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Abstract. An analog of ML-randomness in the effective descriptive set theory

setting is studied, where the r.e. objects are replaced by their Π1
1 counterparts.

We prove the analogs of the Kraft-Chaitin Theorem and Schnorr’s Theorem. In

the new setting, while K-trivial sets exist that are not hyper-arithmetical, each

low for random set is. Finally we study a very strong yet effective randomness
notion: Z is strongly random if Z is in no null Π1

1 set of reals. We show that

there is a greatest Π1
1 null set, that is, a universal test for this notion.

1. Introduction

A reasonable intuitive view is that an infinite sequence of 0’s and 1’s is random if it
does not satisfy any properties of probability zero. However, one has to restrict the
type of properties considered to obtain a sound formal definition of randomness, for
instance since being equal to that sequence also is a null property. To do so, usually
one uses algorithmic notions. A commonly accepted formalization is the one given
by Martin-Löf [6], based on uniformly r.e. open sets. He defined a sequence to be
random if it does not have any property of effective Σ0

1 measure zero. A Martin-
Löf test (ML-test) is a uniformly r.e. sequence {Ui}i∈ω of Σ0

1-classes such that
µ(Ui) ≤ 2−i. A set A ⊆ 2ω is Martin-Löf null if there is a ML-test {Ui}i∈ω such
that A ⊆

⋂
i Ui. A set A is Martin-Löf random if {A} is not ML-null. There

is an extensive theory of ML-randomness. For instance, Schnorr’s Theorem states
that Z is ML-random iff there exists b such that Kr.e.(Z|n) > n − b at every n,
where Kr.e. is the prefix free complexity defined in terms of the universal recursively
enumerable prefix free machine.
Effective descriptive set theory provides the Π1

1-sets of natural numbers as a high
level analog of the r.e. sets. Such a set can be thought of as being enumerated
during stages formed by the recursive ordinals. It certainly makes sense to restrict
the allowed properties using tools from effective descriptive set theory, instead of
(classical) computability theory. Thus we replace the r.e. test and machine concepts
mentioned above by their Π1

1 analogs. We show that Schnorr’s Theorem and a
further major tool, the Kraft-Chaitin Theorem, persist in the new setting. In this
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context there are considerable new technical problems arising from the presence of
limit stages.
A lot of recent research is centered on K-trivial sets, a notion opposite to ML-
randomness. A is K-trivial if there is a constant b such that Kr.e.(A � n) ≤
Kr.e.(n) + b for each n (here the number n is identified with a string corresponding
to its binary representation). There are r.e. non-computable K-trivial sets, but all
are ∆0

2 (see [1]). A is K-trivial if and only if A is low for ML-random, namely each
ML-random set is already random relative to A [10]. In particular, K-triviality is
closed downward under Turing reducibility. This coincidence has been extended to
a further class introduced by Kučera [5]: A is a base for ML-randomness (or
base, in brief) if A ≤T Z for some Z which is ML-random relative to A. Each low
for ML-random set is such a base. In [2] it is shown that each base is K-trivial.
Thus all the three notions coincide, being K-trivial, low for ML-random and a base
for ML-randomness.
Surprisingly, these coincidences are limited to the r.e. case. We show that in the Π1

1

case, while a K-trivial Π1
1 set exists which is not hyper-arithmetical, the only low

for ML-random sets (and in fact, the only bases) are the hyper-arithmetical sets.
Finally we consider the even stronger randomness notion where the null properties
to be avoided are the Π1

1-sets of reals. We prove that there is a largest such set, that
is, a universal test for this randomness notion. Therefore this notion, first mentioned
in Sacks [11, Exercise 2.5.IV], is a natural one deserving further exploration.
Acknowledgment. We would like to thank T. Slaman for his suggestion to study
the higher level notions of randomness.

2. Basics

We identify a string σ in 2<ω with the natural number n such that the binary
representation of n+1 is 1σ. Sets are subsets of ω unless otherwise stated. They are
identified with infinite strings over {0, 1}. Z � n denotes the string Z(0) . . . Z(n−1).
A set Z is left-r.e. if {σ : σ <L Z} is r.e. (<L is the usual lexicographical ordering
on 2<ω). Similarly we define left-Π1

1 sets. Topological notions refer to the space
2ω with the product topology. For σ a finite binary string, we let [σ] be the set of
all Z ∈ 2ω which extend σ; in other words, [σ] is the basic clopen set canonically
described by σ. A clopen set is a finite union of basic clopen sets. For D ⊂ 2<ω we
let [D]� =

⋃
{[σ] : σ ∈ D}.

