0(1). 
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Proof. Recall that V is the universal machine for C and U is the universal 

prefix-free machine for K. Define a plain machine L as follows. On input p. L first 

looks for a < p such that U(o) [= x. Then it tries to compute V(z) 
= y where 

z is the rest of o. i.e.. oz = p. In that case, it outputs xy. Now it is clear that 

CL(xy)<K(x) + C(y). 3 

As a consequence, we show that each substring of a finite C-random string is 

^-random. By Proposition 2.1 let c be a constant so that for each x. y. C(xy) < 

K(x) + \y\+c. 
Proposition 2.2. For each d and each string z. if C(z) > \z\ + c ? d. then 

K(x) > \x\ 
? d for each x -< z 

Proof. For z h x, if K(x) < \x\ 
- d then C(z) < K(x) + \z\ 

- 
\x\ + c < 

\z\ + c-d. 3 

Definition 2.3 (Ding, Downey and Yu [5]). A set X is Kolmogorov random if 

(3b) (3??n) [C(X\n) >n-b]. 

This notion was studied earlier in several forms, see Schnorr [24]. Loveland [16], 

Daley [3]. E.g., Daley [3] proved that a set A is Kolmogorov random if and only if 

(3b) (3??n) \C(X\n\n) 
> n - 

b]. where C(o\n) is the complexity of a given n. 

We now give a simple proof of [15, Theorem 2.14 (I)] that each Kolmogorov 
random set is Martin-L?f random. Later we will strengthen this considerably. 

Proposition 2.4 (Martin-L?f [18]). Each Kolmogorov random set is Martin-L?f 
random. 

Proof. We only need the consequence of Proposition 2.1 that C(xy) < K(x) + 

\y\ -f c for an appropriate constant c. If X is not Martin-L?f random, then for 

each d. there is an initial segment x of X such that K(x) < \x\ 
- d. So for z y x. 

C(z) < K(x) + \z\ 
? 

\x\ + c < \z\ + c ? d. Hence X is not Kolmogorov random. 3 

Schnorr [25. 24] proved that the converse direction of Proposition 2.4 does not 

hold. 

An argument similar to the one in Proposition 2.1 can be used to answer a 

question of Calude and Staiger: for each infinite recursive R.ifZ has high prefix 
free complexity on all initial segments whose length is in R, then Z is Martin-L?f 

random. This was independently proved by Lance Fortnow. 

Proposition 2.5. Suppose that the recursive set R is infinite. If there is b such thai 

(Vr G R) [K(Z\r) > r ? 
b]. then Z is Martin-L?f random. 

Proof. This time L is a prefix-free machine. As before, on input p L first looks 

for a -< p such that U(o) [? x. Next, if oz = 
p. it sees whether \x\ + \z\ is the 

least number in R which is greater than or equal to |x|. In this case it outputs xz. 

Clearly L is a prefix-free machine. Moreover, if K(x) < \x\ 
- d. then for each 

extension w ofx whose length is the least number in R which is greater than or equal 
to |x|. KL(w) < \w\ 

- d. Hence if Z is not Martin-L?f random, the hypothesis of 

the proposition fails. 3 

Of course, since every infinite r.e. set contains an infinite recursive subset. Propo 

sition 2.5 also holds for infinite r.e. sets R. One can show that the proposition fails 

for some infinite n^ set R. 
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Next we compare Kolmogorov randomness with relativized randomness. We 

recall the following definition: 

Definition 2.6 (Gaifman and Snir [8]). A set A is n-random if and only if A is 

Martin-L?f random for the notion relativized to the oracle 0(/7~n. 

For the comparison of the randomness notions it will be useful to consider time 

bounded C-complexity (see e.g. [15]). For any computable g such that g(n) > n. 

let 

CK(x) = 
min{ \p\ : V(p) = a in g(\x\) steps }. 

where V is any universal plain machine. (Note: In time bounded Kolmogorov 

complexity one usually measures the number of computation steps in terms of the 

output rather than the input, since the latter may be very small compared to the 

output.) We may choose V such that V simulates all other machines with at most 
a logarithmic slowdown ([15. page 378]. [23. Vol. 2. page 74]): If M is a machine 

working in time t then there is a constant c such that V simulates M in time 

ct(n) \og(t(n)). We will use this in the proof of Theorem 2.8. 

Definition 2.7 (Time bounded Kolmogorov randomness). We say that a set Z 

is Kolmogorov random with time bound g if (3b) (3???) [Cg(Z\n) >n?b\. 

Note that every Kolmogorov random set is Kolmogorov random with time bound 

g. for every recursive g. As noted above, a set A is Kolmogorov random if and 

only if (3b) (3??n) [C(X\n\n) 
> n ? 

b\. Terwijn [30. 31] showed that a similar 

equivalence holds for time-bounded Kolmogorov complexity. 
The next theorem shows that 2-randomness is characterized by Kolmogorov 

randomness, as well as by its time-bounded version. Miller [20] obtained the im 

plication from (I) to (II) independently of us. Ding. Downey and Yu [5] proved 
that each 3-random set is Kolmogorov random. We modified this proof in Propo 
sition 2.11 in order to get our proof for the direction from (I) to (II). Furthermore. 

Ding. Downey and Yu [5] observed that no Kolmogorov random set is in A?. This 

is also implied by Theorem 2.8 since 2-random sets cannot be A?. 

Theorem 2.8. Let g be a computable time bound such that g (n) > n2 + 0(1). The 

following are equivalent for any set Z. 

(I) Z is 2-random 

(II) Z is Kolmogorov random 

(III) Z is Kolmogorov random with time bound g. 

Proof. (I) => (II): We introduce a concept which is of independent interest. 

