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We describe a general method to separate relativizations of structures arising from computability theory.
The method is applied to the lattice of r.e. sets, and the partial orders of r.e. m—degrees and T—-degrees. We
also consider classes of oracles where all relativizations are elementarily equivalent. We hope that the paper
can serve as well as an introduction to coding in these structures.

1. Introduction The relativization of a concept from computability theory to an oracle set 7 is obtained
by expanding the underlying concept of computation in a way such that, at any step of the computation
procedure, tests of the form “n € 7”7, where n is some number obtained previously in the computation, are
allowed. For instance, the relativization of the concept of r.e. sets to 7 1s “set r.e. in Z”. In this paper, we
study to what extent the isomorphism type and the theory of the relativization A% of a structure A from
computability theory depend on the oracle set Z. We consider mainly the case that A is the structure E of
r.e. sets under inclusion or a degree structure on r.e. sets, but first discuss the case that A is the structure of
Dr all T-degrees or D, of all m—degrees. In this case, DZ is the structure of degrees of subsets of w under
many-one reductions via (total) functions recursive in 7, while D% is simply the upper cone of Dy above
the T—degree of 7.

It is a common phenomenon in computability theory that the proof of a result 1s actually a proof of all
relativized forms of the result. Thus, the proof that there is a minimal T—degree below 0” actually shows
that each degree z has a minimal cover below z”, and the construction of a maximal r.e. set actually gives
an index 7 such that (W/?) is a coatom in (E%)*.

This observation led to the “strong homogeneity conjecture” [Rogers 67] that, for each Z, D% = Dp.
Yates [Ya 70] speculated, based on results of Martin, that the conjecture and also its weaker form asserting
that DZ is elementarily equivalent to Dy for each Z is independent of ZFC. Even the weaker form of the
conjecture was refuted by Shore [Sh 82]: if Dy = D% then Z must be of arithmetical degree. Here already
some of the ideas occur which will be exploited in the present paper.

Surprisingly, the analog of the homogeneity conjecture holds for D,,. Ershov [Er 75], with an addendum
by Paliutin gave a characterization of D,, which is purely algebraic: D, is the only distributive upper
semilattice with 0 that has cardinality 2¥, the countable predecessor property and a certain extension
property for ideals of cardinality < 2%. Relativizations of the proofs that these properties hold give exactly
the same properties for D% so DZ = D,,.

There are several reasons to study relativizations of structures. One is that, as mentioned above,
relativized versions of results are often already implicitly obtained. Moreover, in some cases the relativized
structures arise naturally in some other way. For instance, if Z = 0"~ then EZ is the lattice of 0 —sets,
and for any 7, if z = degp(7), the relativization of the AJ-Turing degrees to 7 is the interval [z, z’].

The way to prove AZ 2 AW if Z, W are sufficiently different oracle sets is to show that, to some
accuracy, the complexity of the oracle set X can be recovered from the isomorphism type of AX. To make
this precise, we need the notion of (uniform) coding of extended standard models of arithmetic (extended
SMA). An extended SMA is a structure (M,U), where M = JN and U C M. In general, a coding with
parameters of a relational structure C' of finite signature in a structure D is given by a scheme S of formulas
vg(x,p) and pr(21, ..., 2n; D) for each n—ary relation symbol R in the language of C' (including equality) such
that, for an appropriate list d of parameters in D, ¢— defines an equivalence relation on {z : D |= ¢g(z,d)}
and the structure defined on equivalence classes by the remaining formulas ¢g is isomorphic to C'.

., From now on, we focus on arithmetical structures A of finite signature. Such a structure is determined
by a scheme of arithmetical formulas without parameters, which gives a representation of A in terms of natural
numbers (“indices”). For instance, the scheme for E contains a I15 formula defining {(i,5) : W; C W;}.
Suppose the ground level A{ of the arithmetical hierarchy is defined in terms of the Kleene T-predicate.
Then we obtain relativizations of each arithmetical formula to an “oracle predicate” Z by replacing the
computations the definition of 7' is based on by oracle computations.
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In the terminology of Hodges [Ho 94], there is an interpretation T of structures in the language of A
in the extended SMA (IN,7) and A% can be defined as ['(IN, Z). We call the least number r such that
each arithmetical formula needed in defining A is a boolean combination of ¥.—formulas the arithmetical
complezity of A. This complexity is 2 for E, 3 for £* and R,,, and 4 for Rp.

