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Abstract

We give a first-order coding without parameters of a copy of (N,+, x)
in the computably enumerable weak truth table degrees. As a tool,we
develop a theory of parameter definable subsets.

Given a degree structure from computability theory, once the undecidability
of its theory i1s known, an important further problem is the question of the
actual complexity of the theory. If the structure is arithmetical, then its theory
can be interpreted in true arithmetic, i.e. Th(N,+, x). Thus an upper bound
is 0“) the complexity of Th(N, 4+, x). Here an interpretation of theories is a
many—one reduction based on a computable map defined on sentences in some
natural way. An example of an arithmetical structure is D7 (< ('), the Turing—
degrees of AJ-sets. Shore [16] proved that true arithmetic can be interpreted
in Th(Dz(< @)). A stronger result is interpretability without parameters of
a copy of (N,+, x) in the structure (interpretability of structures is defined
in [8], Ch. 5). The main purpose of this paper is to prove such a result for
the structure Ry of computably enumerable weak truth table degrees. So
far the undecidability of Th(Ry::) is known [3]. This result brings a program
closer to 1ts completion which has been carried out by various researchers over
the past years: to determine the complexity of the theory for structures from
computability theory. We discuss some results. For the c.e. many-one and
Turing degrees, it has been proved that a copy of (N, +, x) can be interpreted
without parameters ([13] and [14], respectively). For the c.e. truth—table degrees
and the lattice £ of c.e. sets under inclusion, interpretations of Th(IN, +, x) in
the theory have been given (for the first, see [15]; the second result is due to
Harrington, see [7]). In &€ one cannot interpret a copy of (N, +, x) [7], which
shows that the stronger, model theoretic result 1s not always implied by the
mere interpretability of the theory of (N, 4, x). For the structures R,, and Rp
of c.e. many—one and c.e. Turing degrees as well as for £, the methods employed
(usually auxiliary codings of copies of (N, 4, x) with parameters and uniform
definability results) have been used to obtain further results of a model theoretic
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flavor about the structure (see the same references). For Ry one obtained @
definability of all jumps classes except Low;. For both R, and Rr, restrictions
on automorphisms were derived: each automorphism of R, is arithmetical on
any proper initial interval, and, dually each automorphism of R is arithmetical
on any proper end interval (see [11] for the latter result). Finally for £ one
obtained elementary nonequivalence of relativizations. We hope that the new
coding methods eventually lead to such results for Ry .

Degree structures where so far only undecidability of the theory is known include
the c.e. @— and btt—degrees ([6] and [12]), as well as the enumeration degrees of
¥9-sets ([17]).

Among the degree structures induced on c.e. sets, only Ry ¢ and R, are dis-
tributive as an upper semilattice, namely they satisfy

VeVaVb[z < aVb = Jag < adby <bx=agV by (1)

See Lachlan [9] for a proof in the nontrivial case of R,:. As a tool for proving
our main result we develop a theory of two sorts of parameter definable subsets,
using the distributivity of R, 1n an essential way. One of them is the class of
EN-sets. EN-sets are relatively definable without parameters in an end segment,
i.e. an upward closed subset E of Ry ¢, while E' is definable from two parameters
¢,d. The number n € N will be represented by (parameters defining) any EN-
set of size n, but there may also be infinite EN-sets. Using the combinatorics
of E'N-sets, we give first-order definitions in terms of parameters for whether
two EN-sets have the same size, and of ternary relations corresponding to the
operations + and x which behave properly on the finite EN—sets. For instance,
for +, we express that an EN-set is the disjoint union of two others.

The second type of uniformly definable set, called TD-set (“ID” stands for ideal)
is needed to single out the finite EN-sets in a first-order way. The concept of
ID-sets 1s dual to that of EN-sets. Thus ID-sets are relatively definable without
parameters in an initial segment, actually in an ideal I, while I is definable from
two parameters ¢, d. To single out finite EN—sets, we will compare EN-sets to
ID-sets, using uniformly definable 1-1 maps between the first and the second.
The idea of representing a number n in a natural way by the class of EN-sets
of that size sets our proof apart from the ones used for the other structures
discussed above which make use of auxiliary codings of copies of (N, +, x) with
parameters. However, this idea was first used in [12] for the upper semilattice
of c.e. equivalence relations modulo finite differences.