Definition 2.9. We call a function F : {0.1}* 
?> 

{0.1}* a compression function 
if (Va) [|F(a)| 

< 
C(x)] and F is one-one. We say that a set Z is Kolmogorov 

random with respect to F if there is a constant b such that \F(Z\n)\ > n ? b for 

infinitely many n. Below we write Cp(o) 
? 

\F(o)\. 

Lemma 2.10. There is a compression function F such that F' <j 0'. 

Proof. Consider the iLj* class of graphs of partial functions extending the plain 
universal machine V. By the low basis theorem (see. e.g.. [23. Vol. 1. Theorem 

V.5.32]) there is a low path A which is the graph of some extension V of V. Now 
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let F(x) be the first p (with respect to the length-lexicographic order) such that 

(p.x) G A, that is, V(p) 
? x. Since for every x there is a q with V(q) 

= x, 
the function F is total. Furthermore the p found satisfies \p\ < \q\by the length 
lexicographic search constraint and \F(x)\ < C(x). So F is a compression function. 
Since x ? 

V(F(x)) for all x, F is one-one. 3 

Lemma 2.11. Let F be a compression-function. If Z is 2-random relative to the 
oracle given by the graph oj F', then Z is Kolmogorov random with respect to F. 

Proof. Suppose Z is not Kolmogorov random for F. We produce an F'-recursive 
Martin-L?f test {r?}?e^ that covers Z. Note that Z G f]b Vb, where Vb = 

\Jt Pb.t, 
and 

Pb.t = 
{X 

: (Wn > t)[CF(X\n) <n-b]}. 

Ph.t is a n^-class relative to F and ju(Pbj) < 2~b because as F is 1-1, for every 
n there are less than 2n~h strings g o? length n such that Cf(g) < n - b. As 

Pb.t ? Pb,t+\, this implies ju(Vh) < 2~b. Let 

Rb.uk = 
{ 
X : (V?) [t < n < k -> CF(X\n) < n - b] }. 

For each t, F' can (uniformly in b) compute k(t) such that 

M(RbjMl)-Ph,)<2-^\ 

Let Tb = 
\Jt Rb.t.k(t)- Then the 7? are open sets that are l,? relative to F, uniformly 

in b. Moreover, Vb ? Th and ju(Tb 
- 

Vh) < 2~\ so ju(Tb) < 2 2~b. Hence 

{ Tb }beN is indeed an ^'-recursive Martin-L?f test that covers Z. 3 

Choose a low compression function F. If Z is 2-random, then Z is 2-random 
relative to F (since F is low). By Proposition 2.11 Z is Kolmogorov random with 

respect to F. Since it holds for every x that \F(x)\ is shorter than the smallest 

program for x it follows that Z is Kolmogorov random. 

(II) => (III): This is immediate from the definitions since always C(X\n) < 

C*(X\n). 
(III) => (I): We begin with a fact about finite strings. 

Definition 2.12. For b G N we say that x is a b-root if 

(3t0) (Ww h x) [\w\ >t0^ C(w) < \w\ -b]. 

Similarly, for g as above we say x is a b-root with time bound g if the above holds 
even with Cg(w). 

K? (x) denotes the prefix-free complexity with oracle 0;. 

Lemma 2.13. For some constante*, the following holds. Let g be a time bound with 

g(n) >nljr 0(1). If K? (x) <\x\? b ? 
c*, then x is a b-root with time bound g. 

Proof. Let U?' be the universal prefix-free machine with oracle 0r. U?' (g)[s] 
denotes the recursive approximation of U? (g) at the end of stage s. (Here we mean 
to say that both U and 0; are recursively approximated.) 

We plan to adapt the argument of Proposition 2.1 to U? . Let c* be a coding 
constant to be determined later. If K? (x) < \x\ 

? b ? c* via a computation 
U? (g) 

? 
x,\g\ < \x\ 

? b ? c*, then the idea is to compress all extensions w of x 
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for I it; I > to, where the computation U? (a) is stable from to on. Since we do not 

know to, we have to define a machine L which works for each possible ?q. 

Definition of the plain machine L. Given an input p of length t, carry out cycles 
s for s = 

0,1,... until t steps have been used. 

Cycle s. For each n < s see if U? (p\n)[s] gives an output, a say. Choose n 

where the use of the computation is smallest. If? exists, let p = p \n. 
If s is greatest such that cycle s has been completed and values p, x have been 

obtained, and p 
= 

pz, output the string xz. 

Note that L uses no more than 2t + O ( 1 ) steps, t for the cycles and t for copying z. 

Claim 2.14. Suppose that the computation U? (cr)[s] 
= x is stable from s = so 

onwards. Then there is to such that for all p = oz, if' t 
= 

\p\ > to, then L(p) 
= xz in 

at most 2t + 0(1) steps. 

Proof. To prove the Claim 2.14, pick to so that for each p as above, L on input p 

passes cycle so. Then, for all cycles s > sq, the value p obtained equals a. Namely, 
the use of any computation ?/0 (p\n)[s], n ^ \a\ must be greater than the use of 

U?' (ct)[s], for if the use would be smaller this computation would be stable as well, 

contradicting that U? is a prefix-free machine. But if the use of the computation 
for p \n is greater than that for a then a is chosen over p \n in cycle s. This proves 

Claim 2.14. 3 

Let c* be the coding constant for L. Suppose K?'(x) < \x\ 
- b ? c* via a 

computation U? (a) 
= a, \g\ < \x\ 

? b ? c*. Let so be a stage from which on 

this computation is stable. Choose to as in Claim 2.14. Then for each w = xz of 

length > to + |a|, L(p) 
= w in at most 2\w\ + 0(1) steps where p 

= oz. Hence 

C(w) < CL(w) + c* < \x\ -b + \z\ 
= 

\w\-b and in fact Cg (w) <\w\-b since 

g(n) >n2 + 0(\). 3 

We note that the existence of b -roots contrasts with the case of prefix-free com 

plexity, where each string a has an extension w such that K(w) > \w\ 
- 

b, for 

instance because one can extend a to a Martin-L?f random set X, which always 

satisfy limn^oo K(X\n) 
? n ? oo. 

