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Abstract

We investigate model theoretic properties of R,,, the partial order of computably enumerable many-
one degrees. We prove that all nontrivial final segments and the set of minimal degrees are auto-
morphism bases, and that some proper half open initial segment is an elementary substructure of
Rm — {1}. This shows that R, is not a minimal model.

In an appendix, we show that the many-one degree of an r-maximal set is join irreducible.
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1 Introduction

Many-one reducibility, introduced by Post [9], is a rather fine way to measure the
relative complexity of subsets of w: X is many-one reducible to Y, written X <,, Y,
if X = f~1(Y) for a computable function f (we assume that f can also assume the
values TRUE and FALSE to avoid trivialities). However, it appears naturally in a
wide variety of contexts, for instance interpretability of theories and word problems
of subgroups. Let D,, and R,, denote the upper semilattices of many-one degrees
of all sets, and of the computably enumerable (c.e.) sets, respectively. Both upper
semilattices are distributive, namely

VaVa¥blx <aVb = Jag <adby <bx=agV by (1.1)

R is the only c.e. degree structure known to permit a characterization [2], which
is an effectivization of a purely algebraic characterization of D,,, due to Ershov. As a
consequence, both structures have the maximum possible number of automorphisms,
22" for D,, and 2¢ for R,,. The author proved in [5] that a copy of (N,+, x)
can be coded in R,, using first-order formulas without parameters. In particular,
Th(R.,) =m Th(N,+, x). In the main part of this paper we obtain further results
of a model theoretic flavor, mainly on R,,, and indicate what the situation is for
Dpn. All the results clarify how parts of the structure (like nontrivial initial and final
segments) interact with the structure as a whole.

A subset X of a structure A is an automorphism base if the only automorphism
of A fixing X pointwise is the identity. Ambos-Spies (to appear) proves that each
nontivial initial segment of the c.e. Turing degrees is an automorphism base. We
obtain a dual result for final segments of R,,. Moreover, we show that the set of
minimal degrees forms an automorphism base. Observe that this set is small in the
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sense that it forms a single orbit under the action of the automorphism group (the
last fact follows from [2]).

Let R,, = Rm — {1}. We prove that there is an incomplete e € R,, such that
[0,e) is an elementary submodel of R, via the inclusion embedding. In particular,
R,, (and hence Ry, since [0,e) U{1} < R,,) has a proper elementary submodel, i.e.
is not a minimal model over the empty set.

We remark that, for the study of enumerable sets, many-one- reducibility is inter-
esting partially because it is closely related to structural properties of an enumerable
set. For instance, a maximal enumerable set must have minimal many-one degree
(see [7] for a proof). In an appendix, we prove a similar fact for this larger class of
r-maximal sets: the many-one degree of an r-maximal set is join-irreducible. (Recall
that a c.e. set A is r-maximal iff w* is join-irreducible in £*(A4), the lattice of c.e.
supersets of A modulo finite differences. )

2 Automorphism bases

We first introduce some auxiliary notions. An ideal of an upper semilattice is a
nonempty subset which is closed downward and under supremum. If I is an ideal in
Rum, we will say that b is a strong minimal cover (s.m.c.) of Iif I =[o,b). In the
special case that I = [o, ], we also say that b is a s.m.c. of ¢. We state a Lemma
which is a special case of Theorem 3.1 in Ershov and Lavrov [3] (where a completely
different notation is used). Inspection of their proof shows that the strong minimal
cover is obtained in an effective way.

LemMMma 2.1 ([3])
Suppose that I C R,, is a proper ¥-ideal and @ < 1. Then one can effectively in
indices for I and a obtain a strong minimal cover b of I such that b £ a.

THEOREM 2.2
For each a < 1, the interval [a, 1] is an automorphism base for R,,.

Proof. Recall that, if a,b € R,,, b is called a strong minimal cover of a if [0,b) =
[0,a]. We consider the following map from R, to a set of arithmetical objects con-
structed from [a, 1]: let

H(z) = (xVa,G(z)),

where G(z) = {sVa:s£a & Ju < z,a[s s.m.c. of u]}. We will prove that H
is 1-1. Since H is definable (in the appropriate sense) with parameter a, this suffices:
suppose that the automorphism ® fixes [a, 1] pointwise. Then H(®(x)) = &(H (x)) =
H(x) for each « (where, for any pair (z, W) of a degree and a set of degrees, we define
O(z,W) = (®(z),®(W)). Hence ® is the identity.

