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Abstract

We prove that each interval of the lattice E of c.e. sets under inclusion is either a boolean algebra or
has an undecidable theory. This solves an open problem of Maass and Stob [11]. We develop a method
to prove undecidability by interpreting ideal lattices, which can also be applied to degree structures from
complexity theory. We also answer a question left open in [7] by giving an example of a non-definable
subclass of E∗ which has an arithmetical index set and is invariant under automorphisms.

1. Introduction

Intervals play an important role in the study of the lattice E of computably
enumerable (c.e.) sets under inclusion. Several interesting properties of a c.e. set
can be given alternative definitions in terms of the structure of L(A), the lattice of
c.e. supersets of A. For instance, hyperhypersimplicity of a coinfinite c.e. set A is
equivalent toL(A) being a boolean algebra, and A is r-maximal if and only ifL(A)
has no non-trivial complemented elements.

A further type of interval is obtained by considering the major subset relation:
for A,B ∈ E,

A ⊂m B ⇔ A ⊂∞ B ∧ (∀W c.e.)[B ∪W = N⇒ A ∪W =∗ N].

Maass and Stob [11] proved that for each pair A,B such that A ⊂m B, up to
isomorphism one obtains the same lattice [A,B]E. This structure is denoted by M.
For any lattice X of sets considered here, X∗ will denote the quotient structure
of X modulo finite differences. From the Maass–Stob result, it follows that M∗
is a distributive lattice with strong homogeneity properties: all non-trivial closed
intervals are isomorphic to the whole structure, and all non-trivial complemented
elements are automorphic within M∗. However, M∗ is not a boolean algebra.

A natural question to ask is which intervals [A,B]E have an undecidable theory.
For instance, Maass and Stob pose this question for M, as a part of a programme
to analyse the structure ofM. Recall that boolean algebras have a decidable theory
by a result due to Ershov (see [2]). It is known that Th(E) is undecidable [8] and
has, in fact, the same computational complexity as true first-order arithmetic [7].
However, so far intervals of E isomorphic to the whole structure have been the only
case where such an undecidability result was known. Our principal result is that
each interval which is not a boolean algebra has, in fact, an undecidable theory. In
particular, this proves that Th(M) is undecidable.
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The possible structure of intervals of E is still not very well understood. However,
Lachlan [10] shows that the boolean algebras which can be represented asL(A)∗, A
hyperhypersimple, are precisely the Σ0

3 boolean algebras. The class of r-maximal sets
is much more elusive. However, recently P. Cholak and the author [3] have shown
that infinitely many non-isomorphic lattices L∗(A), A r-maximal, exist.

We now explain our methods. Many proofs that a problem is undecidable
are indirect: one gives a reduction of a problem which is already known to be
undecidable to the problem in question. A theory is a consistent set of first-order
sentences in some language which is closed under logical inference. For theories of
structures or of classes of structures, a particular type of reduction based on the
notion of interpretations of structures is used. It makes use of the following stronger
notion of undecidability: call a theory T in a first-order language L hereditarily
undecidable (h.u.) if each set X ⊆ T which contains the valid L-sentences (that is,
the sentences which can be inferred from ?) is undecidable. The transfer principle
states that if A is an L1-structure, B is an L2-structure, and A can be interpreted in
B with parameters, then

Th(A) h.u. ⇒ Th(B) h.u. (1)

See [9, Chapter 5] for a definition of the concept of interpretations of structures.
An interpretation with parameters of A in B is an interpretation of A in a structure
obtained from B by adding finitely many constants. The transfer principle was
obtained by Burris and McKenzie (see [1]) and holds, in fact, for the theories of
classes of structures as well.