An important fact is that there is an easy way to produce finite EN-sets: each
finite set of low degrees which pairwise join up to greatest c.e. witi—degree is
an EN-set (this uses an idea of Ambos—Spies). We first use this fact to give a
quite elementary new proof of undecidability for Th(R ). Slightly refining the
proof yields the undecidability of 5 — Th(R+) as a partial order. Tn Lempp
and Nies [10] a coding of finite bipartite graphs based on ID-sets is developed,
which even yields the undecidability of T4 — Th(Ryet). The Ta-theory of Ry
as a partial order is decidable ([2]). Thus the following problem remains open.



Question 0.1 Is the Tg—theory of Ry as a p.o., or at least as an upper
semilattice, undecidable ?

1 Some terminology

We recall some definitions. See [14] for more details. For a first—order language
L, a scheme for coding in an L-structure A is given by a list of L-formulas
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with a shared parameter list B, together with a correctness condition «(p).

Convention 1.1 If a scheme Sx is given, X, Xo, X1,... denote objects coded
via Sx by a list of parameters satisfying the correciness condition.

Example 1.2 A scheme S, for defining a function g is giwven by a formula
o1(x, y; D) defining the relation between arguments and values, and a correciness
condition o(x,y; p) which says (at least) that a function is defined: Y2I<typy (z, y;P)

Example 1.3 A scheme for defining n-ary relations on A 1s given by a formula
o(x1,...,20;D) and a correctness condition «(p).

Definition 1.4 A class C of n-ary relations on A is uniformly definable in A
tf, for some scheme S for coding relations, C is the class of relations coded via S
as the parameters range over tuples in A which satisfy the correctness condition.

For instance, if A is a linear order and C is the set of closed intervals, then C
is uniformly definable via the scheme consisting of ¢1(2;a,b) < a < 2 < b and
the correctness condition a(a,b) < a < b.

Notation 1.5 As in Soare [18, p. 49], we assume that the use of the computa-
tion {e}A(z), u(A;e,x,5) < s. Fore = (eg,e1) let
[e] () =~ maxy<ope, (y).

Let [e]4(z) be {eq}?(z) if [¢](z) and {eo}*(x) are defined, and the computation
has use < [¢](z). Otherwise [¢]*(z) is undefined . In a similar way define the
approximations at stage s, namely [e]s(z) and [e]2(z).

Note that A <, B < A = [e]® for some e. This implies that

{{e,i) : We <wu Wi} is 25 (2)



2 Uniformly definable classes in R,

We develop a coding without parameters of a copy of (IN, 4, x) in Ry;. Recall
that we plan to use two types of uniformly definable subsets.

We first prove some facts which lead to the concepts of EN- and ID-sets. Most
of the facts are algebraic. We expose the duality between the two concepts, as
far as the nonsymmetric framework of an upper semilattice which may not be
a lattice allows this. Tn the following let (D;<,V,0,1) be a distributive upper
semilattice with least and greatest elements 0, 1.

Lemma 2.1 Suppose that b,yo, ...y, € D.
1. If bAy; =0 for each i < n, then b A sup;y; =0

2. If bV y; = 1 for each i, then there 1st € D such that bVt =1 andt <y
for each i.

Proof. (1) If 0 < & < b,sup,<,¥i, then by distributivity, there is an ¢ and » € D
such that 0 < r < z,y;. But then » < b, y;, contrary to b A y; = 0.

(i) f n = 0 let t = yo. Else, since y; < bV yg, we can choose a t; < yp and
by < b such that y; = by V. Then, 1 = bV b Viy = bViy, soifn # 1,
yo < bV ity implies that we can pick t5 < #; and by < b such that ys = b5 Vi,
and thus 1 = bV t5. Continuing in this way we obtain ¢ = ¢, < yo, ...y, such
that bVt = 1. &

For dy,...,d, € D, let

E(do,...,dp) = {zeD :VyVi<n(y<d;) = y<z]} (3)

Thus E(dg,...,d,) is the set of upper bounds of the ideal [0,dg] N ...N [0, d,].
Note that d; € E(dy, ... ,dy) for each i. Finite EN-sets {po, ..., pn} will be sets
which are relatively definable in F(pq, ... ,pn). First we need a characterization
of the elements in such an end segment.

