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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 65. Number 1. March 2000 

STRUCTURAL PROPERTIES AND 1? ENUMERATION DEGREES 

ANDRE NIES AND ANDREA SORBI 

Abstract. We prove that each 1? set which is hypersimple relative to O' is noncuppable in the structure 
of the ?? enumeration degrees. This gives a connection between properties of 1? sets under inclusion and 
and the 1? enumeration degrees. We also prove that some low non-computably enumerable enumeration 
degree contains no set which is simple relative to O'. 

?1. Introduction. There is a wide range of theorems in computability theory 
asserting that, in a certain degree structure Mr of computably enumerable (c.e.) 
sets under a reducibility <,., a simplicity property of a computably enumerable 
set A implies the incompleteness of the r-degree of A. (Here a simplicity property 
requires that in some sense the complement of A is sparse.) An example of such 
a result is that a simple set cannot be btt-complete ([Pos44]). While a simple 
set may be tt-complete, the stronger notion of hypersimplicity of A even implies 
wtt-incompleteness. Downey and Jockusch [DJ87] showed that the wtt-degree of 
a hypersimple set H is in fact wtt-noncuppable, namely K <wtt H e B implies 
K <wtt B for any computably enumerable B. 

An interesting question is whether results of this kind can be obtained for 
2e (<?O ), the structure of enumeration degrees of lo-sets. Since the domain con- 
sists of the sets that are computably enumerable in O', one also has to relativize the 
simplicity properties to O'. For instance: 

DEFINITION 1.1. A 1? set H is 0'-hypersimple if H is coinfinite and there is no 
function f < T 0' bounding pH, where p- is the function that lists the complement 
of H-in order of magnitude. 

The existence of 0'-hypersimple sets (and of 0'-simple sets, defined in the next 
section) follows by a straightforward relativization to O' of Post's constructions 
of hypersimple (simple, respectively) sets, see [Pos44]. The reader is referred to 
[Coo9O] for an extensive survey and bibliography on enumeration reducibility and 
its degree structure. 
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286 ANDRE NIES AND ANDREA SORBI 

?2. 0'-hypersimple sets are noncuppable. Boldface small Latin letters a, b, c de- 
note e-degrees. Recall that O? is the e-degree of K, the complement of the halting 
set K. 

Cupping and noncupping properties of e (<O') have been studied in details 
in [CSY97]. 

THEOREM 2.1 ([CSY97]). There exists a noncupping element in ge(<?O), i.e., an 
e-degree a < O' such that a is nonzero and 

(Vb < ?0')[0? < a U b X O' < b]. 

However, 
THEOREM 2.2 ([CSY97]). Every nonzero AO e-degree a is cupping in ge(<O?), in 

fact there exists a total (hence AO) e-degree b < 0? such that 0' < a U b. 

We show now that every 0'-hypersimple e-degree is noncupping. In fact: 

THEOREM 2.3. Suppose C is a Ag set which is not computably enumerable, H is 
0'-hypersimple and B is 1?. Then C <eB (5 H implies C <eB. 

COROLLARY 2.4. If H is 0'-hypersimple, then the enumeration degree of H is non- 
cupping in ge(<?O). 

PROOF. Let C =K. - 

COROLLARY 2.5. If C is a Ag non-computably enumerable set and H is 0'-hyper- 
simple, then C :e H. 

PROOF OF THE THEOREM. Assume that C = BH, for some c-operator Ji (with 
finite approximations {f(s}. vcw), but C :e B. We will determine a Ag function g 
such that, for n =4 m, 

Dg(n) g H and Dg(n) n Dg(,,7) C H. 