Interpretability is a transitive relation. Therefore, using the transfer principle,
one can proceed to show that more and more theories are h.u. For instance, to
prove that Th(E) is h.u., one begins with the initial class C of finite structures for
an appropriate finite relational signature. Hereditary undecidability of Th(C) can
be shown directly by viewing such structures as terminating computations (Lavrov;
see, for example, [13]). Now C can be interpreted in the class of finite symmetric
graphs, which in turn can be interpreted in E (see [7]). In the original proof of
undecidability of Th(E) due to Herrmann [8], a further intermediate class was used.
For k ≥ 1, let Ek = (Σ0

k,⊆). Relativization of any of the proofs mentioned to ?(k−1)

gives hereditary undecidability of Th(Ek) for any k ≥ 1, a fact which will be used
to obtain our result: we develop a method to interpret Ek with parameters, which
is general enough to work in other similar settings where no direct interpretation
of a sufficiently rich class of finite structures is apparent. Indeed, in [4], R. Downey
and the author use the method to show the undecidability of the theory of various
low-level complexity degree structures, for instance of the polynomial time T-degrees
of exponential time computable sets.

Our method works by using interpretations of Ek in the lattice of c.e. ideals of
c.e. boolean algebras as an intermediate step. Thus the results are of interest also
in the theory of effective boolean algebras (see, for instance, [12]). Recall that a
boolean algebra is c.e. if B = D/I for a c.e. ideal I of the computable dense boolean
algebra D. We call a c.e. boolean algebra B effectively dense if for each element x of
B, we can effectively find an element y ≤ x such that x 6= 0 implies 0 < y < x. Thus,
for example, the recursive dense boolean algebra is effectively dense, but in fact
many other c.e. presentations of the countable dense boolean algebra are as well.
For instance, consider the Lindenbaum algebra of sentences over Peano arithmetic.
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This c.e. boolean algebra is effectively dense by Rosser’s theorem, a refinement of
Gödel’s second incompleteness theorem (see, for example, [6]).

Let I(B) be the lattice of c.e. ideals of an effectively dense boolean algebra B;
if we work with relativizations to ?(k−1), I(B) denotes the lattice of Σ0

k ideals of B.
We prove that

Th(I(B)) is hereditarily undecidable (2)

by giving an interpretation of E3 in I(B). Now, in several situations where no direct
coding of a sufficiently complex class of finite structures in A is apparent, there is
a natural way to interpret I(B) (in fact, the two-sorted structure (B,I(B)) for an
appropriate Σ0

3 or Σ0
2 boolean algebra which is effectively dense relative to ?′′ (?′,

respectively). Then relativizations of the fact (2) are used to obtain undecidability
of Th(A).

We shall formulate our results for intervals of E∗; the case of E follows as
an easy corollary. As an example of an application of our method, consider the
case of intervals [D∗, A∗] of E∗, and assume that D ⊂m A (we shall see that this is
no essential restriction). The Σ0

3 boolean algebra B of complemented elements in
[D∗, A∗] is ?′′-effectively dense by the Owings Splitting Theorem [15]. Moreover, we
show that, for each Σ0

3 ideal I of B, there exists a c.e. set CI such that D ⊆ CI ⊆ A
and

I = {X∗ ∈ B : X ∩ CI =∗ D}. (3)

Conversely, each ideal of that form must be a Σ0
3 ideal. Now, for the desired

interpretation, we represent ideals I ambiguously by elements c = C∗I . Inclusion of
Σ0

3 ideals can be defined within [D∗, A∗] using the formula

ϕ≤(c1, c2) ≡ ∀x(x complemented in [d, a]⇒ (x ∧ c1 = d⇒ x ∧ c2 = d)), (4)

where d = D∗, etc. Thus I(B) can be interpreted in [D∗, A∗], and Th([D∗, A∗])
is hereditarily undecidable. In the case of low-complexity degree structures, an
?′-effectively dense Σ0

2 boolean algebra B is found such that (B,I(B)) can be
interpreted in a natural way.