Let R(u,v) = {z : z < u,v}. To prove that H is 1-1, we first show that G(x) =
G(y) implies R(x,a) = R(y,a). Suppose that the second equality fails. Then we can
choose, say, a u € R(x,a) — R(y,a). For z < a, let

F(z)={sVa:s£a& ssm.c.of z}

(so that G(2) = U, cp(e,qa) F'(2))- We claim that for each v € R(y, a), F(u)NF(v) =
0, which clearly implies that G(z) # G(y). Notice that v % u. Let s,t £ a be strong
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minimal covers of u, v, respectively. Then t # s: clearly t # s. But if £ > s, then
v > s > u. Now suppose that also s Va =tV a. By distributivity, t = to V t1, where
to <sand t; <a. Sincet # s, tyg < 8,80 tg < v < a. Hence t < a, contrary to our
assumption on f.

Now suppose that H(x) = H(y). Since * < yV a, € = x9 V &1 where xy <
y & x; < a. But then x; € R(z,a) = R(y,a), so ¢ < y. Similarly, y < x. [ |

Note that the same proof works to show the analogous result for D,,.

In the rest of the paper we will use the terminology and techniques of Denisov [2]
(see also Odifreddi [8]), which we review first. A main concept is the notion of an
L-semilattice, which is a type of distributive upper semilattice with 0,1 that comes
with an enumeration, so that certain effectivity conditions are satisfied. For instance,
one requires that the supremum is given by a computable binary function. Lachlan
[4] proved that up to isomorphism the L-semilattices are the initial intervals of R,.
By his proof, each initial interval [o, 2] of R, can be turned into an (enumerated) L-
semilattice in a canonical way.

We also need the following tool for the characterization of R, from Denisov [2], a
saturation property of R,,. Recall that R, =R, — {1}.

THEOREM 2.3 (Denisov [2])

For enumerated L-semilattices Uy, U and effective embeddings g : Uy — R, h : Uy —
U as initial intervals, 1 & rg(g), there is an effective embedding as an initial interval
f:Uw— R,, such that g = f o h.

REMARK 2.4
1. The proof in [2] shows that an index for f is obtained in an effective way. However,
the procedure only gives a useful output if the hypotheses, for instance 1 ¢ rg(g),
are satisfied.

2. Denisov notices that if &,y denote the largest elements of the ranges of g and f,
respectively, (so < y) and z is given such that z £ x, one can achieve that
zLy.

3. As an application of the Theorem, if a,b < 1 and f : [0,a] — [0, b] is effective
(relative to the canonical enumerations of the L-semilattices mentioned above),
then, using the forth- and back method, f can be extended to an automorphism
of Rp,. Thus, for instance all the minimal degrees are automorphic.

THEOREM 2.5
The set of minimal degrees forms an automorphism base for R,,.

Proof. We begin with a lemma:

LEMMA 2.6
Suppose that the L-semilattices [0, e] and R, are effectively isomorphic. Then the
following property holds for e:

v(y) =Vqly £ ¢ = Im minimal (m <y & m £ q)]. (2.1)

Proof. Suppose e £ q. Since [0, €] and R, are effectively isomorphic, I = [0, e]NJo, g]
is a proper X9-ideal of [0, €]. There is a minimal degree m < e which is not in I: let
a < e be an upper bound of I (which exists e.g. by Lemma 2.2 in [5]). Apply Lemma
2.1 to [0, €] in place of R,,, with the ideal o and a in order to obtain m £ a as a
s.m.c. of o. [ |
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We now define a map H as in the proof of Theorem 2.2: let

H(x) = {lo,y]N M :(y) & y >z},
where M C R,, denotes the set of minimal degrees. Since H is definable, it is sufficient
to prove that H is 1-1. Suppose that z £ @, but H(z) = H(x). Apply Theorem 2.3
with Up = [0,2],U = R,, (and the canonical embeddings). By the second remark
following the Theorem, we can obtain f such that y = f(1y) is not above z. By the
previous Lemma, v(y) holds. Since H(z) = H(x), there must be u > z satisfying
~(u) so that [o,y]N M = [o,u] N M. This contradicts u £ y. | |

REMARK 2.7
The following related results will appear in [6].

