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1. Introduction

Coding by ®rst-order formulas in structures arising from computability theory has
been a focus of attention for some time. Traditionally, such coding methods are
initially used to study the complexity of the theory of the structure. Typically, one
®rst proves that a theory is undecidable by uniformly coding a suf®ciently complex
class of structures (with parameters). Then, usually using more sophisticated
codings, undecidability of low-level fragments of the theory is established. For
instance, Harrington and Shelah [10] sketched a coding of the class of D0

2-partial
orders in the structure R of recursively enumerable Turing degrees to prove
the undecidability of Th�R�. Later, Lempp, Nies and Slaman [15] showed that the
P3-theory of R (as a partial order) is undecidable by a coding of the class of
®nite bipartite graphs with S1-formulas. Another elaboration of the undecidability
of a theory is the determination of its computational complexity. For recursion-
theoretic structures which can be coded in N (like R), the expected result is that
the complexity is as high as possible, namely that one can give an interpretation
of true arithmetic Th�N� in the theory of the structure. To prove this, one ®nds
coding schemes to code models of arithmetic with parameters and tries to give a
®rst-order condition on parameters which implies that the coded model is
standard. We supply such an interpretation and conditions below for R. The bare
interpretability of Th�N� in Th�R� has previously been established by Harrington
and Slaman and, in a different way, by Slaman and Woodin but without explicitly
de®ning a class of standard models.

Due to the use of parameters, the types of codings mentioned so far have a very
local character, so they do not seem to reveal much information about global
aspects of the structure beyond the complexity of the theory. Another, seemingly
unrelated, line of research is the study of de®nability in recursion-theoretic
structures A. While coding results give information about what structures can be
recovered from A (possibly extended by some constants) up to isomorphism,
de®nability results in recursion theory tell us which relations that are apparently
external to A are in fact already inherent in A, namely can be de®ned in a ®rst-
order way. As examples, consider the de®nability of `arithmetic in' and
`hyperarithmetic in' within the structure of D with the jump operator [14], the
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jump operator itself in D [5], or the class of promptly simple degrees in R as the
class of degrees which are not half of a minimal pair [3]. Considerable previous
work on the structure D of all the Turing degrees, however, has shown that
coding methods can be used to prove global results restricting the possible
automorphisms of the structure and that such restrictions on automorphisms can
often be converted into very general de®nability results. Typically, this work
showed that all automorphisms of D are the identity on a cone (the degrees above
some ®xed degree c) and that all relations on this cone that are de®nable in
second-order arithmetic are actually de®nable in D. (See, for example, [32, 19,
28].) Similarly, Shore [26] used coding methods to determine the complexity of
D�<00�, the (Turing) degrees below 00. He used these methods in [29] to restrict
the possible automorphisms of the structure by showing that the triple jump
classes are invariant and then derived corresponding de®nability results.

Our ®rst goal in this paper is to develop such global coding methods for R. For
instance, we will give an interpretation of a standard model of arithmetic (SMA)
without parameters, which of course implies that true arithmetic can be interpreted
in Th�R�. Our second goal is to apply our global coding results to obtain invariance
results for automorphisms of R and then the corresponding de®nability results.
Once again the jump classes play a crucial role. Recall that a recursively
enumerable (r.e.) degree a is Lown if a�n� � 0�n�, and is Highn if a�n� � 0�n�1�.

Various methods have been developed to exploit properties of degrees in the
classes Low1, High1, Low2 and its complement, Low2, in recursion-theoretic
constructions and there are many structural results that rely on degrees being in each
of these classes. The question `which of the jump classes are de®nable?' has
motivated a fair amount of research. In particular, the methods developed suggested
that there should be `natural' order-theoretic de®nitions of Low2 and High1 in R.
As an approximation, Shore and Slaman [30, 31] give an example of a de®nable
class which includes Low2, but is disjoint from High1. In another setting, Downey
and Shore [7] show that Low2 is de®nable in the r.e. truth-table degrees.

Here, in a uniform approach similar in outline to that previously used for D and
D�<00�, we establish the de®nability of all the classes Lown and Highn for n > 2.
In fact we show that each relation P�~x� which only depends on each coordinate of ~x
up to second jump and is arithmetical (that is, its index set can be de®ned in N) is
de®nable in R. A further argument then yields the de®nability of High1. In
accordance with the formulation of our second goal, the de®nability of these
relations is obtained by considering codings of SMAs, particularly of `effectively'
coded SMAs and the interaction of such coded models with a degree x. The
interactions between a degree x and the effective SMAs (via the sets coded in them
by degrees below x) show that the isomorphism type of x within R determines its
double jump. This immediately makes the relations invariant under automorphisms.
The interactions between the sets so coded and the arithmetic inherent in the SMAs
translate these results into the desired ones on de®nability. Our improvements on
Shore's coding in [29] also enable us to improve the de®nability results established
there for the degrees below 00 by one jump (from triple to double).

We now discuss the coding and de®nability results in more detail. As mentioned
above, the ®rst step is to obtain a coding or, in the terminology of [11], an
interpretation of an SMA in R without parameters. (As an example of
interpretations of structures, consider the interpretation of Q in Z given by the
quotient ®eld construction.) The existence of an interpretation of N in R means
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that N can be considered as a `projection' of R. Similar results have been proved
for many global degree structures by Slaman and Woodin (see [33]) and, in the
setting of the r.e. sets, for the r.e. many-one and weak-truth-table degrees (see
[21, 24]). On the other hand, the lattice E of recursively enumerable sets under
inclusion is an example of a structure where an interpretation of true arithmetic in
its theory can be given, but no interpretation of the structure N in the structure E
exists (see [9, 12]). In all three cases of r.e. degree structures, the most general
concept of interpretations is used: a number is represented by an n-tuple of
degrees (for some ®xed n > 1), modulo a de®nable equivalence relation. (This is
also the case for the interpretation of Q in Z, where n � 2.) The example of the
r.e. many-one degrees, Rmÿ1, shows that the existence of such an interpretation
does not necessarily imply that the degree structure is similar to N. For example,
Rmÿ1 has continuum many automorphisms.

One way to show that some structure is very much like N is to prove that the
two structures are bi-interpretable. Of course, there is an obvious interpretation of R
in arithmetic, so what is needed is an interpretation of N in R and a de®nable
relation associating each degree x in R to codes (relative to this model) of sets of
degree x. The existence of such a model and de®nable relation is called the
bi-interpretability conjecture for R (Harrington, and Slaman and Woodin). In the
setting of just the r.e. degrees, the conjecture is equivalent to the existence of any
de®nable injective map f : R! N. Here N is the copy of N coded inside R, and
the de®nability of f means that the corresponding relation on R between an
argument a and a tuple b representing f �a� is de®nable. Such a map can be
viewed as an internal coding map, sending a degree a to an `index' f �a� 2 N all
taking place inside R. An easy modi®cation of any such f gives a standard index,
that is, for each a an e � f �a� such that deg�We� � a.

The bi-interpretability conjecture has many consequences for the analysis of the
structure of R. For instance, it implies that a relation on R is de®nable if and only
if it is de®nable in arithmetic and that R is rigid (that is, has no non-trivial
automorphisms). Hence it contradicts Cooper's recent announcement [6] that there
are automorphisms of R, and indeed ones that take a low degree to a non-low
one. A weaker form of the conjecture, which only requires that f and N be
de®nable from parameters, has been established by Slaman and Woodin (see [33])
for DT�<00� (for which Cooper has also announced the existence of a non-
trivial automorphism). Even in this weaker form, the conjecture implies that the
structure is a prime model of its theory, its automorphism group is countable, and
a relation is de®nable if and only if it is arithmetically de®nable and invariant
under automorphisms.

In this paper we provide another type of approximation to the bi-interpretability
conjecture. We show that there is a de®nable f : R! N such that, for each a and b,

a�2� 6� b�2� ! f �a� 6� f �b�: �1:1�
(In fact, f �a� will be an index for a�2� in the sense that W

�2�
f �a� � a�2�.) Thus the

coded model N still interacts with the structure R as a whole in a very strong
way and we have obtained what we called a `global' coding result.

Let a ,2 b, a�2� � b�2�. As an immediate consequence of (1) we ®nd that

any relation C Í RT which is arithmetical

and invariant under ,2 is definable in R:
�1:2�
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We call C arithmetical if the corresponding relation on indices is. To see that
this de®nability result follows from (1.1), note that f �C� is de®nable and
C � fÿ1� f �C��.

As a corollary, we obtain the de®nability results for Lown , Highn �n > 2�
mentioned earlier, along with the de®nability of the relation ,2 itself. As we show
that, in RT ,

x 2 High1 , "z$y < x�y ,2 z�;
High1 is also de®nable.

The required coding machinery is introduced in § 2 along with statements of the
technical results needed to carry it out. Section 3 considers the issue of relativizing
our results to structures Rz, the degrees r.e. in and above z, for arbitrary degrees z.
(Most relativize; some do not and so provide elementary differences between
various pairs of such structures.) It also shows how to use our coding ideas to
improve the known results on invariance and de®nability in D�<00� to be
comparable to the ones derived here for R and applies these results to give a proof
of Slaman and Woodin's result that all automorphisms of D are ®xed on all degrees
above 000. The remaining sections are devoted to the constructions needed to
implement the coding machinery. We begin in § 4 with a presentation of the
Slaman±Woodin coding scheme for interpreting partial orders (and so models of
arithmetic) in R and various technical extensions and improvements. The next
section (§ 5) provides the results needed to compare models coded in this way and
so de®ne an SMA in R. Section 6 combines lattice embeddings with the codings of
the previous sections to produce more effective codings of models of arithmetic that
are needed to show that x00 is determined by the sets coded in such models by
degrees below x. The ®nal section, § 7, which is independent of the previous ones,
contains the construction of degrees below any x coding any given SX

3 -set in the
models constructed in § 5. (Of course, these sets determine x00.)

Notation and conventions. We generally follow [35]. In particular, if x is an
r.e. degree, then X denotes some r.e. set in x. Unless otherwise speci®ed, all sets
and degrees will be r.e.

2. The coding methods

2.1. Schemes
We intend to code uniformly objects of a certain type (for example, one-to-one

maps or models of some ®nitely axiomatized theory) into R. Formally, a scheme for
coding objects of a certain type in R is given by a sequence of formulas
J0; : : : ;Jk (in the language of partial orderings) with a common list p of names
for parameters and further free variables, as well as a formula w� p� called the
correctness condition. The ®rst formula J0 de®nes the domain of the interpreted
structure (possibly a set of n-tuples) and the remaining formulas de®ne its
functions and relations (including equality if the intention is to identify elements
(or n-tuples) according to some equivalence relation). The formula w typically
says that the Ji that are intended to de®ne functions actually do so and that the
relations and functions de®ned by the Ji satisfy various axioms. Precise
formulations of these notions can be found in [11, 5.3]. We content ourselves
with a couple of examples.
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Example 2.1. A scheme Sg for de®ning a function g on a particular domain is
given by a formula J0�x; p� de®ning the domain of the function, one J1�x; y; p�
de®ning the relation between inputs and outputs, and a correctness condition
w�x; y; p� which says that a function is actually de®ned on the intended domain:
"x�J0�x; p� ! $!y f1�x; y; p��.

Example 2.2. A scheme SM for coding models of some ®nitely axio-
matized fragment PAÿ of Peano arithmetic (in the language L��; ´�) is given by
the formulas

J0�x; p�; J1�x; y; z; p�; J2�x; y; z; p�
and a correctness condition w� p� which says that J1 and J2 de®ne binary
operations on the set fx: J0�x; p�g which satisfy the ®nitely many axioms of
PAÿ. In our applications, the axioms ensure that M has a standard part.

In general, a coding scheme SX introduces a new type of object. The parameters p
satisfying w� p� code an object, and SX acts as a decoding key. Using this coding,
one is able to quantify over objects of the new type (a form of second-order
quanti®cation) in the ®rst-order language of R. We can also perform basic
mathematical operations on objects of two possibly different types and obtain a
uniform way of coding objects of a yet different type (for example, we can de®ne
the composition of maps). Furthermore, we can express basic relationships between
coded objects by ®rst-order conditions on codes; for instance, we can express the
relationship `g is a partial map from M0 to M1', where M0, M1 are coded via SM and
g is coded via Sg, by formulas of R. We use the following convention throughout. If
a scheme SX is given, variables X, X0, etc. denote objects coded by this scheme for a
particular parameter list p satisfying the correctness condition. If it is necessary to
mention the parameters explicitly, we write X�p�, X0�p�, etc. We say that p codes
X�p� via SX.

De®nition 2.3. A class C of structures with a common signature is uniformly
de®nable in R if, for some scheme S, C is the class of structures coded via S as
the parameters range over R. An object X is de®nable via S if X is coded via S
with a particular choice of parameters.

2.2. A scheme for coding SMAs in R
We now describe a particular coding of the type described in Example 2.2. We

begin with a special class of de®nable antichains in R.

De®nition 2.4. A set G ÍR is called an SW-set (short for Slaman±Woodin
set) above b if, for some parameters p; q; r 2R, G is the set of minimal degrees
x, with b < x < r, such that q < x _ p. If b � 0, we call G simply an SW-set and
may omit b from the list of parameters.

Note that the class of SW-sets (above some b) is uniformly de®nable in R.
Slaman and Woodin (unpublished) constructed sets of this kind (we supply a
construction and proof in Theorem 4.1) and used them to give a uniform coding of
an arbitrary recursive partial order <P in R by proving that there exist a uniformly
recursively enumerable (u.r.e.) sequence hgii of degrees and an l 2R such that
fgi : i 2 qg is an SW-set and, for each i; j 2 q, i <P j, gi < gj _ l. They also gave
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a coding of �q;�; ´� in a particular partial order PA which, together with their
coding of arbitrary recursive partial orders in R, determines a scheme SM�p�, as in
Example 2.2, such that some coded model M is standard. To construct this
particular partial order PA coding arithmetic, one starts with a countable antichain
of minimal elements pn which will represent the numbers n. Then, for each n; m 2 q
one adds an element cn; m to PA which represents the pair � pn; pm�. Next, one adds
ascending chains of lengths 2 and 3, respectively, from pn to cn; m and from pm to
cn;m. Finally, to code addition, add a chain of length 4 from pn�m to cn; m and for
multiplication, add a chain of length 5 from pn ´ m to cn; m. We provide the recursion-
theoretic constructions in § 4.

The scheme SM� p� � SM� p; q; r; ,� (or SM�b; p; q; r; ,�) will be extended later by
a further correctness condition. For now, we just assume the general correctness
condition from Example 2.2. Since the elements of a model M are members of
some SW-set, they form an antichain in R. We use subscripting or superscripting by
M to indicate the interpretations in M of the usual objects of arithmetic. In
particular, iM denotes the �i� 1�th element of M for i 2 q and �M denotes addition
in M.

The above considerations show that some coded M is standard. Moreover,
combining the Slaman±Woodin construction with permitting, we will be able to
produce a coding with the parameter r below any given non-zero a. Thus all the
elements of M are below a. In addition, we can make r (and even r _ p _ q) low
(Theorem 4.7).

For an arbitrary M (standard or not), we say that M is coded below a if all
elements of M are less than or equal to a and M is low if all elements are low.
(This does not restrict the parameters used for coding M.)

2.3. Comparison maps between coded models
After ®nding a way to code SMAs with particular parameters in a structure A,

we would like to ®nd a ®rst-order condition on parameters that picks out a subclass
of coded models which are standard. This would give an interpretation of true
arithmetic in the theory of A. Various ways to ®nd such a condition have been used
in other settings. We employ the method of comparison maps. A comparison map
between M0 and M1 is a one-to-one partial map M0 ! M1 which extends the
isomorphism between the standard parts. We intend to ®nd a uniform way to
de®ne such maps between any two (good) models M0, M1 coded in R. Then,
since some model M� is standard, a (good) model M is standard if and only if for
each (good) M0, such a map g: M ! M0 exists which is total.

Theorem 2.5. There is a scheme Sg such that for all M0 and all M1 there
exists a map g such that g is a comparison map from M0 to M1.

Keep in mind that the current de®nition of SM will be extended by one more
correctness condition to make the scheme `good'. This condition will be determined
during the proof. The precise way the scheme Sg is obtained will be of little
relevance for the rest of the paper.

Proof. We combine recursion-theoretic methods with coding tricks. As the
recursion-theoretic component, we use the following lemma to develop a
preliminary scheme Sh which allows us to de®ne uniformly the natural embedding
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M0 ! M1, if both M0, M1 are low and M0 is standard. Interpolating with several
such embeddings and their inverses, we will ®nd a uniform way to de®ne
comparison maps.

Lemma 2.6. Suppose q0; : : : ; qmÿ1; r1 are non-zero low degrees. Then there is a
low standard M such that for i; j < m, iM < qi and qi ÷ qj ) iM ÷ qj, while for
j > m, jM ÷ r1.

To prove Theorem 2.5 (assuming Lemma 2.6 which is a special case of Theorem
5.1), we ®rst describe how to de®ne uniformly the isomorphism eh between the
initial segments of M0 and M1 up to nMi , for each n 2 q. Let qi � iM0 for i < n and
qi � �iÿ n�M1 for n < i < 2n and let r1 be the appropriate parameter in the
de®nition of M1 bounding all the elements of the model. Note that �qi�0<i<n and
�qi�n<i<2n are antichains. Now let M be the SMA obtained applying Lemma 2.6. For
x 2M0 and y 2M1 we wish to de®ne the map taking x to y if and only if x � iM0

and y � iM1 for some i < n. Suppose then that x 2M0 and y 2M1. We claim that by
the incomparability requirements of Lemma 2.6,

�$i < n��iM0 � x & y � iM1� , �$z 2M��x is the M0-least w such that

z <T w & y is the M1-least v

such that z� nM <T v�:
The implication from left to right is immediate from the conditions of Lemma 2.6
with z � iM. For the converse, let z 2M be as described. Since z� nM <T y 2M1,
the conditions on r1 in Lemma 2.6 guarantee that in M, z� n < 2n and so z < n
in M. The conditions on q j for j < n now guarantee that, if iM � z (necessarily
with i < n), then the M0-least w Turing above z is iM0 . Similarly, those on q j for
n < j < 2n guarantee that the M1-least v Turing above z� nM is iM1 , as required.

So eh can be de®ned via the formulaeJ�x; y; p0; p1; p;n���n 2M�p� ^ x 2M0 ^ y 2M1 ^ $z 2M�p�
�x is the M0-least w such that z <T w &

y is the M1-least v such that z� nM <T v��:
(We denote M�pi� by Mi.)