In an appendix to the paper, we continue the study of non-definability in E∗
which was begun in [7]. There, an example was given of a binary relation on
E∗ which satisfies the conditions (necessary for definability without parameters) of
being arithmetical and invariant under automorphisms, but the relation is, in fact,
not definable. Here we obtain an example of such a relation which is, in fact, a
subclass of E∗. Recall that a c.e. set A is quasimaximal if L∗(A) is a finite boolean
algebra. In this case, let

n(A) = number of atoms in L∗(A). (5)

In [7] it was shown that quasimaximality is first-order definable in E∗. However, we
prove that the class {A∗ : n(A) ≥ 2 ∧ n(A) is a power of 2} is not definable.

2. Computably enumerable boolean algebras

In this section we obtain the necessary results about c.e. boolean algebras. First
we give detailed definitions of the concepts used in the Introduction. We specify the
notion of c.e. boolean algebra as follows. A c.e. boolean algebra is represented by a
model

(N,�,∨,∧)
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such that � is a c.e. relation which is a preordering, ∨,∧ are total computable binary
functions, and the quotient structure

B = (N,�,∨,∧)/ ≡

is a boolean algebra (where n ≡ m⇔ n � m ∧ m � n).
We require that 0 is an index for the least element of B, and 1 is an index for

the greatest element. Then 0 6≡ 1 by the definition of boolean algebras. Note that,
in an effective way, for each bn we can find an index for a complement of bn/ ≡ in
B, denoted by Cpl(bn). At stage s of the algorithm, see if there is b ≤ s such that
bn ∧ b ≡ 0 and bn ∨ b ≡ 1, and these equivalences can be verified in ≤ s steps. If so,
return b as an output. We write b− c for b ∧Cpl(c), and b ≺ c for b � c ∧ c 6� b. In
general, ‘b ≺ c’ is not decidable.

A c.e. boolean algebra B is effectively dense if there is a computable function F
such that

x 6≡ 0 ⇒ 0 ≺ F(x) ≺ x. (6)

We can assume that ∀x(F(x) � x): else replace F by the computable function
F(x) ∧ x.

In fact, we apply relativizations of our results to some oracle set X, usually
X = ?′′ or X = ?′ (for the polynomial time degrees). In such relativizations, all
effectivity notions have to be replaced by the corresponding notions relative to X;
for instance ‘c.e.’ becomes ‘c.e. in X’, and the functions ∨,∧ are computable in X.
Thus, in the relativized case, our notion is a little more general than requiring that
B = D/I for an X-c.e. ideal I of the computable dense boolean algebra D (where
∨,∧ would still be computable).

We shall identify subsets of B with the corresponding index sets, which we
always require to be closed under the equivalence relation ≡. Thus an ideal of B is
called c.e. if the corresponding set of indices is c.e. The c.e. ideals form a sublattice
I(B) of the distributive lattice of all ideals, because, for c.e. ideals I, J , the infimum
I ∩ J and the supremum I ∨ J = {b ∨ c : b ∈ I ∧ c ∈ J}≡ are c.e. again. In what
follows, we shall actually give interpretations in the two-sorted structure (B,I(B)).
But this structure can be interpreted in the lattice I(B) in a natural way: represent
b ∈ B by the principal ideal b̂ = [0, b]B. Since the principal ideals are just the
complemented elements in I(B), the set of ideals in I(B) representing elements
of B is definable in I(B) without parameters. Moreover, the membership relation
‘b ∈ I ’ can be translated into ‘b̂ ⊆ I ’.

Theorem 2.1. Suppose that B is a c.e. boolean algebra which is effectively dense.
Then I(B) has a hereditarily undecidable theory.

Remarks. (1) The proof of the theorem will relativize to any oracle set X. Thus
if B is X-c.e. and (6) holds via an X-computable function F , then I(B) has an h.u.
theory as well.