To complete the proof of (III) =^> (I), suppose Z is not 2-random. Given b and 

the constant c* from Lemma 2.13, choose a -< Z such that K?'(x) < \x\ 
? b - c*, 

so that by Lemma 2.13 a is a ?-root with time bound g. Let to be a number as in 

the definition of ?-root. Then for each n > to, Cg(Z\n) < n ? b. Hence Z is not 

Kolmogorov random with time bound g. 3 

In the following we study the frequency of initial segments with high C -complexity 
for a 2-random set. Given a time bound g as above and a number b, for each set Z 

consider the function 

/ 
= 

fg?m) 
= 

(pn) (3po, ...,pm<n) (Vi < m) [Cg(Z\Pl) 
> Pl 

- 
b], 

where pn denotes the least n satisfying the condition. If Z is 2-random and hence 

time-bounded Kolmogorov random with some constant b, then the corresponding 
function / is total and f <j Z. We show that / infinitely often exceeds each 

recursive function. 

Proposition 2.15. IfZis Kolmogorov random with time bound g and constant b, 
then f 

= 
fgb 

is not dominated by a recursive function. 
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Proof. Suppose h dominates /. Consider the recursive tree 

T = 
{g: (Wm) [\g\ > h(m) -+(3p0i..., pm < \g\) (Wi < m) 

[Cs(G\Pl)>Pl-b]}}. 
Since h dominates /, Z is a path on T. Moreover, each path is time-bounded 

Kolmogorov random and hence 2-random by Theorem 2.8. However, the leftmost 

path in T is &\ and hence not 2-random, a contradiction. 3 

Corollary 2.16 (Kurtz). Each 2-random set has hyperimmune Turing degree. 

Remark2.17. Let /f(m) 
= 

(jun) (3p0,...,pm < n) (Wi < m) [C(Z|>,-) 
> 

Pi 
- 

b]. We have shown that there is a single p <T 0/ such that p dominates /f, 
for each 2-random Z and b sufficiently large. 

?3. Low for Q. Let W be a class that relativizes to Wx for an oracle X. A set A is 

called low for ̂  if ̂  ?<?A. Several authors have studied the Turing degrees of sets 

that are low for classes of random sets. 

(Kucera and Terwijn [14]) There is a nonrecursive r.e. set that is low for the 

Martin-L?f random sets. Every such set must be in A? by Nies [21]. 

(Nies [21]) A set is low for the recursively random sets if and only if it is 

recursive. 

(Terwijn and Zambella [32]) There are uncountably many sets that are low 

for the Schnorr random sets. These all have hyperimmune-free degree, hence 
cannot be in A^. 

In this section we study lowness for an individual random set, namely Chaitin's 
?1 [2]. Following a tradition of Chaitin, we denote by the symbol Q not only the 
set but also the real number Ylneo. 2~n~{ represented by the set. Fixing a universal 

prefix-free machine U, Q is the halting probability of U and satisfies the equation 

q= 
Yl 2_|ff| 

o?dom{U) 

Note that the definition of Q depends on the choice of U. We can choose U also 

such that U = U? for the oracle 0 and UA is a universal prefix-free machine relative 
to A. Then QA is the set representing the halting-probability of UA. Every set 

QA is left-r.e. relative to A and Martin-L?f random relativized to A. Note that for 
most oracles A, ?lA is not left-r.e. (unrelativized). Furthermore, we might write Qy 

instead of ?2 if we use the prefix-free machine V instead of U. 

Definition 3.1. A is low for Q if Q is Martin-L?f random relative to A. 

Note that this property does not depend on the particular universal machine 
U: If F is a further universal prefix-free machine, then Qu Solovay reducibility. 

Relativizing the main result of Kucera and Slaman [13], for sets X which are left-r.e. 

relative to A, one has that X is Martin-L?f random relative to A if and only if X 

is complete for Solovay reducibility relativized to A. Thus ilu is ,4-random if and 

only if ?iy is. 

We first prove that each low for ?1 set is generalized low. Then we see that for 
r.e. sets, the restriction to Q instead of all Martin-L?f-random sets does not matter, 
since here low for ?1 coincides with K-trivial and hence with low for the Martin-L?f 
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random sets by [21]. However, this is not true for sets in general, since all 2-random 

sets are low for Q. so this class has in fact measure 1! 

The following proof is similar to the one of Kucera [12] that all sets which are 

low for Martin-L?f randomness are in the class GLj. 

Theorem 3.2. Let A be low for Q. Then A is generalized low: A' <T A 0 0'. 

Proof. Let y/A be an ^-recursive function with A' as domain, and for any x e A 

let X?A (a) be the time it takes for a to be enumerated into A' by y/A. Let Q, be the 

approximation to Q at stage s. Each class 

TnA= U(anv)[.n? 
+ i).{o,r 

xeA' 

has at most measure 
Ylx 2~x~n~l = 2~n and hence these classes form a 

S^-test. 
Since A is low for Q, there is an n such that Q ? Tn. Thus, for all a G A', 

cq(x + n) > x?A(x). where cq(z) is the least s such that Qs \z 
? 

Q\z. So we have 

that a G A' if and only if a is enumerated into A' within cq(x + n) many steps, 
heneen <T A ? Q. 

' 
3 

Definition 3.3. [7] A is ̂ -trivial if K(X\n) < K(n) + 0(1) for every n. 

Definition 3.4. An r.e. set W ? N x {0,1}* is a Kraft-Chaitin set (KCset) if 

(r.y)eW 

The pairs enumerated into W are called axioms. For any W, the weight of W is 

weight^) = E?2_r : (r>y) ̂ W}. 

