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Abstract

We show that every incomplete XY enumeration degree is meet-
reducible in the structure of the enumeration degrees of the ©9 sets.

1 Introduction

Informally, a set A is enumeration reducible to a set B if there is an effective
procedure for enumerating A, given any enumeration of B. Following ?), and
?), this is usually formalized using the notion of enumeration operator:

A mapping ® : 2¥ — 2¥ is an enumeration operator (or, simply an e-
operator), if there exists a recursively enumerable set W such that, for each
set B,

P = {z(Fu)[(x,u) € W& D, C B]},

where D, denotes the finite set with canonical index .

If the r.e. set W, defines the e-operator ® in the sense of the above
definition, then we let ® = ®,. Let {W.z € w} be the standard enumeration
of the r.e. sets: we get a corresponding enumeration {®.z € w} of the e-
operators. If {W’s € w} is a recursive enumeration of W, (in the sense of
?, p. 34)), then we get a corresponding recursive enumeration {®3s € w}
of the e-operator ®,. We will refer in the following to some fixed recursive
sequence {W, sz, s € w} of finite sets, such that, for every z, {W?s € w} is a
recursive enumeration of W,.
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Given sets A, B, we say that A is enumeration reducible (or, simply, e-
reducible) to B (notation: A <. B), if there exists some e-operator ® such
that A = ®F.

It is easily seen that <, is a preordering relation. Let =. denote the
equivalence relation generated by <.. The =.-equivalence class of a set A
(denoted by deg.(A)) is called the enumeration degree (or, simply, the e-
degree) of A. On e-degrees the reducibility <. originates a partial ordering
relation (denoted by <). We therefore get a degree structure (D, <), where
D, is the collection of all e-degrees and < is defined by: [A]. < [B]. if and
only if A <. B. In fact ®. is an upper semilattice with least element 0. and
binary operation U: the least element O, is the e-degree of the r.e. sets and
[Al. U [B]. = [A® B]., with A® B = {222 € A} J{22z + 1z € B}. The
reader may consult ?) and ?) for an extensive survey and bibliography on
the e-degrees.

An important class of e-degrees is constituted by the ¥ e-degrees, i.e.
the e-degrees of the X9 sets. It is known, see ?) and ?), that the X9 e-degrees
coincide with the structure & = ©.(< 0'), where 0/ = deg (K), K being
the complement of the halting set K.

Although, under several respects, & can be viewed as the e-degree the-
oretic analog of the structure R of the Turing degrees of the r.e. sets (as
suggested for instance by Cooper: see the density theorem for &, ?)), there
are striking elementary differences between the two structures. For instance,
?) shows that there exist (in fact, low) e-degrees a,b € & such that aUb = 0,
and anNnb = 0..

We show in this paper another elementary difference between & and R,
that refers to the notion of branching.

Let B = (P, <) be a partial order. We say that an element ¢ € P is
branching (or meet-reducible) if

(Ja € P)(3b € P)lc<a,b&c=aNb.

An element ¢ € P is called nonbranching if it is not branching.

?) proved the existence of incomplete nonbranching elements in . Sub-
sequently, ?) proved that the nonbranching elements of R are dense. 7)
proved the density of the branching elements of fR.

We prove here a rather surprising result for &: all elements a € & such
that a < 0. are branching in &. In fact, we prove

For every pair of incomplete ¥ enumeration degrees cy, ¢, there exists a
pair a, b of enumeration degrees below 0 such that, for every 7 € {1,2}:

(1) aUc;,bUc; £ ¢, and



(2) ci=(aUc;)N(bUc).

For simplicity, we will prove the following weaker version of the above
theorem, and we then will explain how to modify the proof, in order to
obtain Theorem 1 above:

For every incomplete X9 enumeration degree ¢ there exist enumeration
degrees a, b below 0’ such that:

() aUe,bUc £ ¢, and
(2)c=(aUc)Nn(bUc).

In the following, suppose that L is a X9 set such that I <. K, and suppose
we are given some Y9 approximation {L°s € w} to L, i.e. a recursive sequence
of finite sets such that

L= {2(3t)(Vs > 1)z € L°]}.

For more on Y-approximations, see ?). Finally, Let K= = {2 < sz ¢ K*}
(where {K*s € w} is a recursive approximation to the halting set K).

2 The requirements

In the following we will exhibit a construction by stages. At stage s of the
construction, given any expression A, we will often write A[s] to denote the
evaluation of the expression at stage s: see 7, p. 315) for this notation.

If at stage s we define the current value of a set X[s], we will write
N\, X[s] to mean that we enumerate = (or x gets enumerated) into X[s]
(i.e. © € X[s]) and x / X[s] to mean that we extract @ (or x gets extracted)
from X[s] (i.e. @ ¢ X[s]). If E is a finite set, we use similar notations:
EN X[s] (ie. 2\, X[s], all z € F)and E 7 X[s] (i.e. x 7 X][s], all
r € F).

Let {(®;,U;)}ico be an effective listing of all pairs of e-operators.

In order to prove Theorem 1, we want to construct X sets A, B satisfying
the following requirements, for every ¢, k € w.

Pii Z;=0M =P = 7, =TF
NA - Az@éjK:Aik
NP: B=0l =K =AL,

where T';, Ay 1, Ap i are e-operators to be constructed.



We say that a requirement R is a P-requirement if, for some ¢, R = P;;
in a similar way, we talk about A -requirements, N"4-requirements and N B-
requirements.

We order the requirements with the following linear ordering (called the
priority ordering of the requirements):

A B A B
P < NP < NP <Pt < Ny < NG,

with 7 € w.

3 The strategies

We briefly outline the strategies used to meet the requirements.

3.1 The atomic modules
3.1.1 The requirement P;

For simplicity, let us drop the subscript i; let Z = ®49F 0 YBSL,
If all numbers y < = have been chosen, then choose z;

1. if Z(x) = TT(x), then do nothing;
2. if 2 € Z — T, then choose finite sets a, A4, 3, AP such that
(r,a@M) e (z,801%) €W

and
a®dMCAaL oA CBOL,
and enumerate the axiom (z, A U \B) € T}

3. ifx € TV — Z and x € 49" — UPSL then choose some finite set [
such that

(a) F C A and 2 € ®9L: in this case restrain F' C A;

(b) wait for z /* ®4%L (thus = /' T'T, due to some L-change in the
[-use of z);

(c) drop any restraint;

if 2 € " — Z and = € UP®E — ®4%% then choose some finite set F
such that



(i) F C B and x € U%L; in this case restrain F' C B;

(i) wait for = /* B (thus # / I'l, due to some L-change in the
[-use of z);

(iii) drop any restraint.

3.1.2 The requirement V!

For simplicity let us drop the indices A, k;
If all numbers y < @ have been chosen, and no such y is currently at 2(a),
or 3(i) of the basic module below, then choose ;

1. if K(x) = A%(z), then do nothing;
2. if x € K — A", then choose a number ¢, and define ¢, € A:

(a) wait for ¢, \, ®;

(b) choose an axiom (x,A) € ® such that A C L and enumerate the
axiom (z,\) € A;

(c) wait for = /* AL
(d) return to (a);

3. if 2 € A¥ — K then extract ¢, from A;
(i) wait for ¢, /~ ®L;

(ii) return to 1.