We generally refer to Sacks [11] for effective descriptive set theory. In particular,
O is the set of ordinal notations, a Π1

1 complete set, ωck
1 is the least non-recursive

ordinal, and ωA
1 is the least ordinal not recursive in the set A.

Given a Π1
1 set S ⊆ ω, one can effectively obtain a u.r.e. sequence (Re)e∈ω of linear

orders on initial segments of ω such that, for each y, y ∈ S ⇔ Ry is well-ordered.
See [11, 5.3.I] and Section 5 for more details, or [3, Thms 25.3, 25.12].
For y ∈ S, we view the order type α = |Ry| as the stage when y is enumerated into
S, in an enumeration through stages which are recursive ordinals. We replace Ry

by ωRy + y + 1, so that we may assume that at each stage, at most one element is
enumerated, and none at a limit stage. In the following, each Π1

1 set S comes with
such an enumeration. For each ordinal α ≤ ωck

1 , we let Sα = {y : |Ry| < α} (so
that Sωck

1
is the whole set).

We also make use of a set-theoretic representation of Π1
1-sets. Here and below Σ1

refers to the Levy hierarchy: Thus a Σ1 formula is a formula in the language of set
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theory which has the form ∃x1∃x2...∃xn ϕ0, where ϕ0 uses only bounded quantifiers,
namely quantifiers of the form ∃z ∈ y and ∀z ∈ y.
We frequently use the following.

Theorem 2.1 (Spector-Gandy). S ⊆ ω is Π1
1 iff there is a Σ1-fmla ϕ(y) such that

S = {y ∈ ω : L(ωck
1 ) |= ϕ(y)}.

It easy to see that each Π1
1 set is of this form: ϕ(y) expresses that Ry is isomorphic

to an ordinal, namely, ∃α∃g[g : (ω, Ry) ∼= (α,∈). For the converse, see [11, 1.3.VII].

This important theorem enables us to apply the techniques of recursion theory to
effective descriptive set theory. Instead of enumeration over the natural numbers,
we enumerate over L(ωck

1 ). Π1
1 sets in particular play a role analogous to recursively

enumerable sets. It should be mentioned already at this stage of exposition that
the limit ordinals less than ωck

1 play a role in effective descriptive set theory that
has no counterpart in recursion theory.
Our use of the Spector-Gandy Theorem to build Π1

1 sets S can be made more explicit
as follows. An enumeration of S is a Σ1 (over L(ωck

1 )) function ωck
1 7→ ω ∪ {nil}

(where nil is a further element, say ω). A construction C of S is given by a
Σ1 function over L(ωck

1 ) which tells us what to enumerate at stage α, given the
enumeration up to α. Formally C is a Σ1 function over L(ωck

1 ) mapping 〈α, f � α〉
to the number to be enumerated at α, or to nil if no number is enumerated. By
transfinite recursion in L(ωck

1 ), a unique f exists for each C (see [11, pg. 155]).
However, we will not be that formal below.

Prefix free machines and prefix free complexity.

Definition 2.2. A prefix free machine is a possibly partial function M : 2<ω 7→
2<ω with Π1

1 graph such that dom(M) is an antichain under the prefix relation of
strings �.

Proposition 2.3. There is an effective listing (Me)e∈ω−{0} of all prefix free ma-
chines.

Proof. Let (Se)e∈ω−{0} be an effective listing of the Π1
1-sets ⊆ 2<ω × 2<ω. Thus

〈σ, y〉 ∈ Se ⇔ Re
σ,y is well-ordered, where (Re

σ,y) is a u.r.e sequence of linear orders
as above. Now let 〈σ, y〉 ∈ Me ⇔ Re

σ,y is well-ordered, and
∀〈ρ, z〉 ∀g [(ρ ≺ σ ∨ (ρ = σ & z 6= y)) ⇒

g is not an order preserving embedding of Re
ρ,z into Re

σ,y].
(Informally, no substring ρ of σ and no other value for σ has been enumerated
before.) Clearly this is a Π1

1 condition uniformly in e. If Se is a prefix free machine,
then Me = Se. �

As a consequence, there is a universal prefix free machine U, given by
U(0d−11σ) = Md(σ).

If U(σ) = y, we say that σ is a U -description of y.
Let

K(y) = min{|σ| : U(σ) = y}.
For any α ≤ ωck

1 , we let Uα(σ) = y if 〈σ, y〉 ∈ Uα, and
Kα(y) = min{|σ| : Uα(σ) = y}.
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Note that for α < ωck
1 , “Kα(y) = u” is a ∆1 relation over L(ωck

1 ), and “K(y) ≤ u” is
Σ1 over L(ωck

1 ), , and hence Π1
1, being equivalent to “∃α ∃y (|y| ≤ u & Uα(y) = x)”.