1. Actually, each (-definable subset D € {o0,1} of R,, is an automorphism base.
Thus, for instance, for each n > 2 the set of degrees a such that [0, a] is a chain
of length n is an automorphism base.

2. For D,,,, we have proved that the minimal degrees do not form an automorphism
base. It follows that the group Aut(D,,) is not simple.

3 Elementary substructures

We show the existence (above any given incomplete a) of an incomplete e € R,
such that [0, e) is an elementary submodel of R, via inclusion. We make use of the
elementary chain principle from model theory. We write A <; B if A is a submodel
of B and the inclusion map and its inverse preserve the truth of Xj-properties of
elements of A.

LEMMA 3.1 (Chang, Keisler [1])
If Ap <x A1 <k ... is a ¥-elementary chain and A, = |J,.,, Ai, then A; < A, for
each 7. Moreover, if A; <, B for each i, then A, <; B. [ |

THEOREM 3.2

For each @ < 1 there is an e < 1 such that @ < e and [o, €) is an elementary submodel
of R...

COROLLARY 3.3
R, is not a minimal model.

Proof. Clearly, [0,e) U1 is a proper elementary submodel of R,,. [ |
Proof of the Theorem. For each x, one can effectively obtain y such that

lzx<i=>z<y<1,and
2. Jo,y] = R, via an effective isomorphism which acts as the identity on [0, z].

To see this, consider the (effective) inclusion embedding h of the L-semilattice Uy =
[0, z] into the L-semilattice U = R,,, U{t}, where t is a new largest element. Applying
Theorem 2.3 with g : Uy — R, being the inclusion map, obtain an effective f : U —
R, which is the identity on [0, z], and let y as the image of 1 € U.

Let us write y = Fy(x). Fp is an effective map on indices for c.e. m-degrees. Thus
Fy(x) actually depends on the index via which « is given. Iterating Fy we obtain, by
the effectivity of Denisov’s construction, for any & < 1 a u.c.e. chain
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T < Fo(w) < F()(F()(w)) < ....

In a sense we will obtain e by iterating Fy on @ w* many times. The iteration up to
wk gives a degree FJ,(a) such that [0, F(a)) < R;,. The construction bears some
resemblance to the reflection theorems from set theory.

Let Fi(x) be a degree y such that [o,y) = Ui[o,FO(l) (z)). Such an y can be
obtained effectively in @ by applying Lemma 2.1 with @ = o, since we effectively
obtain an index for the X9- ideal |J;[o, Fo(l) (z)). Moreover, x < Fi(x).

In general, suppose that the function Fj(x) has been defined for all x. Fj is
effective on indices and Fj(x) > « for x < 1. Now let Fj 1 (x) be a degree y such
that [o,y) = [U,]o, F,EZ) (x)). Then Fjy; is a function on indices with the same two
properties.

CLaM 3.4
Forx <1,k >0,[0,Fy(x)) < R,,.

Proof of the Claim. By induction on k. For k = 0, we assert that [o, Fo(x)) is
embedded as an ordering into R, which is correct. To prove the statement for k+1,
let z = Fppa(2), 2 = F,gj)(w)(j > 0). By the inductive hypothesis, [0, 2;) <r R,
so the elementary chain principle implies that

[0,2) <k R, and Vj [o, z;) < [0, 2). (3.1)

Suppose bg,...,b,._1 < z, and consider the formula

o(b) = Ty (b, ),

where 1) is a boolean combination of ¥;- formulas and y is a tuple of variables of a
certain length. We have to show that

[0,2) F ¢(B) & Ry, [ »(b).
Choose an i such that bg,...,b,_1 < z;.

1. First suppose that [0,2) | ¢(b). Choose j > i and a tuple ¢ of elements in
[0,2;) such that [0,2) | ¥(b,é). By (3.1), [0,2;) = ¢(b,&). Then, because
[Oazj) <k R;na R;n ': 1/J(b,a

2. Now suppose that R, | ¢(b). Pick a witness ¢ such that R,, = (b, ¢). We will
find a similar tuple witnesses € below Fy(z;) < zi+1. Apply Theorem 2.3 with
[0, Fy(z;)] in place of R,,, where Uy = [0, zi], g : Up — [0, Fy(2;)] is the inclusion
map, U = [o,d], where d = sup(z;,€), and h : Uy — U is the inclusion map. The
map f : U — [0, Fo(2;)] obtained in this way is an effective isomorphism between
[0,d] and [0, f(d)], which, by remark 3, can be extended to an automorphism of
R acting as the identity on [0, 2;]. Let € = f(¢). It follows that R, = ¢(b, €),
so we have found a tuple of witnesses € as desired.