The numbers ¢, will be called followers.

3.1.3 The requirement AP

The module in this case is of course similar to the module for N, but
replacing A wiwth B and Ay, with Ag ;. We skip the obvious details.

3.2 Analysis of outcomes

We briefly discuss the possible outcomes of the above strategies.



3.2.1 The requirement P;

For simplicity, let us drop the subscript .

If no = gets stuck at 3(b) (with z ¢ WBSE) or 3(ii) (with ¢ ®4%L), then,
for every x, we get Z(x) = T'Y(x). In particular, for any given =z, infinitely
many loops through 3(c) or 3(iii) yield z ¢ Z UT?L.

Otherwise, for some z, we get the finitary outcome 3(b) or the finitary
outcome 3(ii), which imply z € ®49F — UBOL o 3 ¢ YBHL — $ADL | pespec-

tively.

3.2.2 The requirement V!

For simplicity, let us drop the subscript k.

The finitary outcome 2(a) corresponds to ¢, € A — ®L; infinitely many
loops through 2(d), in relation to some = corresponds to the case ¢, € A—®".
The finitary outcome 3(i) corresponds to ¢, € ®F — A.

If no x gets stuck at 2(a) or 3(i), and does not yield infinitely many loops
through 2(d), then we get K = A¥ (contradicting that I <. K).

3.2.3 The requirement AP

See the discussion relative to the outcomes of N2, but replacing A with B
and AAJg with AB,k-

3.3 Interactions between requirements

The extracting activity of the A-requirements conflicts with the fixing ac-
tivity of the P-requirements. We explain below the nature of these conflicts
are and how to combine the strategies for the requirements in order to solve
the conflicts.

3.4 A P-requirement below an N-requirement. The
modified P-module

We consider only the case of an N -requirement of the form N: the case of
a requirement of the form AP is similar.

The problematic case is when we go through 3. of the basic module of

A on behalf of infinitely many numbers z, ending up with an infinite set

V' (consisting of all the numbers ¢, corresponding to those numbers @ such

that ¢ K) being extracted from A. How does P, acting after N}, account

for this infinitary extracting activity?



3.4.1 Updating T,

Activity on behalf of P; mostly consists in enumerating I';-axioms. We need
to consider what happens when, for some z, at some stage, z € 7; = CI)?@L N
WP and we consequently enumerate an axiom (z,\) € Ty, with A C L, in
order to have z € I'F'. Subsequent extracting activity demanded by N may
force z to leave ®%" and, thus, Z;, so that we need to extract z from T'F.
Since I <. K, it follows from the discussion about the outcomes of AN
that there must exist some ¢, such that A(c,) # ®F(c,). Suppose that we are
able to pin down such a number ¢, through a suitable length of agreement
function ((k, s) (with liminfs ((k, s) = ¢,) and that we are eventually working

at stages s such that ((k,s) > ¢,. Let s9 be such that

(Vs > so)[l(k,s) > c, & (Ve, < ey)le, € A= ¢, € A7)

Enumerating I';-axioms at stages s > sy At stage s > sq, let ((k,s) =
¢y We distinguish two cases.

1. if ¢, ¢ ®L then we extract all (already appointed) ¢,, > ¢, from A* ;

2. if ¢, € ®L, the we extract the finite set {c e, < ¢, &w € K}.

We have now two possibilities related to ¢,.
The case in which ¢, ¢ ®F corresponds to a possibly infinitary outcome
for N, since there can be infinitely many stages s such that ¢, € ®L[s]:

1. while working at stages s > sq such that ((k,s) > c,, we assume
c, € ®L]s], thus we enumerate axioms (z,\) € T;, with \ containing
the ®L-use of ¢, (i.e. ¢, € ®}). Since ¢, ¢ ®L it follows that none of
these axioms applies to get z € T'F,

2. if we work at some stage stage s > so such that ((k,s) = ¢, then in
this case, since we extract all ¢, > ¢, from A® (and eventually from A,
since this action is repeated infinitely often), it follows that for every
axiom (z, A) € I';, which is enumerated at such a stage, and for every
¢y > ¢, we have that ¢, ¢ A, thus no such number ¢, is used in getting
z € Z; at stage s > sq s, therefore we can freely extract the recursive
set {¢,¢, > ¢, }, without any danger of extracting z from Z; and, thus,
without any interference of N with P;.

The case ¢, € ®L corresponds to the finitary outcome in which we appoint
only finitely many followers ¢, on behalf of N4, which can easily be accounted

for by P;.



It follows from the preceding discussion that the axioms (z, \) € I'; which
are enumerated at s > so will assume (the true assumption) that only the
elements of the finite set {c,c, < ¢, &v € K} are in A, among all numbers
c.’s.

In conclusion, there are only finitely many numbers z such that (letting V'
be the possibly infinite set eventually extracted by A}) we have that 2 7,
due to V' 7 A. These numbers are included among those numbers y for
which we enumerate axioms (y, A) € I'; before stage sq.

3.5 The N-requirements acting after a P-requirement

We consider only the case of an A -requirement of the form N, the case of
NP being similar.

It is clear from the discussion in the previous subsection that the ex-
tracting activity of N interferes with the strategy of a P; in that the NA-
extractions may result in forcing numbers z to leave ®%%: thus » / 7,
and this implies that we need z * T'F, if we hope to maintain the equation
Z; =Tk,

First of all we notice that, for the same reasons as in Subsection 3.4,
we do not have to worry for those numbers z such that we appoint axioms
of the form (z,A) € T; only while acting after A and at stages at which
U(k,s) > ¢y, where ¢, is a number as in the discussion of Subsection 3.4, for
which A(e,) # ®¢(c,).

We deal with the other cases as follows: if z CI);L@L, due to the extract-
ing activity of N, then we restrain some finite /' C B such that z € WF9L,
If, following this action, no L-change occurs yielding ¢, ,/* UF®L (and thus
z /' TF), then we win the requirement P, since we get »z € WPsL _ AP,
otherwise we get z / T'F, thus restoring the equation Z;(z) = I'F(2): in this
latter case we drop any previous restraints.

This restraining activity does not prevent lower priority requirements
from being satisfied, since it is finitary, referring, as we shall show, only to
finitely many numbers z’s.

A more detailed discussion of how to combine the strategies will be in
reference to the tree of outcomes, described in next section.

4 The tree of outcomes

In this section we define the tree of outcomes, which is going to be a subset
T C w<¥. Let R be the set of all requirements, and let P and N denote the P-
requirements and the A'-requirements, respectively. The set N is partitioned



into N4 e NP, the sets of the N4- and the AN'P-requirements, respectively.
Together with the tree of outcomes, we will define also the requirement as-
signment function, i.e. a function R : T — RU (N x P)U (P x w).

The elements of T will be called strings or nodes. We will distinguish
the P-nodes, the N'-nodes (partitioned into the A~ and the A5-nodes), the
(N, P)-nodes (again, partitioned into (N4, P)-nodes and (NB, P)-nodes),
and the I'-nodes. If o is a P-node, then R(o) is a P-requirement; if o is
an N-node, then R(c) is an N-requirement; if ¢ is an (N, P)-node, then
R(c) € Nx P, ie. R(c)= (N,P), where N is an N-requirement and P is
a P-requirement; finally, if o is a I'node, then R(o) = (P, x), where P is a
P-requirement and = € w.