Theorem 3.5 (Chaitin [2]. Theorem 3.2). From a Kraft-Chaitin set W one can 

effectively obtain a machine M with prefix-free domain such that 

(V{r,y) G W) (3w) [\w\ 
= r A M(w) = 

y]. 
We say that M is a prefix-free machine for W. 

Theorem 3.6. An r.e. set is low for Q if and only if it is K-trivial. 

Proof. Each ?^-trivial set is low for the Martin-L?f random sets by [21, Corollary 

5.2], and hence low for Q. For the converse direction, let A be an r.e. set which is low 

for Q. We enumerate a Martin-L?f test {R^}^^ relative to A. Then there is d such 

that Q 0 RA. This will be used to define a Kraft-Chaitin set L? showing that A is 

?'-trivial: for each n there will be an axiom (r, A \n) G Ld where r < K(n) + d + 1. 

Ld is a union S U L(?, where S supplies a new axiom when K(n) decreases, and 

Ld does when A\n changes (after some delay). Let S = 
{ (Ks(n) + 2.As\n) : 

Ks(n) < Ks-\(n) }. Then S is a KC set of weight < Q/2. (Namely, for every n it 

holds that ̂ { 2"^{n) : s G NA^(n) < 
Ks-i(n)} 

< 
J2r>K(n)2~r 

= 2 - 
2~K{t1\ 

so weight(5) < 
\ J2n 2 ' 2~K^ = 

Q/2.) Next, when k enters A at stage s. we want 

to enumerate axioms (Ks(n) + d + \,As\n) into Lt? for each n, k < n < s. We 

ensure Ld is a KC set of weight at most 1/2, so that Ld = Ld U S is a KC set. To do 

so, we "force" Q to increase by 2~^Ks^+d^ before we put the axiom into Ld. Thus, 

enumeration into Ld is charged against increases of Q. The increase is achieved by 

putting at subsequent stages to s an interval [Q5, QiV + 2~Ks^~d] 
into RA with an 
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appropriate ^4-use. Either A changes (and we do not need the new axiom anymore), 
or Q has to move out of the interval. Note that this construction shares elements 

with the one in [13] showing that each random left-r.e. set is Solovay complete. 
Construction of Rj and Ld. For each parameter d simultaneously, perform the 

following. At every stage s > 0 a unique procedure Pn. n = 
ns. is running, which 

was started at a stage t < s and has the goal Q, > Qt + 2~K,^~d. Let no = 0. 

Stage s > 0. 

If the procedure PfJii_l has ended at stage s - 1 then let k = 1, else k = 0. Let 
n = ns = 

mm({ns-\ + k} U (As 
- 

As_\)). 
If ns 7^ ?s_i we say that Pn is started at s. and we enumerate the interval 

/?., 
= 

[nSins 
+ 

2-KAn)-d] 

into RAs with use ?. (We are slightly abusing notation here, by identifying 
intervals in the unit interval [0,1] with intervals of the same measure in Cantor 

space {0,1}??, using dyadic expansions.) 
If Pn has last been started at stage t and ?ls ? InJ then we say that Pn ends 

and we put the axiom (Kt (n) + d + 1,^41?) into Ld. 

Claim 3.7. (Wd) [ju(RJ) 
< 2~d\, hence Rj is a Martin-L?f test relative to A. 

Proof. For, if an interval In_s is added to RAs at stage s, then since this was done 

so with use n this interval is not in Rj unless also As \n = A \n. Pn is started at 

most once after As \n = A\n and hence can contribute at most 2~Ks^~d to ju(Rj). 
Hence fi(RJ) <2~d. 

' 
3 

Claim 3.8. Ld is a KC set of weight < 1/2. 

Proof. For when Pn ends and contributes an axiom (r + 1, j/), then Q has 
increased by 2~r since the stage when this run of Pn was started. As only one 

procedure runs at each stage, this implies the claim. 3 

Claim 3.9. A is K-trivial. 

Proof. Let d be such that ?2 ^ RA, which exists since by the first claim Rj 
is an A -test and Q is A -random. We show that for each n there is an axiom 

(K(n) + c,A\n) G Ld where c < d + 1. If A\n = 0n the required axiom is in S. 

Else suppose s is greatest such that some u' < n is in As 
- 

As-\. Then some Pu 
is running by the end of stage s. u < u'. Say this run was started at t < s. Since 

Pu is still running at s. At \u = As \u = A \u. hence IuA is in Rj. As Q ^ Rj. Pu 
ends. Since As \n = A \n. by the same reasoning the subsequently started procedures 
Pu+\..... Pn end as well. When P? ends, we put an axiom (Kt(n) + d + 1. A \n) 
into Lc{. This is the required axiom unless K(n) < Kt(n). in which case the axiom 
is in S. 3 

With these claims, also the proof of Theorem 3.6 is completed. 3 

By [21], a ̂ -trivial set A is in fact low for K, namely K(x) < KA(x) + 0(1) for 

all x. The proof of Theorem 3.6 could be modified in order to reach this conclusion 

directly. 
We next give a further characterization of 2-randomness. 

Theorem 3.10. A set A is 2-random if and only if A is \-random and low for Q. 
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Proof. M. van Lambalgen [33] showed that for any two sets A and B, A ? B is 

Martin-L?f random if and only if B is Martin-L?f random and A is Martin-L?f 

random relative to B. Thus, for any 1-random set A it holds that A is 2-random 
<=> A is 1-random relative to Q <^=> A 0 Q is 1-random ^=> Q is 1-random 

relative to A <=^> A is low for Q. Since any 2-random set A is 1-random the 

equivalence follows. 3 

Every PA-complete set A bounds a 1 -random set B. (This is because there is a TL? 

class of 1-random sets and by a result of Scott [26] PA-complete sets can compute 
an element in every n^-class.) If the PA-complete set has hyperimmune-free or A? 