Clearly eh satis®es the following condition, which can be expressed as a ®rst-order
correctness condition a on the parameters involved:eh�0M0� � 0M1 ^ �"x 2M0��eh�x�M0

1� is defined) eh�x� is

defined and eh�x�M0
1� � eh�x� �M1

1�: �2:1�
Now, to obtain the desired preliminary scheme Sh, we take the union of such
maps de®ned by parameters satisfying the condition a:

J�x; y; p0; p1� � �$p��$n�a�p0; p1; p; n� ^ eJ�x; y; p0; p1; p; n�:
If M0 is standard, there is, by (2.1), a unique map de®ned in this way, namely the
natural embedding M0 ! M1. Because we are currently only interested in the case
that M0 is standard, we impose, as a correctness condition for the scheme Sh, the
condition that the relation de®ned by J be an embedding M�p0� ! M�p1� which
satis®es (2.1). (Note that we have not yet expressed the standardness of M0 by a
®rst-order condition on parameters.)

We now de®ne the scheme Sg to code comparison maps between any two models
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M0, M1, at the cost of adding an additional correctness condition to the scheme SM .
Recall that, by de®nition, M is coded below c if the elements of M are less than

or equal to c. The following notion is a ®rst-order approximation to the lowness of
c. We say that c is good via M� if the model M� which is coded below c can be
embedded via the scheme Sh into any other model coded below c, that is,

�"M coded below c��$h: M� ! M��h is total�:
(Recall that h is one-to-one by the correctness condition on Sh.) As mentioned
above, some M coded below c is standard, so M� must be standard. If c is low,
we can (by Lemma 2.6) take as M� any SMA coded below c, so each low degree
is good. Thus we can safely add as a correctness condition in SM�b; p; q; r; l� that
the upper bound r is good via M, that is, M is coded below r and can be
embedded via Sh into any other model coded below r.

Since we can make r low, there are parameter lists satisfying the condition;
moreover, any model coded in that way will be standard. Now, existentially
quantifying over such parameter lists, we obtain an interpretation of true arithmetic
in Th�R�.

For clarity, temporarily call the extended scheme S�M. The scheme Sg to uniformly
de®ne a comparison map (that is, the isomorphism) between two models Mi�pi�
coded by S�M is obtained by interpolating with two low models.

By the new correctness condition, ri 2 pi is good via Mi. Choose low standard
models ML

i coded below ri via SM , and let hi : Mi ! ML
i be the natural embedding

coded via Sh. We already know that the isomorphism h: ML
0 ! ML

1 is coded via Sh.
Now the isomorphism M0 ! M1 equals hÿ1

1 ±h±h0, and it can then be de®ned via a
scheme Sg including parameters to code all the models involved. With any choice
of parameters coding intermediate models ML

i , the composition must be the
isomorphism M0 ! M1 by the correctness condition in Sh requiring that h be an
embedding of models. This proves Theorem 2.5, assuming Lemma 2.6.

We are now ready to obtain a parameterless interpretation of N.

Theorem 2.7. (i) There is a uniformly de®nable class Cst of coded standard
models of arithmetic.

(ii) Let eN � f�x; p�: M�p� 2 Cst ^ x 2M�p�g. The equivalence relation Q oneN given by

�x; p�Q�y; q� , �$n 2 q��x � nM�p� ^ y � nM�q��

is de®nable in R.

(iii) An SMA N can be de®ned on the set of equivalence classes eN=Q
without parameters.

Proof. (i) By the above, the scheme SM (which from now on includes the
additional correctness condition) only codes SMAs.

(ii) For �x; p�; �y; q� 2 eN,

�x; p�Q�y; q� , �$g��g: M�p� ! M�q� ^ g�x� � y�:
(iii) Addition and multiplication of equivalence classes representing numbers

in eN can be carried out by choosing tuples with a common parameter list p and
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carrying out the operations in M�p�. For instance,

��x0; p0�� � ��x1; p1�� � ��x2; p2��

, $p $ex0;ex1;ex2 2M�p�
� ^

i�0;1;2

�xi; pi�Q�exi; p� ^ ex0 �M�p� ex1 � ex2

�
:

2.4. Bi-interpretability of R and N up to second jump
In this paragraph, we develop the additional coding tools needed to obtain a

de®nable map f : R! N such that a2 6� b2 ) f �a� 6� f �b�. We ®rst concentrate on
an easier result:

for each a; the class fx: x�2� � a�2�g is

invariant under automorphisms of R.
�2:2�

Recall that (2.2) is a consequence of (1.2) of the introduction which in turn is
a consequence of the strongest formulation (1.1). Combining the methods
developed here with the comparison map machinery will lead us to the full
result (1.1).

We now consider SMAs which are also equipped with an `effectively' coded
successor function. This way of coding the successor function was ®rst used by
Shore in [26].

De®nition 2.8. An effective SMA is an SMA G above b with u.r.e. elements
fgi : i 2 qg (listed in the order of the model G) which is coded by parameters b,
p, q, r, e0, f0, e1, f1 such that

for each i, �g2i _ e1� ^ f1 � g2i�1; and �g2i�1 _ e0� ^ f0 � g2i�2:

Note that the sequence hgii is an antichain. Moreover, g2i�1 ÷ f0 and g2i�2 ÷ f1.
If, say, g1 < f0, then g2 � �g1 _ e0� ^ f0 > g1. It follows that we can recognize in a
®rst-order way which pair of parameters ei, f i to choose to obtain the successor
operation j in the model: for g; h 2 G,

j�g� � h , for some i < 1; g ÷ f i and h � �g _ ei� ^ f i:

So we obtain a scheme for coding effective SMAs, denoted by SG.
Our coding is effective in the sense that there is a way to ®nd an index for gn in

an arithmetically not too complex way. The reason is that for n > 0, gn is
simultaneously a minimal element in the set fx < r: x _ p > qg and, as an
in®mum, the greatest element in the set fx: x < �gnÿ1 _ ei� ^ x < f ig
(i � n mod 2). Both sets have quanti®er-free de®nitions from parameters in the
language of upper semilattices. Using these facts, we will show in Lemma 2.13 that,
if a low upper bound on all parameters involved exists, then gi � degTfb�i�gR for
some map b <T 0= 00.

Now, the idea for proving the invariance result (2.2) is to look at the
interaction of a with sets of numbers coded as subsets of effective SMAs. Since it
is too much to ask that all parameters needed be below a, we use the following
weaker requirement.
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De®nition 2.9. Let a > 0 and u > 0 (u will be non-cappable in the
applications).

(i) We say that G is coded below �a; u� if r < a and all parameters involved
are less than or equal to u.

(ii) A set X Í q is represented below �a; u� if there is a G coded below �a; u�
and there are further parameters c; d < a such that

X � fi: c < gi _ dg:
We say that a is automorphic to c if there is an automorphism J of R such that

J�a� � c. Consider the following class of sets:

S�a� � fX : �"u��u non-cappable ) X is represented below �a; u��g: �2:3�
Then

a automorphic to c ) S�a� � S�c�: �2:4�
The reason is that an automorphism p such that p�a� � c maps a representation
of X below �a; u� to one below �c;p�u��. To establish the invariance fact (2.2) we
prove the following.

Theorem 2.10. If a � deg�A�, then S�a� � S0
3�A�.

Thus fx: x ,2 ag � fx: S0
3�X� � S0

3�A�g is invariant under automorphisms by
(2.4). One immediate corollary shows that many relations are invariant.

De®nition 2.11. An n-ary relation P�x1; : : : ; xn� on R is invariant under the
double jump if, whenever RoP�x1; : : : ; xn� and x001 �T y001, : : : , x00n �T y00n , it is also
true that RoP�y1; : : : ; yn�. (In these circumstances, we also say that P is invariant
under ,2 .) We say that P is invariant in R if whenever RoP�x1; : : : ; xn� and J is
an automorphism of R, RoP�J�x1�; : : : ;J�xn��.

Corollary 2.12. Any relation on R which is invariant under the double
jump is invariant in R.

Theorem 2.10 is established in a sequence of auxiliary results. First, to prove that
S�a� Í S0

3�A�, we exploit the effectiveness of our coding of SMAs along with the
fact that there is a low non-cappable degree.

Lemma 2.13. Suppose u is low.

(i) If G is coded below �a; u� then there is a total function b <T 0= 00 such that
gi � degfb�i�gA.

(ii) If X is represented below �a; u� then X is in S0
3�A�.

Thus, since we quantify over all possible non-cappable u in the de®nition of
S�a�, S�a� Í S0

3�A�.

Proof. (i) Recall that all the gi are below r, which is itself low. Thus, using 0= 00

as an oracle, we can determine whether, for given e, fegR is total. Since R <T A,
it will be enough to ®nd a function b such that the conclusion of (i) holds with R
in place of A. Let b�0� be some e such that g0 � deg�fegR�. Inductively, assume
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we have already determined b�i�, for even i, say. To ®nd b�i� 1�, look for a j
such that f jgR is total, Z � f jgR <T U and the T-reductions which determine the
degree gi�1 hold for Z: that is, Q <T Z � P, Z < fb�i�gR � E1 and Z < F1. Since
all the relevant oracle sets are low and lowness indices for them are known, to
search for j we only have to answer some S0

3-questions, that is, carry out a search
for j and for three indices of T-reductions recursively in 0= 00. We know this search
will terminate because G is an effective SMA.

(ii) Note that i 2 X, C <T fb�i�gA � D. The clause on the right is a S0
3�A�-

property of i since C; D <T A.

We now address the more delicate inclusion relations S0
3�A� Í S�a�. For any

S0
3�A�-set X, and any non-cappable u, we have to ®nd a G coded below �a; u� so

that X can be represented using G. First, we show that appropriate low effective
SMAs exist. We use the fact from [3] that non-cappable degrees are the degrees of
promptly simple sets to obtain enough permitting by U.

Theorem 2.14. For any a 6� 0 and for any promptly simple u, there is an
effective SMA G coded below �a; u� such that hgii is a u.r.e. sequence and

L
i gi

is low.

This follows from Theorem 6.1. Then we prove that all S0
3�A�-sets can be

represented below �a; u� using a model as above. Note that the sequence hgii from
Theorem 2.14 satis®es the hypotheses of the following theorem which we prove
later as Theorem 7.1.

Theorem 2.15. If hgii is a u.r.e. antichain,
L

i gi is low and �"i��a ÷ gi�, then
for each S0

3�A�-set S there are c; d < a such that S � fi: c < gi _ dg.

The proof of Theorem 2.14 is another extension of the techniques introduced by
Slaman and Woodin, incorporating methods of Downey and Shore [8] while the
proof of Theorem 2.15 uses methods of Nies [20] and is independent of the rest of
the paper. Clearly, these two theorems together show that S0

3�A� Í S�a� and so
establish Theorem 2.10.

We now apply the fact that S�a� � S0
3�A� to prove that, up to second jump, the

bi-interpretability conjecture holds for R.

Theorem 2.16. There is a de®nable map f : R! N such that

�"a��W �2�
f �a� � a�2��:

Proof. To give a ®rst-order de®nition of f , we have to provide an appropriate
de®nable relation Rf which holds between degrees a and tuples �i; p� representing
an equivalence class in N. Note that a�2� is the least degree v such that each set

in S0
3�A� is r.e. in v. (If the last statement holds for v, then A�2� and A�2� are r.e. in

v.) But S0
3�A� � S�a�, so if we had a ®rst-order way to obtain, from the degree a,

representations of S�a� `inside' N we could de®ne Rf since ®nding an index for such
a least v is an arithmetical process.

Fix a and a list p satisfying the correctness condition for SM (so M� p� is
standard). If a � 0, we assert that Rf �a; �i0; p�� holds, where i0 is some ®xed index
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for the empty set. If a 6� 0, consider the following representation of S�a� as a subset
of M� p�:

S�a; p� � fj2M�p�: �"u non-cappable��fn: M�p�on 2Wf�3�
j g is

represented below �a; u��g: �2:5�
Thus we need to show that `j2S�a; p�' is de®nable. This follows from the
existence of comparison maps between any two SMAs whether effective or not.
We simply note that

j 2 S�a; p� , �"u non-cappable��$G coded below �a; u���$g: G$ M� p��
�gÿ1�W0= �3�

j � is represented below �a; u� via G�:
As g can be uniformly de®ned via the scheme Sg, the right-hand side can be
expressed in a ®rst-order way. Finally, let Rf �a; �i; p�� hold if i is the least element

of M�p� such that for each j 2 S�a; p�, W0= �3�
j is r.e. in �Wi��2� and, if the same holds

for i 0 2Mp then W
�2�
i <T W

�2�
i 0 .

Since `j2�a; p�' is de®nable in R and the other expressions involved can be
expressed in the SMA, Mp, Rf is de®nable.

We now derive some consequences of Theorem 2.16. Consider the following
equivalence relations: x ,k y , x�k� � y�k�. From Theorem 2.16, the following
general de®nability result can be derived.

Corollary 2.17. If C ÍR n is a relation which is invariant under ,2 such
that the corresponding relation on indices of r.e. sets is arithmetical, then C is
de®nable in R without parameters.

Proof. Since C is invariant under ,2 , it is suf®cient to show that the image
relation f �S� is de®nable in N, where f : R! N is the map of Theorem 2.16. But
f �C� is arithmetical as a relation on N, since f is de®nable and C has an
arithmetical index relation.

We give a few more examples of such relations.

Corollary 2.18. For each k > 2, the relation x ,k y is de®nable in R.

Corollary 2.19. For each c r.e. in and above 000, the set of r.e. degrees a
with double jump c is de®nable in R.

Corollary 2.20. The jump classes,

Lown � fa j a�n� � 0�n�g and Highn � fa j a�n� � 0�n�1�g;
are de®nable in R for n > 2.

The second example gives a partition of RT into in®nitely many de®nable
automorphism bases, since by [1] each ®rst-jump class is already an automorphism
base. So each second-jump class D is a union of orbits, and each automorphism is
determined by its action on D.

252 ANDREÂ NIES, RICHARD A. SHORE AND THEODORE A. SLAMAN

cente
" : 4
' : 1
page
hline
tabu

Unk
hspa
array
array
nleq
restr
mbo
upha
renew
ngeq
dots
geqsl
nsuc
math
ncon
lefteq
math
emph
math
thick
nonu
leqsl

PLMS



The de®nability of ,2, together with the Robinson Jump Interpolation Theorem
(see [36]) and a result by Soare and Stob [36], implies the de®nability of High1.
For the rest of this section the letters u, v, w, s, t denote degrees which are not
necessarily r.e. Recall that v is recursively enumerable in and above (REA in) u
if v > u and v is r.e. in u.

Theorem 2.21. In R, x 2 High1, �"y��$z < x��z ,2 y�.

Proof. We quote the Robinson Jump Interpolation Theorem (RJIT): if w < v
are r.e. degrees, s > w0 and s is r.e. in v, then s � t0 for some r.e. t such that
w < t < v. The RJIT will be used in relativized form, that is, with `r.e.' replaced
by `REA in v' for some v.

First suppose x 2 High1. Given y, let s � y�2�. We apply the RJIT twice according
to the following diagram. The lowest line (except for the ®rst column) contains the
degree to which we are relativizing the RJIT, and each step to the right means going
down by one jump.

x0 x
s t z
0�2� 00 0

x0 � 0�2� x 0

In words, ®rst we relativize the RJIT to x in order to obtain t0 � s with t REA in
s. We use the highness of x to ensure that s is r.e. in x0. Now, by the unrelativized
RJIT, t � z0 for some r.e. z < x. So z ,2 y.

Now suppose x 2= High1, that is, x0 < 00. By the main result in [36], relativized to
x0, there exists a u REA in 00 such that u is not r.e. in x0. Now by a two-fold
application of the RJIT, ®rst relativized to 00 and then unrelativized, u � y0 for
some y. But u � z0 for some z < x implies that u is r.e. in x0.

3. Relativizations of R and other structures

We now use our coding methods to investigate de®nability in relativizations of R
and to distinguish among different relativizations. We will also see how they can be
combined with Shore's methods from [29] to improve the invariance and
de®nability results for D�<00�, the degrees below 00, derived there by one jump
to get ones analogous to the ones established here for R. The invariance results
for the double jump in D�<00� will then be used to prove Slaman and Woodin's
result that every automorphism of D ®xes every degree above 000. In this section
degrees will not be r.e. unless explicitly so speci®ed.

We begin with relativizations of R: R z is the partial order of degrees REA in z.
We show that, as a consequence of relativizations of our coding results, z�2� 6>Tw�2�
implies that R z 6>Rw. Moreover, under suitable additional conditions, the two
structures are not even elementarily equivalent. These results are analogous to those
of Shore for relativization of D�<00� [26] and are improvements of similar results
for relativizations of R in [27].

The relativization of a de®nition or result such as the ones above to a degree z is
obtained by replacing the notions `recursive' by `recursive in z' and r.e. by `REA in
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z'. In particular, the role of 0 is now played by z � deg�Z� (which we also denote
by 0).

An examination of the arguments in §§ 2, 4, 6 and 7 reveals that Theorem 2.10
relativizes:

if a 2Rz; then S�a� � S0
3�A�: �3:1�

For instance, Lemma 2.13, which showed that S�a� Í S0
3�A�, relativizes because

now in the search to ®nd b�i� 1� we have to evaluate S0
3�Z� questions, so we

obtain a map b <T Z�2�. But Z is recursive in all sets involved, so, as before,
X 2 S0

3�A� if X is represented below �a; u�, where u0 � z0.

Theorem 3.1. If z�2� òT w�2�, then Rz ÀRw.

Proof. It is suf®cient to recover S0
3�Z� from the structure R z in a way that

depends only on the isomorphism type of the structure. To do so, note that

S0
3�Z� �

\
a 6�0

S�a�; �3:2�

since one can apply (3.1) to some a 2R z ÿ f0g such that a0 � z0.

We now consider de®nability issues for relativized versions of R and implications
for their theories. One can check that the comparison map machinery, along with its
extension to effective SMAs, relativizes to any R z (via the same schemes). In
particular, the correctness condition in SM on p that the parameter r be good implies
that Mp is standard, and Theorem 2.7 de®nes a standard model Nz in each
relativization R z. However, when we consider relativizing the discussion of sets
coded in the model Nz, we can no longer simply use an index in Nz as a code.
Instead we use pairs of degrees outside the model and interpret the sets coded as
prescribed by Theorem 2.15. Thus, while the notions of invariant and invariant
under the double jump remain the same as in the unrelativized case, we must adjust
our de®nition of `de®nable in arithmetic' accordingly. We now allow free set
variables in our formulas w and the usual binary relation symbol 2 for membership
(that is, the membership of a degree coding a natural number in these coded sets).
An n-ary relation P on degrees is then said to be de®nable in arithmetic if there is
such a formula w such that

P � fhdeg�X1�; : : : ; deg�Xn�i j Now�X1; : : : ; Xn�g:
(Of course, this agrees with the de®nition in terms of indices when all the sets Xi

are r.e.) With this de®nition, we immediately obtain the appropriate relativized
version of Theorems 2.7 and 2.16 and most of the associated corollaries.