Then the Ag function 

f(n) max(UDg(m)) 
m<n 

bounds PH. 
Fix Zg approximations {Bs Is , Hs G,) for B, H, respectively, such that {H,} 

has infinitely many true stages, i.e., (3]s)[ Hs C H] (see [Joc68]). For each set 
R C co, let yR(x, s, t) be the predicate 

x V C andns t > andt>sand (3(x, D) c (D) 

[D C Bs (D Hs and (Vt' > t)[DB C Bt]], 

where D = DB DH. 
We claim that for each infinite recursive set R, there exist an x such that for some 

s c Rand some t> s, yR(xs, t) holds. 
For if such s, t only exist for no x , C, then we can define an enumeration 

reduction procedure F such that C = FB as follows. If an axiom (x, D) lies in (Ds, 
with s c R and D C Bs D H1, then put (x, DB) into Fs. If x c C, then x c DB H, 
so there is some (x, DB) c r such that DB C B. But for each x , C, if (x, D) c FS, 

then D g B because D g Bt for infinitely many t > s. 
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Clearly, if yR (x, s, t) holds, then Hs g H. Moreover, if R is recursive, then 
yR(X, S, t) is a AO property of x, s and t, since C is AO. 

Now we define by induction a function g having the desired properties. 

Step 0. To define Dg(o), think of R being a). Using O' as an oracle, find x, s, t 
satisfying yR(x, s, t) and let Dg(O) = Hs. 

Step n > 0. Now suppose g(m) has been defined for all m < n. Our goal is to find 
a finite set D = Dg(n) such that H n D n Dg(m) = 0 for all m < n, and D n H =4 0. 
Let E = Utn<n Dg()11). We start a searching procedure by stages. At stage u of the 
search for D, we determine 

a,, ={x C E: (3u' > u)[x f Hu,]}, 

using O' as an oracle. Thus au is the set of elements of E which have not yet "proved" 
to be in H, and au converges to E - H. Next we look for x < u, s < t < u such 
that yR(X, S, t) is satisfied for R = { s Hn au = 0}. If x, s, t fail to exist then 
proceed to stage u + 1. If they do exist, then let Dg(n) =Hs 

First of all, this search will terminate. For all sufficiently large u, Eu = E-H. 
Moreover, R = {s: Hs n au = 0} is infinite. So, as argued above, x, s, t must 
exist, and Dg(n) g H. Moreover Dg(,n) n E C H, because E - H C au and 
acu n Dg(n) -0 

REMARK. Notice that in the construction above, Hs could be found "too early", 
namely while we are still working with an as which is not disjoint from H. But still 
as n Hs = 0 andhenceA IHs C H. 

We prove next that Theorem 2.3 cannot be improved to 0'-simple sets, by rela- 
tivizing the usual construction of a tt-complete simple set. Define a 1? set A to be 
0'-simple if A is coinfinite, and A n V =4 0, for every lo-set V. 

THEOREM 2.6. There is a 0'-simple set A such that K <e A. 

PROOF. Let h(n) = n(n + 1)/2 and En= [h(n),h(n + 1)) so that IEn J= n + 1. 
Define a partial 0'-recursive function fo such that fo (e) is the first element > h (e + 1) 
which appears in We', and undefined if there is no such element. Now let 

A =U{En :n cK}Urange(p). 

Clearly IEn n range(p)I < n. Thus, n c K => En C A and therefore K <e A. 
Moreover, if WeO is infinite, then (p(e) is defined and therefore WeO n A =4 0. -i 

?3. 0'-simple free enumeration degrees. It is clear that there exist nonzero 1? 
enumeration degrees containing no 0'-hypersimple set (by Corollary 2.5, consider 
any enumeration degree with some nonzero AO predecessor): in fact there even exist 
properly 1? enumeration degrees (i.e., EO enumeration degrees containing no AO 
sets) which are 0'-hypersimple free: this follows from the fact (see [BCS]) that for 
every enumeration degree a < O? there exists a properly 1? enumeration degree b 
such that a < b < 0'e 

We show in this section that there exist nonzero 0'-simple free enumeration degrees 
below 0'. 
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THEOREM 3.1. There exists a nonzero low enumeration degree containing no 0'- 
simple set. 