Lemma 2.2 Fordy,...,d, € (D;<,V,0,1),
z € E(dy,...,dy) © 2= jgf(dei).

Proof. For the direction from right to left, clearly z V d; € F(do, ... ,dy) for
each i. Hence, if the infimum exists, it is also an upper bound for the ideal
[0,do] N ...N[0,dy].

For the direction from left to right, the argument is similar to the one used in
the proof of Lemma 2.1 (ii). If y < 2V d; for each 7, then by distributivity
we can choose zo < x and ¢o < dp such that y = 29 V qo. If n > 1, choose
z1 < @,q1 < dj such that ¢ = 21V ¢;. Continuing in this way we obtain
¢n < d, such that ¢,_1 =z, V ¢,. Moreover ¢, <dy,...,d,, so g, < z. Hence
Gn1 <2x,...,q0 <z and finally y < z. &



Definition 2.3 For z,y € D, we write nd[z,y] if # < y and the interval [z, y]
does not embed the 4-element boolean algebra preserving least and greatest ele-
ment.

Clearly nd[z, y] can be expressed in the language of p.o. In the next lemma, (i)
leads to the definition of EN-sets, and (ii) to the definition of I D-sets.

Lemma 2.4 (i) Let po,...,pn be a finite sequence of elements of D such
that for each i, nd[p;, 1] (in particular, p; < 1) and fori # j, p; Vp; = 1.
Then {p; : i < n} is the set of minimal elements x in £ = E(po,...,pn)
such that nd[z,1].

(ii) Let (a;) be a finite or infinite sequence of elements of D such that for each
i nd[0,a;] and for i # j, ai ANaj = 0. Then {a;} is the set of maximal
elements x in I such that nd[0, ], where I is the ideal of D generated by

{ai}.

Proof. (i) Tt is sufficient to prove that

r €L & ndlz,1] = Fjp <=

Since # < 1, by Lemma 2.2 there is j such that 2Vp; < 1. Moreover, by Lemma
2.1 there is t such that, for all ¢ # j, t <2z Vp; and 2V p; Vi =1. We can
suppose that # < ¢. By Lemma 2.2, x = infy<, 2 V pg, so (x Vp;) ANt = x. By
nd[z, 1], this impliest = 1,s0 2 Vp; = 1 for i # j and 2 = infy<, 2Vpr = 2 Vp;.
(ii) Tt is sufficient to prove that

r€el &nd0,z] = Fjr<a;.

Since x € I, # < sup;<,a; for some n. By distributivity, 2 = sup,.,a; for
some @; < a; (i < n). Since 0 < z, some a; does not equal 0. By Lemma
2.1, @j Asup;<, ;2;a; = 0, so nd[0, z] implies that @; = 0 for i < n,i # j, hence
xr = 5]' S aj . <>

In the context of R ¢, we are able to give first-order definitions with parameters
of the set F in (i) of the preceding Lemma, and also of I in (ii) if (a;) is a finite
or an infinite u.c.e. sequence. We use the following theorem of Ambos-Spies,
Nies and Shore.

Theorem 2.5 ([3]) Let I be a X3-ideal of Ruyti. Then there exists a,b € Ryt
such that I = [o,a] N [o,b]. &

Degrees a, b as above are called an exact pair for I. Note that, conversely, each
ideal which has an exact pair is X3, so that the theorem constitutes a uniform
definability result for the class of X3-ideals.

Lemma 2.6 (i) Suppose {po, ... ,pn} is a subset of Ry such that nd[p;, 1]
for each i and p; Vp; =1 fori# j. Then {pq,...,pn} is definable from
two parameters ¢, d via a formula pp(x;c,d).



(ii) Suppose (a;) is a finite or infinite u.c.e. sequence in Ry such that ndfo, a;]
for each i and a; V a; = o for i # j. Then {a;} is definable from two
parameters ¢, d via a formula ¢z(z;c,d).

Proof. (i) Observe that I = [0,po] N...N [0,px] is a X§-ideal by (2), so I =
[0,¢] N [o,d] for some ¢,d. Thus E(po,...,pn) = F(e,d) is definable from
¢, d via the formula ¢(z;¢,d) = VYyly < e,d = y < z]. Let pp(x;e,d) be
the formula expressing that # is a minimal element in {z : ¥(z; ¢, d)} such that
nd[z, 1].