(2) The hypothesis that B be effectively dense is needed: it is possible to construct
a c.e. dense boolean algebra such that each c.e. ideal is principal, thus I(B) ' B has
a decidable theory. To construct such a B, one adapts the construction of a maximal
c.e. set due to Friedberg (see [15]), replacing numbers by strings in 2<ω and c.e. sets
by c.e. subsets of 2<ω which are closed under taking extensions of strings.
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The main component of the proof is a uniform definability lemma for the Σ0
3

ideals of B which contain a certain ‘separating’ c.e. ideal I0, where |B/I0| = ∞. This
proof uses some ideas from [7] in the more general context of c.e. boolean algebras.
We shall find a formula with parameters ϕ(x;L, I0) such that, as L varies over c.e.
ideals, {x : (B,I(B)) |= ϕ(x;L, I0)} will range over the Σ0

3 ideals of B containing
I0. Then, intuitively speaking because Σ0

3 is far beyond the level of complexity of
the c.e. structure B itself, it will be possible to give an interpretation of E3 in I(B),
using I0 as a parameter.

We say that a c.e. ideal I0 of B is separating if the following holds in B:

∀x∃y � x y ∈ I0 ∧ (x 6∈ I0 ⇒ y 6≡ 0) (7)

and, moreover, y can be determined effectively in x. The intuition is that a separating
ideal non-trivially meets all the principal ideals 6= {0}, in an effective way.

Lemma 2.2. B possesses a separating c.e. ideal I0 such that the boolean algebra
B/I0 is infinite.

Proof. We write bn instead of n if we think of the number n as determining an
element of the boolean algebra under consideration, and call bn an index for the
element bn/ ≡. First we consider the easier problem of how to build a separating
ideal I0 such that B/I0 has at least two elements. Recall that F is the function
from (6). Let y0 = F(b0) (so y0 6≡ 1). If y0, . . . , yn have already been defined, then let
yn+1 = yn ∨F(bn+1− yn). Let I0 be the ideal generated by {yi : i ∈ N}. Then I0 is c.e.
and separating, because bn+1 − yn 6≡ 0 if bn+1 6∈ I0. Also I0 6= B: otherwise, suppose
that n is the least number such that yn+1 ≡ 1. Then F(bn+1 − yn) ≥ Cpl(yn), which is
impossible by our hypothesis on F and since Cpl(yn) 6≡ 0.

We now refine the construction in order to make B/I0 infinite. To this end, we
also define elements z0 < z1 < . . . of B such that (zn/I0)n∈N is a strictly ascending
chain in B/I0. As above, let y0 = F(b0), and let z0 = 0. Now, if y0, . . . , yn and
z0 < . . . < zn have already been defined, then consider the ‘partition’

p0 = z1 − z0, . . . , pn−1 = zn − zn−1, pn = Cpl(zn).

Our intention is never to put so much into I0 that one of the components of the
partition goes completely into I0. Let cn+1 = bn+1 − yn. Note that if cn+1 6≡ 0, then
the same must hold for cn+1 ∧ pi for some i. Thus if we let

yn+1 = yn ∨
∨
i≤n
F(cn+1 ∧ pi),

we make sure that (7) is satisfied for x = bn+1.

To extend the ascending sequence, also let

zn+1 = F(Cpl(yn+1)) ∨ zn. (8)

Again, let I0 be the ideal generated by {yi : i ∈ N}. We verify that I0 has the required
properties. Since the sequence (yn) is effective, I0 is c.e. Moreover, I0 is separating,
because if bn+1 6∈ I0, then cn+1 6≡ 0, and therefore yn+1 6≡ 0. Furthermore, yn+1 was
determined effectively from bn+1. If n is least such that yn+1 ≡ 1, then∨

i≤n
(F(bn+1) ∧ Cpl(yn) ∧ pi) ≥ Cpl(yn),
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contrary to the fact that F(bn+1)∧Cpl(yn)∧ pi < bn+1 ∧Cpl(yn)∧ pi for some i. Thus
yn 6≡ 1 for each n.