PROOF OF THE THEOREM. We build a Y? set C such that C is low and not com- 
putably enumerable, and for every E? set B, if B -e C then there exists some 
infinite Y? set E such that E C B. 

The requirements for the construction are: 

Lo lime FOes (e) exists (if (d = (e) 

Nw: C7tW 

P(DT.B B = (Dc and C = TB > ED. T.B infinite and Em T.B C B 

for all enumeration operators (d, T, and every computably enumerable set W, where 
EDT,B is some Y? set to be constructed. Notice that if Lo is satisfied for every (d, 
then C is low, by [MC85]. 

The strategy for LD consists in fixing some finite set y C C such that e C (DY 
(where (d = (e). The strategy for Nw is a standard diagonalization: choose a 
witness n, keep n C C until a stage s at which n is enumerated into W; then let 
n V C. We attack a P-requirement P(DT.B via infinitely many sub-requirements 
{Pp.pDB.TB}jGco. Given j, the strategy for PWP.B. / will be as follows: 

(a) choose a witness nj, and let nj C C; 
(b) wait for a finite set 0 such that nj C To and 0 n B n [0, j) = 0; 
(c) extract nj from C, and enumerate 0 n B into E(DITB- 

First notice that if B = (C then B is AO (since C is low, and every predecessor of a 
low enumeration degree consists entirely of AO sets, see [MC85]): thus Ep.pD CE 
Moreover EnDIT.B C B. Finally, if, for every j, there exists a finite set 0 such that 
0 n B C E@DTIB and 0 n B n [j, ?oo) =4 0, then EpDJT Bis infinite. 

We achieve 0 n B n [j, ?oo) =4 0, by looking for a finite set 0 with nj C T'P and 
0 n B n [0, j) = 0. Then either we never find such a 0, getting in this case nj c C CpB; 

or nj V C, and therefore 0 g B (assuming C = TB), and 0 n B n [j, +oo) =4 0. 
We assume throughout some fixed priority ordering of the requirements and 

sub-requirements, in which PD.TIB.j has higher priority than P(D.TB.j' if j < j'. 
The tree of outcomes. The tree of outcomes T C [2 U (co x 2)]`w is defined 

inductively as follows: 0 C T and 0 is an L-node; if a is an L-node then cVi C T 
and aVi is an N-node, for i C {0, 1}; if a is an N-node then aVi C T and aVi is a 
P-node, for i C {0, 1}; finally, if a is a P-node then a^(h, i) C T and a^(h, i) is an 
L-node, for h C co and i C {0, 1}. 

Given a, z C T, define a -< z if 

a C z or [a(i(a, z)) < T(i(a, z))] 

where i(a,^) = mini: a(i) 74 z(i)} if a g z and z g a: for this we define 
(h, i) < (h', i') if h > h' or [h = h' and i < i'], for every h, h' C co and i, i' C {O. 1}. 
Finally, let a CL z if a g z and a -< z. 

Let TP {a-h: a C T and h C co and a P-node} and let {va }c, -be a com- 

putable partition of co into infinite computable sets, where 

T = TP U {a: a C T and a N-node}. 
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We extend -< to T in the obvious way. We assume throughout a standard re- 
quirement assignment function R. assigning to each a C T a requirement R (a), 
where R(a) is an L- (N-, P-) requirement or sub-requirement according as a is an 
L- (N-, P-) node; moreover R(a) has higher priority than R(z) if a C T. 