(ii) Let I be the ideal generated by {a;}. It follows from (2) that I is £. So,
once again, I = [o,¢] N [o,d] for some ¢, d. Let ¢z (x;¢,d) be the formula ex-
pressing that z is a maximal element < ¢, d such that nd[0, z]. &

We are now ready to specify the notions of EN-sets and ID-sets by appropriate
schemes of the same type as in Example 1.3.

Definition 2.7 (i) Let Sp the the scheme given by the formula ¢p(z;ec,d)
and the correciness condition a(c,d) expressing that whenever x,y satisfy
the formula and x # y, then 'V y = 1. Subsets of Ryt coded via Sp are
called EN-sets.

(ii) Let Sz the scheme given by the formula @z(z;e,d) and the correciness
condition B(c,d) expressing that whenever x,y satisfy the formula and
x#y, then x Ny =0. Subsets of Ry coded via Sz are called ID-sets.

Notice that subsets of finite EN-sets are EN-sets themselves. In particular, §) is
the EN-set coded by ¢ = d = 1. Also () is the ID-set coded by ¢ = d = o.

3 Undecidability of Th(R )

We develop a scheme S¢ to code arbitrary relations between finite EN-sets. The
coding methods of this section will also be used to obtain a coding of a copy of
(I, 4+, x).

The abundance of EN-sets stems from the fact that each low p € R, ;s satisfies
nd[p,1]'. Thus, whenever py,...,p, are low and p; V p; = 1 for i # j, then
{po,...,pn}is an EN-set. For each n, such wti-degrees pyg, ..., p, can be easily
obtained by the method of the Sacks splitting theorem (see Soare [18]). In view
of later applications, we will prove a more general version of this in Proposition

3.2 below.
Theorem 3.1 If p € Ryt is low, then nd[p,1].

Proof. We slightly modify the proof of an extension of the Lachlan Non- Di-
amond Theorem in Ambos-Spies [1]. He proves that, if ag, a1, bo, by are c.e.
Turing degrees such that ag V a1 = degp(0') and bo V by is low, then, for some

1The author would like to thank Klaus Ambos-Spies for suggesting this.



i <1, a; is not b;-cappable. Here a is called b—cappable if there is a ¢ £ b such
that b = @ A e. An inspection of the proof reveals that it can be adapted to
wtt-reducibility. (The T-reductions built during the construction have recur-
sively bounded use anyway, and the proof of Lemma 6 [Lemma 9] goes through.
In particular, if the reduction procedures occurring in requirement R, are now
wtt-reductions [e1]P° and [e5]P1, then the step counting functions g in the proofs
of those lemmas can be computed from By [B;] with recursively bounded use.
So the weaker hypothesis Cy €y Bo [C1 Lwir B1] suffices.)

Here we use only the special case of the Theorem that by = by = p. If nd[p, 1]
fails, then there are ag,a; < 1 such that agVa; = 1 and ag A a; = p. So for
both i = 0 and 7 = 1, a; is p—cappable via ¢; = a1_;. &

We now prove the existence of EN-sets relating in a certain way to given degrees.

Proposition 3.2 Suppose that wq,... ,uym < 1. Then for each n > 0 there
exist low vy, ..., v, € Ry such that {vg,... v,} ts an EN-set and u;Vv; < 1
for each i < m,j <n.

Proof. Choose c.e. sets U; € u;. We construct c.e. sets V; such that the
statement of the theorem holds with v; = deg,,,,(V;).

To achieve v; Vv = 1 (j' # j) we ensure that K = V; UV}: (where K is some
creative set). For nd[v;, 1], we make each V; low and apply Theorem 3.1. We
meet the standard lowness requirements

Lej: 3%s {e}Vi(e)[s] is defined = {e}'i(e) converges .

(e
Finally, for u; Vv; <1 (0 <i<m,0 < j < n) we meet the requirements

Neij: K # [e]7®Y5,

by refraining from changing V; till a permanent disagreement occurs (or [e]V®Vi

is partial). Let (Ry) be some priority listing of the L-type and N-type require-
ments. If Ry is N, ;; let

length(k, s) = min{z : Vy < = K(y) = []"*®Vi(y)[4],

and let 7(k, s) = max{[e];(y) : y < length(k, s).
If Ry is a lowness requirement L. ;, the restraint associated with Ry is

r(k,s) =u(V;s;e, e, s).