Theorem 3.2. For every degree z, there are a de®nable copy Nz of the
structure �N;�; ´� in R z and a de®nable relation associating each degree a REA
in z with codes for sets of degree a00.

Corollary 3.3. For every degree z, any relation on Rz which is invariant
under the double jump is invariant in R z.

Corollary 3.4. For every degree z, any relation on R z which is de®nable in
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arithmetic (as rede®ned above) and invariant under the double jump is de®nable
in R.

Corollary 3.5. For every degree z, and for each k > 2, the relation xsk y
de®ned by x�k� �T y�k� is de®nable in Rz.

Corollary 3.6. For every degree z, the jump classes

Lowz
n � fa 2Rz j a�n�1� � z�n�1�g

and

Highz
n � fa 2Rz j a�n� � z�n�1�g

are de®nable in R z for n > 2.

Corollary 3.7. For every degree z, the jump class

Highz
1 � fa 2Rz j a0 � z00g

is de®nable in R z.

On the other hand, the proofs of the last part of Theorem 2.16 and of Corollary
2.19 do not relativize. Indeed, any attempt at talking about maps from degrees to
indices or even any form of unique codes for sets of given degrees is doomed
to failure as any function de®nable in Rz (and so arithmetic) taking degrees d to
(unique) representatives of d would contradict arithmetic determinacy. The same is
true even if we try to associate degrees (REA in z) with integers (in the standard
model of arithmetic de®ned in R z) up to any jump.

Theorem 3.8. There are degrees z such that there is no k 2 q and no map f
from R z to Nz; the isomorphic copy of N de®nable in Rz, which is de®nable in
R zsuch that f �a� � f �b� implies that ak �T bk.

Proof. If the theorem were not true, there would be a k and a well-ordering of

R z�k� which is Borel de®nable from z. Then using the coding of reals by

parameters in R z�k� , one could map the degree z to a real X in a uniformly Borel
way so that this map is not constant on any cone. For example, order the reals

coded in R z�k� by the ordering of the parameters which code them and choose the
®rst real X such that every real coded in Rz is similarly coded in Rx. The
existence of such a map contradicts Borel determinacy.

Thus, in general, no analogue of the second part of Theorem 2.16 is possible
for R z . A similar argument shows that the analogue of Corollary 2.19 also fails.

Theorem 3.9. There are degrees z and c with c REA in z00, such that the set
of degrees in R z with double jump c is not de®nable in R z.

We can, in fact, use the relativized results that do hold for every z to improve the
non-isomorphism results derived above to non-elementary equivalence for certain z
and w. A subset Z of the natural numbers N is implicitly de®nable if, for some
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formula wZ in the language L��; ´; P� with a symbol P for a unary predicate, Z is
the unique set satisfying the description. Formally, for each X Í q,

�N; X�owZ , Z � X:

In the literature, such sets Z are also called `arithmetical singletons'. For example,
each arithmetical set and 0= �q� are implicitly de®nable. It is easy to verify that the
class of implicitly de®nable sets is closed under the equivalence relation of having
the same arithmetical degree.

Theorem 3.10. If Z is implicitly de®nable ( for example, Z � 0= ) and Rz �Rw

then z00 � w00.

Proof. It is easy to see that there is a sentence v in L��; ´; P� such that

�N; X�ov , Z�2� �T X�2�:

Of course, in R z the sentence saying that there is a (code for a) set in Nz

satisfying v and that this set is in Lz
2 is true. The only way this sentence can hold

in some other Rw is for z and w to have the same double jump.

Note that some condition on z and w is needed in this theorem since, by Borel
determinacy, there is a degree z such that R z �Rw for every w > z.

Turning next to D�<00�, the degrees below 00, we brie¯y explain how the coding
procedures here can be used to improve Shore's invariance and de®nability results
in [29] by one jump to get results for D�<00� analogous to the ones provided in
§ 2 for R. (References in the discussion below refer to [29].) Effective standard
models of arithmetic are coded by intervals of degrees which are lattices using
Lerman's results [17, XII] on lattice initial segments of D�<00�. The crucial
change needed is simply to require (as is part of the de®nition of Slaman±Woodin
sets) that the elements of the model M coded below some e also join some p < e
above some other q < e. This makes the collection of (indices for) the elements of
M a SE

3 -set rather than one recursive in e�3�. Thus the function h (of Theorem 1.1)
enumerating these indices is recursive in e00 rather than e�3�. We can now argue
that the structure of the degrees below any a < 00 determines a00 (rather than just
a�3�) and so the double jump is invariant in D�<00� as it is in R.

By Lemma 1.3, if f is r.e. in and strictly above e, any SE
3 -set S can be coded in M

by a pair x; y < f (with i 2 S, iM < x; y). Consider then any a < 00. If a00 � 000 then
only S3-sets can be coded by pairs below a in effective standard models which are
segments �b; e� below a. On the other hand, if a is not Low2 then we argue that the
sets coded by pairs below a in models given by segments below a determine a00. For
g < a let

H�g� � lubfdeg�X� j every set coded by a pair below g in an effective

standard model given by a segment below g is SX
1 g:

As every set in H�g� is SG
3 , H�g�< g00 < a00. Thus it suf®ces to show that every

x > 000 which is r.e. in a0 is actually H�g� for some g < a as the least upper bound
of such x's is a00 by standard density type results on r.e. degrees (relativized to
a0). This then implies that a00 � lubfH�g� j g < ag as required to determine a00

from D�<a�. Now consider any such x. The proof of Theorem 2.1 shows that
there are degrees k < b < e < g < a such that k00 � x, g is 1-generic over k and
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r.e. in b, �e; b� codes an effective standard model of arithmetic, and there
are x; y < g coding each SE

3 -set in M. As g is 1-generic over k and k < e < g, we
have g00 � x and SE

3 � SG
3 � SK

3 . Thus x � H�g� as required.
This proves the invariance of the double jump in D�<00�. By using the language

of arithmetic in the coded models, the invariance result can be converted into
de®nitions of the jump classes Lown and Highn for n > 2 (rather than n > 3). Now,
an argument similar to that for our Theorem 2.21 above shows that High1 is
de®nable in D�<00� by the same formula used in R. The only change is that the
®nal application of the RJIT is replaced by the jump interpolation theorem given in
Theorem 1.6(b) and due to Jockusch and Posner [13]. We have thus proved the
following results.

Theorem 3.11. (i) Any relation on D�<00� invariant under the double jump is
invariant.

(ii) The jump classes Lown�1 and Highn for n > 1 are de®nable in D�<00�.
(iii) For each c REA in 000, the set of degrees x < 000 with x00 � c is de®nable

in D�<00�.

The general de®nability results for arithmetical relations invariant under the
double jump in D�<00� can then be derived (as mentioned in [29]) using
comparison maps between models via the methods of Slaman and Woodin [34]
as explicated in [25]. One can then derive results on relativizations to structures
�z; z0� as we did above for R z .

Assuming the de®nability of the jump (as now proved by Cooper [5]), Nerode and
Shore [19] showed that every degree above 0�3� is ®xed under every auto-
morphism of D. Slaman and Woodin improved this result by replacing 0�3� with
000. As the last application of our results, we note that the relativization of the
characterization of a00 from D�<a� supplies another proof of this result.

Theorem 3.12 (Slaman and Woodin). Every automorphism of D is ®xed on
every x > 000.

Proof. If x > 000 then there is (by the Friedberg jump theorem) a degree z
such that z00 � x. As the jump is de®nable in D by [5], this relation is
de®nable from x, as is z0 from z. Our arguments now show that x is determined
by the sets coded as above in such structures �z; z0� and so is ®xed by all
automorphisms of D.

In the above proof, our constructions show that we can actually de®nably obtain a
representative of the degree x in the coded model. Moreover, in D we can de®nably
map one such model to any other. Thus we can de®nably choose a representative of
any degree up to double jump and, for example, prove the following.

Theorem 3.13. Any relation on D de®nable in second-order arithmetic and
invariant under the double jump is de®nable in D.

Of course, as we see from the codings described in § 2, there is no need for the
degrees coding the model of arithmetic to determine an entire interval of degrees
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and so require full initial segment-type arguments. Thus simpler constructions (if
done from scratch) would suf®ce to construct such codings that would be suf®cient
to prove these results for D�<00� and D.

4. Slaman±Woodin sets

We begin the discussion of our constructions with a description of Slaman and
Woodin's basic scheme for constructing a countable set of incomparable degrees g i

which are de®nable in R from ®nitely many parameters p, q, r as the minimal
degrees x below r such that q <T x _ p.

Theorem 4.1 (Slaman and Woodin). There are r.e. sets P, Q, R and Gi ( for
i 2 q) with R �LGi such that

1. �T�: Gi � P >T Q;

2. �D�: Gi ÀT Gj for i 6� j;

3. �M�: if W is r.e., recursive in R and W � P >T Q, then there is a j 2 q such
that Gj <T W.

We ®rst give a preliminary description of the basic strategies for ensuring each of
the requirements (1)±(3) above.

4.1. The individual requirements
1. Ti: Gi � P >T Q. This requirement is met by building a functional Gi such that

Gi�Gi � P� � Q. It introduces the set Gi in the construction and so no requirement
preceding it can involve Gi. A crucial goal of the construction will be to arrange
that a number x is put into Q to satisfy some requirement of lower priority than Ti

only when we can safely put the associated marker gi�x� (which is the use of
Gi�Gi � P�) into P. Of course, we can move this marker if we so desire when Gi (or
P) has changed on the use of the functional at x. The typical situation will be that,
before x can go into Q, x or some smaller number must enter Gi . At that point, we
will rede®ne gi�x� to be large enough so that, when x goes into Q, we can put gi�x�
into P without injuring the P-preservation associated with the requirement putting x
into Q. We must also somewhere in the construction maintain this ability to put
x into Q by keeping gi�x� above this P-restraint or cancel the possibility that x
might enter Q. (Requirements of type 4 below will play a role here.)

2. Di; j; e: We�Gi� 6� Gj. (Here hWe j e 2 qi is a listing of all partial recursive
functionals.) This requirement is met by a Friedberg±Muchnik type of argument.
We begin by choosing a suitable follower y which is larger than any number used
so far in the construction. The conditions on suitability of followers are intimately
connected with the strategy for minimality of the Gi (3) and cannot be precisely
de®ned until we describe the strategy for those requirements. Suf®ce it to say
that maintaining the suitability of followers will consist of imposing P-restraint
and will be the major task of the Di; j; e in the construction. We wait for a stage s
at which the (still suitable) follower is realized, We�Gi; y� � 0 �s�. We then put y
into Gj and preserve Gi on the appropriate use we�y� by initializing all lower
priority requirements.

3. Mi: if Qi�R� � Wi and Fi�Wi � P� � Q, then Gj <T Wi for some j 2 q. (Here
hWi; Qi;Fi j i 2 qi is a listing of all triples consisting of an r.e. set W and two
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partial recursive functionals Q and F.) These requirements, which ensure
minimality, are by far the most complicated ones. Suppose, for example, that the
sets G0; : : : ; Gn have been introduced by the requirements Tj for j < n of higher
priority than Mi. Our ®rst task is to see whether the hypotheses of Mi seem satis®ed.
Thus we ®rst see if we have a new i-expansionary stage. We de®ne a length of
agreement function

l�i; s� � mzf:�Fi�Wi � P; z� #� Q�z� �s�^
�"w < fi�z���Qi�R; w� #� Wi�w� �s� �� g:

We say that a stage s of our construction is i-expansionary if l�i; s� > l�i; t� for
every stage t < s.

If there are in®nitely many expansionary stages for the functionals in the
hypothesis of Mi, we will, for each j < n, build functionals Di; j. Moreover, we will
guarantee that, for some j < n and some m, Di; j�Wi; x� � Gj�x� for every x > m. (We
could build distinct functionals Di; j; m so that one of them would work for all x but it
is technically more convenient to build just one functional that works almost
everywhere. Of course, this suf®ces to get Gj <T Wi as desired.) If, on the other
hand, the last functional, Di; n, is seen to fail, we will kill off the requirement Mi by
putting some number x into Q while preserving the Fi-use, fi�x�, to guarantee that
Fi�Wi � P� 6� Q. Thus there will be only ®nitely many i-expansionary stages. The
preservation of this win on requirement Mi has two components. We preserve ®rst
PWfi�x� and then WiWfi�x� by preserving RWvifi�x�, the amount of R needed to
compute WiWfi�x� via Qi, by initializing all lower priority requirements.

Our main goal in setting up the situation to produce this win on Mi is to ensure
that when we put x into Q, we can correct all the functionals Gj�x� of higher priority
than Mi that are supposed to be computing Q from Gk � P for some k. We expect to
be able to do this by putting the number gk�x� into P. The crucial point is then that
we must ensure that each gk�x� is greater than fi�x� as our diagonalization against
Q depends on preserving PWfi�x�. The basic idea for getting gk�x� to be greater than
fi�x� is that before x can go into Q it, or some smaller number, must go into each
such Gk. When that happens we can increase gk�x� to maker it larger than fi�x�.
Some restraint will also be imposed in the usual way (as, for example, in the
minimal pair argument) between expansionary stages to preserve PWf�x� until the
next expansionary stage even after the associated number has gone into Gk. It is
dropped, and so may be violated (even by lower priority requirements), at
expansionary stages. Other preservation will be indirectly imposed (by type 4
requirements) that will prevent this from happening in®nitely often. In addition, we
must know that no Wi change can later increase fi�x� without allowing us to restore
the computations Di; j�Wi; x� whose failure prompted us to consider putting x into Q.
This condition translates into the requirement that di; j�x�> fi�x� as, in this case,
any Wi change on fi�x� would allow us to rede®ne D i; j�Wi; x� to equal Gj�x� once
again. Thus ensuring such inequalities as di; j�x�> fi�x� will be an important, if
only implicit, concern in the construction.

Although it is a considerable oversimpli®cation, it may be instructive to consider ®rst
the case that n � 0. Here, there is only one set, G0, that we can compute from Wi to
satisfy the requirement and only one functional Di � Di;0 is constructed.

Now, our concern is that some requirement S of lower priority may want to put x
into G0 (and so destroy the correctness of Di). If such a requirement appoints x as a
follower, it will be its responsibility to preserve the suitability of x (until x enters
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G0) by imposing restraint on PWfi�x�. As far as the requirement Mi is concerned,
the suitability of x will be equivalent to being able to ensure that, if and when
needed, we can make g0�x� > fi�x�. An additional point to notice is that even
though S is preserving PWfi�x�, it is not preserving R. Hence Wi may change on
fi�x� before we put x into G0. As mentioned above, when this happens we rede®ne
the axiom for D to make di�x�> fi�x�. In addition, S now imposes restraint on P up
to the new Fi�x� use. (A more precise description of this restraint will be given
when we formally de®ne the action of the Friedberg±Muchnik type diagonalization
requirements. We will also explain below how we add new requirements (type 4) to
the construction to prevent fi�x�, and so the P-restraint imposed by S, from
becoming unbounded.)

On the other hand, if s is i-expansionary and there is a point at which Di has
failed (to compute G0 correctly) let x be the least number such that
Di�Wi; x� # 6�G0�x� �s�. Consider now which requirement S put x into G0 at a
stage t < s. On general principles, S must have lower priority than Mi or we would
simply cancel Mi and start it over. In accordance with the above provisions, S
then imposed restraint on PWfi�x� �v� as soon as l�i; v�> x.

Note that, by our de®nition of Di, di�x��v� � v > fi�x��v�. As long as x is not
cancelled, this restraint will not be violated. Thus the only way fi�x� can change
between v and t is for WiWfi�x� to change. When this happens we rede®ne Di at
i-expansionary stages so as to keep di�x�> fi�x�.

Now, before we return to Mi at an i-expansionary stage there is a stage r, with
t < r < s, at which we deal with the requirement T0. At stage r, we must rede®ne
G0�G0 � P; x�. Of course, x has not yet gone into Q and so we will set
G0�G0 � P; x� � 0; but, we will de®ne the functional by an axiom of length
g0�x� � r > fi�x� �t�. When we now ®nally return to Mi at the ®rst i-expansionary
stage s > t and see that Di�Wi; x� # 6�G0�x� � 1 �s�, we are ready to kill Mi. Note that
WiWfi�x� �t� has not changed or we would not have Di�Wi; x� # and a failure at x.
(The point here is again that di�x� �t�> fi�x� �t� by our maintaining this inequality
whenever Wi Wfi�x� changes. A change in P would cause us to cancel x.) We put x
into Q, r into P and preserve RWvifi�x� �s� and PWfi�x� �s� by initializing lower
priority requirements. As long as this restraint is not violated l�i; v� < x and there
are no more i-expansionary stages. (As RWvifi�x� does not change, WiWfi�x� cannot
change without forever preventing l�i; v� from getting above x because of the clause
requiring that Qi�R; w� #� Wi�w� for every w < fi�x� �s�. Moreover, no numbers
enter PWfi�x� �s� by our initialization procedure and so if WiWfi�x� �s� also does not
change, Fi�Wi � P; x� remains constant at its value at t which was necessarily 0 as x
was not in Q at that time. Thus our preservation guarantees that either
Fi�Wi � P; x� 6� Q�x� or Qi�R; w� 6�Wi�w� for some w < fi�x�, that is, there are no
more i-expansionary stages.)

Finally, we can correctly rede®ne G0�x� at the next stage because we put
r < g0�x� into P. Thus if Di ever fails to compute G0 from Wi correctly, we can kill
off the requirement Mi and still correct the functionals of higher priority. Of course,
we can only follow this plan of action if no requirement of higher priority than Mi

restrains r from entering P.
To describe the action for a requirement Mi in general, suppose that the sets

G0; : : : ; Gn (n > 0) are the ones that have been introduced by requirements Tj for
j < n of higher priority than Mi. As mentioned above, we will be constructing
various functionals Di; j and attempting to see that, for some j, Di; j�Wi� �� Gj.
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We say that a functional D � Di; j fails at a number x at stage s if
Di; j�Wi; x� # 6�Gj�x� �s�. This failure remains active at stages t > s as long as
there is no change in WiWdi; j�x� �s�.