Note that, for each Z, there is a representation of the diagram of A7 which is recursive in Z("),

Now suppose that in the converse direction there is a coding scheme S for coding the extended SMA
(M, X) in AX with parameters. This coding condition, which is satisfied e.g. by R, Rt and E (see below),
is a crude form of expressing that the complexity of the oracle X is reflected in AX, the isomorphism type
of AX. We abbreviate the coding condition by CO (“coded oracle”).

We will always assume that, if (M, X) is coded by a certain list of parameters p, M is a model of a
finitely axiomatized fragment P A~ of Peano arithmetic (say Robinson arithmetic R) which implies M is an
end extension of IN. This can be expressed by a first order condition on p.

Whenever an extended SMA (M, V) is coded in AX | then by combining this coding with the coding of
AX in (IN, X') we obtain that V is ©5(X) for some natural number d. Thus, if A satisfies CO, then A% 2= AW
implies that 77, W have the same arithmetical degree. If we can in addition recognize standardness of coded
models M by a first—order condition on parameters (call this coding condition COys;), then we obtain an
elementary difference between A and A%, for 7 ¢ ¥0: the first—order sentence expressing

“Whenever (M, V) isacodedextendedSM A, then V(asasubsetof M) is 5"

*holdsinA, butnotinAZ.

In Section 2, we use a still stronger coding condition COg(k), which depends on k& > 1, to refine these
separations of isomorphism types and of theories. (A somewhat similar idea was used first in [Sh 81] for the
special case A = Dp(< 0').) In the central Section 3, we explain why such a coding condition is satisfied
for R,,, Ry and E. For Ry and FE, the full proofs are in [Ha, N ta] and [N, Sh, Sl ta], respectively, and we
review them here in survey style.

In Section 4 we discuss “large” classes of oracles where relativizations of A are all elementarily equivalent.
Finally, in Section 5, we show that the subset of Th (A4) of relativizing sentences is much more complex than
Th (A), assuming COy;. This fact was obtained in collaboration with T. Slaman. Tt implies that there is no
way to give an effective relativizability criterion C' such that Th (A) N C is the set of relativizable sentences,
i.e. the sentences which hold in every relativization of A. In other words, 1t is not possible to distinguish,
say, in Ry, a relativizing sentence like “each incomplete degree has a minimal cover” from a sentence like (%)
above (assuming the sentences are true). (For the particular sentence (%) it is easy to grasp why it does not
relativize: to say that V as a subset of M is X7 keeps the same meaning in all relativizations.)

2. Separating relativizations We first list the hierarchy of coding conditions used. In saying A satisfies
a certain coding condition, we view A as an interpretation in extended SMA’s.

CO In a uniform way, it is possible to code (IN, X) in AX.

COgy In the underlying scheme s to code structures M, M = PA~,
in a relativization AX | one can recognize standardness of M by
a fixed first order condition on parameters.

CO(k) (k> 1) Suppose the arithmetical complexity of A is », and let
c=r+k—1. The extended SMA (IN, X(¢)) can be uniformly
coded in AX using a scheme of ¥j-formulas with parameters.

COs:(k) CO(k), and (as in the conditions COy;) standardness can be

recognized.

2.1 Separation Theorem Suppose A satisfies CO(k). Then, if 7(©) #; W), A7 % AW where
c=7r+k—1 and r is the arithmetical complexity of A.