The construction is by stages. At step s we define a string &, with 16s I < s 
together with the values of the parameters y(a, s), 8(a, s), n(o, s), O (a, s), h(a, S), 
L(a, s), <Ss for a C T U TP. At each stage s each parameter retains the same 
value as at the preceding stage, unless otherwise specified. For every a C T U T', 
y (a, s) is a parameter for some finite set which the construction wants to fix in C; 
8 (a, S) is a parameter for some finite set which the construction wants to keep out 
of C n (a, s) denotes the current witness to the requirement R (a). If at stage s, we 
take action at a (i.e., a C 6j, where a is a P-node, then we give outcome (h, i) at 
a if h is the canonical index of the (current assessment of the) finite set B n [0, j); 
and i = 0 if there exists some finite set 0 (a-h, s) such that n (a-h, s) C u(D(7 hZs) and 
O(a-h, s) n DI, = 0; otherwise i = 1. We let h = h(a, s) to be the <y.s-least element 
of a finite set L(a, s), where, for h, h' C L(a, s), we let h <,,, h' if there is "more 
evidence" at s of being Dh= B n [0, j) rather than Dh, = B n [0, j). 

Step 0. Let 60 0: for every a C T U TP, let n (a, 0) = h (a, 0) =t, and define 

y(a., 0) = (,0) = 0 (a, 0) = L(a, 0) =<fo 0. 

Step s + 1. Suppose we have defined a = 6s+l [ n, with n < s + 1. In order to 
define a+ = s?+1 [ n + 1, and the relative parameters, we distinguish the following 
three cases. 

Case 1. a is an L-node, say R(a) = Lp, and assume (d = (e: 

1. if there exists a finite set y such that e C (DI and 

yn U (z,S+ 1) O., 

then let a+ = a-0 and y(a+, s + 1) y for the least such y: 
2. otherwise, let a+ = aal. 

Case 2. a is an N-node, say R(a) = Nwv: let no n(a, s + 1) be the least 
number n such that n C v, and n V U <Y(-Z, s + 1) 

1. if no V Ws, then let a+ = a 1 and y(a+, s + 1)= - 

2. otherwise, let a+ = a-0 and 8(a+, s + 1) -{n}. 

Case 3. a is a P-node: assume R(a) = PJTB~j: if L(a, s + 1) - 0, then let 
h (a, s + 1) = 0. Otherwise, define h (a, s + 1) to be the <,,s -least element of L(a, s). 

Defining L(a, s + 1). If Dh is a finite set with max Dh < j, and h = h (a, s + 1), 
or h V L(a, s) and h does not have a precondition at s, then we assign to h a new 
precondition p (a, h, s + 1); if h has a precondition p (a, h, s) (i.e., p (a, h, s) ,), which 
was first assigned at a stage v < s, then we say that this precondition is satisfied at 
s + 1 if 

(Vx C Dh)(3v)[t < v < s + 1 and x V Bv]. 
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Define 

L(u, s + 1) = (L(u, s) - {h(, s + 1)}) 

U{h:p(u,h,s+1)J. and p(u,h,s+1) satisfiedats+1}. 

We order L(c, s + 1) as follows: for every h, h' C L(c, s + 1), let h <,Ks+ h' if and 
only if either 

* h, h' C L(u, s) and h <Ks h', or 
* h C L(u, s) and h' V L(u, s), or 
* h,h' V L(a,s) and h'< h. 

Then define J = c(h (a, s + 1). Finally, let n- = n (J, s + 1) be the least number n 
such that n c v- and n V UT Y ("' s + 1) 

1. if there exists some finite set D such that D n Dh(as+l) 0, and n- G Ts 

then choose the least such set D and define 0(J, s + 1) = D; let a+ = U-0 and 
8(a+, s + 1) = {n- ; 

2. otherwise, let a + = a1 and y(at s + 1) {n-}. 
Define 

Cs+l CS U 1 y(z, s)) U 8(Z, s). 

This concludes the construction. We now verify that the construction works. 

LEMMA 3.2. For every n, lim infs 6s [ n exists. 