At stages s which are not i-expansionary, we take no action for Mi but we do
maintain restraint on PWu where u is the last i-expansionary stage. At i-expansionary
stages we drop Mi's P-restraint and proceed for j � 0 by trying to build a functional
Di;0 such that Di;0�Wi� �� G0. Suppose s is an i-expansionary stage. We begin the
construction with a chit for each number y. We will use these chits to keep track
of the failures of functionals Di; j. We ®rst ®nd the least x < l�i; s� such that
Di;0�Wi; x� " and the least y < l�i; s� such that the chit for y has not been assigned
to any Di;0 computation and has not been cancelled. Assign the chit for y to
Di;0�Wi; x� and set Di;0�Wi; x� � G0�x� �s� with use fi� y� �s�. This chit for y can be
assigned to various computations Di; j�Wi; z� subject to the provisos that at any
given stage it is assigned to at most one such computation for any single j and it
cannot be assigned to one for j� 1 until the one for j to which it is assigned fails.
The chit will be cancelled if the failure of Di;0 at x becomes inactive. Moreover,
we will ensure that the use di; j�z� �t� of any convergent computation to which it is
assigned at t is fi�y� �t� for any t > s until y enters the set for which it is targeted.
Thus if the chit becomes inactive, any computation associated with a chit for x
becomes unde®ned (and so can be corrected at the next stage if necessary).

If n > 1, we proceed for j � 1 much as we did above for j � 0 except that we
must restrict our actions by the availability of chits. If there is no active uncancelled
chit which is assigned to some failure of Di;0 but not to any Di;1 computation, we
terminate this substage of stage s. If there is such a chit, we assign the least such
chit to the computation Di;1�Wi; x� where x is least such that Di;1�Wi; x� ". If there is
now a failure of Di;1 whose chit (for some number y) has not been assigned to any
Di;2 computation, we continue on with j � 2. Note that if we assign the chit for y to
Di;1�Wi; x�, then y > x. Thus, for example, x < g1� y� and so when we put x into G1

we can change g1� y� as well as g1�x� to be larger than fi� y�.
At any point we may cancel the chit for a number y because of certain changes in

P that would interfere with our correcting higher priority Gk should we put y into Q.
If some x enters Gj at a stage t when the chit for y is assigned to a computation
Di; j�Wi; x� and at a later i-expansionary stage s > t, before y has gone into Q,
fi� y� �s� > t then we cancel the chit for y (and so it can never be assigned to any
other computation and y can never enter Q).

If we reach a point where there are no unassigned active chits to pass on to the
next level of functionals, we terminate this substage of stage s. Otherwise, we reach
the functional Di; n. If there is a failure of this functional at x and the (uncancelled,
active) chit for y is assigned to Di; n�Wi; x� and our action would not violate any
higher priority P-restraint, then we act to kill Mi. We put y into Q, gj� y� into P for
each j < n and preserve RWvifi� y� and PWfi� y� by initialization. The point to verify
is that gj� y� > fi� y� for each j < n.

4. Ke; x: if there are in®nitely many s such that Ye�R� P; x� # �s�, then
Ye�R� P; x� #. Here fYeg lists all partial recursive functionals and includes various
ones appearing in the construction with the approximations given in the
construction. In particular, it includes Di; j �Wi; x� and the function of i, j, n which
converges when there are n failures of the functional D i; j at an i-expansionary stage.
When we consider such functionals as included in the Ye, we intend their uses (from
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R) to include the Qi uses needed to compute the relevant Fi uses on Wi. These
requirements are not explicit in the statement of the theorem but they are used, for
example, to prevent the uses fi� y� of the chit assigned to the computation (and so
the associated P-restraint) from going to in®nity. They also play a role in
maintaining conditions of the form gk�x� > fi� y� discussed above and making the
functionals Gk total. The requirement Ke;x simply attempts to preserve PWye� y� and
RWye� y� by initialization.

We now turn to the formal construction of our sets L, P, Q, R and Gi.

4.2. Construction
We begin by listing all the requirements Ti, Di; j; e, Mi, Ke; x in a priority list of

order type q such that Ti and Tj appear on the list before any Di; j; e. Each stage s
of our construction will have at most s many substages n at which we may deal with
requirement n. Each requirement may put numbers into some sets, axioms into a
functional and impose restraint on various sets in the usual fashion. Whenever a
requirement puts numbers into a set, we initialize all requirements of lower priority.
Initialization of a requirement at stage s means that all followers, chits and all
restraint associated with the initialized requirement are cancelled and no further
attempts are made at maintaining the correctness at numbers less than s of any
functionals it is constructing. (As we only care about the functional being correct
almost everywhere, this will not cause problems as long as the requirement is
initialized only ®nitely often.) As new followers are always chosen larger than any
number previously used in the construction, initialization also acts to preserve
various computations. At other times we may cancel chits because the situation that
made them usable has been destroyed. We now describe our actions at substage n of
stage s of the construction according to the type of the nth requirement on our list.
We let r be the last stage at which the requirement being considered at substage n
was injured (r � 0 if there is no such stage). Material enclosed in double brackets
[[ ]] is motivational only and not part of the formal construction. When we choose a
`large' number at a stage s we mean a number larger than any used in the
construction before s. We use the style of i-expansionary stage restraint on P as in
the minimal pair construction in [35, IX.1].

1. Ti: Gi � P >T Q. Find the least x > r such that Gi�Gi � P; x� " �s� and set
Gi�Gi � P; x� � Q�x� �s� with large use gi�x�. [[That Gi will be de®ned almost
everywhere will follow from the type 4 requirements below. That it will be correct
almost everywhere is tied to the action of the type 3 requirements which put
numbers into Q and will require proof below.]] We now continue on to the next
substage of stage s.

2. Di; j; e: We�Gi� 6� Gj. If this is the ®rst stage at which we deal with this
requirement since r, we choose a new large follower x for Di; j; e from the column
q 0; i; j; eh i associated with Di; j; e. At every stage t > s until x is cancelled or enters Gj,
Di; j; e imposes restraint r�D; i; j; e; t� on P where

r�D; i; j; e; t� � maxfdk; j�Wk; x� �t� j Mk has higher priority than Di; j; eg:
[[Our de®nition of Di; j will make this restraint equivalent to

maxffk�z� �t� j Mk has higher priority than Di; j; e and there is a computation of
Dk; j�Wk; x� # �t� which is associated with a chit for z.g]] This restraint is dropped
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when x is cancelled by some higher priority requirement or enters Gj. [[This
restraint can be violated only when we act for a type 3 requirement of higher
priority in which case we would initialize Di; j; e and all lower priority requirements.]]

If Di; j; e has an uncancelled follower x and We�Gi; x� #� 0, we say the follower is
realized. If the realized follower is not yet in Gj, we put it into Gj, initialize all
lower priority requirements and terminate stage s. [[This has the effect of
preserving Gi Wwe�x� with priority Di; j; e.]] Otherwise, we continue on to the next
substage of stage s.

3. Mi: if Qi�R� � Wi and Fi�Wi � P� � Q, then Gj <T Wi for some j such that Tj

has higher priority than Mi. We ®rst de®ne a length of agreement function and
i-expansionary stages as above:

l�i; u� � mzf:�Fi�Wi � P; z� #� Q�z� �u�
^ �"w < fi�z���Qi�R; w� #� Wi�w� �u� �� g:

We then de®ne the notion of an e-expansionary stage and the restraint r�M; e; u�
imposed on P by Me by induction on e < i as in [37, IX.1]. If u � 0 or l�0; u� is
larger than l�0; t� for every t < u, the stage u is 0-expansionary and r�M; 0; u� � 0.
Otherwise, u is not 0-expansionary and r�M; 0; u� is the largest number used in
the construction up through the last 0-expansionary stage. The stage u is �e� 1�-
expansionary if l�e� 1; u� > l�e� 1; t� for every t < u for which r�M; e; t� �
r�M; e; u�. We let r�M; e� 1; u� be the maximum of r�M; e; u�, any number used
at a stage t < u at which r�M; e; t� < r�M; e; u� and, if u is not �e� 1�-
expansionary, any number used at any �e� 1�-expansionary stage t < u for which
r�M; e; t� � r�M; e; u�. Now we can describe our action for Mi at stage s.

If s is not i-expansionary or Mi has put a number into Q since r, we go on to
the next substage of stage s. Otherwise, suppose that T0; : : : ; Tn are the requirements of
type 1 of higher priority than Mi (n is really ni but we drop the subscript for this
description). We are constructing functionals Di; j with the expectation that, for some
j < n, Di; j�Wi� �� Gj. We say that a functional Di; j fails at a number x at stage s if
Di; j�Wi; x� # 6�Gj�x� �s�. This failure remains active at stages t > s as long as there
is no change in Wi Wdi; j�x� �s�. At the start of the construction, there is a chit (for
Mi) for each number y. We will assign these chits to various computations of the
functionals Di; j and use them to keep track of the failures of these functionals.

We begin with j � 0 by ®nding the least x > r such that Di;0�Wi; x� " [[necessarily
x < l�i; s�]]. Let y be the least number less than l�i; s� such that the chit for y is not
assigned to any computation of Di;0 and has not been cancelled. (If there is no such
y we go on to the next substage of stage s.) We assign the chit for y to Di;0�Wi; x�
and set Di;0�Wi; x� � G0�x� �s� with use fi� y� �s�. This chit for y can be assigned to
various computations Di; j�Wi; z�, with 0 < j < n, subject to the provisos that at any
given stage it is assigned to at most one such computation for any single j and it
cannot be assigned to one for j� 1 until the one for j to which it is assigned fails.
The chit will be cancelled if the failure of Di;0 at x becomes inactive or Mi is
initialized. It may also be cancelled at stages where certain changes occur in P on
computations associated with the chit. [[Moreover, we will ensure that, unless
cancelled, the use di; j�z� �t� of any convergent computation to which the chit is
assigned at t is fi� y� �t� for any t > s. Thus if the chit for y becomes inactive, any
computation at a number larger than the last initialization of Mi to which the chit for
y is assigned becomes unde®ned, and so can be corrected at the next stage.]]
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If n > 1, we proceed for j > 0 much as we did above for j � 0 except that we
must restrict our actions by the availability of chits. If every uncancelled chit which
is assigned to some failed computation of Di; jÿ1 has been assigned to some Di; j

computation, we terminate this substage of stage s. If there is such an unassigned
chit, we assign the least such chit to the computation Di; j�Wi; x� where x is least
such that Di; j�Wi; x� ". If there is now a failure of Di; j whose chit (for some number
y) has not been assigned to any Di; j�1 computation, we continue on with j� 1.
[[Note that if we assign the chit for y to Di; j�Wi; x�, then y > x. Thus, for example,
x < g1�y� and so when we put x into G1 we can change g1�y� as well as g1�x� to be
larger than fi�y�.]]

If we assign the chit for y to a computation Di; j�Wi; x� at s, x enters Gj at t > s
and we return to Mi at an i-expansionary stage u > t such that fi�y� �u� > t, then we
cancel the chit for y [[and so y will never enter Q]].

If we reach a point where there are no appropriate active chits to pass on to the
next level of functionals, we terminate this substage of stage s. Otherwise, we reach
the functional Di;n. If there is a failure of this functional at x and the uncancelled
chit for y is assigned to Di; n�Wi; x� and y is larger than any restraint of higher
priority on P (that is, y > r�D; k; l; m; s�; r�M; k; s� for every Dk; l; m and Mk of higher
priority than Mi), then we act to kill Mi: we put y into Q, gj� y� into P for each j < n
and preserve RWvifi� y� and PWfi� y� by initializing all requirements of lower
priority than Mi and terminate stage s. [[The point to verify will be that
gj� y�> fi� y� for each j < n.]]

4. Ke; x: if there are in®nitely many s such that Ye�R� P; x� # �s�, then
Ye�R� P; x� #. Here fYeg lists all partial recursive functionals and includes various
ones appearing in the construction with the approximations given in the
construction. In particular, it includes the ones Gi�Gi � P; x�; Di; j�Wi; x� and the
function of i; j; n which converges when there are n failures of the functional Di; j at
an i-expansionary stage associated with uncancelled chits. When we consider such
functionals as included in the Ye we intend their uses (from R) to include the Qi

uses needed to compute the relevant Fi uses on Wi as well as the information
directly used about P, R and any Gk viewed as a component of R.

If Ye�R� P; x� # for the ®rst time since Ke; x was last initialized, we initialize all
requirements of lower priority. [[This has the effect of imposing restraint on
PWye�x� �s� and on RWye�x� �s� and hence, for example, on Wi Wdi; j�x� �s� for the
appropriate e.]] In any case, continue on to the next substage of stage s.

At the end of substage s, we terminate stage s (if it has not been terminated
before). When stage s is terminated, we go on to stage s� 1.

4.3. Veri®cations
First, note that (other than through initialization) the only restraint imposed in the

construction is on P. Moreover, by de®nition of the e-expansionary stages and
the restraint functions r�M; e; u�, the restraint r�M; i; s� imposed on P by
requirements Mj of priority greater than or equal to that of Mi have a ®nite lim inf
which is realized on the i-expansionary stages if there are in®nitely many such
stages and, if not, on almost all the stages at which r�M; iÿ 1; s� realizes its lim inf.
We are proving by induction that each requirement succeeds and that those of type
2 impose at most ®nite restraint. (Of course, requirements of type 1 never impose
any restraint.) It is immediate from the de®nition of their actions that if a
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requirement of type 2, 3 or 4 is never initialized after stage r, it acts at most once
after r to put numbers into sets and to initialize lower priority requirements. As the
other requirements never initialize anything, it is obvious by induction that each
requirement has a stage after which it is never initialized. Let us consider the fate of
any requirement which is last initialized at stage r.

4. If Ye�R� P; x� never converges after stage r, we never act for Ke; x and it is
satis®ed. If Ye�R� P; x� converges for the ®rst time at s > r, it remains convergent
at every later stage. The point is that Ke; x initializes all requirements of lower
priority and so none can put any elements below the use into R or P. No
requirement of higher priority can put a number into R or P as that would initialize
Ke; x, contrary to our choice of r. Thus the Ke; x succeed.

In particular, lim di; j�x� exists and is ®nite (possibly 0 if Di; j�Wi; x� ") for every i,
j, x. Thus the restraint imposed by any particular follower x of a requirement Dm; n; e

is bounded by lim maxfdk; l�x� �t� j Mk has higher priority than Dm; n; eg. (Note that
the set of relevant dk; l is ®nite as l < nk and each Mk must have higher priority than
Dm; n; e.) As only one follower is ever appointed for such a requirement after it is last
initialized, the restraints of this type are bounded for each such requirement.

2. Di; j; e: at stage r � 1, Di; j; e appoints some large follower x. If the follower x is
never realized, the requirement is satis®ed. If it is realized at a stage t, we put x into
Gj and initialize all lower priority requirements. Now, no higher priority
requirement can put a number below we�x� �t� into Gi as this would initialize Di; j; e

contrary to our assumption. No lower priority argument can put any number below
we�x� �t� into Gi after stage t as all such numbers are appointed as followers after
stage t and so are larger than we�x� �t�. (The only requirements which can put
numbers into Gi are of type 2 and these always choose new followers larger than
any number previously used in the construction.) Thus Di; j;e is satis®ed. The
argument in the proceeding paragraph shows that the P-restraint imposed by Di; j;e

now goes to a limit.

1. Ti: consider each x > r in turn. It is clear from the construction that we build a
functional Gi such that Gi�Gi � P; x� # �t� � Q�x� �t� for in®nitely many t. The
success of the requirements Ke; x now guarantees that Gi is de®ned for all x > r.
Now, only requirements of type 3 put numbers into Q and when they put some y
into Q they put gk� y� into P for every Tk of higher priority. Thus at any later stage
we can correctly rede®ne Gk�Gk � P; y�. At all other stages this functional is
obviously correct when de®ned and so Gi � P >T Q, as required.

3. Mi: if the hypotheses of Mi (Qi�R� � Wi and Fi�Wi � P� � Q) are satis®ed,
there are in®nitely many i-expansionary stages at which the P-restraint of higher
priority is constant. If the hypotheses are not satis®ed, the success of the
requirements Ke; x guarantee that lim l�i; s� < 1 and so we eventually stop all action
for Mi and in particular, the restraint it imposes is eventually constant.

We begin by supposing that the hypotheses are satis®ed and prove a series of
lemmas.

Lemma 4.2. The function Di;0�Wi; x� is de®ned for every x > r.

Proof. If this is not so, let x be the least counter-example and s a stage by
which Di;0 has settled down for every z , with r < z < x. It is clear from the
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construction and our hypotheses that Di;0�Wi; x� �t� # for in®nitely many t > s. As
this corresponds to some Ye�R� P; x� �t� #, the success of the requirements of type
4 guarantees that Di;0�Wi; x� #.

Lemma 4.3. Suppose Di; j�Wi; x� is de®ned for almost every x. If there are
in®nitely many x such that Di; j�Wi; x� 6� Gj�x�, then there are in®nitely many x
such that the computation of the failure of Di; j at x is associated with a chit which
is never cancelled and so, if j < ni, there are in®nitely many chits which are never
cancelled and are available for assignment to Di; j�1.

Proof. We proceed by induction on n and so assume there are nÿ 1 many
failures of Di; j with computations associated with chits which are never cancelled.
Let x be a larger failure point for Di; j . Consider the stage t at which x enters Gj.
Suppose Di; j�Wi; x� was last de®ned at (a necessarily i-expansionary) s < t with
di; j�x� �s� � fi� y� �s� where the chit for y was assigned to this computation of
Di; j�Wi; x�. We can later get our failure at x only if x is already a follower of some
Dk; j; e of lower priority than Mi. Thus the restraint associated with this requirement
after stage s is at least di; j�x� �s� � fi� y� �s�. If P changes below this restraint
before x enters Gj, x would be cancelled (as P can change only if a requirement
of higher priority puts a number in and so initializes Di; j;e) and so would never
enter Gj and never produce a failure of Di; j. Thus when x enters Gj at t > s,
PWfi� y� �s� has not changed since the last stage at which Di; j�Wi; x� was de®ned.
Now no number enters P at t because only one requirement can put numbers into
R� P at any stage. Let u be the ®rst i-expansionary stage after t. No number
below fi� y� �s� can enter P at any v between t and u by the de®nition of the
restraint r�M; i; v� as Mi can no longer be initialized. Thus when we return to Mi

at stage u, we have a failure of Di; j at x which has not been cancelled and so
seem to have Wi � P correct on the use fi� y� �u�. Our assumption guarantees that
this happens for in®nitely many x. Consider now the functional Ye�R� P; k�
which gets de®ned at s if there are k many failed computations of Di; j which are
associated with chits whose computations are R� P-correct at s. Once again, the
success of requirements of type 4 and our assumptions guarantee that this
functional is de®ned at n. As (after Mi is never initialized) a chit for y such that
RWvifi� y� and PWfi� y� are correct is never cancelled, we have the existence of
the desired nth instance of a failed computation of Di; j associated with a chit
which is never cancelled.