Proof: If M is a model of PA~ coded in AX via the scheme s, then there is an f <p X(9) such that
f(n) is an index of n™ in the canonical representation of AX. For, the successor relation S of M, viewed as
a relation on indices, is r.e. in the (k — 1)~th jump of the atomic diagram of AX (since the scheme is ), so
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it is r.e. in X(°). To compute f inductively, let £(0) be an index of 0™ and let f(n 4+ 1) be an index j such
that Sf(n)j holds. Then, since M is an end extension of IN, f is total, and f is recursive in x(e),

Now we can obtain an upper bound on the complexity of U, for an extended SMA (M, U) coded in AX:
U is r.e. in X(©) via the enumeration procedure which enumerates n into U iff the ¥;—formula defining U/
(with a fixed list of parameters in AX) holds for f(n).

Suppose Z(¢) L W), Then ZU+8) is not r.e. in W +5=1) By hypothesis, the extended SMA (M, Z(c))
can be coded in AZ. But if (M, Z(¢)) can be coded in AW | then Z0+k) ig re. in W), contradiction. So
AZ 2 AW,

Recall that a set U C IN is implicitly definable in arithmetic (i.d.) if there is a first—order description
¥ in the language of extended SMA’s such that (IN, X) | ¢ < X = U. For instance, all recursive jumps
P o < WwEK are i.d. Implicit definability of U only depends on the arithmetical degree of U, and can
only hold if U is hyperarithmetical.

2.2 Theorem (Separation Theorem for Elementary Equivalence) Suppose COg, (k) is satisfied
for A. Lete=r+k—1.If 7(©) L W) and Z or W is implicitly definable in arithmetic, then A% £ AW,

Note that this includes the case that W = () and Z ¢ Low,.. Thus for sufficiently complex Z, the theory
of the relativization to 7 differs from the theory of the unrelativized structure.

Proof: We attempt to express the fact which led to A% 2% AW in the first—order language of A. First
suppose that 7 1s implicitly definable. Then the statement

“Some (M, U) can be coded such that M is standard and there is ¢ € M, where {e}V satisfies the

description of 7, such that U = ({e}V)(®)”
is expressible in that language, holds in A% but fails in AW .

If W is implicitly definable, we distinguish two cases. If Z(¢) Fr W) then 47 # AW by the argument
above. Else Z(®) >p W() and there is an index e such that {e}(Z(¢)) = W. So the first-order sentence
expressing

“there is a coded extended SMA(M,U) and an e € M such that {e}V satisfies the description of

W oand U ¢ 50, ({e}7)’
is true in AZ via a coding of (M, Z(9)), but not in AW .

3. The structures R, F and Rp We sketch proofs that R,, and F satisfy the condition COg4 (k) used
in the Separation Theorem for elementary equivalence. In the cases R,, and Rp the coding condition holds
with & = 1. The full proofs for Ry and E are implicit in the results in [N, Sh, Sl ta] and [Ha, N ta],
respectively. In all proofs, it is sufficient to consider the unrelativized structure and note the relativizability
of the proof techniques used.

3.1 R.e. many-one degrees.

In five steps, we build up a coding scheme of ¥;-formulas for coding an extended SMA (M, X(3)) in RX
with parameters. This proves the condition CO(1), since » = 3 for Ry,.

We use two auxiliary structures: first a bipartite graph and then a distributive lattice. This makes it
necessary to apply a transitive version of coding with X;—formula: as in [N tal], a relational structure A is
¥i-e.d.(p) in a structure B if there is a coding scheme of ¥; formulas (with parameters) for defining the
universe of A, the relations of A and their complements.

Step 1. IN is Xi—e.d. in a recursive bi—partite graph G = (Le, Ri, F'), using the coding given in the proof of
Theorem 4.2 in [N tal]. The class of vertices representing numbers is a recursive Xj—definable subset of the
left domain Le of G.