Fix n. We now show that d = zn+1 − zn 6∈ I0. Since yn+1 6≡ 1, d 6≡ 0, so d 6� y0.
Suppose that k is least such that d � yk+1. Then k > n, because d � Cpl(yn+1), but
yk+1 � yn+1 for k ≤ n. We now argue as above, but restricted to the interval [0, d].
By the minimality of k, d ∧ yk < d, so

0 < d− yk �
∨
i≤k
F(ck+1 ∧ pi).

Since the (pi)i≤k form a partition and d = pn, in the supremum above only the term
F(ck+1 ∧ pn) matters. Thus (recall that ck+1 = bk+1 − yk)

d− yk � F(ck+1 ∧ d) = F((d− yk) ∧ bk+1).

Since d− yk 6≡ 0, this contradicts the properties of F .

Lemma 2.3. Suppose that I0 is a c.e. separating ideal. For each Σ0
3 ideal J, I0 ⊆ J,

there is a c.e. ideal L ⊆ I0 such that

x ∈ J ⇔ ∃r ∈ I0 ∀s ∈ I0 (s ∧ r ≡ 0⇒ x ∧ s ∈ L). (9)

Proof. Choose a computable function x 7→ y(x) such that given x, y(x) is a
witness for (7). We first define a computable sequence (sn) which generates I0 as an
ideal and has further useful properties. To start with, since I0 is c.e., there is some
computable sequence (yi) generating I0. Let B≤e be a finite set of indices for the
boolean algebra generated by {0, . . . , e} (B≤e can be obtained effectively from e).
Moreover, let s0 = y0 and

sn+1 = (yn+1 − ŝn) ∨
∨
{y(z − ŝn) : z ∈ B≤n}, (10)

where ŝn = s0 ∨ . . . ∨ sn. Clearly si ∧ sj ≡ 0 for i 6= j.
We make use of a lemma from [7] (Lemma 4 in the appendix): if P is a Σ0

3 set,
then there is a uniformly c.e. sequence (Zi), Zi ⊆ {0, . . . , i−1}, such that e ∈ P ⇒ a.e.
i [e ∈ Zi] and ∃∞i [Zi ⊆ P ]. Applying this to P = J (viewed as an index set), we obtain

e ∈ J ⇒ a.e. i [e ∈ Zi],

∃∞i [Zi ⊆ J].

Let L be the ideal generated by

{e ∧ si : e ∈ Zi}.

Clearly L ⊆ I0 and L is c.e. We now verify (9).
‘⇒’ Suppose that x ∈ J . Choose ĩ such that ∀i > ĩ (x ∈ Zi), and let r = s0∨. . .∨s̃i.

If s ∈ I0 and s ∧ r = 0, then, for some j > ĩ, s � s̃i+1 ∨ . . . ∨ sj . But x ∧ sk ∈ L for all
k > ĩ. Therefore x ∧ s ∈ L.

‘⇐’ Now suppose that x 6∈ J . Given r ∈ I0, choose k such that r � ŝk . Choose
i > k such that Zi ⊆ J and also i > x. We show that the witness si is a counterexample
to (9), that is, x ∧ si 6∈ L.

Let v = x−
∨
e∈Zi e− ŝi−1. Then v 6∈ I0: else, since ŝi−1 ∈ I0 ⊆ J and

∨
e∈Zi e ∈ J ,

we could infer that x ∈ J . Therefore y(v) 6≡ 0. Also, z = x −
∨
e∈Zi e ∈ B≤i−1, so

v = z − ŝi−1 occurs in the disjunction (10) where si is defined. Hence y(v) � si ∧ v,
and therefore si ∧ x −

∨
e∈Zi e 6≡ 0. But this implies that si is a counterexample: if
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x ∧ si ∈ L, then by the fact that the (sk) are pairwise disjoint, x ∧ si �
∨
e∈Zi e ∧ si.

This means that si ∧ (x−
∨
e∈Zi e) ≡ 0, a contradiction.