Lemma 4.4. If j < ni and there are in®nitely many chits which are never
cancelled and available for assignment to Di; j�1, then Di; j�1 is de®ned for
every x > r.

Proof. The argument is like the one above for Di;0 . By construction, we
must in®nitely often de®ne Di; j�1 at some x as there are new chits available
in®nitely often. Thus, for each x at which we can try to de®ne Di; j�1 in®nitely often
(that is, each x > r), the functional is actually de®ned by the success of requirements
of type 4.

Lemma 4.5. If Di; j�Wi� 6�� Gj for every j < ni then Mi eventually puts a
number into Q.
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Proof. Arguing by induction and using the above lemmas, we see that Di;ni
is

de®ned for every x > r. If there were in®nitely many failures of Di;ni
, there would

be in®nitely many whose associated chit is never cancelled. So, in particular,
there would be an x associated with such a chit y which is larger than the lim inf
of the restraint of higher priority than Mi imposed on P. It is clear by construction
that we would then eventually put one such y into Q.

Finally, we conclude the veri®cation of the success of Mi with the
following lemma.

Lemma 4.6. If Mi ever puts a number y into Q after stage r, then
lim l�i; s� < 1 and so Mi is satis®ed. (Of course, in this case there are only
®nitely many i-expansionary stages and the restraint imposed by Mi is constant
after the last one.)

Proof. Suppose it does so at stage s. We ®rst claim that no number used in
the computations associated with y at s can ever be put into R or P. As no higher
priority requirement ever puts a number into R� P by our choice of r and no
lower priority one puts one in which is used in the computations at s by
initialization, it suf®ces to prove that each gk� y� �s� put into P at s is larger than
these uses from P. In order for us to put y into Q at s, we must have a chit
for y which is uncancelled and associated with failed computations
Di; j�Wi; xj� � 0 6� Gj�xj� for each j < ni. Consider the stage sj < s at which xj was
put into Gj by some requirement of type 2 of lower priority than Mi (as otherwise
sj < r and so the chit for y would have been cancelled at r). Suppose Di; j�Wi; xj�
was last de®ned before sj at the i-expansionary stage tj with a chit for y and use
fi� y��tj�. At some stage uj > sj we rede®ne Gj�Wj � P; y� with a large use and so
one larger than fi� y��tj�; tj. If there were any later i-expansionary stage (including
s� at which fi� y� increased above this G use, we would cancel the chit for y by
construction and so it could not later go into Q as assumed. Of course, as time
goes by gj� y� is non-decreasing. Thus when we put y into Q, we obtain
gj� y� > fi� y�, as required.

This completes the proof that each requirement succeeds and so we have
constructed the required sets.

4.4. Codings
We now describe the additional requirements needed to code enough relations on

the de®nable set of degrees hgii constructed above to get a de®nition of arithmetic
on the de®ned set of degrees and so the undecidability of R. Although other
codings are possible (such as graphs), we follow Slaman and Woodin's original plan
and code an arbitrary recursive partial ordering P � hq;4i on the gi by
constructing an additional set L and adding requirements that guarantee that
Gj <T Gi � L, j4 i. For the `only if' direction, we adjust the construction so that
any number x put into Gj is also simultaneously put into Gi or L. In particular, when
a requirement Di; j; e puts a number x into Gj it also puts x into L. For the `if'
direction, we add in requirements of type 5.

5. Ni; j; e: if i 9 j then We�Gi � L� 6� Gj. This requirement is met by a Friedberg±
Muchnik type strategy like that used for requirements Di; j; e. The only additional
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features are the ones necessitated by the coding for the positive ordering facts as
described above. When a new large follower x is appointed, Ni; j; e imposes restraint
r�N; i; j; e; t� on P that takes into account the fact that a witness x targeted for Gj

will also have to be put into Gl for l< j:

r�N; i; j; e; t� � maxfdk; l�Wk; x� �t� j Mk has higher priority

than Ni; j; e and l< jg:
[[Our de®nition of Di; j will make this restraint equivalent to
maxffk�z� �t� j Mk has higher priority than Ni; j; e, l< j and there is a computation
of Dk; l�Wk; x� # �t� which is associated with a chit for zg.]] This restraint is
dropped when x is cancelled by some higher priority requirement or enters Gj. If
Ni; j; e has an uncancelled follower x and We�Gi; x� #� 0, we say the follower is
realized. If the realized follower is not yet in Gj, we put it into Gl for every l< j,
initialize all lower priority requirements and terminate stage s. The argument
that these requirements are satis®ed and impose only ®nite restraint on the rest of
the construction is again exactly as for the Di; j; e. (A more detailed version of the
treatment of such requirements is presented in the construction for, and
veri®cation of, Theorem 5.1.)

4.5. Permitting
The next extensions of the basic construction with the coding apparatuses

described above involve permitting. First, we can make the sets Gi and L constructed
recursive in any given non-recursive r.e. set B. The requirements Di; j; e and Ni; j; e now
wait for a realized follower x which is permitted by B. While all followers are realized
but none has been permitted, they appoint new followers (initializing all lower priority
requirements) and wait for them to be realized (again initializing all lower priority
requirements). As B is non-recursive, they either get a follower which is never realized
or eventually put a realized follower into the appropriate sets. In any case they act only
®nitely often and are eventually satis®ed. (Again a more detailed argument for a
similar requirement is presented in Theorem 5.1.)

The situation for the Mi requirements and so for the sets P and Q is somewhat
different. The restraint imposed on P by higher priority Mj only has ®nite lim inf.
Thus coordinating action by Mi to put numbers into Q and so P with permitting by
an arbitrary non-recursive r.e. B requires B permission on expansionary stages.
There is no reason to believe that this is possible. Indeed, in the analogous situation
for minimal pairs it is known that there are non-recursive r.e. B below which it is
not possible to construct a minimal pair. Thus we view the problem of constructing
Slaman±Woodin de®nable sets as in Theorem 4.1 below an arbitrary r.e. degree as
an open question.

If, however, the given set in which we wish to construct P and Q recursively is a
promptly simple set S rather than an arbitrary one B, the usual arguments (as in [3])
work. Thus if S is promptly simple, we can let Mi put a number y into Q (and so
various gj� y� into P) only when y is permitted by S by using the function p
witnessing the prompt simplicity of B. As we saw in the proof of Lemma 4.5, if
we are reduced to the case that all the Di; j fail then there are in®nitely many y
which remain permanently eligible to enter Q once S permits. We let Mi impose
restraint to preserve the eligibility of such numbers as they become candidates for
Mi to put into Q. We then enumerate these numbers into an auxiliary set when we
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next have an Mi expansionary stage. At each such stage s we enumerate S up to
stage p�t� to see whether it permits the number to go into Q. (Here t is the stage
at which these numbers are enumerated in a standard enumeration of the auxiliary
set given by the recursion theorem.) As usual, since S is promptly simple, one
will eventually be allowed to enter Q. Of course, the numbers gj� y� going into P
are larger than y and so both P and Q are permitted by S, as required.

We can combine all of these modi®cations to construct a Slaman±Woodin set
below any non-recursive B along with the coding apparatus for a partial ordering.
Moreover, if S is promptly simple, we can get the auxiliary sets P and Q needed to
de®ne the Slaman±Woodin set to be below S as well.

Theorem 4.7. Given a recursive partial ordering P � hq;4i, a non-recursive
r.e. set B and a promptly simple one S, there are r.e. sets L, P, Q, R and Gi, for
k < n and i 2 q, with R �LGi, L < B and P; Q <T S with the following
properties:

1. �T�: Gi � P >T Q;

2. �D�: Gi ÀT Gj for i 6� j;

3. �M�: if W is r.e., recursive in R and W � P >T Q, then there is a j 2 q such
that Gj <T W;

4. R� P is low (indeed we can just as easily make the join of all the sets
constructed low);

5. �N�: i 9 j, Gi � L ÀT Gj.

5. Cone avoiding and comparisons

The next modi®cation we wish to consider is cone avoiding combined with
permitting. More speci®cally, given various Ui ÷T Vj with Vj low, we wish (under
certain other assumptions) to make Gi <T Ui and Gi ÷T Vj. We ®rst brie¯y describe
the necessary additions to the basic construction for Theorem 4.1 to handle one
triple Gi, Ui, Vj. To begin, we will only allow numbers x to enter Gi when permitted
by Ui and so will follow the procedure described above for all requirements Dk; i; e

putting numbers into Gi so that they are permitted by Ui. The new requirements of
type 6 are as follows.

6. Zi; e: We�Vj� 6� Gi. The basic plan is as for the diagonalization requirements D
of type 2 with permitting. We plan to appoint suitable followers x; preserve their
suitability by imposing P-restraint; and look for one which is realized
(We�Vj; x� � 0 at the current stage) that we are permitted to put into Gi: To
guarantee that we eventually put in a follower such that We�Vj; x� really is 0, our
diagonalization procedure will include a two-step guessing procedure exploiting
the lowness of Vj and taking into account the fact that we need Ui permission to
put the desired Vj-correctly realized follower into Gi.

To hope to be able to handle a list of such triples Gi, Ui, Vj we have some
obvious restrictions that we want to impose. First, as our notation indicates, we do
not want to have to build a single Gi below more than one prescribed set Ui. The
next issue arises because we want to combine these requirements with the coding
apparatus (for partial orderings) described above. The problem here is that the
coding procedures require that when we put some x into a Gi for a diagonalization
requirement, we must also put it into L (which we do not need to permit) or into Gk
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for k < i. If we are required to put it into another Gk which must be permitted by
some Uk, we have hit the ®rst (essentially insurmountable) problem. Thus we
restrict our attention to codings of partial orderings and to requirements of type 6
for Gi which are minimal elements of the given ordering. In this situation, no
requirements other than those directly diagonalizing against Gi put numbers into Gi

and so we have no worries about multiple permitting. We state and prove a
theorem of which Lemma 2.6 (needed to de®ne the comparison maps) is clearly
a special case.

Theorem 5.1. Suppose P � hq;4i is a recursive partial order, H is a
recursive set of minimal elements of P, hUi; Vi; jii2H is a uniformly r.e. array of
pairs of sets such that the Vi; j are uniformly low (that is, we can recursively in i; j
calculate an index for computing V 0i; j from 0= 0), and, for every i 2 H, Ui ÷T Vi; j

(and so in particular Ui > 0 for i 2 H). Then there are r.e. sets L , P, Q, R, and Gi

( for i 2 q) with R �LGi such that

1. �T�: Gi � P >T Q;

2. �D�: Gi àT Gj for i 6� j;

3. �M�: if W is r.e., recursive in R and W � P >T Q, then there is a j 2 q such
that Gj <T W;

4. �K�: R� P is low;

5. �O�: i< j) Gi � L >T Gj;

6. �N�: i 9 j) Gi � L ÀT Gj;

7. �Z�: Gi ÷T Vi; j for i 2 H;

8. �Q�: Gi <T Ui for i 2 H.

We have already discussed the procedures for all the requirements and so directly
give the construction and veri®cation.

5.1. Construction
The basic terminology and procedures are the same as for Theorem 4.1 with the

addition of the requirements Ni; j; e for i 9 j and Zi; j; e for i 2= H to the priority listing
of type q. There are no direct actions for properties 5 (O) and 8 (Q) as these are
satis®ed by putting numbers entering various Gi into other sets (various Gk or L)
and by permitting, respectively. The actions for Ti , Mi and Ke; x are exactly the same
as in the basic construction. The only change for the Di; j; e with j 2= H is that when
one puts an x into Gj one also puts the same x into L. We describe the action for the
other requirements at the appropriate substage of stage s. (Remember, r is the stage
at which the requirement being considered was last initialized and 0 if there is no
such stage.)

2. Di; j; e: We�Gi� 6� Gj for j 2 H . If we have put a number into Gj since stage r for
requirement Di; j; e, we continue on to the next substage of stage s. If not, we see
whether we have a realized follower x of Di; j; e which is permitted by Uj (that is,
some z < x entered Uj at s). If so, we put x into Gj and L, initialize all lower priority
requirements and terminate stage s. If not, and every uncancelled follower
x0; : : : ; xnÿ1 of Di; j; e is realized, then (if there are no followers, n � 0), we appoint
a new large follower xn 2 q 0; i; j; eh i of Di; j; e, initialize all lower priority requirements
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and impose P-restraint at all t > s equal to

r�D; i; j; e; xn; t� � maxfdk; j�Wk; xn� �t� j Mk has higher priority than Di; j; eg:
As before, this P-restraint is dropped if xn is cancelled or some follower of Di; j; e

enters Gj. At any stage t (until a number is put into Gj for Di; j; e) the P-restraint
imposed by Di; j; e is

r�D; i; j; e; t� � maxfr�D; i; j; e; xn; t� j xn is a follower of Di; j; e at tg.
6. Ni; j; e: if i 9 j then We�Gi � L� 6� Gj.
Case 1: j 2= H. If this is the ®rst stage at which we deal with this requirement

since r, we choose a new large follower x for Ni; j; e from the column qh1; i; j; ei

associated with it. As long as x is not cancelled or put into Gj, Ni; j; e imposes
restraint r�N; i; j; e; t� on P as described above:

r�N; i; j; e; t� � maxfdk; l�Wk; x� �t� j Mk has higher priority than Ni; j; e and l< jg.
This restraint is dropped when x is cancelled by some higher priority requirement
or enters Gj. If Ni; j; e has an uncancelled follower x and We�Gi; x� #� 0, we say
the follower is realized. If the realized follower is not yet in Gj, we put it into Gl

for every l< j, initialize all lower priority requirements and terminate stage s.
Otherwise, we continue on to the next substage of stage s.

Case 2: j 2 H. If we have put a number into Gj since stage r for requirement
Ni; j; e, we continue on to the next substage of stage s. If not, we see whether we
have a realized follower x of Ni; j; e which is permitted by Uj (that is, some z < x
entered Uj at s). If so, we put x into Gl for every l< j (but not into L), initialize
all lower priority requirements and terminate stage s. If there is no realized
follower which is permitted and every uncancelled follower x0; : : : ; xnÿ1 of Ni; j; e is
realized (if there are no followers, n � 0), we appoint a new large follower
xn 2 q 1; i; j; eh i of Ni; j; e, initialize all lower priority requirements and impose P-
restraint at all t > s equal to

r�N; i; j; e; xn; t� � maxfdk; l�Wk; xn� �t� j Mk has higher priority

than Ni; j; e and l< jg:
As before, this P-restraint is dropped if xn is cancelled or some follower of Ni; j; e

enters Gj. At any stage t (until a number is put into Gj for Ni; j; e) the P-restraint
imposed by Ni; j; e is

r�N; i; j; e; t� � maxfr�N; i; j; e; xn; t� j xn is a follower of Ni; j; e at tg.
7. Zi; j; e: We�Vi; j� 6� Gi (for i 2 H). We ®rst note that, by the lowness of Vi; j and

the recursion theorem, we have recursive functions f �i; j; e; s� and g�i; j; e; s� such that

(i) lims!1 f �i; j; e; s� and lims!1 g�i; j; e; s� are each 0 or 1 for every i, j, e
with i 2 H;

(ii) lims!1 f �i; j; e; s� � 1 if and only if there is a stage t of our construction at
which there is a realized follower z of Zi; j; e such that We�Vi; j; z� #� 0 �t�
via a Vi; j-correct computation and z 2 Gi; and

(iii) lims!1 g�i; j; e; s� � 1 if and only if there is a stage t of our construction at
which we do not terminate the substage of t dealing with Zi; j; e because of
our analysis of the realized followers already in Gi and there is an
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uncancelled follower z of Zi; j; e such that We�Vi; j; z� #� 0 �t� via a Vi; j-
correct computation and some x < z enters Ui at t.

A follower y of Zi; j; e is realized at s if We�Vi; j; y� � 0 �s�. If there is a realized
follower y of Zi; j; e in Gi, we ®nd the ®rst u > s such that f �i; e; u� � 1 or
Vi; jWwe� y� �u� 6� Vi; jWwe� y� �s�. If f �i; e; u� � 1, we terminate this substage of stage s
and go on to the next substage. If f �i; e; u� 6� 1, we ®rst check to see if there is a
realized follower y of Zi; j; e which is permitted by Ui, that is, some number less than
or equal to y has entered Ui at s. If so, we ®nd the least u > s such that either
g�i; e; u� � 1 or Vi; jWwe� y� �u� 6� Vi; jWwe� y� �s�. If g�i; e; u� � 1, we put every realized
follower y permitted by Ui into Gi, initialize all requirements of lower priority and
terminate stage s. If g�i; e; u� 6� 1, and this is the ®rst time we have dealt with
requirement Zi; j; e since it was last initialized at r (or all followers, y0; : : : ; ynÿ1,
appointed since r are realized or in Gi), we appoint a new large follower y0 (or yn)
in q 2; i; eh i of Zi; j; e. Whether we appoint a new follower or not, we now go on to the
next substage of stage s.

The P-restraint imposed by Zi; j; e at stage t > s is given by

r�Z; i; j; e; t� � maxfdl; i�x� �t� j Ml has higher priority than Zi; j; e and

x is a follower of Zi; j; e at tg:

5.2. Veri®cations
The success of the positive coding requirements �O� is immediate by

the construction as is that of the permitting condition �Q�. The general format
of the rest of the veri®cations is as for Theorem 4.1 and we are proving
the same claims by induction. The arguments for Ke; x , Ti, Di; j; e for j 2= H and Mi

are exactly as for Theorem 4.1. We thus just give the analyses for the
other requirements.

Lemma 5.2 (Di; j; e for j 2 H). If Di; j; e is never initialized after stage r, there
is a stage after which Di; j; e never puts any more numbers into Gj and so
never initializes other requirements. Moreover, Di; j; e is satis®ed, appoints
only ®nitely many followers and the P-restraint it imposes, r�D; i; j; e; t�, is
eventually constant.