Step 2. GG is Xyj—e.d.p. in a recursive distributive lattice Lg, viewed as a p.o. This step is carried out in [N
tal] for finite bipartive graphs, in order to show that the Tz—theory of the class of finite distributive lattices
(as p.o.) is hereditarily undecidable. An obvious modification of the proof yields L. For instance, to define
a sequence of infinitely many independent elements A; (representing the left domain of ) in an appropriate
recursive distributive lattice I by a quantifier free formulas with one parameter, consider copies By, By of
the boolean algebra of finite or cofinite subsets of CO, put Bs on top of B; where P := greatest element of
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By = least element of By. For each 7, insert the new element A; between the i—th coatom of By and the i—th
atom of By. In this way, obtain L. Now

{A;:iew}={X € L:X, P incomparable},

and no A; is below a finite supremum j € FF — \/ A; for i ¢ F (i.e., the elements A; are independent).
The coding of G in a lattice Lg is obtained by an extension of this: take another copy of L, such
that elements {A; : j € w} represent the right domain, and add further parameters C'p, Cy such that

Fij & Cg £ A; V Zj’ and similarly for £ and Cz. In [N tal] it is described how the further parameters
can be introduced without interfering with the Xy—definition of the set of elements representing the left and
right domain.

Step 3. By a theorem of Lachlan [La 72], Lgs =2 [0, a] for some a € R,,, by an effective map on indices.
This gives a scheme Sy with parameters p (including the upper bound a) to code SMA’s M. Note that,
by effectivity, for the particular a above, there is a uniformly r.e. sequence (¢;) of m—degrees such that ¢;
represents M : the sequence (¢;) is a subsequence of the degrees representing the elements A; of L. Thus,
also (¢;) is an independent sequence.

Step 4. Given a TI3—complete (or in fact, any T13-) set S, by the Exact Degree Theorem for structures of
arithmetical complexity 3 in [N ta2], there is a b € R, such that i € S < ¢; £ b. Including b as a parameter,
we obtain the desired scheme S in the unrelativized case.

Step 5. Since all the proof techniques used are relativizable, via the same scheme, CO(1) is satisfied: for
each X, there is a list of parameters in RX coding (IN, X(3)) via S.

To recognize standardness, we argue as in [N 94], where an interpretation of true arithmetic in Th (R,y,)
is given. For any model M coded in RX by the scheme sy, if M satisfies PA™, then {i : deg(W/X) is a
standard number of M} is £9(X) for some fixed k and bounded from above by a. By the relativized form
of the Definability Lemma in [N 94] we can quantify over such sets in the first order language of R,, and
therefore, we can express that M is standard.

Applying 2.2, we now obtain the following result:

3.1 Theorem If 73 £7 W®) and Z or W is implicitly definable in arithmetic, then RZ # RY .

3.2 The lattice of r.e. sets.

We review the necessary facts about F to prove that F satisfies COy4(k) for some k. As in [Ha ta] and
[Ha, N ta], for any r.e. set F, B(E) is the boolean algebra of r.e. subsets X of F such that £ — X is r.e.
and R(FE) is the ideal of recursive subsets of . The variables R, S range over recursive sets. If X € B(F),
we write X F. An ideal I of B(E) is k—acceptable if R(F) C I and I has a £9 index set. [ is acceptable if it
is k—acceptable for some k.

A class C' of subsets of a structure S is uniformly definable if, for some formula ¢(z;7), C is the class
of sets defined by this formula as P varies over tuples of parameters in S. (Sometimes in the literature it is
only required that C' be included in such a class, e.g., in [N 94].)

Ideal Definability Lemma [Ha ta] For each nonrecursive r.e. set £ and each n > 1, the class of
2n + l-acceptable ideals of B(F) is uniformly definable by a formula ¢a, 1.

The formula used for the 3—acceptable ideals is
e3(X; E,C)=XEAN(EBRC E)X CCUR)]
which clearly can only define 3—acceptable ideals. The formula ¢a,43 for 2n + 3—acceptable ideals has an
IV quantifier prefix in front of an instance of @a,41 with different parameters and therefore only defines
Yonts—ideals. More precisely,
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The general framework to use induction on % in this way for obtaining uniform definability of objects with
Yi—index set is adapted from [N 94]. Note that ;11 is a Xa,_1—formula in the language of F, as a lattice
with least and greatest element.

In [Ha, N ta], we use the Tdeal Definability Lemma to establish the hypothesis COy (k) (some k) of the
Separation Theorem for elementary equivalence. As for R,,, here we describe the coding process in several
steps.