Lemma 2.4. E3 = (Σ0
3,⊆) can be interpreted in the two-sorted structure (B,I(B)).

Proof. By Lemma 2.2, fix a separating ideal I0 of B such that B/I0 is infinite.
By the previous lemma, the lattice L of Σ0

3 ideals of B which contain I0 can be
interpreted in (B,I(B)), using I0 as a parameter. So it is sufficient to show that
(Σ0

3,⊆) ' [C,D]L for some C,D ∈ L. We distinguish two cases.
Case A: B/I0 has infinitely many atoms. Let C = I0 and let D be the ideal

generated by I0 and the preimages in B of atoms of B/I0. Notice that ‘x/I0 is an
atom of B/I0’ is a Π0

2 property of indices, so there is a function f ≤T ?′′ such that
(f(n)/I0)n∈N is an enumeration of the atoms of B/I0 without repetition. This implies
that D is a Σ0

3 ideal and, moreover,

J 7→ {n ∈ N : f(n) ∈ J}

is an isomorphism between [C,D]L and (Σ0
3,⊆).

Case B : B/I0 has only finitely many atoms. If B/I0 has only finitely many atoms,
let b be a preimage in B of their supremum. Replacing I0 by the separating ideal
I0 ∨ [0, b] if necessary, we can, in fact, assume that B/I0 is dense and hence free.
Note that B/I0 is c.e. The standard step-by-step construction of a free generating
sequence for a dense countable boolean algebra produces in the case of B/I0 an
?′-sequence (ai) such that (ai/I0) is a free generating sequence for B/I0. Now let F
be the boolean algebra of finite or cofinite subsets of N, and consider the natural
map g : B/I0 7→ F defined by g(ai/I0) = {i}. Clearly, g is computable in ?′ if
viewed as a map from indices for B into an effective representation forF. Let C be
the ideal {x : g(x) = 0}, and let D be the ideal generated by the ai and I0. Then C,D
are Σ0

3 ideals of B containing I0, and the Σ0
3 ideals X of B such that C ⊆ X ⊆ D

correspond to the Σ0
3 ideals of F which are contained in the ideal generated by the

atoms. So again (Σ0
3,⊆) ' [C,D]L. Now, since (B,I(B)) can be interpreted in I(B),

this concludes the proof of Theorem 2.1.

3. Intervals of E∗ and E

Theorem 3.1. Suppose that D ⊆ A and [D∗, A∗]E∗ is not a boolean algebra. Then
the elementary theory of [D∗, A∗] is undecidable.

Proof. We give an interpretation with parameters of the lattice of Σ0
3 ideals of

a ?′′-effectively dense Σ0
3 boolean algebra in [D∗, A∗]E∗ . Then, by the relativization

to ?′′ of Theorem 2.1, the theory of [D∗, A∗]E∗ is undecidable.
The following argument, due to Lachlan, shows that we can, in fact, assume that

D ⊂m A. First, we can suppose that A is non-computable, else just replace A by
some non-computable set Ã, with D ⊆ Ã ⊆ A, and use Ã∗ as an extra parameter
in the interpretation. Now choose a small major subset E of A (see [15, 7]). By the
properties of small major subsets, D ∪ E ⊂∞ A. So replace D by D̃ = D ∪ E. The
advantage of having D ⊂m A is that for each computable R ⊆ A, R ⊆∗ D. (This is
actually equivalent to D ⊂m A if A is non-computable and D ⊆∞ A.) The desired
boolean algebra is

B = {(A0 ∪ D)∗ : A0 @ A},



690 andré nies

where X @ Y means that X ⊆ Y ∧ Y − X is c.e., in which case we call X a split
of Y . By the reduction principle, B equals the set of complemented elements in
[D∗, A∗]. We use a representation of B as follows. The set S = {e : We @ A} is Σ0

3.
Choose a function f ≤T ?′′ such that range(f) = S , and let k represent the element
(Wf(k) ∪ D)∗. Clearly, the induced ordering on indices

e � i⇔Wf(e) ⊆∗ Wf(i) ∪ D

is Σ0
3 and ?′′-computable functions ∨,∧ can be defined in the appropriate way. Also

B, with this representation, is ?′′-effectively dense, by the Owings Splitting Theorem
(see [15]). In fact, the Owings Splitting Theorem is effective, but it takes ?′′ to
determine (Wf(k) ∪ D)∗ from k.