Recall that each Π1
1 set is many-one reducible to Kleene’s O [11, I.5.4]. As a

consequence, K ≤T O, since O can determine the value K(x).

3. A high level analog of ML-randomness

We prove that the analogs of the Kraft-Chaitin theorem, Schnorr’s Theorem and
the Kučera-Gács Theorem are valid in the Π1

1-case. We make use of some material
from [8]. Throughout, we use the terminology and notation of the r.e. case with the
new interpretations.

3.1. The Kraft-Chaitin Theorem.

Definition 3.1. A Π1
1 set W ⊆ ω × 2<ω is a Kraft-Chaitin set (KC set) if∑

〈r,y〉∈W 2−r ≤ 1.

Theorem 3.2. From a Kraft-Chaitin set W one can effectively obtain a prefix free
machine M such that

∀〈r, y〉 ∈ W∃w (|w| = r & M(w) = y).
We say that M is a prefix free machine for W .

Proof. As remarked above, W comes with an enumeration of elements at certain
successor stages α, at most one per stage. Here the elements are axioms, of the
form 〈r, y〉. We turn this enumeration into a stage-by-stage construction of a prefix
free machine M , as defined in 2.2.
Construction of M . At a successor stage α = β+1, if an axiom 〈r, y〉 is enumerated
into W we will find a string w of length r, and we set M(w) = y. We let D0 = {∅}.
At each stage γ ≥ 0 we have an antichain Dβ ∈ L(ωck

1 ) of strings (the set of
extensions of strings in Dγ is our reservoir of future w-values, and strings in this
set are called unused). With each string x we associate the half-open interval
I(x) ⊆ [0, 1) of real numbers whose binary representation (containing infinitely
many 0’s) extends x. Thus for instance I(011) = [3/8, 1/2).
Let z be the longest string in Dβ of length ≤ r. Choose w so that I(w) is the
leftmost subinterval of I(z) of length 2−r, i.e., let w = z0r−|z|. To obtain Dα, first
remove z from Dβ . If w 6= z then also add the strings z0i1, 0 ≤ i < r − |z|.
At limit stages η we let

Dη = {x : ∃γ < η ∀α [γ < α < η ⇒ x ∈ Dα}.

This ends the construction. We will see that a string can appear in Dα at most
once, so that actually Dη = limγ→ηDγ . In Claim 3.3 below we verify a number
of properties in order to show that for each axiom 〈r, y〉, z as above exists, and
therefore one can assign a string w of length r to the axiom. Let Eα =

⋃
{I(x) :

x ∈ Dα} be the set of reals corresponding to Dα. At a limit stage η, the measure of
unused strings is λ(Gη), where Gη =

⋂
α<η Eα. To be able to get beyond this limit

stage, we want to replace Gη by Dη. The main statement (i) below says that this
substitution is legal, because Eη ⊆ Gη and λ(Gη −Eη) = 0. We first illustrate the
construction with an example showing that this null set may be non-empty. Suppose
at stage i < ω the axiom 〈2i + 1, yi〉 is enumerated. Then Gω − Eω = {1/3}. For
D0 = {∅}, z0 = ∅, w0 = 00; D1 = {01, 1}, z1 = 01, w1 = 0100; D2 = {0101, 011, 1},
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z2 = 0101, w2 = 010100 etc. Then Dω = {(01)i1 : i ∈ ω}. 1/3 has the binary
representation 0.010101 . . ., so that 1/3 ∈ Ei for each i, but 1/3 6∈ Eω.

Claim 3.3. (i) For each stage α, Eα+1 ⊆ Eα. If α = η is a limit ordinal,
then Eη ⊆ Gη :=

⋂
β<η Eβ. Moreover, λ(Gη − Eη) = 0.

(ii) If an axiom is enumerated at stage α, then one can at that stage choose
z, and hence w.

(iii) The strings in Dα have different lengths and form an antichain. (In fact,
for x, y ∈ Dα, |x| < |y| ⇔ x <L y, that is, the intervals I(x) get longer
as one moves to the right.)

(iv) {I(z) : z ∈ Dα} ∪ {I(wβ) : β ≤ α & wβ defined} induces a partition of a
conull subset Pα of [0, 1).