Step 1. Tf E is an r.e. nonrecursive set, let (P)rew be any u.r.e. partition of E into nonrecursive sets. Such
a partition can be obtained by the method of the Friedberg Splitting Theorem (see [So 87]). Modulo some
ideal I, the sets Pj, will be the elements of the SMA to be coded.

Step 2. For each r.e. nonrecursive set, D, one can obtain uniformly in an index of D a maximal ideal 7(D)
of B(D) which contains R(D) and has AY index set. Apply this process to each Py, and let T = {XA :
(VE)X NP, € I(Py)]}. Then (Pr/Dkew is a uniformly r.e. listing of the atoms in B(F)/T without repetitions.

Step 3. To be able to code ternary relations corresponding to the arithmetical operations 4, x on the atoms
of B(E)/I for an appropriate I, we require that F is hh—simple, where the lattice L*(E) is isomorphic to the
boolean algebra of finite and cofinite subsets of w. Then, with the right choice of the ideals T(Py), the atoms
of L*(F) can be used to represent 3—tuples of atoms. (This, however, increases the arithmetical complexity
of the index set of the ideals T(Py) and hence of I.) Then any recursive ternary relation on the atoms Py /T
can be defined in terms of three further acceptable ideals.

Thus we obtain a scheme with parameters to code a SMA M in E.

Step 4. To be able to uniformly define subsets S of the standard part of a model of PA™ M coded by this
scheme which have an arithmetical index set, we first proceed as in the proof of the Separation Theorem:
for some fixed ¢ depending only on the coding formulas, there is an f < §(¢), such that

M= Wyi/1

for each 7 € w.

Moreover, since atoms of a boolean algebra are independent, S can be recovered from the ideal of B(F)
it generates: let P, @ range over {XF : X/I atom in B(E)/T}. If P/I is a standard number of M, then

P/IESC}PEIS,

where Ig is the ideal generated by I and those @ such that Q/I € S.

Clearly Tg is acceptable if S has an arithmetical index set (in the sense that {@ : Q/I € S} has one).
Then, since the standard part of M is such a set, we can quantify over the possible subsets of M which can
be the standard part and thus express that M is standard.

The same first-order condition for recognizing standardness works in every relativization £7, since the
proof of the Ideal Definability Lemma relativizes.

Step 5. To define extended SMA’s of the type required to satisfy COg(k), note that, using the function
f < 09 obtained in Step 4, if M is standard then, for some sufficiently large odd d > ¢,

S C M is ¥5 asasubsetof M < S has XY indexset <> Is has X indexset.

Then, for d large enough, because of the remarks following the Ideal Definability Lemma, an extended SMA
(M, S) can be coded in E using a scheme of ¥ _s—formulas (in the language of lattices with 0, 1), for any
Y0—set S.

Moreover, by relativizability of the proof techniques, the same scheme can be used to code (M, S) in
EX | if S is X9(X). We can conclude that COy(d — 2) is satisfied: recall that » = 2 for F, so with the value

k = d — 2 there is a scheme of Xj—formulas such that each EE_I_k(X) set and hence X(°) is coded, where
¢ =d — 1. We have obtained the following.



3.2 Theorem [Ha, N ta] For some c, if AR L W) and Z or W is implicitly definable, then
EZ # EW. In particular, if 7 ¢ Low, then EZ # .

3.3 R.e. T—degrees, and r.e. m—degrees revisited.

The coding methods developed in [N, Sh, Sl ta] suffice to satisfy COg(1) for Ry, viewed as an u.s.l.
Since r = 4 for (Ry, V), this gives the separation of Th (R%) and Th (RY) for ZW g WA Z or W is
implicitly definable.

We now describe a way to give, for both R, and Rp, a first—order condition R(P) on parameters p
coding an extended SMA (M, U) which, in each relativization R#  holds only if U®B) =p XG) Since some
parameters will satisfy the condition, this can be interpreted by saying that we can, in a uniform first order
way, recover the T—degree of X(®) from R% and RX. Then, if Z is implicitly definable, there is a formula ¢
which holds in RX (R¥) iff Z(3) =p X ).