We now prove a lemma which allows us to give an interpretation of I(B) in
[D∗, A∗].

Lemma 3.2. If D ⊆m A and I is a Σ0
3 ideal of B, then there is C, with D ⊆∗ C ⊆∗

A, such that

I = {j : Wf(j) ∩ C ⊆∗ D}. (11)

Proof. First we give an effective representation of the filter of complements of
elements of I , using the following uniformization fact.

Fact. If (Wg(i)) is a sequence of splits of A, g ≤T ?′′, then there is a uniformly
c.e. sequence of splits (Ui) of A such that Wg(i)4Ui ⊆∗ D.

To prove this, choose a u.c.e. sequence (Vk) of initial segments of N such that
Wp = Wg(i) ⇔ ∃nV〈i,p,n〉 = N (this is possible since ‘Wp = Wg(i)’ is Σ0

3). The desired
u.c.e. sequence is

Ui = {a : ∃s∃q = 〈i, p, n〉[max
⋃

〈i,p′ ,n′〉<q

V〈i,p′ ,n′〉, s < a ≤ maxVq,s ∧ a ∈Wp,s]}.

Given i, let p = g(i) and let q = 〈p, n〉 be least such that V〈i,p,n〉 = N. Then
Ui =∗ R ∪Wp, where R is the computable set {a : ∃s a ∈ Ui,s ∧ a > maxVq,s}.
Therefore Wp4Ui ⊆∗ R ⊆∗ D. This proves the fact.

Clearly, the indices of c.e. sets which are complements of elements in I ,

S = {i : ∃k ∈ I Wi ∩Wf(k) ⊆∗ D ∧Wi ∪Wf(k) =∗ A},

is Σ0
3, and therefore S is the range of a function g ≤T ?′′. Applying the preceding fact,

we obtain a sequence (Ũi). Let Un =
⋂
i≤n Ũi. Then the u.c.e. sequence (Un ∪ D)∗n∈N

generates the filter of complements of elements in I .
To build C , we meet for each n the following requirement:

Pn : |We ∩Un ∩ D| = ∞ ⇒ |We ∩ C ∩ D| ≥ k (k = 〈e, n〉).

The construction of C is the following. Let C0 = ?. At a stage s + 1, for each
〈e, k〉 = n < s, act as follows. If Pn is currently unsatisfied, namely |We,s∩Cs∩Ds| < k,
and there is an x ∈ Un,s − Ds such that x ∈ We,s, then enumerate the least such x

into C .
We verify that C satisfies (11). Notice that at most k + 1 elements which are
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permanently in D are enumerated into C for the sake of P〈e,k〉. Therefore C ⊆∗ D∪Um

for each m. Now, if j ∈ I , then choose an m such that Um − (A−Wf(j)) ⊆∗ D, that
is, Um ∩Wf(j) ⊆∗ D. Since C ⊆∗ D ∪Um, C ∩Wf(j) ⊆∗ D.

If j 6∈ I , then (D ∪ (A−Wf(j)))
∗ is not in the filter dual to I , so D ∪ (A−Wf(j))

does not *-include Un for any n. Thus if e = f(j), then the hypothesis of all the
requirements P〈e,k〉 is satisfied. Hence C ∩We ∩ D is infinite.

Clearly (3) holds. So we can now obtain the desired interpretation of I(B) in
[D∗, A∗] as explained in the Introduction; see (4).