Proof. Inductively assume (i)-(iv) hold for all γ < α.
(i) Clearly Eα+1 ⊆ Eα. If α = η is a limit ordinal, to show Eη ⊆ Gη, let β < η. If
r ∈ Eη, then r ∈ I(x) for some x ∈ Dη, so there is γ, β < γ < η, such that x ∈ Dγ .
Inductively Eγ ⊆ Eβ . Thus r ∈ Eβ .
We verify λEη ≥ λGη, by showing λEη ≥ λGη−2−k+1 for any k ∈ ω. Write λGη in
binary form, λ(Gη) =

∑
d∈A 2−d, where A ⊆ ω. Since (λEγ)γ<η is non-increasing

and converges to λGη, there is γ < η such that 2−k+1 +
∑

d∈A∩k 2−d ≥ λEγ . Let
A∩ k = {d1, d2, ..., dN}. For each α, γ < α < δ, let zα

i (1 ≤ i ≤ N) be the elements
of Dα such that |zα

i | = di. Such strings exist by inductive hypothesis (iii) for α.
If z ∈ Dβ − Dβ+1 for some β < η, then z � wβ , so z 6∈ Dδ for any δ, β < δ < η
by inductive hypothesis (iv) for δ (in brief, z cannot reappear after disappearing).
Since there are only 2di possibilities for zα

i , we eventually settle on some strings zi,
hence zi ∈ Dη. Thus

λ(Eη) ≥
∑

1≤i≤N

2−|zi| ≥ λ(Eγ)− 2−k+1 ≥ λ(Gη)− 2−k+1

as required.
(ii) Suppose the axiom 〈r, y〉 is enumerated at stage α = β + 1. If zα fails to exist,
then r is less than the length of each string in Dβ . By (iii) for β, λEβ =

∑
{2−|z| :

z ∈ Dβ}, so by (iv) for β,
2−r +

∑
{2−m : an axiom 〈m, z〉 is enumerated at a stage ≤ β} > 1,

contrary to the assumption that W is a KC-set.
(iii) This is clear for successor stages α, because the intervals I(wγ), γ ≤ α and wγ

defined, are disjoint. Then the property persists to limit ordinals by the definition
of Dη.
(iv) Again, this is clear for successor stages α = β +1, in which case we may define
Pα = Pβ . If α = η is a limit ordinal, then let Pη be the intersection of of the sets
Pγ , γ ≤ η and the complements of the null sets Gγ − Eγ from (ii). Then for each
β < η, Pη is partitioned by Eβ and I(wγ), γ ≤ β, wγ defined. So Pη is partitioned
into Gη and I(wγ), γ < η. Since Gη is partitioned on Pη into the intervals I(w),
w ∈ Dη, we have shown (iv) for η. �

3.2. The Coding Theorem. For a prefix free machine D, the probability
that D outputs x is

PD(x) = λ{σ : D(σ) = x}.
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Clearly, 2−K(x) ≤ PU(x). We show that, for some constant c, ∀x 2c2−K(x) ≥
PD(x). This also holds at certain ordinal stages. For α ≤ ωck

1 , let PD,α(x) = λ{σ :
Dα(σ) = x}. For g : ωck

1 7→ ωck
1 , we say that a limit ordinal λ ≤ ωck

1 is g-closed if
∀α < λ [g(α) < λ].

Theorem 3.4 (Coding Theorem). For each prefix free machine D, there is a Σ1

over L(ωck
1 ) function gD = g : ωck

1 7→ ωck
1 and a constant c such that, for each

g-closed λ ≤ ωck
1

∀x 2c2−Kλ(x) ≥ PD,λ(x).

Proof. One enumerates a KC set L, “accounting” the enumeration of axioms 〈r, x〉
against the open sets generated by the D-descriptions of x. Of course, for different
outputs x, these open sets are disjoint.
Construction of L.

Stage s. If x is a string, r ∈ ω is least such that PD,s(x) ≥ 2−r+1,
and the axiom 〈r, x〉 is not in L yet, then put 〈r, x〉 into L.

For a string x, let αx be the greatest stage at which an axiom 〈r, x〉 is put into L.
Then PD,α(x) ≥ 2−r+1. Hence all such axioms together contribute at most 1/2.
The total weight of all axioms 〈r′, x〉 enumerated at previous stages is ≤ 2−r since
r′ > r for such an axiom, and there is at most one for each length r′. Thus L is a
KC set.
Let cL be the coding constant for L given by Theorem 3.2. The function g is the
delay it takes the universal machine to react to an enumeration of an axiom into
L. Thus for α < ωck

1 ,

g(α) = µβ∀〈r, x〉 ∈ Lα [Kβ(x) ≤ r + cL].