The meaning of the I'-nodes and the (AN, P)-nodes will be explained in
Section 4.2.

T and R are defined by induction as follows (we assume that N x P and
P x w are lexicographically ordered, with respect to the priority ordering of
R and the natural ordering of w; when referred to requirements, the term
“least” below, unless otherwise specified, refers again to the priority ordering
of the requirements):

1. 0 €T; 0is aP-node; R(c) = Po;
2. if 0 € T and o is a P-node, then 670 € T; 070 is a I-node; finally,

R(070) =least{(P,z) e Px w(Vr Co)[R(7) € Pxw
= R(7) < (P,2)& (37 Co)[r € P&R(7) = P]}.

3. if o € T and o is a ['-node, then 670 € T and "1 € T; for 1 = 0, 1,

R(c) =least{N € N(V7r C o)[R(7) € N= R(1) < N'}];

4. if 0 € T and o is an N4-node, then, for every n € w, o™n € T; 07 n is

an (N4, P)-node; R(o7n) = (R(c), Po).
Finally, let o(c™n) = o
5. if 0 € T and o is an N'5-node, then, for every n € w, 0™n € T; o™ n is
an (A5, P)-node; R(c"n) = (R(c), Po).
Finally, let o(c™n) = o
6. if o € T and o is an (N4, P)-node, and, say, R(c) = (N4, P) with

P < N4, and
{REPP<RSNA £



then let 0™n € T, for every n € w; the nodes ™ n are (N4, P)-nodes;
we define R(0™n) to be (N4, P’), where P’ is the least requirement
R € P such that P < R < N4,

Let o(c"n) = o(c), for every n € w;

7. if 0 € T and o is an (N4, P)-node, and, say, R(c) = (N4, P) with
P <N, and
(REPP<R<NAY =0

then let 0™ n € T, for every n € w; the nodes 0™ n are N%-nodes; we
define R(c7n) to be the least N'B-requirement N > N4,

8. if ¢ € T and o is an (N5, P)-node, and, say, R(c) = (N5, P) with
P < NE, and
{(RePP<RSNBYAD

then let 0™ n € T, for every n € w; the nodes o™ n are (NZ, P)-nodes;

we define R(6™n) to be (N, P’), where P’ is the least requirement
R € P such that P < R < N5,

Let o(c"n) = o(c), for every n € w;

9. if ¢ € T and o is an (N5, P)-node, and, say, R(s) = (N5, P) with
P <N, and
{REPP<RSN}I =1

then let 0™ n € T, for every n € w; the nodes 0™ n are N%-nodes; we
define R(0"n) to be the least P-requirement P > A5,

We will sometimes write 0 € TV, ¢ € TNA, o€ TNB, o if o is an N-,
NA- NBonode, respectively.
We notice:

1. if o is an (N, P)-node, then o(c) denotes the largest A'-node 7 C o;

2. if o is an N-node, and R(o) = Ng, then o is immediately followed by
k41 (N, P)-nodes 1g,..., T, where R(7;) = (N, P;), with P; the i-th

P-requirement in order of priority;

3. if f is any infinite path through 7" and ¢ C f is a P-node, then for
every x € w there exists exactly one I'-node 7 such that ¢ C 7 C f and
R(t) = (R(o),z), and for no 7/ C o can we have R(7’") = (R(c),y),
for any y.

10



4. if R(o) = Pi, we will happen sometimes to write
Zy, =000 =P = 7, =TI

instead of
Z; = 0% = PPl = 7, =T7

(and similarly 7, for 7Z;, ®, for ®;, etc.) Similarly we may write
N} iA=L =K=A,

instead of

N A=) = K=A],
(and similarly ®, for @, etc.) if R(c) is an N 4-requirement; we use
similar notations for A"®-nodes.

Let {{,0 € T} be a recursive partition of w into infinite recursive sets.
The elements of ¢, may be chosen to be appointed as o-followers.

4.1 Notation and terminology for strings

We use standard terminology and notations for strings. In particular, given
any o € T, let |o| denote the length of o.

If o €T, and n € wis such that " n € T, then n is an outcome at o.

Given o,7 € T, let 0 < 7 if and only if either ¢ C 7 or y(o,7) | and
o(y(o,7)) < 7(y(o, 7)), where y(o,7) = py.ly < lo|,[7].0(y) # 7(y)]. We
say that o is to the left of T (notation: o <y, 7),if ¢ < 7, but o € 7. Given
a string o and a number y, the symbol o [ y denotes the initial segment of o
having length y. If |o| > 0, then let 6= =0 | |o| — 1.

Finally, if 7 C o and 7 = 77"z, then we say that z is the outcome at 7~
along o.

4.2 Analysis of tree outcomes.

We briefly describe the intended meaning of the outcomes of the tree of
outcomes.

1. If o is a P-node (say R(c) = P;), then we observe that we have no
distinct outcomes at 0. We regard o as just the node at which we start
our strategy for the corresponding P-requirement, by routinely updat-
ing the operator I',. The eventual success of the strategy will need
the cooperation of the lower priority A-requirements. The updating
strategy will be dispersed through the infinitely many I'-nodes 7 O o
with R(7) = (Pi, x), for some z.

11



2. Let o be a I''node (say R(c) = (P;,x)). The I''node o is devoted
to defining suitable axioms (x,\) € I';, where 7 C o is such that

R(7) = P;. The tree outcome 1 corresponds to the finitary outcome
T € CI)?@L N \II?GBL. We use the symbols

to denote suitably chosen finite sets «, 3, A4, AP such that, at stage s,
v e o gl

and a @AM C A@ L, and & AP C B@ L. We enumerate an axiom
(x,M071,5)) € T, where A\(0"1,5) 2 M U NB, and (071, s) is large
enough to contain all finite sets A(p, s) such that p C o and A(p,s) C L°.
The sets A(p, s) have the following meaning.

If v is a [-node, and p = v"1 C 7, then A(p,s) = A (p,s) U AB(p, s).

If v C o is an N -node, and £ is the outcome at v along o, i.e. p =11 C
o, then we single out some v-followers ¢ such that ¢ € ®Z[s], we will
denote by A(v, ¢, s) a suitably chosen finite set such that A(v,¢,s) C L*

and ¢ € &) 1 if C(p,s) the set of all such v-followers, then finally

let
Alp,s) = U Av, e, s).

c€C(p,s)

Similarly, if v is an (N, P)-node (where, say, P = P;, and 7 C o is the
corresponding P-node) such that v C o, n is the outcome at v along
o,i.e. p=v"n C o, then we will denote by A(p,s) the finite set

Alp,s) = U Av,y,8),

yEE(v,s)

(dove E(v,s) is the current guess at the (finite) set of elements leaving
Z; as a consequence of the extracting activity of R,y), but E(v,s) C
I'L at stage s: by A(v,y,s) we mean some suitably chosen finite set

such that y € 2% and AMwv,y,s) C L. Tt follows that A(p,s) C L°.