Construction. At stage s+1,if Ky = K41 do nothing. Else, say y is the unique
element in Ky41 — K. Determine the minimal k such that y < r(k,s). If k
fails to exist enumerate y into all sets V;. Else let j be the number such that
Ry = L.; or Ry = N, ;; for some e, . Then V; is the set such that enumerating
y into V; would violate r(k,s). So enumerate y into Vj/, for each j' # j. This
completes the description of the construction.

Clearly K = V; UV} for j # j'. By induction on k we prove:



Lemma 3.3 Let k> 0.
(i) The requirement Ry, is met.
(ii) r(k) = limsr(k, s) exists and is finite.

Proof. Assume the Lemma holds for all A < k. Choose a stage sy such that
for all h < k, r(h,sg) has reached the limit, and K does not change below
maxp<rr(h) at any stage s > sg. Then at no stage s > sg can any number
y < r(k,s) enter V;, where j is determined from k as in the construction: j is
the number such that Ry = L. ; or Ry = N, ;; for some e, 1.

If Ry = L. j, then Ry, is met, because if ever {e}Vi[s] converges for s > sq, then
this computation is preserved. Hence also r(k, s) reaches its limit. Now suppose
that Rk = Ne,i,j~

For (i), assume for a contradiction that K = [¢]Y*®Vi. Then

limsup length(k, s) = cc.

We obtain a wit-reduction of K to U; as follows: given an input y, compute
s > sg such that length(k,s) > y and U;[[e](y) = U; s[[e]l(y). Then r(k,t) >
[e](y) for all ¢ > s, so (by he monotonicity of the function [e]) [e]V*®Vi[y 4 1 is
protected from changing at stages > s. So K(y) = [¢]V:®Vi(y)[s]. Since u; < 1,
we conclude that N, ; ; is met.

For (ii), let = be least such that K(z) # [e]Vi®Vi(z). Let s1 > so be least such
that, [e](z) is defined, then K(z) and U; & V;[[e](x) have reached their final

values at s1. Then length(k, s) < x from s; on, hence r(k, s) reaches it limit. {

Our next goal is to code relations between arbitrary finite EN-sets.

Proposition 3.4 There is a scheme Sc for coding objects of the form (Py, P, R)
m Ryt, where Py, Py are EN-sets, which has the following property: if Py, Py
are finite, then for any R C Py x Py, (Po, P1, R) can be coded.

Proof. Sc contains parameters ¢q, dy, ¢1, d; coding Py, Py and further parame-
ters for the relation R. Suppose that Py = {po,... ,pn} and Py = {qo, ... ,qm}.
First we assume that, in addition,

piVg; <1foralli,j (4)

We will reduce the general case to this.
As in the proof of Lemma 2.6(ii) there are g, h such that

E(g,h)= E({pi V q; : Rpiq;}).
We claim that

Rpi,q; < 3z € E(g,h)— {1}[p;Vq; < z].



For the direction from left to right, simply let 2 = p; V q;. For the other
direction, suppose that the right hand side holds via z < 1. By Lemma 2.2,
z =1inf{z V p, Vg, : Rp-rq,}. But, if not Rp;q;, then zV p, V g, = 1 for each
pair p,,qs in R, since (4, j) # (r,s) and therefore p; V¢, = 1 or p; Vg, = 1.
This contradicts z < 1.

Now let

Prei(®,y;co,do,c1,di, g, h) & pp(xico,do) & pp(y;cr,di) &
Az < 1z,y< z & z € E(g, h)].

Then in this special case each R C Py x P; can be coded via @,.;.