Remark. Instead of building a C satisfying (11), we can also apply the Σ0
3

case of the ideal definability lemma in [7] to produce a C ∈ [D,A] such that
I = {k : Wf(k) ⊆∗ C}. This gives an alternative way to interpret I(B) in [D∗, A∗].
However, we prefer to be as self-contained as possible. In fact, the proof given here
is much simpler than the proof in [7] for the Σ0

3 case of the ideal definability lemma,
and Lemma 3.2 could be used to simplify that proof.

Corollary 3.3. Suppose that D ⊆ A and [D,A]E is not a boolean algebra. Then
the elementary theory of [D,A]E is undecidable.

Proof. As before, we can assume that D ⊂m A. But M∗ can be interpreted in
M, since for X,Y ∈ M,

X =∗ Y ⇔ [X ∩ Y ,X ∪ Y ] is a boolean algebra.

So another application of the transfer principle (1) concludes the proof.

Note. In recent work [14], the author has shown that, in fact, Th(N) can be
interpreted in Th(I(B)), for any effectively dense B. Using Lemma 3.2, this gives a
way to interpret Th(N) in Th(M). Using [11], we can now strengthen Theorem 3.1
in a similar way.

4. Appendix

The function n(A) was defined in (5).

Theorem 4.1. Let X ⊆ N be an infinite set of even numbers such that for each
distinct n, m ∈ X, (n + m)/2 is not in X ( for example, let X = {n ≥ 2 : n is a
power of 2}). Then {A∗ : n(A) ∈ X} is not definable in E∗.

Remark. Notice that {A∗ : n(A) ∈ X} is invariant under automorphisms of E∗.
Moreover, if X is arithmetical, then this class has an arithmetical index set.

Proof. Let P = {A : n(A) ∈ X}. Since P is closed under finite differences, by a
result of Lachlan [10], it suffices to prove non-definability of P in E. (However, one
could also perform some notational changes below to give a direct proof for E∗.)
If A is quasimaximal and R is an infinite coinfinite computable set, then A ∩ R is
quasimaximal in E(R) = [?, R]E. Let nR(A) denote n(A ∩ R) (evaluated in E(R)). If
B∗ is an atom above A∗ in L∗(A), then either B ⊆∗ A ∪ R, in which case (B ∩ R)∗

is an atom above (A ∩ R)∗, or B ⊆∗ A ∪ R, in which case (B ∩ R)∗ is an atom above
(A ∩ R)∗. Conversely, each atom above (A ∩ R)∗ gives rise to one above A∗, and
similarly for atoms above (A ∩ R)∗. Thus

n(A) = nR(A) + nR(A).
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As in [7], a special case of a theorem of Feferman and Vaught [5] is used:

if A is a structure and ϕ(X) is a formula in the language of A, then, for each
element 〈a, b〉 of A× A,

A× A |= ϕ(〈a, b〉)⇔
∨

α=1,...,r

(A |= ϕα(a) ∧ A |= ψα(b))

for some formulas ϕα, ψα which depend only on ϕ.

If R is an infinite coinfinite computable set, then E ∼= E × E via the map

X 7→ (X ∩ R,X ∩ R).

Thus, if P is definable in E by a formula ϕ(x), then

E |= ϕ(X)⇔
∨

α=1,...,r

(E(R) |= ϕα(X ∩ R) ∧ E(R) |= ψα(X ∩ R)). (12)

Now, for each C ∈ P , choose some computable set RC such that n(RC) = n(C)/2. By
the pigeonhole principle, there are sets A,B ∈ P , n(A) 6= n(B), so that (12) holds via
the same α, if R is RA (RB , respectively). After applying an appropriate computable
permutation, we can assume that R = RA = RB . Let D = (A ∩ R) ∪ (B ∩ R). Then
E |= ϕ(D), because

E(R) |= ϕα(D ∩ R) ∧ E(R) |= ψα(D ∩ R).

But n(D) = (n(A) + n(B))/2 6∈ X, giving a contradiction.
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