We use that, with a suitable scheme sy;, R, and Ry satisfy the coding condition

“for each My, M5, the 1Isomorphism between the standard parts of My, M5 is uniformly definable”,

i.e., there is a formula ¢(x,y,7) which, uniformly with parameters defines all these isomorphisms. This
coding condition makes it possible to recognize standardness, and to code a SMA in the degree structure
without parameters. For R,,, we can use the scheme sp; introduced in 3.1. So it is part of a scheme for
defining extended SMA’s such that in RX | an extended SMA (M, X(3)) can be coded with appropriate
parameters. Note that, if an extended SMA (M, 7) is coded, we can express that Z = U®) for some U,
since any such U must satisfy U = {e}Z for some ¢, so U is represented within (M, 7). Now consider the
property of a parameter list

“p codes an extended SMA (M,U®)) such that, for each coded extended SMA (N, W), Ve <p

AON

By the uniform definability of the isomorphism h : M < N and the remark above, this property is
equivalent to a first-order property R(B), since we can compare the T—degrees of V(3) and h(U/(®)) inside N.

It was proved above that an extended SMA (M, X(3)) can be coded in R. Now, whenever (N, W) is
coded, then V3 <p X3 because V3 is r.e. in X by the argument used in the proof of the Separation
Theorem. So the property R(p) holds in R: for any list of parameters coding an extended SMA (M, X(3)).

In Rp one can argue similarly to decode the degree of X(%) from R%. For decoding the degree of X))
we use the fact, proved in [N, Sh, Sl ta] that

for each r.e. nonrecursive A, if @ = degy(A), the extended SMA (M, A®)) is coded in the u.s.l.
[0, @] using a fixed scheme of ¥;—formulas.

Now consider the first—order property R(P) expressing

“p codes amodel (M, U3)), M standard, such that U®) is <p-maximal with respect to the property
that in each u.s.l. [0,a], a # 0, a structure (M, W) is coded such that V®) =, 3)”
If this property holds in R% for p, then p codes (M, W), UB) =7 X®) gince there is a nonzero a € RY
such that @’ = X’. The following theorem is now almost immediate.

Theorem Suppose A = R,,, or A = Rp.

(1) It Z3) £p W) then A% % AW,
(ii) Tf 7 is implicitly definable in arithmetic, then there is a sentence ¢ such that, for each W,

AV e o e WB = 23,
In particular, there is ¢ which holds precisely in the relativizations to Lows oracles.
4. Flementarily equivalent relativizations We consider several results of the form
Z,W el = A7 = AW,
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*whereCisaninsomesensealargeclassofsubsetsofw (reals). Tt is reasonable to assume that the isomorphism
type of AZ depends only on the T—degree of Z. Then, for any ¢ in the language of A

(7: A7 o}

1s an arithmetical class of reals closed under =7.

By arithmetic determinacy, (*) holds for a class C = {7 : 7 >p F'}, for some real F' which is an upper
bound for sets encoding winning strategies. This was observed in [Sh 81] for A = Dp(< 0').

In the following, we derive (%) for the classes of w—generic and w-random sets 7. Recall that 7 is w-
generic iff 7 is in every comeager arithmetical class of reals, and 7 is w—random iff 7 is in every arithmetical
class of measure 1. Both classes can be defined in terms of forcing notions — see [Od ta] for the first and
[Kau 91] for the second.

4.1 Proposition If Z, W are w—generic, then AZ = AW . Thus (x) holds for a comeager class.

Proof: Since AZ |= ¢ does not depend on finite variations of 7, the following equivalences hold:
AZ = ¢ forsome w— — generic 7 < (30) C 7 [04AX |= "], i.e., forallwu— — generic X D 0, AX = ¢ & AX = ¢ forall w—

Note that the class of w—generic reals G is radically different from the class of implicitly definable reals
Z considered in Sections 2 and 3: If 7 is arithmetical in G, then Z is an arithmetical set.