To remove the restriction (4) we imposed, we interpolate with a third EN- set.
By Proposition 3.2, there is an EN-set wvg,...,v, such that, for all £ < n,
piVop <trand g; Vop <1 (i <nj<m) Let F: Py {vg,...,v,} be
a bijection. Consider the relation R given by Evkqj < R[F~'(vg)gq;]. Both
F C Pyx{wvg,...,v,} and R C {wop,...,v,} x Py can be coded by parameters
via @re;. Then R = FR can be coded via the following formula (think of z as

F(a)):

sﬁrel(l‘,y;ﬁ) & dz [@el(l‘,Z;Co,do,cz,dz,go,ho)&
Gret(z,y; 2, da, e1,dy, g1, b)),

where c¢o, ds are parameters coding the auxiliary EN-set and P consists of all 10
parameters. &

The following proof is somewhat more elementary than the previously known
ones, because it only uses the exact pair theorem 2.5, the technique of the
Sacks splitting theorem and Theorem 3.1 (i.e. the technique of the TLachlan
non-diamond theorem) as the recursion theoretic ingredients.

Theorem 3.5 ([3, 10]) Th(Ryut) is undecidable.

Proof. We use the usual general framework to prove undecidability of theories
indirectly, see e.g. [5]. The class C of finite directed graphs has a hereditarily
undecidable theory. Using Proposition 3.4, C can be uniformly coded in Ry¢;.
Hence Th(Ry14) is undecidable. &

4 Interpreting a copy of (N, +, x)
In the following, it is vital to keep in mind the convention 1.1.

Theorem 4.1 A copy of (N, 4+, X) can be interpreted in Ryt without parame-
ters.



We will use finite EN-sets to represent numbers. The scheme S¢ from Propo-
sition 3.4 enables us to express by a first-order condition on parameters that
EN-sets have the same cardinality, and also the arithmetical operations. In the
end we face the harder problem to single out finite EN-sets. (Note that, even
if our examples were all finite, there is no reason to believe that all the defined
via the scheme for EN-sets in Definition 2.7 are finite.)

We introduce the formulas without parameters to code (N, 4, x). We use for-
mulas ©num(T), =(Z,9), p+(F,7,%Z) and ¢« (T,¥,Z), where W stands for a pair
of variables wq, wy which represent an exact pair needed to code an EN-set.
The formula @pum(F) will be considered last, but of course it will imply the
correctness condition for Sp, since T 1s thought of as coding an EN-set.

1. Fquality

Let ¢=(7,7) be a formula expressing

AC[C is bijection Pz — Pyl

using the scheme S from Proposition 3.4. By that proposition, if Pz and Ps
are finite, then
|Pz| = |Pel & Ruu = p=(a,e).

2. The arithmetical operations

Let ¢4 (Z,7,7Z) be a formula expressing that Pz can be partitioned into two sets
of the same size as Py and Py, respectively:

FuTv[p=(%, ) & ¢=(7,7) & Pr= PrU Py & PzN Pr=10].
It can easily be checked that, for finite Pg, Ps, P=

|Pal + | Pe| = |Pel & Run F ¢+(@,e,c).

For the direction from left to right one uses that subsets of Pg are again EN-sets.
For ¢« (%,7,Z) we say in terms of definable projection maps that Pz has the
same size as the cartesian product Py x Py. Thus ¢« (T,¥,Z) expresses

301302 Cl:P;HP;onto &CQZP;HPyOHtO &
Then, for finite Pg, Pz, P=
|Pal|Pel = [Pel < Ruu | ¢x(@,€2).

Recognizing finiteness

To recognize in a first-order way that an EN-set coded by two parameters is
finite, the idea is to compare EN-sets to fragments of a uniformly definable
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subclass of the ID-sets. ID-sets are not as easy to construct as EN-sets, but a
more involved construction actually yields a u.c.e. infinite ID-set

7" ={a; i €N}

To specify the uniformly definable subclass of the class of ID-sets we will impose
conditions on parameters ¢, d coding 7 = 7. 4 which are satisfied by Z7* and
imply that

1. when @ ranges through degrees < ¢, d, then |7 N [o, ]| assumes all finite
cardinalities

2.i9f |P| = |Z Nn]o,#]|, ® < e,d, then a bijection between the two sets can
be uniformly defined.

ID-sets 7 satisfying the conditions to be formulated will be called good. For the
special good ID-set Z* = Z¥ ;, Z* N [o, «] is finite for @ < ¢,d. The formula
©num Implies about P that for each good Z. 4, a bijection between P and some
set Z NJo,z], x < e, d, exist.