Notice that any L-change at some later stage ¢, relative to any of these
sets A(p,s) (i.e. A(p,s) € L"), will entail A\(¢"1,s) € L'. This is a
crucial point for the success of R,: if 7 is on the true path, then the
construction guarantees that all axioms (2, A) € I'; defined while acting
at a stage s at some string to the right of the true path is such that A
will contain some set A(p,s) such that A(p,s) Z L.

12



At 6”1 we restrain « € A and 3 C B. Following this restraining action,
if A(6”1,s) C L, then the only A'-requirements that are entitled to force
x /" Z; are those of higher priority than R,.

Notice that we drop any restraint when we move past ¢ 0: the tree
outcome 0 corresponds to the case z ¢ ®#%L N YBHL,

. Let 0 be an N-node. Assume for simplicity that o is an N4-node, the
case of an N%-node being similar. We define a length of agreement
function {(o, s), and we show (with o on the true path),

A= CI)C]j & lim/{(o,s) = 4o0.

On the other hand, the construction guarantees that
A=0l =K< L:

indeed, if A = ®L then K == AL (i.e. equality modulo a finite set),
with A, the e-operator built at o by the construction.

i From the preceding remarks it follows that liminf, (o, s) = ( is finite.
We give outcome {(0,s) at o at s.

The outcome ((o,s) will be of the form ¢ = (¢, u): we aim at getting
either ¢ € A — ®L (and in this case, for every s > u, ¢ € A®), or
c € ®L— A (and in this case, for every s > u, ¢ € ®L[s]). The numbers ¢
(called o-followers, see Definition 4) will be chosen from ¢,: the follower
of z, when chosen at some stage s, will be denoted by ¢(o, z, s): since
it is never changed, after being appointed, i.e. ¢(o, z,1) = ¢(0, 2, $), for
all t > s, we will simply write ¢(o, z) instead of ¢(o, z,t) at all t > s.

If £ = (e,u) is the outcome at o at stage s, then (located at o () we
extract from A® a finite set V(07 (, s), where V(c7(, s) consists of

e all the numbers ¢ < / such that ¢ has been appointed for some
zoie. d =c.,and 2z ¢ K, if ¢ € ®L[s] — A%,

e all the numbers ¢’ < { such that ¢ has been appointed for some z,
ie. ¢ =c,,and z ¢ K together with all ¢ > ¢, if ¢ € A* — ®L[s].

We refer the reader to Subsection 3.4 for a discussion relative to this
extracting activity. Notice however that, for the actual definition of
{(o,s), if £ = liminf, {(o,s) then we do not have A({) # ®L((), but
rather A(c) # ®L(e), if { = (c,u), for some u.

13



4. Let o be an (N, P)-node. Assume for simplicity that o is an (N4, P)-
node, the case of an (AV?,P)-node being similar.

Let R(o) = (N2, P;), and let # C o be such that R(s) = P;. At
this node we record the effects on R(7) of the extracting activity done
on behalf of R(o(c)), with N of lower priority than P; (recall that
R(o(o)) = NA). For sismplicity, let v = o(c) and v+ = v C o). Sup-
pose that at stage s we need to extract V(v*,s) from A, as demanded
by the strategy for R(v) (for simplicity, let V = V(v s)). Let us use
the symbol F(o,s) to denote the finite set of elements such that we
have:

V /A= E(o,s) / Z;& E(o,s) CTE

(where, for any x € E(o,s), axioms of the form (x,\) € T'; have been
previously defined).

We give outcome h = h(o,s) at o at s, where h is the canonical index

of F(o,s).

(In order to define F(o, s), we use an auxiliary set H (o, s), which keeps
track of those numbers x such that there has been evidence at stages
t < s that the extraction of V(v*,t) from A entails z / ®#%X. The
elements of H(o,s) are ordered by <2: intuitively, @ <2 2’ if x has
stayed in T'L, longer than z’. At stage s > 0, we let F(o,s) be the
longest initial segment - according to <2 - of H(o,s — 1) consisting of
the numbers that are still in T'L at stage s. At the end of stage s we
update H(o,s — 1) by enumerating in H(c,s) the elements of F(o,s)
plus the numbers = such that, at stage s,the extraction of V from A
entails x / @490,

If E(o,s)# (), we restrain at ¢~ h some finite set F' C B such that F C
WISl We use the symbol 8(67h, s) (a(c”h, s) if o is an (NB, P)-node)
to denote such a finite set F': in fact, for every @ € F(o,s), we suitably
choose finite sets B(0"h,z,s) (a(oc”h,z,s) if o is an (N5, P)-node)
and A(o"h,z,s) such that @ € WA hes)8NThes) and B(o"h, x,s) B
AMo"h,x,8) € B @ L[s], and we restrain (o h,z,s) (a(c"h,x,s) if
o is an (NE, P)node), and we let 3(c"h,s) = U$€E(U7S)ﬂ(aAh,x,3)
(a(o"h,s) = Uer(M) a(c"h,z, ), if o is an (N5, P)-node).

If o is on the true path, we will show that A = liminf; (0o, s) exists.
There are two possibilities:

o If we get outcome 0 at o infinitely often, then there is no damage
caused to R(7) by the extracting activity done on behalf of R(c),
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since, for all possible & such that @ / 7Z; due to R(o)-extractions,
we get x /' T'L due to infinitely many L-changes.

e Otherwise D), # (). Then, either for some x € D), our restraining
activity at 0”h gives # € WBH — $49L: this yields an outright
win of R(x); or x € ®4PL N UBIL for all z € Dy, showing that
R(o)-extractions do not interfere with the equataion Z; = I'L.

5 The construction

The construction is by stages, aiming to define suitable recursive sequences
of finite sets {A®s € w} and {B®s € w}, such that the X9 sets

(3)(¥s > 1)z € A}
(3t)(Vs > t)[z € B*]}

satisfy the requirements of Section 2.

At stage s we define a string 6, € T (with |65] = s), together with the
values of several parameters. The intuitive meaning of all parameters (except
(o, z,s), where 0 € T and z € w) is explained in the previous section:
(o, z,s) is an auxiliary parameter needed to define {(o, s.

A
B

{z
{z

For every o € T' and stage s, let

t(o,s

) = max{t < so C 6;} if any
s otherwise

Throughout the following, while acting at o at stage s, given any e-
operator ® and any X9 set X with a ¥9-approximation {X'},c,, we write
z € ®X[s] if

(FF)[{(x, F) € . & (Vu)[t(o,s) <u<s= F X"
It is clear that if we act infinitely many times at o, then we get that {®¥[s]} e,
is a X9 approximation to ®5.

Similarly, we will write € L[s], if

(Yu)[t(o,s) <u<s=a e L"].

Let P(x,s) be some relation. If P(x,s) holds, then let

tx(s) =least {tP(x,t) & (Vu)[t <u<s= Plx,u)l}:
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If # and s are as before, we say that we consistently choose x at stage s if =
is the least number among those with minimal ¢,(s) (in fact @ can be (the
code of ) a finite set or a pair of finite sets, etc.).

At step s, any parameter p retains the same value as at the preceding
stage, unless otherwise specified by the construction. Any parameter p is by
default undefined (i.e. p =1 if p ranges through the numbers, and p = 0, if
p ranges through the finite sets).