Turing degree, then B is not 2-random (by Corollary 2.16) and thus not low for 

?1 It follows that in these cases A is also not low for Q. So we have the following 

corollary. 

Corollary 3.11. No PA-complete set of hyperimmune-free Turing degree and no 

PA-complete set below 0' is low for ?2. 

Theorems 3.2 and 3.10 give the following result immediately, which according to 

Kautz [10, Theorem IV2.4 (III)] is due to Sacks and Stillwell. 

Corollary 3.12 (Sacks and Stillwell). Every 2-random set A is GL\, i.e., satisfies 
A' <r^4?0/. 

An interesting example is A = Q0 , which is 2-random and hence GLi, but also 

high, as0" =r4?0' <t A'. 

By Nies [21] every set that is low for the Martin-L?f random sets is in A?, hence 

has hyperimmune degree. The question remains whether Corollary 2.16 can be 

strengthened, namely, 

Question 3.13. Does every set that is low for Q have hyperimmune Turing degree? 

Demuth and Kucera [4] proved that no 1-random set is below a 1-generic set, 
which implies that no 2-random set is below a 2-generic set. The next theorem 

shows that conversely no 2-generic set is below a 2-random set. In fact, every such 

two sets build a minimal pair. This even holds when we weaken "2-random" to "low 

for Q". Since every 2-random set is above a 1-generic set [10, Theorem IV.2.4 (V)], 
the result cannot be strengthened to minimal pairs between 2-random and 1-generic 
sets. In particular, many 1-generic sets are low for Q. 

Theorem 3.14. Let A be 2-generic and let B be low for Q. Then A and B form a 

minimal pair. 

Proof. Suppose that *F is a Turing reduction and that D = *?A is nonrecursive. 

We have to prove that D ?tT B. For this it suffices to show that D is not low for Q, 
which we do by showing that there is a D -computable martingale MD that succeeds 
on n. 

For every a G {0,1 }* we recursively define a function g (a) 
= 

\Jsgs((r)sLS follows. 

At stage 0 we define go(?") 
= ?\ Given gs(a) at stage s, we search for an extension 

t y g s (a) such that VFT is defined on strictly more numbers than ^F^^. If t is 

found, define gs+\(a) 
= t and let gs+\ (a) be undefined otherwise. 

Now for every a there are two possibilities: 

(a) g (a) is total and ^F^ is a recursive set. or 

(b) g (a) is finite and there is no total extension h of g (a) such that x?h is total. 



RANDOMNESS. RELATIVIZATION AND TURING DEGREES 527 

We first show that case (3) never obtains. Define the 0/-recursive function G by 

G (a) = lg^ 
?f g^ ?S fin?te' 

) undefined otherwise. 

(G simulates g and uses the oracle 0' to see whether the definition of g has terminated 
or not.) Since xi,A is total, for every g -< A we have that G(g) is either undefined 
or incomparable to A. By 2-genericity there is a t -< A such that G(g) is undefined 

for all g y t. For the rest of the proof, there is no loss of generality if we assume 

that t is the empty string. Hence g (g) is total for all a G {0,1}* and case (3) above 

always obtains. 

Now we define a D -recursive function FD by 

FD(x) = (My) (Va e {0,1}') (3z < y) \*f?\z)& D(z)}. 
Since all ̂ ^ are total and recursive, they all differ from the nonrecursive set D. 

Hence FD is total and recursive in D. 

Next we show that FD is fast-growing. Recall that cq(z) is the least s such 

that ?ls \z = Q\z. Define H(o) -< g {a) to be so long that ̂^(z) is defined for 

all z < cq(3\g\). H is 0'-recursive because cq is. By 2-genericity of A there are 

infinitely many g -< A such that H (a) -< A. For these g it holds that 

(1) FD(\a\)>cQ(3\a\). 

Finally we show how D can use FD to cover Q. Let M0 be the Z)-recursive 

martingale that on input g of length n bets half its capital that the next bit is 

b = 
nFD{n)(n): MD(Gb) = (3/2)Md(g) and Md(g(\ 

- 
b)) = 

(\/2)Md(g). Now 
if a satisfies (1) then QFD{n)\3n 

= ?l\3n,so MD(Q\3n) > (\/2)n(3/2)2n 
= 

(9/8)". 
Since there are infinitely many g satisfying (1) it follows that MD succeeds on ?1 

(It follows even that Q is not Schnorr random relative to D.) 3 

Remark 3.15. We note that neither part of the hypothesis in Theorem 3.14 can 

be weakened. Namely: 

There are many 1-generic sets that are low for Q. Since the sets which are low 

for Q are closed downward under Turing reductions, it is enough to consider 

the fact that the following examples of sets which are low for Q bound a 

1-generic set. 
- 

Every 2-random set : These are low for Q by Theorem 3.10 and they bound 
a 1-generic set by [10, Theorem IV.2.4 (V)]. 

- 
Every nonrecursive r.e. ̂ -trivial set: Note that such a set exists [14, 21]. 
It is low for ?1 by Theorem 3.6. It bounds a 1-generic set because every 
nonrecursive r.e. set does [23, Vol. 2, Proposition XI.2.10]. 

In particular, our "natural examples" for sets which are low for Q do not build 
a minimal pair with every 1-generic set. 

Above every set there is a 1-random set by Kucera [11]. In particular, no 

2-generic set builds a minimal pair with every 1-random set. 

?4. Separating randomness notions in Turing degrees. In this section it is shown 

that the notions of Martin-L?f randomness, recursive randomness and Schnorr 

randomness coincide in every non-high Turing degree and can be separated in every 
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high Turing degree. Furthermore, they can be separated by left-r.e. sets if the 

high degree happens to be an r.e. degree. That Schnorr randomness and recursive 

randomness can be separated by left-r.e. set was independently proven by Downey 
and Griffiths [6]. 