4.2 Proposition If Z, W are w-random, then A% = AW. Thus (%) holds for a class of measure 1.

Proof: Tt follows from Kolmogorov’s 0-1 law that each measurable degree-invariant (or even =*-

invariant) class of reals has measure 0 or 1. Thus, for 7, W w-random
A? = p o {X 1 AY |= ) hasmeasure 1 & AW | .

For the rest of this section we assume that A satisfies the coding conditions COyg;.
Let G be some w—generic and R some w-random set.

4.3 Proposition Th (A%) =p Th(A®) =p 0.

Proof: We can assume R, G <p ¢“). By the hypothesis CO,;, true arithmetic can be interpreted in
both theories. Conversely, to obtain #(“) as an upper bound, first note that, for any X, Th (AX) < X (@),
But for X = G and X = R, X(") = X &0(") where the T-reductions are obtained uniformly in n, by results
in [Kur 81] and [Kau 91], respectively, so X*) =p X @ §(«) =5 ).

We now show that, assuming COj; the three theories Th(A), Th(A%) and Th (AF) are all different.
Thus the theory of the unrelativized structure behaves typically neither in the sense of category nor in the
sense of measure.

4.4 Theorem The theories Th(A), Th(A%) and Th(A®) are pairwise distinct.

Proof: We first prove that the structures are nonisomorphic. If A 2 AX for X = G or X = R, then an
extended SMA (M, X) is coded in A. Hence X is X0 for some ¢, which is impossible.

If AR 2 A% then an extended SMA (M, R) can be coded in A9 so R is in X9(() for some sufficiently
large ¢, and R <p 0(°*V) & G. This is impossible by the following

Fact: Tf R is n 4+ 1-random and G is n 4+ 1-generic, then R £ 0" + G. (See [Kau 91] for definitions
of k—random and k—generic. Here it is enough to know that these are arithmetical classes of reals whose
intersection is the class of w—random respectively w—generic reals.) The proof of this fact is obtained in a
straightforward way by adapting Kurtz’s proof (Theorem 4.2 in [Kur 81]) that the downward closure of the
class of 1-generic degrees has measure 0.

We now obtain the stronger facts that the structures are not elementarily equivalent: for X = R, G,
AX but not A, satisfies

“an extended SMA (M, U) can be coded such that U is not X97.

Moreover, A%, but not A%, satisfies
“an extended SMA (M, U) can be coded such that U is ¢ + 2-random.”
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For the second, use the above fact for n = ¢ + 1, together with Kautz‘s result [Kau 91] that R*®) =p
R+ 0™ for k + 1-random R.

5. The set of relativizable sentences Assuming the coding conditions CO4; on A as in the preceding
section, we investigate the theory
T= () Th(4X),
XCuw

1.e., the class of sentences which hold in all relativizations of A. Note that it suffices to take the intersection
over all hyperarithmetical X. Both of the facts we prove show that 7" is complicated in some sense.

5.1 Proposition If S is a consistent theory containing 7', then () <, S.

Proof: Given ¢ € L(+, x), let F(y) be the sentence expressing “p holds in some coded SMA”. Then
¢ € Th(IN) implies § € T, so F(p) € S, and = € Th(IN) implies F(—¢) € S, so F(p) ¢ S since S is
consistent. So “) <,,, S.

5.2 Proposition T is II}-complete.

Proof: Since AX is given as ['(IN, X) for an interpretation I', there is a fixed recursive function f such

that Th (AX) <., X®) via f. Then
T={p: (VX)(¥V)IY = X“ = f(p) € V).

The matrix of this expression is arithmetical so 7" is I} .
To show completeness, we give a reduction of the IT}—complete set

{¢Y € L(+, x,U) : noextendedSM A satisfies 1}.

Let g(¢) be the negation nof the sentence in the language of A expressing
“for some extended SMA (M,U), M | 4(U)”.

Then, if no extended SMA satisfies ¢, g(¢/) € T, and if some extended SMA does, then g(1) fails in any AY
such that (IN,U) |= ¢ holds, so g(v) ¢ T.
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