The e-operators I';, Ay ,, Ap, will be defined through recursive approx-
imations (modulo identification of each e-operator with the corresponding
r.e. set): at stage s we define I';, A% AL .

5.1 Step 0
Let 6 = 0. For every o € T let

Let h(0,0) = 0. For every o € T and z € w, let
a(o,2,0) = B(o,2,0) = Ao, 2,0) = 0;

let TI(c, 2,0) = w; let also ¢(o,2,0) =1, £(0,0) =0, T) = A%, = A},
Finally, let A° = () and B° = (.

Il
=

5.2 Step s+1

Assume that we have already defined 511 [n (with §541 [0=0). Ifn < s+1
then we proceed and define ot = 6,41 [ n + 1 according to which of the
following cases applies. Otherwise we go to step s + 2.

In the following, let

TASH = (AU UTEU a(t,s+1)) — UTEO’,T_ETNA V(r,s+1)
Bt = (B* U UTEU B(r,s+1)) — UTga,T—eTNB V(r,s+1),

i.e. “A*t! and “B**! are the current values (at stage s + 1, before acting at

o) of A*T! and Bt

5.2.1 o is a P-node
Let o7 = 670. Go and define 6,41 [n+2,ifn < s+ 1.
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5.2.2 o is a I'-node
Assume that R(o) = (P;, z), where
P Z; = oMk = ybel o 7. 7L

with 7 C o such that R(x) = P;. In the following, drop the subscript ¢ and
write ' =T,
We distinguish three cases:

1. Ifx € @9 [s + 1] N B[54+ 1] — TL[s + 1], then let oF = 671 and
choose consistently (according to Definition 5) finite sets

a(ot, s+ 1), 80t s+ 1), M (0T, s +1),A\P (0%, s+ 1)

such that

and
alct,s+ 1)@ )\A(U"',S + 1) C("Ad L)[s + 1]
Blot,s+ 1)@ )\B(U"',S +1)C(°Bd L)[s+1].

Let MoT,s+1) = )\A(U"',S + 1)U )\B(U"',S +1).

I-updating. Finally, enumerate (z,\) € I'**! where

A=AoT,s+1)U
U{)\(p,s +1)p Co &[p~ € TV or an (N, P)-node or a I'node]}.
2. If 2 € TE[s + 1] — (™9 [s + 1] N UBPL[s 4 1]), but there exist finite
subsets a, 3, A, AP such that M, AP C L[s 4 1] and
(ra@ M) e @ (e,80 7)€ W°

and

an U{V(Z/,s +lw Cokv eT™} =10
gl JiVirs+ 1w Cokv™ e T} =10
then let o7 = 671 and choose consistently some such finite sets
aloT, s +1),8(ct, s+ 1), (ot s+ 1), \P(cT, s+ 1)

and enumerate a(ct, s+ 1) C At and B(ot,s + 1) C Bt
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3. otherwise, let ot = ¢70. Note that in this case
alot,s+1) =BT, s +1) = (oT, s+ 1) =AP(cT,s +1) = 0.

Whatever the case, define A\(ot,s+ 1) = M(ot, s + 1) UANB(at, 5+ 1).
Go and define 6,11 [n+2,if n+2 < s+ 1.

5.2.3 o is an N4-node
Assume that R(c) = N, where

N A=0" = K =A".

For simplicity, we will omit the subscripts & and o, thus writing ® for ®,
and A for A,.

In order to measure the agreement between A and ®”, we now introduce
a suitable length of agreement function. Let D(o,s + 1) the collection of
o-followers so far defined, i.e.

D(o,s+ 1) ={c(F2)[e=c(o,z,s+ 1)]};

assume that at stage s we have also defined the (cofinite) set TI(7, z,s) of
numbers, for every 7 € T and z € w.

Tet

lo,s+ 1) =least{(c,t)c € D(o,s+1)&
(Vu)t <u<s=
[[e € A& e € AT & (Fv € (o, (e, 1), st <v<s+1&e ¢ d"[]]]V
Vu)t<u<s+1=
[c € ®"[u] & (Fv € (o, (e, 1), s))[[t <v < s&ed A or ¢ ¢ “AT]]}.

If no such (e, t) exists, then let {(o,s 4+ 1) = s+ 1.
Assume that ((o,s 4+ 1) = (c¢,t). In the previous definition, let v be the
least stage such that v € Il(o, (¢,t),s) and t < v < s+ 1 and

Vu)t <u<s=[c€ A"&ec €A &e g dF[v]]

or

Vu)t<u<s+1=][ce CI)L[u] &led A or ¢ ¢ “A*H]]

(let v = s+ 1, if, for every u < 5. ¢ € A* but ¢ ¢ “A*t!).
Let H(o, (c,t),s+ 1) = {rr > v}.
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We notice that if there exist infinitely many stages s+ 1 such that {(o, s+
1) = {c,t), then either c € A—®% or ¢ € ®'— A. Tndeed, it is clear that either
c € Aor ce ®. If for instance ¢ € A, then, since lim, minTl(c, (¢, 1), s) =
+00, we have that there exist infinitely many stages v such that ¢ ¢ ®[v]
(the exist infinitely many distinct v since v € Il(o, (¢, 1), s) at infinitely many
stages s): a similar argument works if ¢ € &,

Let ot = o« (0,5 + 1).

If ((0,5+1) = {c,t) and ¢ € ®L, then we say that [ is a finitary outcome.

We say that s + 1 is o-expansionary if

lo,s+ 1) > max{l(o,t)t < s& o C &}.

We distinguish the following two cases. Let (0,54 1) = ¢ and assume
that { = (¢, t):

(a) s+ 1 is o-expansionary.

In this case, let
z = least{yy € - A[s + 1 & e(a,y,s) T}

define ¢(o, 2,54 1) to be a new ¢ € &,. For simplicity, for z = 2 and
for all z such that ¢(o,z,8) |, let ¢, = ¢(o,z,8+ 1). Then

o let ¢, € At

e consider all number z such that
1. e, <V
2. re KT - Alls +1];

For each such c,, if ¢, € ®*[s41], then choose consistently a finite
set A(0, 2,5+ 1) such that A(o, 2,5+ 1) C L*T! and

(z, Mo, 2,5 +1)) € &*F.
Enumerate (z, (0, 2,5 + 1)) € AstL,
(b) If s + 1 is not o-expansionary, then we further distinguish two cases:
1. ¢ € ®F[s + 1] — 7A**1. In this case, let
Viet,s+1)={ce D(o,s+1)c < (&2 ¢ FSH}.

Let V(ot,s + 1)  A**t') by letting y ¢ A*t!) for every y €
Viet,s+1).
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2. If ¢ € A+ — ®L[s + 1], then let
Viet,s+1)={ce D(o,s+1)[e <&z ¢ FS—H] orc> U}
Let V(ot,s+1) / A5

In both cases, let ¢, € A**! for all z such that z € T and c, < /.
Let

Clot, s+ 1) ={c(F2)(Fu)[e = c(o,2,s + 1) &
(e,u) <l&ec e ® s+ 1)]&(V)[u<t <s=>ce Al&ece A}

For every ¢ € C'(c%, s+ 1) choose consistently (see Definition 5) a finite
set A\(ot, ¢, s+ 1) such that

(e, Mot e, s +1)) €t & Aot,e,s+1)C Lis+1].
Finally, let

Mot,s+1) = U Mot,e,s+1).

c€C(ot,s+1)

Go and define 6,11 [n+2,if n+2 < s+ 1.