Recall that a set A is high if and only if A' >T 0". Martin [27, Theorem XI.1.3] 
showed that a set A is high if and only if there is an A -recursive function which 

dominates every recursive function. 

Proposition 4.1. If a Schnorr-random set does not have high Turing degree then it 

is Martin-L?f random. 

Proof. Let A be a set that does not have high Turing degree and that is not 

Martin-L?f random, say A is covered by Martin-L?f test T = 
{Tj}ie^. We show 

that A is not Schnorr random. Let / be an ^-recursive function that computes 
when A is covered by U. That is, / computes for every n how long we have to 

enumerate Tn to include A. Since f is computable relative to a non-high oracle, 
there is a recursive function g such that g(n) > f(n) for infinitely many n. Now 

consider the Schnorr test V where Vn contains all sets Z which are enumerated into 

V within g(n) steps. Then every Vn is finite. So F is a Schnorr test and A is in 

Vn for infinitely many n. As mentioned in Discussion 1.2, this implies that A is not 

Schnorr random. 3 

Theorem 4.2. For every set A, the following are equivalent. 

(I) A is high. 
(II) 3B =t A, B is recursively random but not Martin-L?f random. 

(Ill) 3C =t A, C is Schnorr random but not recursively random. 

Furthermore, the same equivalence holds if one considers left-r.e. sets. 

Proof. (Ill) => (I) and (II) => (I): These implications follow immediately from 

Proposition 4.1. 

(I) => (II) : Given A, the set B is constructed in two steps as follows. First a set F 

is constructed which contains information about A and partial information about 

the behaviour of recursive martingales?this information will then be exploited 
to define a partial recursive martingale that witnesses that the finally constructed 

recursively random set B is not Martin-L?f random. (Note that a partial recursive 

martingale as is defined below can be transformed into an r.e. martingale by letting 
it equal 0 until, if ever, it becomes defined.) The sets A and F will be Turing 

equivalent and the sets B and F will be wtt-equivalent. 
Let ( , ) be Cantor's pairing function {x,y) 

= 
\ (x + y) (a + y + 1) + y. 

Furthermore, the natural numbers can be split into disjoint and successive intervals 

of the form {zo}, Io, {z\}, h, such that the following holds. 

The intervals {z^} contain the single element z^. 
The intervals Ik are so long that for every a G {0,1}^+1 and every partial 

martingale M defined on all extensions t g a {0.1}* with |t| < \o\ + \h\ 
there are two extensions t^o.m-. 1o.\.m of length \o\ + |4| such that M does not 

grow beyond M (a) (1 + 2~h) within h. These extensions can be computed 
from M. Without loss of generality it holds that tct.o.m <iex to.i.M 

The partition of the natural numbers in the intervals {zo}, Io, {z\}, h,... is 

computable. This can be done since one can compute from k a length for which 
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an Ik of this length with the properties in the previous item exist [19. Remark 9]. 
see also [25. 34]. 

Let Mo. M\_ be a recursive list of all partial recursive martingales. That is. the 

enumeration satisfies the following conditions: 

The uniform domain { (/'. g) : M?(g) is defined } is a recursively enumerable 
set. 

If Mi (gt) is defined for some non-empty string t, then M? (o). M,-(crO). M/(cri) 
are also defined and their values are positive rational numbers. 

If M?(gO).M1(g\) are defined, then M,(ctO) + M?(g\) 
= 

2M?(g). 

M,-(?) 
= 1 if it is defined. 

Now a partial recursive martingale M is defined inductively as follows. The goal 
is to let M multiplicatively dominate all recursive martingales on its domain of 

definition (i.e. for every recursive martingale TV there is a constant c such that for 

all g, if M(g) [ then N(g) < c M(g)). while M does not succeed on a set B 

constructed below. This then ensures that B is recursively random. Furthermore, a 

set F =t A is constructed such that 

F(k) is coded into B \zk+\ where "most" of the coding into B is done on the 

interval Ik. 

F((iJ)) for i ̂  0 tells whether M, is defined on all strings up to the length 
of Z(/j+i)+i. This is necessary to know since on each length M will be the 

weighted sum of some Mz 's and only M? 's which are defined on all relevant 

inputs should be considered. 

M can decode F(k') for all k' < k from B\zk. This information permits 
to compute M on all t with B\zk -< z and |t| < zk+\. If a set B ^ B is 

considered, it might be impossible to retrieve F and therefore, M(B\q) might 
be undefined for some q. Thus, M is a partial recursive and not a total 

recursive martingale. 

Now the details of the constructions just outlined are given. First we give the 

definition of M. Although M will only be partial, M(B \x) will be defined for all x. 

For each k and n G {0, \}Zk where M(rj) is already defined, we will try to define 

M(t) for alii en -{Q, 1}* with |t| <zk+]. 

(1) M(X) 
= r;. andrA 

= 1. 

(2) Assume that \n\ 
= zk. M(n). rf] are already defined and for all / < k there are 

values a? and strings o? = n \z? + 1 such that tg?M].m are defined and prefixes 
ofn. Then 

(2.1) Computed = 
{ i : (LO) < k A (Vy) [{i.j) < k -> a{Lj) 

= 1] }. 
(2.2) Let D = 

{ t G n {0, 1}* : \n\ < \z\ < zk+x }. 

(2.3) Compute for all e G E and x G D the value Me(z). 

(3) If the algorithm has gone through step (2.3) and all the computations there 

have terminated then 

(Vt eD) 
\m(t) 

=rT + 
^2-2~>-0H'-1M,(r) 

where the sum is 0 for the case that E = 0 and rT is defined inductively such 

that the conditions 

M(r/0) + M(r/l) 
= 

2M(t;) and rT,0 = rxn 
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are kept for ail t' -< t. 

If the algorithm did not go through step (2.3), then M(i), rT are undefined 

for all proper extensions t of n. 