PROOF OF THE LEMMA. Assume by induction that a,, = lim inf, 6s n exists. 
Clearly it is enough to consider the case when a,, is a P-node (R(an) P(DTBj5 

say), and show that there exist h and i such that a,,-(h, i) = lim infs 6s [ n + 1. Let h 
be such that Dh = [0, j) n B: notice that, for every v, if we assign a precondition 
p(an, h, v) to h at v, then there is a stage s > v at which this precondition is satis- 
fied. This shows that at infinitely many stages s, h c L(a,-, s), and consequently, at 
infinitely many stages s', we have that h = h(an5 s'). On the other hand it is clear 
that, if t is a stage such that Bs(x) Bt(x), for every s > t and x < j with x G B, 
then Dh(,,,s) C Dh, for every s > t. Therefore, for some i G {O, 1} we have that 
Un^(h5 i) = lim infs 6s [ n + 1. 

By the previous lemma, let f be the true path, i.e., f = Un an, where an 
lim infsb 6s[n. 

LEMMA 3.3. For every n, lims Y(an, s) andlims 8(an, s) exist. 

PROOF OF THE LEMMA. The claim is trivially true for n = 0. Assume by induction 
that the claim is true of n, and let tn be a stage such that, for every s > t,2, 

Y(an5, s) Y (an5 tn), and 8(an5 s) = 8(an, tn), and z g 6s for every - --<L an. For 
every z n a,, let y(z) = lims y(z, s) and e(z) = lims e(z, s). 

Case 1. If an is an L-node and R(an) = Ls, with D = De, then 8(an+,?) 0; if 
U + I = an, 1, then Y (an+?) 0; otherwise there exists a finite set y such that 

y n U 8(-C) 0 
T -_' UJ/ 
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and e E In': in this case Y(an+I) = y, for the least such y. 
Case 2. If a,2 is an N-node, then we first observe that na,, = lim, n (a,,, s) exists: 

na,,, is the least number n such that n (E 4,,, and n V UT4(, y(z). Then y(gn+l) 
{na, } and E (all+,) 0 if all+ a l'I 1I otherwise y (a,+ 1) 0 and E (a,?,) = {n(,} 

Case 3. Assume now that a,1 is a P-node, with R (al) =P(hBj/ . If an+I = a O, 
then as in the previous case, one easily sees that n= lim, n (&, s) exists, and 

(a,,1+) I {n;} and y (a, + ) 0; otherwise y (a,1) = {n} and 8(9n+1) = O- 

LEMMA 3.4. C is low and not computably enumerable 

PROOF OF THE LEMMA. In order to show that C is low, it is enough to show that, 
for every e, lims OfDs (e) exists. Given e, let n be such that R(a,) = Lie If there 

exist infinitely many stages s such that e EE DC , thenan Cf ande E ) with 

y (a,) C. This shows that e (E (De. 
It is straightforward to check that each N-requirement is satisfied, hence C is not 

computably enumerable - 

LEMMA 3.5. dege (C) does not contain any 0'-sinple set. 

PROOF OF THE LEMMA. We show that for every B such that B -e C, there exists 
an infinite I' set E such that E C B. 

Given any E' set B and any pair of enumeration operators D, T, define 

EBJ T= {x: (3s)(3a)(: j)[R(a) = P( .TpBj and x C 0(a, s) n B]}. 

Assume now that B _ e C: let D, T be enumeration operators such that B = DC 
and C = Te. Since B <e C, and C is low, we have that B E AO. Hence EB.I3J. 

is a E2 set. Moreover, by definition, EBA T C B. It is left to show that EB. 4!T is 
infinite. To this end, let j be given, and let a c f be such that R(a) = PRDIBT Bj; let h 
be such that a = a-h c f. The construction ensures that there are infinitely many 
stages s such that (a+ =) a0 C 6s, at which we find a finite set 0 = 0(J, s) such 
that 0 n B n [O, j) 74 0 and 0 g B (since n- E To, but n- V C). Then for each such s 
there exists x > j such that x E 0 but x V B, hence x E EB.,OT. This shows that 
EB,3 .P contains arbitrarily large numbers, i.e., EBI.(1)T is infinite. So EB = EB.WDI. is 
the desired set. -1 
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