5.2.4 o is an (N4 P)-node

Assume that R(c) = (N, P): let v = o(c), and let # C v be such that
R(7) = P; finally assume that (omitting obvious subscripts)

N A=TF= K = AL
and
P 7 = oAl — uhel o 7 1l
Let also
Vii= U Vins+1),
ugcr,u—ETNA
‘/551 = U V(V75+1)7
ygcr,u_ETNB
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Updating H(c,s) If there exists x € H(o,s) such that
(Fu)[to,s+1) <u<s+1&z ¢ T [u]]
then let & be the least such number and let
BE(o,s+1)={y € H(o,5)& <} &};

if no such x exists, then let F(o,s+ 1) = H(o,s+ 1).
Let

H(o,s+1)=F(o,s+ 1)U
{yy € TE[s + 1] &y ¢ @~V D5 1]},
Given any = € H(o,s+ 1), let
e(o,z,s + 1) =min{t < s+ 1(Vu)[t <u<s+1= 2T ]}
Finally, for every x,2’ € H(o,s+ 1), let @ <5t 2 if and only if
e(o, 2,5+ 1) <e(o,2',s+ 1) or [e(o,z,5+ 1) =e(a,2', s+ 1) &z < 2'].
Let h(o,s+ 1) be the canonical index of E(c,s+ 1). Define
ot = o h(o,s+1).
For every y € E(o,s+ 1), let
Bloet,y,s+1)= U{ﬂ(ﬂ",t)ﬂ' C ' & 7' is a I'-node
ER(7) = (R(m),y) &0 <t <s+1&(FN)[(y, A) e TL =T} —VE

Let
ot = | Blotgs+1)s

yE€E(o,5+1)

let B(ot,s+ 1)\, B*t', by defining y € B!, for every y € B(ct, s+ 1).
Since E(o,5+1) C TE[s+1], for every # € E(o,s+ 1) choose consistently
(see Definition 5) a finite set A(o*,y,s + 1) such that

(e, Mot e, s+ 1)) el & AMot,y,s+1)C Lis+1].
Finally, let

Mot,s+1) = U Mot y,s+1).

yE€E(o,5+1)

Go and define 6,11 [n+2,if n+2 < s+ 1.
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5.2.5 o is an N'P-node

Assume that R(o) = NP. This case is similar to the case of an AN-node,
but interchanging A with B, while considering the requirement

NP B=0;=K=AL

5.2.6 o is an (NP P)-node

This case is similar to the case of an (A4, P)-node, but interchanging A
with B and ® with W, while considering the requirements (assuming that

R(o) = (N7, Pi) _
NP B=0&; =K =AL

and
P : Z; = oM = uBel — 7. - 1L

Notice also that in this case we define finite sets a(o*,y, s + 1) (instead
of B(ct,y,s+ 1)) and a(c™,s+ 1) (instead of S(ct,s+ 1)), and enumerate
into A*T! the elements of a(ot, s+ 1).

5.2.7 Final updating
At the end of stage s+ 1 let

As—l—l — 5S+1As—|—1

and
Bs—l—l — Sst1 Bs—l—l

For every o C 6441, let

Lo = T5 0 {{e, A, ) N\ T}
A, = AL U{(a A, A) AT
A, = A, U{{z, N, 0) L AF

6 The verification

We first show

For every n,
(1) o, = liminf, 6, [ n exists;

(2) for every i < n, 0; C 0ip1;
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(3) lims (o, 8), limg (0, s), and lims A(0,,, s) exist and are finite; more-
over, if A(oy,) = limg (o, s), then A(o,) C L.

(4) if 7 C 0, is an N-node, and ( is the outcome at 7 along o,, then
lims C' (77, s) exists and is finite.

(5) if 7 C 0, is an (N, P)-node, with R(7) = (N, P;), and = C 7 such that
R(7) = Pi, and h is the outcome at 7 along o, then

Dy = {x(3s)[x € H(r,s)] &z € TL}.

The proof is by induction on n. For n = 0 the claim is trivial, being
oo = 0.

Suppose now that the claim is true of n. Let o, = liminf, é, [ n, and for
every 7 < o, let a(7) = lim;s a(1, s), (1) = lim; B(7, ), A(7) = limg A(7, s).

Moreover,

Let t,, be a stage such that, for every s > ¢, .,

o for all 7 <y 0,, 7 € bs;

o forall 7 <o,
a(1,8) = a(1,1,,) & B(1,8) = B(7,15,) & A(T,8) = A(7,1,,);

o for every N-node v C o,, if [ is the outcome at v along o,, then
C(vl,s)=C(v{,1,,), and then for every z, 1 such that ¢(v, z,1) < (,
we have that

reEK &z € FS;

o for every N-node v C o,, if [ is the outcome at v along o, and / is
finitary (see Definition 5.2.3), then v C §; = v 1 C é;.

We distinguish the following cases, according as o, is a P-node, a I'-node,

an N-node, or an (N, P)-node.
Case 1 o, is a P-node. Then obviously ¢,41 = liminf,é;[n+ 1 = 5,70.

Case 2 o0, is a ['-node. Assume that R(o,) = (P;, x).
Then
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1. edther
(3%s)[o 0 C &4 :

in this case 0,.1 = 0,” 0. Notice also that, for every s,

a(oni1,8) = B(0ns1,8) = Mougr,s) =0,
so part (3) of the claim is trivially verified.

2. or
Opt1 = 0y L.

This case corresponds to the outcome = € CI)?@L OKII?@L and we are thus
able to settle on some o = lim; a(0,41,8) C A, f = limg f(0,41,5) C
B, and some finite M = lim, M (0,41,5), AP = lim, \®(0,41,s) such

that A UM C L for which z € ®78" /8"

Clearly, a(0n41) = lims a(0n41,8) = @, B(0ug1) = limg B(0ny1,8) = 3,
and A(o,41) = lim, M(o,41,8) = M U AP,

Case 3 o0, is an N-node. Assume that R(c,) = N;.
The claim easily follows from the following sublemma.
If lim, (0, s) = 400, then K =* AL .
First of all notice that, for every 7 and number z, if, at some stage ¢,
e(r,z,t) |, then
(Vs > t)[e(r,z,8) = ¢(T, 2,1)].
Let now
D(o,) ={c(on,2,8): 2,8 €Ew}

and let, for simplicity, ¢, = ¢(o,, 2, 8), whenever ¢(o,,z,s) |. Assume that
there exists some ¢ € D(a,) such that A(c) # ®L(c).

If c € A— &L then there exists u such that, for every s > u, ¢ € A*, and
for infinitely many s, ¢ ¢ ®Z[s]. Then,

1. either there is some least (¢, 1) < (¢, u) such that ¢ € D(0,) and
(Vs > 1)[d € A& ¢ B

or

(4> )l € D]l ¢ A]
in which case liminfs ((o,,s) = (¢, t);

2. orliminf; {(0,,s) = (¢, u).
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Therefore
lim{l(o,8) =400 = A= CI)],;J.