Proof. If we eventually put a number into Gj for Di; j; e after stage r; then we
argue as before that the requirement succeeds and never acts again. Suppose then
that we never put a number into Gj for Di; j; e . If there is a last follower xn ever
appointed, say at t > r, then for one of the followers x appointed after r ,
:�We�Gi; xk� � 0�; for if all these computations converged correctly to 0, we
would eventually appoint another follower by construction. In this case, Di; j; e is
satis®ed and certainly appoints only ®nitely many followers. Now suppose that we
appoint in®nitely many followers xn. Each time we appoint a new one, xn, every
previous one y is realized by construction and we initialize all lower priority
requirements. In particular, no number z < we� y� can ever be put into Gi and so
all the previous followers remain realized at every later stage. Were one of them
ever later permitted by Uj , it would go into Gj contrary to our assumption. Thus
we can compute Uj recursively for a contradiction.

Finally, we argue that lim r�D; i; j; e� < 1. In every case, only ®nitely many
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followers are ever appointed. The P-restraint r�D; i; j; e; xn; t� which is just
maxfdik j�Wk;xn� �t�j Mk

has higher priority than Di; j; eg associated with each such xn is
eventually constant by the success of the requirements of type 4 as in the
veri®cation of Theorem 4.1.

Lemma 5.3 (Ni; j; e). If Ni; j; e is never initialized after stage r, there is a
stage after which Ni; j; e never puts any more numbers into Gj and so never
initializes other requirements. Moreover, Ni; j; e is satis®ed, appoints only
®nitely many followers and the P-restraint it imposes, r�N; i; j; e; t�, is
eventually constant.

Proof. We argue as for Di; j; e .

Lemma 5.4 (Zi; j; e). If Zi; j; e is never initialized after stage r, there is a stage
after which Zi; j; e never puts any more numbers into Gi and so never initializes
other requirements. Moreover, Zi; j; e is satis®ed.

Proof. If lims!1 f �i; j; e; s� � 1, we eventually have a realized follower y with
a Vi; j-correct computation of We�Vi; j; y� � 0 which is in Gi. In this case, it is clear
from the construction that Zi; j; e is satis®ed and eventually stops acting entirely.
Suppose then that lims!1 f �i; e; t� � 0 and (for the sake of a contradiction to the
®rst claim of the lemma) that in®nitely often we put a realized follower of Zi; j; e

into Gi. By construction, this can happen at a stage s only if there is a u > s such
that g�i; e; u� � 1. Thus it can happen in®nitely often only if lim g�i; e; u� � 1. In
this case, there is a stage t at which we do not terminate the substages of t
dealing with Zi; j; e because of our analysis of the realized followers already in Gi

and there is an uncancelled follower z of Zi; j; e such that We�Vi; j; z� #� 0 �t� via a
Vi; j-correct computation and some x < z enters Ui at t. At such a stage t, we
would put z into Gi by construction. As the Vi; j computation is correct, z will
remain a realized follower with a correct computation which is in Gi. As this
contradicts our assumption that lim f �i; j; e; s� � 0, we have proved the ®rst
assertions of the lemma.

Finally, we argue that Zi; j; e is satis®ed if lim f �i; j; e; s� � 0 � lim g�i; j; e; s�. If
there is a follower y 2= Gi such that :�We�Vi; j; y� � 0�, the requirement is satis®ed.
So suppose there is no such y. Under these hypotheses, we would appoint
in®nitely many followers z of Zi; j; e and, for almost all of them, We�Vi; j; y� � 0. Let
t0 be a stage by which f �i; j; e; s� and g�i; j; e; s� have reached their limits (0) and
such that We�Vi; j; y� � 1 for every follower y > t0 of Z. Consider the sequence of
followers yn; yn�1; : : : appointed after t0 . Recursively in Vi; j we can ®nd the stages tk
by which We�Vi; j; yk� � 0 by Vi; j-correct computations. If UiWyk ever changed at
some t > tk we would contradict the assumption that lim g�i; j; e; s� � 0 by providing
a stage t as required to make lim g�i; j; e; s� � 1 by our choice of g. On the other
hand, if there is never such a change in Ui, then Ui <T Vi; j for the desired
®nal contradiction.

6. Lattice embeddings and effective successor models

We need to combine the basic construction of a Slaman±Woodin set (§ 4) with
the lattice embedding properties necessary to construct an effective SMA below
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�a; u� for any given non-zero r.e. degree a and promptly simple u. As u is promptly
simple and so non-cappable, there is always a degree below both a and u. Thus,
without loss of generality, we may assume that a < u and so state a theorem
suf®cient to establish Theorem 2.14 as follows.

Theorem 6.1. Given any 0 <T A <T U with U promptly simple and
recursive partial ordering P � hq;4i with a speci®ed in®nite recursive set
H � fhi j i 2 qg of minimal elements, there are r.e. sets E0, E1, F0, F1, B, P, Q, R

and Gi ( for i 2 q) with R �LGi, F0 �
L

Gh2 i
, F1 �

L
Gh2 i�1

and B � G
�0�
i ( for

each i 2 q) such that P; Q <T U, all the other sets constructed are recursive in
A, and

1. �T�: Gi � P >T Q,

2. �D�: Gi ÀT Gj for i 6� j,

3. �M�: if B is recursive in an r.e. W which is recursive in R and W � P >T Q,
then there is a j 2 q such that Gj <T W,

4. �K�: R� P is low,

5. �O�: i< j) Gi � L >T Gj,

6. �N�: i 9 j) Gi � L ÀT Gj,

7. �Y�: for each i 2 q,

deg�Gh2 i
� E1� ^ deg�F1� � deg�Gh2 i�1

�
and

deg�Gh2 i�1
� E0� ^ F0 � deg�Gh2 i�2

�:

The individual requirements of the types previously considered are indexed as in
the basic construction with the exception that in Mi we replace Wi by Wi � B to take
into account the fact that we are only constructing a Slaman±Woodin set above B.
The new in®mum requirements Y are indexed as follows.

7. Yf ;2 m�l: if Ff �Gh2 m�lÿ1
� El� � Ff �Fl� � h then h <T Gh2m�l

for the pair m � 0
and l � 1 as well as all m > 0 and l 2 f0; 1g.

We want to use the pinball model due to Lerman [16] to satisfy the lattice-
preservation properties Y . If we consider for the moment, only the lattice type
requirements (D for j 2 H and Y), the construction is like that for the lattice N5

(the pentagon) in that the tracing procedure is ®nitary and the construction falls
into the class of partial lattices (the trace probe property (TPP) partial lattices)
considered and embedded in the r.e degrees by Lerman, Shore and Soare [18]. A
somewhat new ingredient, even in the lattice case, is the permitting required to
get all the relevant sets recursive in A. Although it is generally known that this
can be done (for example, Ambos-Spies and Fejer [2] prove this for the particular
lattice N5 by an indirect argument; Ambos-Spies, Lempp and Soare have
announced [4] the much more dif®cult result that every TPP partial lattice can
be embedded in every non-trivial interval of r.e. degrees) and an argument
showing that M5 the basic non-distributive lattice not in TPP can be embedded
below any non-low2 r.e. degree is given in [7], no proof combining ordinary
permitting with TPP type lattice embedding has appeared in the literature. Thus
we ®rst explain (for the reader familiar with some pinball machine argument with
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traces (see, for example, [7]) how to satisfy all the requirements except �T� and
�M� and only then how to combine them with the basic construction of a
Slaman±Woodin set.

All the positive ordering facts needed are guaranteed by direct coding as speci®ed
in the theorem except for the requirements that Gh2i�1

<T Gh2i
� E1 and

Gh2i�2
<T Gh2 i�1

� E0. These reductions are constructed by the usual tracing
procedure. Whenever we have a ball, that is a number, xh2 i�1 (or xh2 i�2 ) targeted for
Gh2 i�1

(or Gh2 i�2
) on the machine, it will have a trace t targeted for either Gh2 i

or E1

(or Gh2 i�1
or E0). The rules of the construction will guarantee that if t does not enter

the set for which it is targeted, then xh2 i�1 (or xh2 i�2 ) cannot enter its set either. If t
does enter its set then either xh2 i�1 (or xh2 i�2 ) enters its set at the same stage or we
appoint a new trace t0. As we will also guarantee that every ball targeted for some
Gj, for j 2 H , gets a last trace appointed, this procedure gives us the required
reductions of Gh2 i�1

(or Gh2 i�2
) to Gh2 i

� E1 (or Gh2 i�1
� E0).

The in®mum requirements, Yf ; 2m�l are met by a procedure that in essence makes
(almost) every ball targeted for some Gj with j 2 H (or some smaller number
associated with it) pass a gate devoted to the in®mum requirement that, roughly
speaking, does not allow balls targeted for both sides of the pair with the speci®ed
in®mum to pass simultaneously unless they are targeted for the in®mum itself
and forces later balls (that is larger numbers) to wait until the relevant length
of agreement has recovered before letting new balls go by that might injure the
other side.

The diagonalization requirements D and N for j 2 H are met by appointing balls
in the `holes' of the pinball machine as followers of the requirement associated with
the hole. For example, the hole Hi; j; e devoted to the requirement Di; j; e

that We�Gi� 6� Gj appoints a follower x � x
j
i;e;n (the nth follower appointed for this

requirement) which is targeted for Gj . When appointed, the ball immediately gets an
appropriate sequence of traces associated with it which may change over time.
The set of balls so associated with a particular follower is called the entourage of
the follower. When the follower is realized (We�Gi; x� #� 0), it and its entourage
are released from the hole and roll down the machine until they come to the ®rst
unoccupied gate. The last ball in the entourage rolls out to the gate and receives
its own sequence of traces (if needed). The rest of the entourage waits in the
corral associated with this gate. The balls waiting at the gate wait until the length
of agreement associated with it reaches a new maximum. The gate then opens and
the balls waiting at the gate are released to roll down the machine in the same
way. When a set of balls passes the last gate they enter the permitting bin. The
last ball in the entourage is given a trace targeted for B and the set of balls waits
for permission from A. When they are permitted by a number less than the
original follower with which they are associated being enumerated into A, each
one of them is put into the set for which it is targeted. If the follower itself enters
its target set, the requirement is satis®ed and, if not injured by the action of
higher priority requirements, requires no further attention. If not, the previous ball
in the entourage (which is necessarily in the corral of an unoccupied gate) moves
out to the gate in whose corral it has been waiting, gets an appropriate sequence
of traces (if necessary) and waits for the gate to open. Whenever a ball is placed
on the machine or moves, all lower priority balls are cancelled and removed from
the machine. In order to describe precisely the priority listing we must ®rst de®ne
the tracing procedure.
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6.2. Tracing and priorities
Only balls targeted for some Gj for j 2 H , with j 6� h0, need traces. Whenever we

have a ball xh2 i�1 (or xh2 i�2 ) targeted for Gh2 i�1
(or Gh2 i�2

) on the machine, it will have
a trace t targeted for either Gh2 i

or E1 (or Gh2 i�1
or E0). When a follower x � x

j
i;e;n is

®rst appointed in the hole associated with a diagonalization requirement Di; j; e or
Ni; j; e it is targeted for Gj . If j � h2 i�k (with k 2 f0; 1g and 2i� k > 0), x is given a
trace t targeted for Ek . When a ball x of the form xh2 i�k rolls out to a gate for some
in®mum requirement Yf ; 2 m�l, we assign traces as follows:

(a) if 2i� k � 2m� l, no trace is necessary;

(b) if l � k (but i 6� m), then x gets a trace t targeted for Gh2 i�kÿ1
and t gets a

trace r targeted for El;

(c) if l 6� k then x gets a trace targeted for Ek .

When a sequence of balls (necessarily the tail end of some entourage) rolls past
the last gate, the entire sequence is put into the permitting bin and the last ball in
the sequence is given a trace targeted for B. (These balls then wait for A to permit
the follower which is the ®rst ball in their entire entourage and then all go
simultaneously into the sets for which they are separately targeted.)

The crucial point for this construction is that we can clearly calculate a bound on
the number of balls that can ever be assigned to the entourage of a follower of a
requirement Di; j; e or Ni; j; e . Indeed, the calculation of such a bound can be made
solely as a function of the number of gates of higher priority than Di; j; e (or Ni; j; e).
We denote such a bound by g�i; j; e� and use it to assign priorities to followers of
this requirement. (For technical convenience, we have Di; j; e and Ni; j; e between the
same gates and so have a single function g�i; j; e� for both.) The idea is that g�i; j; e�
is a bound on the number of permissions needed from A (at particular stages) to get
the follower into its target set eventually. Contrary to the usual practice of assigning
priorities to followers in the order in which they are appointed, we prefer those that
have received more permissions. To be precise, each ball x is assigned a triple
ha; b; ci that determines its priority by the lexicographic ordering of triples from q.
The ®rst entry is the index of the requirement Di; j; e (or Ni; j; e) of which the ®rst ball
in x's entourage is a follower. The second entry is g�i; j; e� ÿ n where n is the
number of times a ball in x's entourage has been permitted to leave the permitting
bin and enter its target set. The third entry is simply x itself. (This last coordinate
orders otherwise similar balls by the point at which they are placed on the machine
since new balls are always chosen larger than any already on the machine.)

The construction of the required partial lattice and the veri®cation that it succeeds
are now fairly standard with some additional care being needed because of the
permitting conditions and the associated change in priority ordering. Before giving a
formal description of the full construction for Theorem 6.1, we will informally
describe the modi®cations needed to combine the lattice embedding argument with
the construction of a Slaman±Woodin set. The constructions should be viewed
almost as two distinct ones with certain interactions. The diagonalization
requirements for j 2 H are shared between the two constructions and mediate the
interactions. (Note that, as every j 2 H is a minimal element of P, no other
requirements put numbers into such Gj.) These requirements now sit in the
appropriate hole of the pinball machine but need to appoint followers that are
suitable in the sense of the Slaman±Woodin construction and impose P restraint to
maintain their suitability as in that construction. Once appointed, however, they get
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traces assigned, wait for realization and then roll down the machine as for the
pinball argument. The only interaction that they then have with the rest of
the Slaman±Woodin construction is that they might initialize lower priority
requirements or be cancelled by actions of higher priority requirements. Such
cancellation by requirements not involved in the pinball construction, however, is
®nitary and so no worse than the cancellation by higher priority requirements
already inherent in this construction. The gates of the pinball machine act as before
and so the in®mum requirements are satis®ed as for the pinball argument alone. The
minimality requirements Mi of the Slaman±Woodin construction proceed as before
to assign chits, de®ne functionals and, perhaps in the end, put a number into Q (but
now only when promptly permitted by U) to kill off the requirement. The only
change caused by the pinball argument is again the possibility of extra ®nitary
cancellation of followers by actions of higher priority. The other diagonalization
requirements Di; j; e and Ni; j; e for j 2= H , the lowness conditions K and functional
constructions T are similarly affected only by additional ®nitary initializations. The
coding requirements O are handled exactly as before. (Again noting that the
minimality within P of all j 2 H guarantees that this procedure does not put any
numbers into sets involved with the pinball construction.) Thus there is no real
dif®culty in combining the two constructions.

6.2. Construction
We begin by listing all the requirements Ti, Di; j; e, Ni; j; e, Mi, Ke; x, Yf ;2m�l in a

priority list of order type q such that Ti and Tj appear on the list before any Di; j; e

and such that each Ni; j; e immediately follows Di; j; e and so lies between the same
Yf ; 2 m�l requirements. The pinball machine is the usual one with gates corresponding
to the Yf ; 2 m�l requirements and holes to the Di; j; e and Ni; j; e ones for j 2 H . The
other requirements make no direct appearance on the machine. Each stage s of our
construction will have at most s many substages n at which we may deal with
requirement n. Each requirement may move balls (that is numbers) on the pinball
machine, put numbers into some sets, axioms into a functional and impose restraint
on various sets in the usual fashion.

We act to satisfy the direct coding requirements in the obvious way. Whenever a
number x is put into G2 i�k, h2i� k; xi is put into R and Fk. Whenever a number x is
put into B, h0; xi is put into every Gi. Whenever action for a requirement Di; j; e puts
a number x into some Gk the same number x is put into L. When action for a
requirement Ni; j; e puts a number x other than the original follower of the
requirement into some Gk the same number x is put into L [[these numbers will be
larger than the computation from Gi � L that Ni; j; e needs to preserve]]; when the
follower x itself of Ni; j; e goes into Gj it also goes into all Gk with k < j. Whenever
any action is taken for some ball we cancel all balls of lower priority (that is,
remove them from the machine) and initialize all requirements of lower priority
than the one associated with the ball for which we acted. Initialization of a
requirement at stage s means that all balls, chits and all restraint associated with the
initialized requirement are cancelled and no further attempts are made at
maintaining the correctness at numbers less than s of any functionals it is
constructing. (As we only care about the functional being correct almost
everywhere, this will not cause problems as long as the requirement is initialized
only ®nitely often.) As new followers are always chosen larger than any number
previously used in the construction, initialization also acts to preserve various

277interpretability and de®nability

cente
" : 4
' : 1
page
hline
tabu

Unk
hspa
array
array
nleq
restr
mbo
upha
renew
ngeq
dots
geqsl
nsuc
math
ncon
lefteq
math
emph
math
thick
nonu
leqsl

PLMS



computations. At other times we may cancel chits because the situation that made
them usable has been destroyed.

We now describe our actions at substage n of stage s of the construction
according to the type of the nth requirement on our list. Note that there is no direct
action by the in®mum requirements Yf ;2m�l other than the restraint imposed by the
usual action of the corresponding gates. This effect is implicit in the rules of motion
for the balls on the machine and so there are no explicit steps in the construction
devoted to the Yf ;2m�l requirements. We let r be the last stage at which the
requirement being considered at substage n was last initialized (r � 0 if there is no
such stage). When we choose a `large' number at a stage s we mean a number
larger than any used in the construction before s.

1. Ti: Gi � P >T Q. The procedure is as in the basic construction.

2. Di; j; e: We�Gi� 6� Gj. If j 2= H, the procedure is exactly the same as in the
previous constructions, so we describe the new procedure if j 2 H. If we have put a
follower of Di; j; e into Gj since stage r, we go on to the next substage. If not, we ®nd
the ball x of highest priority (as de®ned above) associated with a follower of Di; j; e

that requires attention according to one the following cases, cancel all balls of lower
priority, initialize all requirements of lower priority and then act as indicated in each
of the cases before going on to the next substage.

(a) In this case x is a previously unrealized follower of Di; j; e sitting in the
associated hole and it is now realized, that is, We�Gi; x� #� 0. Release x and its
trace t from the hole and let them fall down to the ®rst unoccupied gate for a
requirement Y . The trace t for x rolls out to the gate (which it now occupies) and
x is put into the corral for this gate. If there is no such gate below them, they roll
into the permitting bin and t gets a new large trace targeted for B.