Now, by the inductive hypothesis [0, z;11) <i R, therefore [0, 2;11) | ¥(b, €).
By (3.1), [0, 2) |= (b, €) and therefore [0, 2) |= ©(b).
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Finally, let e > a be such that [0, e) = [J, [0, Fr(a)). Since [0, Fi(a)) < R;, for
all [ > k, we conclude that [0,e) < R, by the elementary chain principle. [ |

Notice that in fact [0,e) =2 R,,, because [0, e) satisfies the characterization of R,,
given in [2]. However, the isomorphism cannot be Aj (let alone effective) when viewed
as an embbeding into R,,, because by construction of e we have a u.c.e. chain (Fy(a))
such that ¢ < e & 3k x < Fi(a). Such a chain converging to 1 does not exist,
because {i : W; =, K} is ¥3-complete. The new presentation of R, = [0, e) might
be useful because it allows for a theory of effective automorphisms.

Theorem 3.2 can be obtained for D,, by simply taking a closure of [0, a] under
Skolem functions w many times. This uses the fact that each initial interval of D, is
countable.

4 Appendix

THEOREM 4.1
Suppose that the c.e. set A is r-maximal and let a be its many-one degree. Then a
is join-irreducible.

Proof. Recall the Lachlan map ¥ : £(A) — [o0,a] introduced in [4]: ¥(X) is well-
defined as the many-one degree of f~1(A), where f is any computable function with
range X . Lachlan proves that ¥ is an onto upper semilattice homomorphism. Clearly
U(A) =0,¥(w) = a and ¥ does not depend on finite differences.

Since w* is join irreducible in £*(A), it is sufficient to prove that ¥(B) < a for
any coinfinite B € £(A). Suppose otherwise. Choose a computable function f with
range B. Then A <,, f~1(A) via a computable function h. Let F, H denote the maps
X = f74X) and Y — h™1(Y), respectively (X,Y C w). Thus A = H(F(A)), and
the maps restricted to c.e. sets F : [A, B] = [F(A),w] and H : [F(A),w] — [A,w]
are distributive lattice embeddings preserving the least and greatest elements. But
A is a major subset of B, so, by the Owings Splitting Theorem (see [10]) [A4, B] has
nontrivial complemented elements, while [A,w] does not, a contradiction. [ |

Clearly, a it is not minimal unless A is maximal. It would be interesting to see to
what extent [0, a] determines £(A).

References

[1] C. C. Chang and H. J. Keisler. Model Theory. North—Holland Publishing Co., Amsterdam,
1973.

[2] S. D. Denisov. The structure of the uppersemilattice of recursively enumerable m-degrees and
related questions, I. Algebra and Logic, 17:418-443, 1972.

[3] Y. Ershov and L. Lavrov. The upper semilattice L(vy). Alg. Log. (transl), 12:93-106, 1973.

[4] A. H. Lachlan. Initial segments of many-one degrees. Canad. J. Math., 22:75-85, 1970.

[5] A. Nies. The last question on recursively enumerable many-one degrees. Algebra i Logika,
33(5):550-563, 1995.

[6] A. Nies. Model theoretic properties of degree structures. Proc. of the 11th Conference on Logic,
Methodology and Philosophy of Science, to appear.

[7] P. Odifreddi. Classical Recursion Theory (Volume I). North-Holland Publishing Co., Amster-
dam. 1989.

[8] P. Odifreddi. Classical Recursion Theory (Volume II). North-Holland Publishing Co., Amster-
dam. 1999.



Model theory of the computably enumerable many-one degrees 7

[9] E. L. Post. Recursively enumerable sets of positive integers and their decision problems. Bull.
Amer. Math. Soc., 50:284-316, 1944.

[10] R. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic, Omega
Series, Heidelberg, 1987.

Received 10. March 1999