We now show that if A = ®F then K == A{jn. Clearly, if z € K and
lims (0, 3) = 400 then there exists some stage s such that ¢(o, 2z, s) |, since
there are infinitely many o,-expansionary stages, and part (a), Subsection
5.2.3, is performed infinitely often. Since the set F' = J ., a(1) U B(7)
is finite by inductive assumption, there exists some xo such that, for every
T > w9, ¢, ¢ F. We claim that

(V> 2[R (x) = A, ().

Thus, let @ > xq.

Assume that @ € K. If ¢ is a stage such that, for every s > 1, ¢, =
c(o,x,s) is defined and ((o,s) > x, then ¢, € A®, for each such stage s (the
number ¢, € ¢, can be extracted only on behalf of requirement R(o,), and if
z € K, then ¢, can be extracted at s only if {(o,,s) < z). Therefore ¢, € A,
and, thus, ¢, € ®L. Let ¢ > t,, be such that, for every s > #/, ¢, € ®[s].
At some o,-expansionary stage s’ > t', we are therefore eventually able
to appoint some finite set A = A(o,2,s") = lims A(o,2,8) C L, such that
(z,\) € A, : hence z € AL

On?

as desired.
Assume now that ¢ K; then, under the assumption that lim, ((c,,s) =

+oo and ¢, ¢ F, we extract ¢, from A®, for infinitely many stages s. But
then ¢, ¢ ®L. Since

(YM)[{z, ) € A, = (2, X)) € By,

it follows that = ¢ AL .
Since K £. L, it thus follows that £ = liminf, {(c,, s) is finite. Thus

Opy1 = 0 L.

It is left to show that lims C'(0,41,5) exists and is finite: on the other
hand, it is clear that limg; C(o,41,8) = C(0u41), where

Clops1) = {c € D(o,)(Fu)[{c,u) < L& c € CI)L&(‘V’S > u)[c € A%]]}.

Moreover, for every ¢ € C(o,41) we are eventually able to appoint some (con-
sistently chosen) finite set A(0,,41, ¢) such that A(o,11,¢) = limg A(op41, ¢, 8),
with ¢ € ®Mon+1:9) and AMoug1,¢) € L. Therefore A(o,41) = limg AM(041, 8)
exists and is finite, being A(o,11) = Ucec(0n+1))\(an+1,c). We have also
shown that A(o,41) C L.
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Case 4 o, is an (N4, P)-node. Assume that R(c) = (N3, Pi); let 7 C o,
be such that R(x) = P, and let v = o(0,).
We first show

liminfs h(o,, s) exists and is finite. In fact liminf h(o,,s) = h, where

Dy = {z(3s)[z € H(,,s)) &z e TL}.

First we observe:

Claim The set D, where
D = {z(3s)[x € H(o,,5)] &z € TEY,

is finite.

Indeed, clearly D contains only numbers x, such that we enumerate an
axiom (x, A) € I'2, while acting at some stage s at some I'-node 7’ O 7, with
R(7") = (R(x), x).

Consider all I'-node 7’ 2 7, with R(7’) = (R(r), x), for which we define
axioms (x, A\) € I'? only at stages s > t,, .

We distinguish the following two cases.

Case 1 o, <1 «'. In this case there exists some longest 7 such that = C
7 C 0,, and the outcome o at 7 along 7’ is such that o, < 7" 0.

(a) 7 is a 'node. Then o = 1,i.e. 71 C 7’ and 770 C o,. Suppose
that s > 1, 1is a stage such that 771 C §,. Then there exist finite sets
a=a(r"1,s), 3= 3(1"1,5), M = M (771,s), AP = \B(771,s) such
that = € @28\ N W and M UNB C L[s]. Thus if (z,)) € T,
is the axiom we define at s at 7’ then we have that M U AP C ).
Since liminf; &|7| + 1 = 770, we must conclude that M UM & L, thus
AL L.

(b) 7is a N-node. Let { = (c,u) be the outcome at 7 along o,. Thus there
exists (' such that ¢ < /" and 770 C 7’ C §,. By definition of 7, and
since we assume to take action at a stage s > ¢, , we conclude that
( is not finitary (see Definition 6). Therefore ¢ ¢ ®L, but, at stage s,
we have that ¢ € ®L[s], and ¢ € C (770, s); thus if (z,)\) € T is the
axiom we define at s at 7', then we have that A(7,¢,s) € A. Since

A(1,e,8) € L, we have that A € L.

(c) 7 is an (N4, P)-node. Let h be the outcome of 7 along o,, and let
s > 1,,. Thus there exists A, with h < A’ such that 770 C 7' Cé,. It
follows by induction that

Dy, = {x(3)[x € H(o,1)] & x € LY.
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Since liminf é|7| + 1 = 77h, it follows that there must exist x € Dy,
and a finite set A(7,z,s) such that * ¢ TL and x € 29 and
A(r,2,8) € L[s]. The construction ensures that if (z,A) € I'? is the
axiom we define at s at 7', then A(7,z,s) C A: but A(r,2,s) € L,
therefore A Z L.

(d) 7 is an (NB,P)-node. Similar to (c).

Case 2 o, C 7. Let { = (c,u) be the outcome at o,, along =’.
Given any stage ¢, let us say that @ € H(o,,1) because of 7', if there is
an axiom (x,A\) € I'; appointed at 7’ such that, letting

VtA = U V(l/,t),

u’gy,(u’)—ETNA

we have that

AC L[t &a ¢ dL=ViIser),

We claim that there is no ¢ such that @ € H(o,,1), becuase of 7’: assume
for a contradiction otherwise, and let ¢ be a stage such that, Since we assume
that we appoint axioms at 7’ only at stages s > ¢, , we may assume that
t > 1,,. Thus, there must exist an axiom (x,A) € 'Y, appointed at some
stage s > t,,; hence z € ®4%L[s], and thus there exists a finite set a such
that 2 € ®2® and a ® A C A @ L[s]. Since o, = liminf, §;n and vy our
choice of o,, it easily follows from the construction that V4 C V! (from
which it follows that V4 N At = 0), for every ¢’ > t, such that o, C 6.
It follows that s < #, but then V;* N o = 0, since at stages u > s only
new numbers (thus numbers not in «) can be appointed as v/-followers (with
vV Cvand (V) € TNA) and subsequently enter V;*. Since this holds of
every possible axiom appointed at 7’ at any s such that ¢, < s <, we have
a contradiction.

We have thus shown that the set D, where
D = {z(3s)[z € H(o,,s)] &z e TE}
is finite, since this set can contain only numbers = such that either

e axioms (z,\) € I are appointed at stages s <, , or

e axioms (z,A) € I'* are appointed at I'-nodes 7’ (with R(x’) = (R(r), x))
such that # C 7' C 7,,.
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Let A be the canonical index of D. We are now in a position to show that
Opy1 = liminfén +1 =0, h.

Clearly there exists a stage so > t,, such that
(Vs > so)(¥y € D)l € H(o,5) & (Va € H(o,5)ly <3, 7]

and =<, = lim, < exists on Dy, where, for any y,y’ € D), we have y <, v’
if and only if

(Fto)(Vs > 1)y € T7[s]& (3ty > o)y’ ¢ Tr[0]]].