The rT are necessary since at every level zk, some M? might be dropped from the 
sum and at most one new Mi is added. This new martingale is added if k = 1 + (i, 0) 
and a (io) 

? 1. Furthermore, it is added with the factor 2~2zk~x which guarantees 
that 2~2zk~lMi(r?) is at most 2~Zk~l for all n G {0, l}r*. (Note that we have 

Mi(rj) < 2Zk since Mt(X) 
= 

1.) But this increases the sum by at most 2rZk~x and 

therefore can be compensated by rT: At every level, rT > 2-?r' and at most 2~'TI~1 
of this capital is lost in order to maintain the martingale property o? M. 

By highness of A, let fA be an ^-recursive function which dominates all recursive 

functions. Now define the set F as follows. 

F((0,0? 
= 0. 

F((0J + l))=A{j) for ally. 
For/>0, F((i,j)) 

= 
UfF^i,]')) 

= 1 for all/ < j and M/(r) is computed 
within fA(i + j) many steps for all t G {0,1}* with |t| < 

Z(/+y+u+/-+1)+i. 
Otherwise F{(i,j)) =0. 

Clearly F =t A. The set B is defined inductively. 

(k.0) Assume that exactly B \zk is defined. 

Let?(z*) 
- 0 if M(B\zk -0) < M(B\zk 1) and B(zk) 

= 1 otherwise. 

(k.l) Assume that exactly B\zk + \ is defined. 

Let n = B \zk + 1 and B \zk+] 
= 

T^F{k)M. 
We now need to show that the inductive definition of B goes through for all k. 

Note that the a^j) in the construction of M always exist for n -< B and that they 
are just the bits F((i,j)). So the decoding at the beginning of step (2) is possible. 
Furthermore, for all i G E with i > 0, (/, j) G F for j 

= 0,1,..., j' where j' is the 

maximal /' with (/, j") < k. Note that / > 0 and thus Mz is defined on all strings 
of length up to z^+i. Thus the computations in step (2.3) all terminate. So M is 

defined on all extensions of B \zk of length up to z^+i. It follows that B is defined 

up to z^+i and F(k) is coded into B. 

Note that coding gives F <wtt B. Furthermore, one can compute for each k the 

string B \zk using information obtained from F \zk. So B <wtt F. Since A and F 
are Turing equivalent, one has B =t A. 

To see that B is not Martin-L?f random, it suffices to observe that B(zk) is 

computed from B \zk. Thus one can build a partial recursive martingale (and hence 
an r.e. martingale) N which ignores the behaviour of B on all intervals Ik but 

always bets all its capital on B(zk) which is computed from the previous values. 

This martingale N clearly succeeds on B. 

To see that B is recursively random, note first that M does not go to infinity on 

B: On zk, M does not gain any new capital by the choice of B(zk). By choice of 

4, M can increase its capital on Ik at most by a factor 1 + 2~k. Since the sum 

over all 2"k converges, the infinite product \[k(\ + 2~k) also converges to some 

real number r and M never exceeds r. Now given any recursive martingale M' 

there are infinitely many programs i for M' which all compute M' with the same 

amount of time. Since fA dominates every recursive function, there is a program 
i for M' such that for all j, fA(i + j) is greater than the number of steps to 
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compute Mi(z) for any string z G {0,1}* with |r| < Z(/+7+1 z+7+1)+1. It follows 

that Mi(n) < 22z<<-?>+1+1 M(n) < 22z<'?)+1+1 r for all n ^ B. Thus B is recursively 
random. 

(I) => (II), r.e. case: If A is r.e. as a set then one can choose fA such that fA is 

approximate from below. Therefore also F is r.e. and the set B can be approximated 

lexicographically from the left: In step (k.0) the value B(zk) is computed from the 

prefix before it and in step (k. 1 ) one first assumes that B \zk+\ is given by z \ 

and later changes toi h , , ,, in the case that k is enumerated into F. b 
B\zk + \,\,M 

(I) => (III): The construction of C is similar to the one of B above, with one 

exception: there will be a thin set of /c's such that B(zk) is not chosen according 
to the condition (k.0) given above but B(zk) 

= 0. These guaranteed 0's will be 

distributed in such a way that on the one hand they appear so rarely that the 

Schnorr bound cannot be kept while on the other hand they still permit a recursive 

winning strategy for the martingale. Now let 

i//(e,x) 
= 

Z((e,o,(x)),x)+i 

for the case that ipe(x) is defined and uses Oe(x) many computation steps to con 

verge, otherwise y/(e,x) is undefined. Note that y/ is one-one, has a recursive range 
and satisfies y/(e, x) > zx+\ > x for all (e, x) in its domain. Furthermore, let 

/ x f/Kj^ + l if (3e < logp(y)) [y/(e,y) = x] for some j/ < x, 
P\x) 

? 
{ I x + 4 otherwise. 

The function p is computable, unbounded and attains every value only finitely 
often. Assume without loss of generality that <po is total and that fA(x) > t//(0, x) 
for all x, and let 

gA(x) =max{^(<?,x) : y/(e,x)[ < fA(x) A e <\og(p(x)) 
- 

1}. 

The set C is defined by the same procedure as B with one exception: namely 

C(zk) 
= 0 if z^ = 

gA(x) for some x < zk. So having F as above, the overall 

definition of C is the following: 

(k.0) Assume that exactly C \zk is defined. 

Let C(zk) =0ifM(C\zk'0) <M(C\zk 1) Vz* G range(g^) 
and C(zk) 

= 1 otherwise. 

(k.l) Assume that exactly C \zk + 1 is defined. 

Let n = C \zk + 1 and C \zk+x 
= 

z^F{k)M. 
The proof that C =F A is the same as the proof that B =T A except that one has 
to use the additional fact that gA is recursive relative to A. 