(b) Here x is occupying a gate for Yf ; 2 m�l and the associated length of agreement
reaches a new maximum, that is,

,� f ; 2 m� l; s� � m zf:�Ff �Gh2 m�lÿ1
� El; z� #� Ff �Fl; z� �s��g

is greater than ,� f ; 2m� l; t� for every t < s. Let x and the later elements in its
entourage [[the traces also occupying the same gate]] roll down the machine
leaving the gate at which it now resides unoccupied. They roll to the ®rst
unoccupied gate. The last element of the entourage rolls out to the gate which it
now occupies and the others are put into the associated corral. If there is no such
gate, the balls roll into the permitting bin and the last of them is given a new
large trace targeted for B.

(c) In the ®nal case x is in the permitting bin and a number less than the follower
in x's entourage is enumerated in A. We put x and the later elements of its entourage
[[which are larger and also sitting in the permitting bin]] into the sets for which they
are targeted. Moreover, if x is not itself the follower, we ®nd the last element y of
its entourage [[which is necessarily in some corral whose gate is unoccupied]],
move it out to the gate associated with the corral in which it is waiting and appoint
traces in accordance with the requirement associated with this gate as described
above and cancel all balls of lower priority than y which, together with its traces,
now occupies this gate. [[Note that we cancel balls again as the priority of y is
now higher than that of x before our action since one more permission has been
acted upon.]]

If there is no such ball that requires attention and there is no unrealized follower
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sitting in the hole for Di; j; e , all requirements of lower priority are initialized and we
choose a new large follower x for Di; j; e from the column q 0; i; j; eh i associated with
Di; j; e. [[There are no balls associated with this requirement with lower priority than
x.]] We also appoint a new large trace t for x as described above and put both t and
x in the hole for Di; j; e . At every stage t > s until x is cancelled or enters Gj, Di; j; e

imposes restraint r�D; i; j; e; x; t� on P for each element y of the entourage of x which
is targeted for some Gn as in the basic construction. Thus we de®ne the restraint
as follows:

r�D; i; j; e; t� � maxfdk;n�Wk; y� �t� j y is in the entourage of some

(uncancelled) follower x of Di; j; e and targeted for Gn;

and Mk has higher priority than Di; j; eg:
This restraint is dropped when some follower of D enters Gj. Because the action
of Di; j; e is not obviously ®nitary, we must also act to stabilize this restraint. If a y
in the entourage of a current follower of Di; j; e is targeted for Gn , Mk has higher
priority than Di; j; e and some Dk; n�Wk; y� has just converged at s, then we initialize
all requirements of lower priority than Di; j; e and terminate stage s.

If none of the above conditions are satis®ed, we simply move on to the
next substage.

3. Mi: if Qi�R� � Wi � B and Fi�Wi � B� P� � Q, then Gj <T Wi � B for some j
such that Tj has higher priority than Mi. Our action here is the same as in the basic
construction until we reach a point at which we would have killed the requirement
by putting some particular y into Q and various gj� y� into P. At such a point we use
the function p witnessing the prompt simplicity of U in the usual way to determine
if U will permit us to put y into Q. If so, we proceed as in the basic construction
and terminate stage s. If not, we just move on to the next substage. (We will never
consider this same y again for killing Mi.)

[[Note that we do not have to worry about the suitability of numbers x targeted
for B as any D computation that might be invalidated by the corresponding code
entering some Gi is immediately repaired by x's entering B and destroying any
previously de®ned computation of D�Wi � B; hi; xi�.]]

4. Ke; x: if there are in®nitely many s such that Ye�R� P; x� # �s�, then
Ye�R� P; x� #. We proceed exactly as in the basic construction.

5. The procedure for Ni; j; e for j 2= H is as in § 4.4. For j 2 H , it is like that of
the Di; j; e with j 2 H modi®ed with the same modi®cation that relates Ni; j; e to Di; j; e

in the basic construction. To be speci®c, we adjust the restraint r�N; i; j; e; x�
imposed by Ni; j; e on P at stage t to be the following:

r�N; i; j; e; x� � maxfdk;l�Wk; y� �t� j y is in the entourage of some

(uncancelled) follower x of Ni; j; e and targeted for Gn;

with l< n, and Mk has higher priority than Di; j; eg:
At the end of substage s, we terminate stage s (if it has not been terminated

before). When stage s is terminated, we go on to stage s� 1.

6.3. Veri®cations
The veri®cation procedure is somewhat more complicated than in the previous
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arguments. Of course, we must now verify that the in®mum requirements are met
but the primary new source of complications in the rest of the argument is the action
for the diagonalization requirements. It is no longer true that a single requirement
Di; j; e or Ni; j; e for j 2 H acts at most once after it is last initialized. Indeed, it is not
obvious that it acts at most ®nitely often. Thus we cannot argue ab initio that the
lowness requirements of type 4 automatically succeed.

It is still true that (other than through initialization) the only restraint imposed in
the construction is on P and the restraint r�M; i; s� imposed on P by requirements Mj

of priority greater than or equal to that of Mi have a ®nite lim inf which is realized
on the i-expansionary stages if there are in®nitely many such stages and, if not, on
almost all the stages at which r�M; iÿ 1; s� realizes its lim inf. As for the action of
the gates, for now we simply note that it is immediate from the construction that if
there is a ball which permanently occupies a gate then there are ®nitely many
(indeed, at most two) balls which are permanently at that gate and once they occupy
the gate all other balls roll past that gate when they reach it in their movement down
the machine.

Once again it is immediate from the de®nition of their actions that if a
requirement Mi or Ke; x of type 2 or 4 is never initialized after stage r, it acts at most
once after r to put numbers into sets (for Mi) and to initialize lower priority
requirements. The only other requirements that initialize anything are the Di; j; e and
Ni; j; e. We prove a lemma that shows by induction that these types of requirements
eventually never initialize any other requirement and in other ways have ®nite effect
on the construction and are satis®ed.

Lemma 6.2 (Di; j; e and Ni; j; e). If Di; j; e is never initialized after stage r, there is
a stage after which Di; j; e never puts any more numbers into Gj and never
initializes other requirements. Moreover, Di; j; e is satis®ed, appoints only ®nitely
many followers and the P-restraint it imposes, r�D; i; j; e; t�, is eventually constant.
The same facts are also true about the requirements Ni; j; e.

Proof. The arguments for Di; j; e and Ni; j; e are essentially the same ( just
replace Dk; n�Wk; y� by Dk; l�Wk; y� for l< n) and for simplicity we present only
that for Di; j; e . If j 2= H, it is obvious that the requirement can act at most once
after stage r and as in the basic construction must be satis®ed. Thus we assume
that j 2 H. We can assume that any gate of higher priority than Di; j; e that gets a
permanent occupant already has it by stage r. Thus no members of the entourage
of any later follower of Di; j; e ever stop at these gates. Moreover, they can
temporarily stop at other gates but must then either be released by the gate
opening or cancelled by actions for a ball of higher priority also in the entourage
of some follower of Di; j; e (any other cancellation would contradict our choice of
r). As there can be only ®nitely many actions taken for the balls in the entourage
of a single follower, the only situations that could prevent the appointment of
in®nitely many followers are one of them entering Gj or one remaining in the
hole for Di; j; e forever unrealized. In either of these cases it is clear from the
construction that we never act for Di; j; e again. Moreover, Di; j; e is then satis®ed by
the same argument as in the basic construction.

We therefore suppose that in®nitely many followers are appointed and argue that
A is recursive for a contradiction. Consider then the follower x1 of Di; j; e that attains
the highest priority of any follower appointed after r . By our choice of r and the
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rules of the construction, x1 can never be cancelled. Since it must eventually be
realized but never enters Gj by our assumptions, some member of its entourage must
be permanently stuck in the permitting bin. Let x2; x3; : : : be the successively next
highest priority ball to reach this same state. Remember that the priorities of these
balls are given by triples, the ®rst coordinate of which is simply the global priority
of Di; j; e. The second coordinate is g�i; j; e� minus the number of times balls in the
entourage have been permitted to enter their target sets. Thus this coordinate must
eventually stabilize as well, say at n. Consider now the balls xm for m > m0 which
all have the second coordinate of their priorities equal to n. It is clear that once
such a ball is in the permitting bin, it can never be permitted to enter its target set as
that would increase the priority of the remaining balls in the entourage contrary to
the choice of n. Moreover, it can be cancelled only by some smaller ball with the
same ®rst two coordinates of its priority triple the same as its own moving. This can
happen only when the smaller ball was stopped at one of the gates that are not
permanently occupied when the larger one entered the permitting bin. As we know
which these gates are and that any occupants are only temporary, we can tell when
any ball in the ®nal priority state (as far as the ®rst two coordinates are concerned)
enters the permitting bin if it will ever be cancelled. (It will be cancelled if and
only if there is a higher priority ball at one of these gates in which case one of
those balls must eventually enter the permitting bin.) Thus we can recursively
list the xm which enter the permitting bin in this ®nal state and are never cancelled.
As usual this listing provides a way of recursively computing A for the
desired contradiction.

Finally, we argue that lim r�D; i; j; e� < 1. Consider any y > r targeted for Gn

which is in the entourage of one of the ®nitely many followers of Di; j; e. If some
Dk; n�Wk; y� converges for the ®rst time at a stage t after x is appointed, we initialize
all lower priority requirements. Thus no number below vkdk; n� y� can ever enter R
after stage t and so none below dk; n� y� can enter Wk . Thus dk; n� y� is ®xed from
now on and so can never again cause initialization by its convergence.

Thus we know that for each requirement there is a stage r after which it is never
initialized. The argument that the requirements Ke; x are met is now routine and
exactly as in the basic construction. Given the success of these requirements and the
fact that initializations for each requirement are bounded, we can now argue for the
success of the Mi requirements. As in the basic construction we see that if all of the
functionals Di; j fail in®nitely often then there are in®nitely many x for which we
reach a point in the construction when we would put x into Q if permitted by U at
that particular stage. The prompt simplicity of U then guarantees that we actually
put one of these numbers into Q. The argument of the basic construction then
shows that Mi never acts again, imposes only a ®nite, eventually constant restraint
and is satis®ed.

All that remains is to verify that the in®mum requirements are met. We ®rst prove
a technical lemma about the priority ordering.

Lemma 6.3. If balls x < y are both on the machine at stage s then x has
higher priority than y.

Proof. Suppose for the sake of a contradiction that y has higher priority than
x. As y is larger than x, it must have been placed on the machine after x. If it had
higher priority than x when initially placed on the machine then x would have
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been cancelled by construction. On the other hand, if y's priority improved at
some stage to make it higher than that of x, then x would have been cancelled at
that stage according to clause (c) of item 2 (or 5) of the construction.

Lemma 6.4. If Ff �Gh2 m�lÿ1
� El� � Ff �Fl� � h then h <T Gh2 m�l

for the pair
m � 0 and l � 1 as well as all m > 0 and l 2 f0; 1g.

Proof. Let r be a stage after which the corresponding requirement Yf ;2 m�l is
never initialized and every gate of higher priority that has a permanent occupant
already has one. We claim that h�x� can be correctly computed by ®nding a stage
s > r at which ,� f ; 2 m� l; s� > x, the computations are Gh2 m�l

-correct (that is,
Gh2 m�l

Wu �s� � Gh2 m�l
Wu where u is the use of the relevant computations at x) and

only balls that never move again are at gates, corral or bins at or below the gate
for Yf ;2 m�l . Now, we can recognize such a stage recursively in Gh2 m�l

as there are
only ®nitely many balls permanently at gates or corrals below the gate for Yf ;2 m�l

while ones in the permitting bin are there permanently if and only if the trace
targeted for B at the end of their entourage is not in B; a fact recursive in

B � G
�0�
h2 m�l

and, of course, Gh2 m�l
-correctness is recursive in Gh2 m�l

. By

the hypothesis of the lemma there is a t > r such that at every s > t the length

of agreement is larger than x and Gh2 m�l
-correct. Thus all that remains to be shown

is that there is one at which only balls that will permanently remain in their

current positions are on the machine at or below the gate for Yf ;2 m�l and that the

value computed at such a stage s is the correct one.
As for the ®rst claim, consider any stage s > t at which some cancellation or

initialization is caused by a requirement and no requirement of the same or higher
priority ever causes any cancellation or initialization again. (Clearly such stages
exist by the arguments above.) It is clear from the de®nition of the construction that
any ball now on the machine at or below the gate for Yf ;2 m�l must remain in its
current location forever. Thus any such stage s is as required and there are
obviously in®nitely many such.

We now argue by induction that the computation at x found at a stage s as
described above remains constant and is Gh2 m�l

-correct on at least one side of the
in®mum at every later stage. Now at s any ball that can injure the computation at x
must already be on the machine (ones appointed later are larger than the use) and
above the gate for Yf ;2 m�l (by hypothesis the associated length of agreement goes to
in®nity and so no ball permanently occupies the gate for Yf ; 2 m�l). Let z be the ®rst
ball below the use which enters one side of the in®mum (it cannot enter both as the
computation is assumed to be Gf ; 2 m�l -correct). We claim that z occupies the gate
for Yf ; 2 m�l at some stage after s0 and before it enters the set for which it is targeted.
If not, then by the construction at the stage at which it rolls past this gate, the gate
must be occupied by a ball of higher priority. (If it were occupied by one of lower
priority that ball would be cancelled when we are about to move z and so the gate
would become unoccupied in which case z would have to stop at the gate or the
corral. In the latter case, it would have to move out to the gate before going past it.)
Thus z was not on the machine when the ball occupying the gate reached it (for it
would then have been cancelled). The gate has not opened since the ball of higher
priority than z reached it (or the ball would have left the gate) and so z is larger than
the use of the computation at x for a contradiction.

Suppose x occupies the gate for Yf ; 2 m�l and is about to leave it at stage t. It leaves
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the gate because a new maximum length of agreement has been reached. As no
number less than the use at s has entered either side of the in®mum, the value is the
same as at s. We claim that the computation from the side of the in®mum for which x
is not targeted now becomes Gh2 m�l

-correct. Of course, any ball larger than x is
cancelled when x moves by the rules of the construction and Lemma 6.3. On the other
hand, any ball smaller than x is within the range already assumed to be Gh2 m�l

-correct.
To continue the inductive hypotheses we now only need to argue that all balls less than
the use at t that might enter this (now certi®ed as Gh2 m�l

-correct) side of the in®mum
are above the gate for Yf ; 2 m�l . Any such ball below the gate must have passed the gate
at some stage after s (as the ones below at s never move and no balls are placed on the
machine by requirements of higher priority than Yf ; 2 m�l by our choice of r). If the ball
has lower priority than x then it would have been cancelled at t and so no longer be on
the machine. If it had higher priority than x it would have cancelled x when attempting
to pass the gate contrary to our assumption that x is still at the gate at t. Similarly, if it
had passed the gate with lower priority than x but acquired higher priority afterwards
then it would have cancelled x when it got its higher priority. We can now continue by
induction to prove that at every stage when a ball that would injure the previously
certi®ed Gh2 m�l

-correct side leaves the gate associated with Yf ; 2 m�l that the
computation from one side of the in®mum is made Gh2 m�l

-correct and gives the same
output as that given at s.

7. Coding S3-sets

Our goal in this section is to prove the coding results needed in § 2 as given by
Theorem 2.15 which we recall as follows.

Theorem 7.1. If hg ii is a u.r.e. antichain,
L

i g i is low and �"i��a ÷ g i�, then
for each S0

3�A�-set S there are c; d < a such that S � fi: c < g i _ dg.

We begin by giving an effective approximation to S, using methods similar to
ones of Nies in [20] and [23].

Lemma 7.2. There is a u.r.e. sequence Xhi; n; mi of initial segments of q such that

i 2 S ) a.e. n; m Xhi; n; mi is finite �7:1�
and

i 2= S ) "n $m�Xhi; n;mi � q�. �7:2�
Moreover, there is a partial A-recursive function xX for the array Xk , which is
de®ned at k � hi; n; mi if and only if Xk is ®nite, in which case Xk equals Xk;xX�k�.

Proof. Since S is S0
3�A�, there is an r.e. set W such that

i 2 S , $n "m�hi; n; mi 2WA�.
Let Yk � fs: �$t > s��k 2= WA �t��g. Then this sequence is u.r.e., each Yk is an
initial segment of q and k 2WA, Yk is ®nite and so (7.2) holds for hYki.
Moreover, the second claim of the lemma holds for the sequence: to calculate the
partial function xY�k� required for the array Yk, search for an s such that
k 2WA �s� by an A-correct computation.
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We now modify hYki to satisfy (7.1) by ®rst reducing the number of sets which
equal q. By the row hi; ni (of Y � fYk j k 2 qg) we mean the collection of sets
fYhi; n;mi j m 2 qg. First we replace Yhi; n; mi by Y 0hi; n; mi � Yhi; 0; mi Ç : : : Ç Yhi; n; mi.
Then, if the row hi; ni (of Y 0) contains only ®nite sets, so do all rows hi; n0i, for
n0 > n. To compute the partial function xY 0 required for the array Y 0k as in the lemma
proceed as follows. Given hi; n; mi start computations with oracle A for
xY�hi; j; mi�, with j < n, in parallel; if any of these computations converge, continue
computing and enumerating all the sets Yhi; j; mi until we have, for each j < n, either
xY�hi; j; mi� converges or Yhi; j; mi contains all the elements in the smallest of the
Yhi; j0; mi for which xY�hi; j0; mi� has converged.

Next, we modify Y 0 once more to produce the desired sequence hXki by
guaranteeing that each row has at most one in®nite member. Let Cm � Y 0hi; n; mi. We
replace this set in Y 0 by a class of sets Dhm; gi � Xhi; n; hm; gii where g is thought of as a
guess about jSj < m Cjj. As long as the guess is correct, Dhm; gi is allowed to copy Cm.
Formally, let Dp; 0 � 0= and, for s > 0 and p � hm; gi, if g � jSj < m Cj; sj, let
Dp; s � Cm; s, otherwise let Dp; s � Dp; sÿ1. Clearly, there is at most one hm; gi such
that Dhm; gi � q. (It is the pair for which m is least such that Y 0hi; n; mi is in®nite and
g � jSj< m Cj; sj.)

We now show how to compute the required partial function x � xX for the array
hXki that we have obtained. Suppose k � hi; n; pi. As before, let Cm � Y 0hi; n; mi and
let p � hm; gi. To compute xX�k�, we ®nd an s such that either jSj < m Cj; sj > g, in
which case we give this s as output, or all computations xY 0 �hi; n; ji� have converged
at stage s for j < m. If jSj < m Cj; sj < g, again we give s as output, but if it equals g,
we start simulating the computation of xY 0 �hi; n; mi�.