It is also clear that Dy C Dy, s, for every s > so.

To show that there are infinitely many stages s such that h(o,,s) = h,
we show that for every ¢ > s¢ there exists s > ¢ such that h(c,,s) = h.
To this end, let ¢ > so. Suppose that s’ > ¢ is such that o, C éy: then
Dy, C Dyo,,s)- Let us assume that = € Dy, s — D, and z is the <f,/n—least
such element; clearly = ¢ ', Thus, for every y € Dy, y <frln x. Tt follows
that at the least stage s > s’ such that o, C §, such that = ¢ T'L[s], we define
FE(on,8) = Dy, hence h(o,,s) = h.

It follows that we eventually appoint some consistently chosen finite
sets B(opy1,y) = lim; B(ont1,y,8), A(ongr,y) = limg A(op41,y,5) for ev-
ery y € Dy, such that y € WPnt1W8Momt19) “and A(a,41,y) C L, and thus
the set F(on41) = liminfs B(0,11, ) exists and is finite, being B(on41) =
UyEDh B(0nt1,y). Finally we observe that limg A(g,41,8) = AM(opy1), where
AMopgr) = Uyeth and A(o,41) C L.

Case 5 0, is an N5-node. The verification is similar to Case 3, but inter-

changing A with B.

Case 6 o, is an (A5 P)-node. The verification is similar to Case 4, but
interchanging A with B, and ® with .

By Lemma 6, let f the infinite path through T such that, for every n,
fIn =0, fiscalled the true path.

For every k, the requirements V' and NP are satisfied.

Assume that n is such that R(f [n) = N2 . Then by Lemma 6, Case
3, liminfs £(f [ n,s) exists, and the proof of Sublemma 6 shows that in fact
AL B

A similar argument applies if f[n is an A®-node.

For every 7 the requirement P; is satisfied.
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Given ¢, we want to show that
Z; = 000 = 9Pl = 7, =~ T

where I' = T',, is the e-operator that we construct at nodes 7 O o, with o C f
such that R(o) = P;.

For simplicity, throughout the following proof, we will omit the subscript
.

First assume that @ € ®A%L N YBPL Then there exists a stage ¢ such
that, for every s > ¢, x € ®49L[s] N UBSL[5]. Let 7 C f be the I'-node,
such that R(7) = (P;, x), and, by Definition 6, let ¢, be a stage such that for
every s > t,,

o forall 7/ < 7, 7" € é,.
o for all p € 7. Mpos) = Apt2)(= A(p):

o for every N-node v C 7, if { is the outcome at v along 7, then
C(vl,s) = C(vL,t;) and for every z,t such that e(v,z,t) < {, we
have that

reKerck .

Since we act at 7 infinitely often, we can eventually find a stage to > ¢,
such that at ¢ we appoint finite sets

M(r71) = limg M(771, ),
MB(771) = lim, AB(77°1, s),
a(t71) =lims (771, 8),
B(r71) =lims B(771, s)

such that
a(t™1) & )\A(TAl) CApL

Brry @ (1) CBa L
and z € DN 1 \I/ﬁ(TAl)@AB(TAl), and, for every s > tq,

arn | Vs =0

vCo,w— eT™

B(r71)N U Viv,s)=0.

vCo,w— €T

Let M(771) = M U AB, and, for every p C o, let A(p) = lim, A(p, s).
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Then we eventually appoint an axiom

(@, A1) U J{A(p)p < 0} €T
Therefore z € T, since by Lemma 6 \(p) C L, for every p C o,.

Assume now that 48" = UBSL and let, for a contradiction, € TV — 7,
where 7 = ®49L = YBOL - Agsume further that axioms of the form (z,\) € T
are enumerated at stages s > t,, where t, is as given in Definition 6.

Suppose that sqg > ¢, is the least stage such that we appoint at some
7' D o finite sets a = a(7’,50), 3 = B(7',50), A (7', 50), \B(7', 50) and we
enumerate an axiom (z,)\) € T' such that M (7, s0) U MB(7/,50) C A C L.

Then when we visit at stages s > ¢, the node 7 C f such that R(x) =
(P;, z), either we can not find finite sets o', 3’ such that o/ N VA = § and
B NVE = where

vi= U Vs,

ugcr,u_ETNA

VsB = U V(Vv 3)7
vCow— €TV?

or we can find such sets, but, subsequently, our extracting activity on behalf
of the NV-requirements located at A -nodes entails o/ £ A or ' € B.

By our choice of sq, this can happen only if at some A -node v such that
o Cv C 7, we extract elements of @ from A or elements of 3 from B. Let v
be the least A-node for which this happen, and assume that v is an N'4-node
(similar arguments apply if v is an A"®-node). Thus

aN{c(3¥s)[c e V(v l,s)&v ™l C &)} # 0

(where ( is the outcome of v along 7), and = ¢ ®4DL,

Now, let ¢ = ¢(v, z, 8') be such that ¢ € aand (I¥s)[c € V(v {,s) & vl C
5], where s’ is the stage at which we appoint ¢ (notice that s < sq, because
we always appoint new numbers as v-followers). We may also assume that
we can not restore @ € ®APL at 1 at any stage t > 1,~.

Let 7 C f be the (N, P;)-node immediately following v on the true path.
It follows from Lemma 6(5) that « € Dy, where h is the outcome at 7 along
f. By assumptions, there is no N'P-node v’ such that ¢ C v/ C v such that
the extracting activity demanded by R(7’) interferes with restraining some
finite set 3 C B to get @ € WPPL Therefore, we can eventually restrain a
finite set B(7"h, ) = lim, B(7"h,z,s) C B such that z € W ho)&L,

This shows that 2 € UB® — @49 contradicting the hypothesis that
(I)AGBL — \I;BGBL‘

This concludes the proof of the theorem.
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7 Simultaneous branching

Let us now go back to Theorem 1.

Let L1, Ly be X9 sets such that Ly, L, <. K. To prove the theorem we
need to build XY sets A, B satisfying the following requirements: for every
2,7,k € w.

K K
Pzl =00 =gl o 7l = T2
AL, — ol T — Aln
N,j“ D A=0 = K =AY,
NI A=op =K =A%,
B.,I1 | @&l 7 ALl
N%L : B_<I>j,§ j[i_Avahk
b2, — 2 T 2
NP B=0p2 = K =AY,

Pl zl =M = wPE o gl =T

where I'r, i Aary by AB Ly ks Uy iy DALy ks AB 1,k are e-operators to be con-
structed.
The requirements are given the priority ordering

L Ph<ple c AT« N2« NP o P o
P < Play < N < N < NEF < B

The construction is virtually the same as in the proof of Theorem 1. We
use a tree of outcomes in which we distinguish A'-nodes (partitioned into the
following classes of nodes: N'4I1 — N AL2 A/BLi_ " and AV4E2 —nodes), P-
nodes (P1— and P2 —nodes), and I'nodes. Each A -node & is followed by
a finite sequence of (N, P)-nodes, recording the effects on the strategy for
R(o) on higher priority P-requirements.

For every ¢ < 0 there exists a minimal pair a,b such that ¢ < ¢ U a,
c<cUband c=(cUa)N(cUb).
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