To see that C is not recursively random, consider the following betting strategy 
for a recursive martingale N. For every x, let Gx = 

{ y/(e,x) : y/(e,x)l A e < 

\og(p(x)) 
- 1 }. Since y/ is one-one, these sets are all disjoint and every Gx contains 

a number zk such that C(zk) 
= 0. (Namely zk 

? 
y/(0,x) for some x, since 

by assumption <??o is total.) Starting with x = zo, the martingale TV adopts for 

every Gx a St. Petersburg-like strategy to gain the amount l/p(x) on it, using the 

knowledge that Gx contains some zk. For this purpose, TV sets aside one dollar of 

its capital. More precisely: If the next point y to bet on is not in the current Gx, TV 

does not bet. If y G Gx and TV has lost m times while betting on points in Gx, then 
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TV bets 2m jp(x) of its capital on C(y) 
= 0. In case of failure. N stays with a and 

waits for the next element of Gx without betting intermediately. In case of success. 

N has gained on the points of Gx in total the amount l/p(x) and updates a to the 

current value of y and m to 0. Because \GX\ < \og(p(x)) 
? 1 this strategy never 

goes broke. Note that p(y) 
= 

p(x) 3- 1 (because N switches from Gx to Gv on 

some zk = 
yj(e,x)). Thus one can verify inductively that?in the limit?N gains 

the amount l/(z0 3- 4) + l/(z0 + 5) + l/(z0 + 6) + .... that is. goes to infinity. Thus 

N succeeds on C and C is not recursively random. 

To see that C is Schnorr random, assume by way of contradiction that for M? and 
a recursive bound h we would have that M?(C\h(m)) > m for infinitely many m. 

But for almost all m. g^(loglog(w)) > h(m). An upper bound for M on C is 

then given by M(C\h(m)) < \og(m) r since M can increase its capital on any 
interval Ik only by 1 + 2~k and furthermore only on those zk which are in the 

range of gA. But of the latter there are only loglog(m) many below h(m). Since 

log(ra) r 22r('?)+1+1 < m for almost all m. one has that Mi(C\h(m)) < m for 

almost all m. Thus C is Schnorr random. 

(I) =$> (III), r.e. case: If A is an r.e. set and fA approximate from below, then 

gA is also approximable from below: let gs be this approximation. Now C is left-r.e. 
as witnessed by the following approximation Cs obtained from the definition of C. 

where the approximation Cs is defined from below by going through the stages 

(k.0). (k.l) iteratively until the procedure is explicitly terminated. 

(k.0) Assume that exactly Cs \zk is defined. 

If Ms (a) is undefined for some a G {C, \zk 0, Cs \zk 1} then terminate the 

procedure to define C, by going to (ter). 
If Ms (Cs \zk 0) < Ms (Cs ?Zk 1 ) or there is an a < zk such that zk = 

y/(e.x) 
for some a < zk and e < \og(p(x)) 

? 1 and gs(x) 
= zk 

then Cs(zk) 
= 0 else Cs(zk) 

= 1. 

(k.l) Assume that exactly Cs \zk + 1 is defined. 

Let n = Cs \zk + 1. If Ms(a) is undefined for some a G {Cs \zk + 1 t : ?t| < 

\Ik\] then terminate the procedure to define Cs by going to (ter). 
Let n = Cs \zk + 1 and C, \zk+\ 

= 
T^Fs{kyM. 

(ter) If the inductive definition above is terminated with Cs = n for some string rj. 
then one defines that Cs is the set with the characteristic function n0??. 

Now consider different sets Cs and C,+i. There is a first stage (k.a) in which the 

construction behaves differently for Cs and Cs+\. There are three cases: 

Case 1. The difference occurs because one but not both procedures terminate in 

stage (k.a). Since this termination is due to Ms(o) or Ms+\ (er) being undefined for 

the same string a in both cases, it follows that the procedure for Cs terminates but 

that for Cy+i not. Since Cs is extended by zeroes only, it holds that so Cs <?ex Cs+\. 

Case 2. The procedure does not terminate for Cs. Cs+\ at this stage and the stage 
is of the form (k.0). Then the only difference between the construction this stage 
for Cs. Cy+i can come from the case that gs (a) 

= zk and gs+\ (a) > zk. In this case 

Cs(zk) 
= 0 and Cs+\(zk) 

= 1. so C, <?ex Cs+\. 
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Case 3. The procedure does not terminate for Cs, Cs+\ at this stage and the stage 
is of the form (k. 1 ). Then the only possible reason is that k G Fs+\ 

- 
Fs. Recall that 

n = Cs \zk + 1 = 
C,+i \zk + 1. It follows that C, <lex Cs+\ by t^.o.m <iex ^.i.m 

This case distinction gives Co <iex C\ <?ex ... and so the approximation wit 
nesses that C is a left-r.e. set. 3 

If A has hyperimmune-free degree, then one can even show that A is Kurtz 

random if and only if A is Schnorr random. The reason is that one can choose g 
such that g dominates /. 

Theorem 4.3. A degree contains a set which is Kurtz-random but not Schnorr 

random if and only if the degree is hyperimmune. On the hyperimmune-free degrees, 
all considered notions of randomness coincide. 

Stephan [29] investigated the connection between PA-completeness and Martin 

L?f randomness. He showed that no PA-complete set A ^F K is in the Turing 

degree of a Martin-L?f random set. This result is somewhat surprising since such 

sets A exist and there are always Turing degrees of Martin-L?f random sets below 

A and above A. 

Theorem 4.4 (Stephan [29]). Every PA-complete Martin-L?f random set is above 

the halting problem 0'. 

In Proposition 4.1 it was shown that for every set R which does not have high 

Turing degree that R is Schnorr random if and only if R is recursively random if 

and only if R is Martin-L?f random. Thus one can obtain the following corollary 
where "above K" is replaced by "having high Turing degree". 

Corollary 4.5. Every PA-complete Schnorr random set and every PA-complete 

recursively random set has high Turing degree. 
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