To prove Theorem 7.1, we want to build r.e. sets C; D <T A such that

i 2 S ) C <T Gi � D �7:3�
and

i 2= S ) "n �C 6�WGi�D
n �; �7:4�

where hWni is an effective listing of all Turing functionals such that, to compute
the value at input x, we ®rst compute all values for smaller inputs (this will be
technically convenient).

Intuitively, to satisfy (7.4) we view the number n in (7.2) as an index for a T-
reduction. For each m, a requirement Qhi; n; mi tries to guarantee that C 6�WGi�D

n . If
i 2= S, then the ®rst requirement such that Xhi; n; mi � q will succeed. If Xhi; n;mi is
®nite, Qhi; n; mi acts only ®nitely often. Thus the diagonalization requirements are

Qhi; n; mi : Xhi; n; mi � q) C 6�WGi�D
n :

We write iQ�k� � i if Qk works on (7.4) for i, that is, if k � hi; n; mi for some
pair n, m.

For each i, there are in®nitely many coding requirements Ck �k � hi; ni�, whose

goal is to build a functional Dk such that C � D k
Gi�D. We write iC�k� � i if

k � hi; ni for some n. Fix C0 < Q0 < C1 < Q1 : : : as the priority ordering of the
requirements. Note that Ck may be affected by lower priority requirements Qp such
that iC�k� � iQ� p�. However, each such Qp can affect the functional Dk at only
®nitely many inputs (which are distinct for distinct p) and, if Xp is ®nite,
only ®nitely often at each of those inputs. Thus, if it needs to succeed, the coding
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requirement relies on the hypothesis that each single requirement Qp affects it
only ®nitely often:

Ck : �"p > k��iQ� p� � iC�k� ) Xp finite� ) C � D
Gi�D
k :

If i 2 S then, since in®nitely many coding requirements work on (7.3), we can,
by (7.1), choose k with iC�k� � i such that the hypothesis is correct. Therefore
C <T Gi � D.

We now describe the strategies for the requirements. The requirement Ck tries to
build the functional Dk. For an input x, let dk�x� be the use of this functional.
Whenever Gi � DWdk�x� � 1 changes, we have a chance to declare D

Gi�D
k �x� to be

unde®ned, and Ck will have to rede®ne it at a later stage t to the correct value Ct�x�,
with a new use dt�x� (normally a large number). We can only enumerate x into C
while D

Gi�D
k �x� is unde®ned. To make D

Gi�D
k total, we have to make sure that, for

each x, D
Gi�D
k �x� is de®ned at some stage and is rede®ned only ®nitely often.

We now explain the Qp-strategy, and describe when to correct the functionals Dk.
Let p � hi; n; mi and suppose that Xp � q. The goal of the Qp-strategy is to
diagonalize against C � wGi�D

n . To do so, Qp has to enumerate, at some stage
s, a follower y such that WGi�D

n � y� � 0 into C where wGi�D
n � y� does not change

later. To ensure that C <T A, Qp also requires an A-permission, that is,
As Wy 6� Asÿ1 Wy, before enumerating y into C at stage s. Now, the computation

WGi�D
n � y� � 0 could later be destroyed by a Gi-change not under our control.

However, using the lowness of Gi, we can prevent Qp from acting in®nitely often
because of this kind of injury. On the other hand, the computation could also be
destroyed by an enumeration of uses dk�z� into D �k < p�. The main case to worry
about is the necessity of enumerating dk� y� into D for any k < p for which Dk� y� is
already de®ned, since we need to make Dk� y� unde®ned before enumerating y into
C. To avoid the destruction of wGi�D

n � y� by such an enumeration, Qp tries to ensure
that wGi�D

n � y� is k-cleared for each k < p, that is,

dk� y� > wGi�D
n � y� �7:5�

(where wGi�D
n � y� is, as usual, the use of WGi�D

n � y�). If iC�k� � iQ� p�, the k-
clearing is done in an active way: ®rst, Qp picks a `killing point' x where it
intends to make Dk�x� unde®ned in the limit if Xp is in®nite. The followers y of
Qp will all be chosen to be greater than or equal to x. If Xp increases, then dk�x�
is enumerated into D and Dk�x� is declared to be unde®ned. Since dk�x� will be
rede®ned to be a large number, eventually we reach the desired inequality (7.5)

(provided that WGi�D
n � y� converges). The second claim in Lemma 7.2 is used

to show that A can calculate when such enumerations have ceased and so to prove
that D <T A. For technical reasons, we will actually require that wGi�D

n � y�< max Xp

whenever we consider putting a follower y into D in this way. We also ensure that
dk�x� > max Xp whenever k < p < x and iQ�p� � iC�k�.

Now we discuss clearing the computation WGi�D
n � y� of markers dk� y� when k < p

and iQ� p� 6� iC�k� � j. In this case, Qp relies on Gj-changes to ensure that WGi�D
n � y�

will be k-cleared. Now Qp maintains a whole list of followers yn; s at stage s such
that WGi�D

n �yr� � 0 �s� with use below max�Xp; s�. If y is appointed as a new

follower, Qp restrains DWwGi�D
n � y� and requests that wGi�D

n � y� be k-cleared (that is,
that dk� y� be moved above at the next stage where GjWdk� y� changes). Since
Gj ÷T Gi, (if the requirement is not met in some trivial way) there will be in®nitely

285interpretability and de®nability

cente
" : 4
' : 1
page
hline
tabu

Unk
hspa
array
array
nleq
restr
mbo
upha
renew
ngeq
dots
geqsl
nsuc
math
ncon
lefteq
math
emph
math
thick
nonu
leqsl

PLMS



many r with stages s such that wGi�D
n �yr� � 0 �s� by a Gi-correct computation and

GjWyr changes at s. Since dk�x�> x for any x, this allows Qp's request for clearing to
be carried out.

Altogether a Qp-strategy is confronted with p� 1 coding strategies of higher
priority, Ck �k < p�. The above actions are carried out for each k in parallel. In the
end we can argue that potentially in®nitely many Gi-correct computations WGi�D

n � y�
are cleared for all k < p. By the D-enumeration of Qp all computations we consider
are eventually k-cleared if iC�k� � iQ�p�. For the other numbers k < p, we argue
by induction on descending k. If k < p, the above argument can be carried out to
k-clear computations which are already k0-cleared for all k0 with k < k0 < p, because
we can (by induction) Gi-recursively enumerate in®nitely many Gi-correct
computations WGi�D

n � y� which are already so cleared. Thus, in®nitely many
Gi-correct computations will be k-cleared for all k < p. As A ÷T Gi, one such will
have its input y permitted by A. At this point we will put y into C successfully
diagonalizing and the action for Qp will cease.

There is one ®nal problem. For p0 < p, the D-enumeration of the higher priority
Qp0 due to Xp0-increase may destroy computations WGi�D

n � y� on which Qp relies. If
Xp0 is ®nite, Qp can assume this side effect has ceased to occur, but if Xp0 � q, Qp

must choose followers in a way such that the associated uses are less than or equal
to max Xp0 (as it did for Xp itself ). So we have to equip Qp with a guess at which
sets Xp0 � q for p0 < p. This is done in a standard way using a priority tree. We use
2<q as our tree of strategies. If s > 0, we de®ne the sequence ds of accessible nodes
by induction on k. Of course, ds�0� � 0= . For 1 < k < s , we de®ne ds�k� as follows.
Let t < s be the greatest stage such that t � 0 or dsWk Í dt , let ds�k� � 0 if
jXk; tj < jXk; sj and ds�k� � 1 otherwise. For a 2 2<q , s is an a-stage if s � 0 or
a Í ds. Since the tree is ®nitely branching, there exists a true path f (as de®ned in
[35]), and

Xp � q , f � p� � 0:

If a 2 2<q, jaj � k, we say that a has a version of the Ck-strategy and ab0 has a
version of the Qk-strategy (recall that Qk only has to be active if Xk � q, that is,
if f �k� � 0). We adopt the notation above in the obvious way. For instance, we
write iC�a� instead of iC�jaj�, etc. As in [35], q�a� stands for q�n�a�� , where
a 7! n�a� is some effective numbering of strings.

If k � hi; n; mi, let ,g� p; s� � maxfx: �"z < x��wGi�D
n �z� � C�z� �s��g be the

length of agreement associated with Qp. To avoid the problem explained above,
ab0's version of the Qp strategy only considers numbers y as followers at stage s
which are eligible for ab0, that is,

y 2 q�a� ^ ,g� p; s� > y ^ WGi�D
n � y� � 0 �s�^

�"b��bb0 Í ab0) max Xjbj > wG1�D
n � y� �s��:

Note that, unlike the case of more involved tree constructions, the sequence
hdsi and hence the true path are predetermined by hXki. This is the reason why
we can prove that C; D <T A; A can enumerate those nodes which are to the left of
the true path (this follows from Lemma 7.2) and hence can give an upper bound on
the stages at which a Q-strategy ab0 can possibly enumerate a number into D.

We now present the formal construction and veri®cation needed to prove
the theorem.
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7.1. Construction
Stage 0. Let C0 � D0 � 0= . Initialize all strategies.

Stage s, for s > 0. Initialize all strategies b >L ds. For each k < s in order, carry
out the substage k.

Substage k. Let a � dsWk , and let t < s be the last a-stage. Let i � iC�k�.
Actions for the Ck-strategy a are as follows. Firstly, if there is an x such that

Gi; t Wda; t�x� 6� Gi; s Wda; t�x�, and some Q-strategy b, with a Ì b, is requesting clearing
of Da�x�, now let x be minimal such, declare Da�x0� unde®ned for each x0 > xn and
cancel all clearing requests for such x0.

Secondly, for all x such that D0�x� is now unde®ned, rede®ne it with value Cs�x�,
and a large use da�x�, so that da is monotonic.

Suppose k < s and ab0 Í ds. We describe the actions for the Qk-strategy ab0. The
strategy has as parameters a `killing point' x > k and a chain y0 < : : : < ynÿ1 of
followers, where x < y0.

Suppose k � hi; n; mi.
Step 1 (killing higher priority C requirements). If the killing point x is

unde®ned, assign a large number as its value. If db�x� is de®ned, where b Í a and
iC�b� � iQ�a�, enumerate db�x� into D and declare Db�x0� unde®ned for x0 > x.
(We continue this action even if it seems that Qk has already been met.)

Step 2 (cancelling followers). Let t < s be the last ab0-stage. If a follower yp

was already appointed at stage t, but Gi changed below the use wGi�D
n � yp�, then

cancel yp and the clearing request associated with yp.
Step 3 (appointing a new follower). Let ey be the maximal follower which is

still uncancelled (and ey � 0 if no such follower exists), and let es be the last stage
at which the Qk-strategy ab0 appointed ey (and es � 0 if ey � 0). Since

L
Gi is low,

there is, by the recursion theorem, a total recursive function g�a;ey;es; t� such that
limt g�a;ey;es; t� exists, equals 0 or 1, and the limit is 1 if and only if the following
S0

1�Gi�-question has an af®rmative answer:

�$s > es��$y > ey��at stage s of our construction y

is eligible for ab0 via a Gi-correct computation�: �7:6�
Now, at the actual substage k of stage s of the construction, look for a
minimal number y > ey which is eligible for ab0. Find the least number s0 > s such
that either Gi changes below the use wGi�D

n � y� �s� by stage s0 or f �a;ey;es; s0� � 1.
In the second case, we view y as certi®ed and therefore appoint y as a new
follower. To restrain C and D, initialize all strategies b such that ab0 Ì b or
ab0 <L b.

Step 4 (diagonalization). If there is a follower y which was already appointed at
the last ab0 stage t < s, remained uncancelled since t, is b cleared for all b Í a,
and moreover, At Wy 6� As W y, then let y be the least such follower. To diagonalize,
enumerate y into C. For each b Í a, enumerate db� y� (if de®ned) into D and
declare Db�y0� unde®ned for y0 > y.

7.2. Veri®cation

Lemma 7.3. Suppose that ab0 is a Qk-strategy on the true path. Then the
action of ab0 in Steps 2, 3 and 4 is ®nitary, and Qk is met.

Proof. Let k � hi; n; mi � jaj.
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By induction, let s0 be the least ab0 stage such that ab0 is not initialized at any
stage s > s0. Assume for a contradiction that

for each p, ab0 eventually appoints a follower yp at

stage s > s0 and this follower is never cancelled.
�7:7�

We call such a follower stable. Since ab0 has highest priority from s0 on, stability
can be recognized recursively in Gi. We prove the following result.

Assume (7.7) holds. Then there are in®nitely many stable followers of ab0
which are eventually b-cleared for all b Í a.

Since the follower is automatically b-cleared if iC�b� � iQ�a� by the de®nition of
eligibility, we only need to consider those b such that iC�b� 6� iQ�a�. For these b,
we argue by downward induction on the length of b. Suppose the claim is true for
all b0, with b Ì b0 Í a, and j � iC�b� 6� iQ�a�. If after stage s1 > s0 no more stable
followers which are already b0 cleared for b Ì b0 become b-cleared, then Gj <T Gi.
Given an input z, Gi-recursively ®nd an ab0 stage s > s1, such that a stable y > z has
been appointed which is b0-cleared for all b0 É b. Since ab0 requests clearing of
Db� y�, any Gj Wy change would lead to b-clearing of WGi�D

n � y�. So Gj; s�z� � Gj�z�,
and the required result is proved.

To obtain a contradiction from (7.7) we now argue that ab0 could successfully
diagonalize in Step 4 through a stable completely cleared y. Since A ÷T Gi, by a
similar argument to that above, there must be an ab0-stage s > s0 where a stable y
which is cleared for all b Í a has been appointed such that AWy changes by the next
ab0 stage. So in Step 4, ab0 diagonalizes through the least such y1 which causes the
length of agreement associated with Qk to be permanently below y, contrary to the
assumption (7.7).

Since (7.7) fails, there is a pair �ey;es� such that ey is the maximum stable follower
ever appointed after stage s0, and it is appointed at the ab0-stage, es for the last time
(let ey � 0, es � s0 if no stable follower exists at all). We claim that there can be no
pair of witnesses y, s for (7.6) as otherwise lims f �a;ey;es; s� � 1. Choose a minimal
y > ey which witnesses (7.6), and let s > es be the ®rst ab0 stage where WGi�D

n � y�
converges and is Gi-correct. Then we would appoint y as the next follower greater
than ey at stage s: by the properties on the function Wn described in the beginning, if
we had appointed some y0 > y at the stage s0, with es < s0 < s, and it were
uncancelled, we would have seen the computation WGi�D

n � y� �s� already at the stage

s0. Moreover, if some y0, with ey < y0 < y, were appointed at s, then WGi�D
n �y0� would

also be Gi-correct, contrary to the minimality of y. Finally, GiWwn; s� y� is stable, so
we can appoint y at s. A new stable follower has been found, contrary to the
de®nition of ey.

Since there is no witness to (7.6), lim gt�a;ey;es; t� � 0, so ab0 will stop all actions
through Steps 2, 3 (and hence through 4) at some point. To ®nish the proof of
Lemma 1, we show that Qk is met. If WGi�D

n � C, there is a number y 2 q�a� above
all numbers in q�a� that are ever appointed by ab0 such that WGi�D

n � y� � 0. But then
the answer to (7.6) is `yes'!

Lemma 7.4. i 2 S , C <T Gi � D.

Proof. For one direction suppose that i 2= S. For arbitrary n , we show
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that C 6�WGi�D
n . Let m be the number such that Xhi; n;mi � q. Then, for some a,

with jaj � hi; n; mi, ab0 is on the true path. So, by Lemma 7.3, Qhi; n; mi is met.
Now suppose that i 2 S. Then, by (7.1), there exists a k, with iC�k� � i, such that

the hypothesis of Ck is correct. Let a on the true path have a version of the Ck-
strategy. Suppose a is not initialized after s0 . Since a Q-strategy bb0, with a Í b,
enumerates da� y� into D whenever it enumerates y into C, after stage s0 the
functional Da can always be rede®ned correctly. It remains to verify that Da is not
partial, that is, Da� y� is only declared unde®ned ®nitely often for each y. Note that
Da� y� can be declared unde®ned for two reasons.

(1) Some Q-strategy bb0, with a Í b, requests clearing and its killing point is less
than or equal to y. This can happen only ®nitely often, by initialization if bb0
is to the right of the true path, and by Lemma 7.3 if bb0 is on the true path.

(2) If iQ�b� � i for some b, with a Í b, the killing point of the Q-strategy bb0 is
less than or equal to y (hence jbj< y) and Xjbj increases, that is, bb0 Í dt. By
the choice of k, this can only happen ®nitely often.

Lemma 7.5. C; D <T A.

Proof. We ®rst analyse what A knows about the true path.
We show that there is an A-recursive function p�a; t0� such that, for each t0,

p�a; t0� is the ®rst stage t > t0 such that one of the following happens:

(a) a Í dt, or

(b) dt <L a, or

(c) a <L dt0 for all t0 > t.

We de®ne p by recursion on k � jaj. Let p�0= ; t0� � t0, and, for each t, let
p�ab1; t0� � p�a; t0� (in these cases, (a)±(c) are satis®ed). Now let

p�ab0; t0� � p�a; Ät�;
where Ät is the ®rst stage greater than or equal to t0 where jXkj increases or we
have determined in Ät stages, using the computation procedure from Lemma 7.3
with A as an oracle, that Xk � Xk;x�k� (in which case x�k� < Ät, so also Xk � Xk;Ät).

To verify the required properties, if a <L dt, for t > p�a; Ät�, then also ab0 <L d0t. If
dp�a;Ät� <L a, then dt <L ab0. Finally, if (a) holds for a, that is, a Í dp�a;Ät�, then we
consider two cases: if Ät is the ®rst stage where jXkj increases, then ab0 Í dp�a; Ät �. If
we found out that Xk � Xk; Ät, then p�a; Ät� is an upper bound for the last stage t where
a previous increase of jXkj can possibly lead to ab0 Í dt, so we are in case (c)
for ab0.

Now to prove that C <T A, consider an input y 2 q�a�. If y ever enters C, it must
enter at an ab0-stage, where AWy changed since the last ab0-stage. Let t0 be such
that AWy � At0

Wy, and evaluate t � p�a; t0� recursively in A. Then t is the last stage
where this C-enumeration can take place. So C <T A.

Finally, to prove that D <T A, ®rst apply a similar argument to the D-enumeration
of y � db�z� along with a diagonalization of a Q-strategy through z (note that y > z).
If y is enumerated because y � db�x� and x is the killing point of some Q-strategy
ab0, with b Í a, this strategy can be identi®ed by stage y. So p�a; y� is an upper
bound for any stage at which such an enumeration of y into D can take place.
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