The set Z* is obtained applying a rather hard theorem of Ambos-Spies and
Soare [4]. To ensure property (2.) above, one has to make all the degrees a;
low. An easier result in Lempp and Nies [10] could also be used, but this has
the disadvantage that the actual construction needs to be extended by adding
new requirements to make the degrees a; low.

Main Lemma 4.2 ([4]) There exists a u.c.e. sequence (A;)ien such that each
A; ds low, A;, A; form a T- minimal pair for ¢ # j and, where a; = deg,,,,(A4;),
nd[o, a;] for each i. Thus Z* = {a;} is an ID-set.

Proof. Recall that noncomputable c.e. set C' is non-bounding if there is no
minimal pair A, B such that A, B <p C'. This definition makes sense also for
wtt-reducibility. Clearly, C' is wtt-non-bounding iff nd[o, d] for each nonzero
d < ¢ = deg,,(C).

In Ambos-Spies et al. [3], Lemma 6, it is proved that each non-bounding C' is
also witt-non-bounding. From Ambos-Spies and Soare [4] one obtains a u.c.e.
sequence (A;) such that each A4; is T-non-bounding and A;, A; form a T-minimal
pair for ¢ # j. Since there is a uniform construction to produce from a given
c.e. set A alow set A such that A is non-computable if A is [18], we can assume
that each set A; is low. &

Definition 4.3 An ID-set 7 defined from parameters ¢,d is good if
(i) Ve < ¢,d(7 € [o,x])
(ii) Yo < ¢, d 3P

{(u,v):ugv&uEZﬂ[o,az]&vEﬁ} (5)

is a bijection between Z N [o,x] and P.
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Being good can be expressed by a first-order condition on ¢, d. Moreover, (i)
implies that 7 is infinite: else @ = sup 7 is below ¢, d, contrary to (i).

We will prove that any u.c.e ID-set Z of low wtt-degrees is good, when defined
from an exact pair for the X3-ideal generated by 7. In particular the set 7* =
{a;} from the Main Lemma 4.2 is good. Assuming this fact, we now give a first
order condition on parameters expressing finiteness of an EN-set P.

Lemma 4.4 P is finite < Va,b[Zgp good = Tz < a,b

AP[the map(5) is a bijection & 3C C is bijection P — P

Proof. For the direction from left to right, assume that P is finite. Because good
ID-sets are infinite, we can choose F' C Z such that |F| = |P|. If & = sup F
(with the convention sup ) = o), then by (ii) of Lemma 2.1 F = [o, 2] N Z.
Choose P satisfying (5). By Proposition 3.4, a bijection P «— P can be coded
via S¢.

For the other direction, let a,b be an exact pair coding the set Z* obtained
from the Main Lemma 4.2. If ® < a,b, then ® < aq,...,a, for some n. By
Lemma 2.1, a Az = o for all k > n, so ZNJ[o,«] is finite. Thus P is finite. {

Finally, we supply the proof that any infinite u.c.e. ID-set Z of low wti{-degrees
is good. Let Z be such a set, coded by an exact pair a, b. By a similar argument
as above, Z N [o, #] is finite for any ® < a,b. Since all degrees in 7 are low
and the finite EN—sets are closed downwards, 1t is now sufficient to prove the
following.

Lemma 4.5 Suppose that aqg, ... ,a, are low pairwise incomparable degrees in
Ruwir. Then there is an EN-set vq, ..., v, such that

a; <v; & 1 =J.

Proof. Choose c.e. sets A; € a;. We construct c.e. sets V; such that the
statement of the theorem holds with v; = deg,,,,(4; &V}). Clearly a; < v;. To
ensure a; £ v; for i # j, we meet the requirements

Neij o Ai # [V (i £ ),
by the same strategy as in the proof of Proposition 3.2: refrain from changing

V; till a permanent disagreement occurs. We will define some priority listing
(Ri)rew of all the requirements. If Ry is N, ; let

length(k, s) = min{z : Yy < = A;(y) =[]V (y)[s],

and let 7(k, s) = max{[e];(y) : y < length(k, s)}.

To achieve v; Vv = 1 (j' # j) as in Proposition 3.2 we ensure that K = V;UVj/.
For nd[v;, 1], we make each A; & V; low and apply Theorem 3.1. Lowness is
achieved by the side effects of the “pseudolowness requirements”

12



Lej: 3%s {e}Ai%Vi(e)[s] is defined = {e}*®Vi(e) converges .

While L.; may fail to be met, it will produce enough restraint to ensure
(A; ®V;) =p I'. We use a standard technique introduced by Robinson. By
the recursion theorem, we can assume that the sets Vg, ...V, with specific
enumerations are given (see comment at the end). Since each set A; (i < n) is
low, the following property of e, j and a stage number § can be checked with an
oracle 0:

3s > 5 [{e}*1%Vi(e)[s] is defined via an Aj-correct computation].  (6)

By the Limit Lemma ([18]) we choose a computable function ¢(5, e, j,t) such
that lim; ¢(5, e, j, 1) exists, has value 0 or 1, and the limit equals 1 iff (6) holds.
Let (Ry) be some priority listing of all the requirements.

Construction. At Stage 0 initialize all the lowness requirements.

Stage s + 1. First determine the restraint r(k,s) for all k < s such that Ry is
a lowness requirement L. ;. Let § < s be greatest such that Rj was initialized
at 5. If {e}4i9Vi(e)[s] is undefined, let r(k,s) = 0. Else let u be the use of this
computation and find the least ¢ > s such that either

a) Ajiy1lu# Ajilu, or
b) ¢(5,e,i,t) = 1.

Since (6) is equivalent to lim; ¢(5,e,j,t) = 1 and the computation at s seems
to provide a witness for (6), one of the two cases has to apply. In Case a) let

r(k,s) = 0, while in Case b) r(k,s) = u.

Now, if Ky = K41 terminate stage s+ 1 here. FElse, say y is the unique element
in Ks41 — K. Determine the minimal k such that y < r(k, s). If k fails to exist
enumerate y into all the sets V;. Else let j be the number such that R, = L. ;
or Ry = N.;; for some e,i. Enumerate y into Vj/, for each j* # j. Initialize
all the lowness requirements R}, k' > k. This completes the description of the
construction.

Lemma 4.6 Let k> 0.
(i) If Ry is Ne; ;, then the requirement Ry, is met.
(ii) r(k) = limsr(k, s) exists and is finite.

Proof. Assume the Lemma holds for all A < k. Choose a stage sy such that
for all h < k, r(h,sg) has reached the limit, and K does not change below
maxp<rr(h) at any stage s > sq.

If Ry is N.;;, we can prove (i) and (ii) as in Proposition 3.2. In particular,
if A; = [e]45®Vi then one can obtain a wit reduction procedure of A; to Ay,
contrary to the assumption that a;,a; are incomparable.

13



Now suppose that Ry is L. ;. We have to show that lim,r(k,s) is finite. Let
§ be the greatest stage where Ry is initialized (necessarily § < sp), and pick
s > sg where ¢(8, e, j, 5) has reached its limit. If the limit is 0, then »(k,t) = 0
for all # > s. FElse, by (6) and the definition of ¢ there is a least stage ¢t > §
such that {e}4i%Vi(e)[t] is defined via an A; -correct computation with use u .
Then at stage ¢ we define »(k,t) = u. Since Ry is not initialized at stages > 3,
the computation {e}4i®Vi(e)[t] is preserved. So r(k,s) = u for all s > ¢. &

Lemma 4.7 A; @ V; s low for each j < n.

Proof. Given e, we have to determine with a ('-oracle whether {e}4i®Vi(e)
converges. Let k be such that Ry, is L. ;. Note that, in the proof of the preceding
lemma, we can determine 5 using a (-oracle. Then, by (6),

limg(3,e,5,t) =0 = {e}*®Vi(e) diverges,

and by the argument above,

limg(5,e,7,t) =1 = {e}4®Vi(e) converges.

The use of the recursion theorem deserves a comment: We are given some c.e.
sets Vo, ..., V, via a partial recursive enumeration function ¢ which maps s to
a strong index for Vo @...®V,,[s]. From this the construction produces a similar
enumeration 1,/; for sets 170, e ,I~/n. By the recursion theorem, there must be 1
such that 1) =1, and in particular V; = V; for j < n. The function g actually
contains an extra argument, namely an index for ¢, and in the discussion above
we assume that this extra argument is an index such that ¥ = . &
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