If r is least such that PD,λ(x) > 2−r+1, then at the least stage α < λ where
PD,α(x) ≥ 2−r+1, we enumerate 〈r, x〉 and cause Kλ(x) ≤ Kg(α)(x) ≤ r + cL, since
λ is g-closed. By the minimality of r, 2−r+2 ≥ PD,λ(x), hence 2cL+22−Kλ(x) ≥
2−r+2 ≥ PD,λ(x). Thus c = cL + 2 is as required. �

3.3. Some properties of K. We apply the Coding Theorem in order to
obtain an estimate of the number of strings with small K-complexity.

Theorem 3.5. There is a constant c ∈ ω and a Σ1 over L(ωck
1 ) function g : ωck

1 7→
ωck

1 such that the following hold for each g-closed δ ≤ ωck
1 .

(i) ∀d ∀n |{x : |x| = n & Kδ(x) ≤ n + Kδ(n)− d}| ≤ 2c2n−d

(ii) ∀b ∀n |{x : |x| = n & Kδ(x) ≤ Kδ(n) + b}| ≤ 2c2b

Proof. Let D be the prefix free machine given by D(σ) = |U(σ)|, and let g be the
function obtained in the coding theorem for D. Let c be the constant such that for
each n, 2c2−Kδ(n) ≥ PD,δ(n), given by the Coding Theorem.
(i). If |x| = n and Kδ(x) ≤ n + Kδ(n) − d, then a shortest description of x
contributes at least 2−n−Kδ(n)+d to PD,δ(n). If there were more that 2n+c−d many
such x, then PD,δ(n) > 2n+c−d2−n−Kδ(n)+d = 2c2−Kδ(n), a contradiction.
(ii). This follows from (i), by letting d = n− b. �
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3.4. The Π1
1 version of ML-randomness. In what follows we use λ to de-

note the product measure on 2ω. Of course we are also using λ to denote Lebesgue
measure on the unit interval, but under the identification provided by binary rep-
resentation of a conull subset of the unit interval with a conull subset of 2ω these
two senses of λ coincide.
A ML-test is a sequence (Sm)m∈ω−{0} of uniformly Σ1 over L(ωck

1 ) open sets such
that ∀m ∈ ω−{0} λSm ≤ 2−m. Z is ML-random if Z passes each ML-test in the
sense that Z 6∈

⋂
m Sm.

Let MLR denote the class of ML-random sets, and Non-MLR its complement in 2ω.
For b ∈ ω+, let Rb = [{x ∈ 2<ω : K(x) ≤ |x| − b}].

Proposition 3.6. (Rb)b∈ω−{0} is a ML-test.

Proof. The condition “K(x) ≤ |x|−b” is equivalent to ∃σ, α Uα(σ) = x & |σ| ≤ |x|−
b, which is a Σ1-property of x and b. Hence the sequence of open sets (Rb)b∈ω−{0}
is Σ1. To show λRb ≤ 2−b, let Vb be the set of strings in Rb which are minimal
under the prefix ordering. For each x ∈ Vb, K(x) ≤ |x|−b, so 2−|x

∗| ≥ 2b2−|x| (here
x∗ denotes a shortest U-description of x). Because U is a prefix free machine,

1 ≥
∑
{2−|x∗| : x ∈ Vb} ≥ 2b

∑
{2−|x| : x ∈ Vb},

hence λRb ≤ 2−b. �

We now begin on the analogue of Schnorr’s theorem for the hyperarithmetical con-
text. Recall that Schnorr’s original theorem stated that Z is ML-random with
respect to recursively enumerable tests if and only if for Kr.e., the prefix free com-
plexity defined in terms of the universal recursively enumerable prefix free machine,
there exists b with Kr.e.(Z|n) > n− b at every n.
Although the statement of this theorem carries across with only the obvious changes,
the proof does not. The new obstacle arises at limit stages. We describe the mea-
sure theoretic lemmas which are necessary to meet this fresh obstacle, then we
prove the hyperarithmetical version of Schnorr, and then finally we indicate why
the original proof refuses a cut and paste adaption to the present context.
In the arguments below we think of 2ω as coming equipped with an enumeration
of the standard basis consisting exactly of all the clopen sets.

Lemma 3.7. Given an open S ⊆ 2ω such that S ∈ L(ωck
1 ), a clopen subset U of 2ω

and a rational ε > 0, we may in an effective (i.e., ∆1 over L(ωck
1 ) ) manner obtain

a clopen set C such that C ⊃ U \ S and λ(C) < λ(U \ S) + ε.

Proof. From S one may effectively (in the above sense) obtain an L(ωck
1 ) sequence

(σn)n∈ω such that S =
⋃

n[σn]. For each k consider the clopen set
Ck =

⋃
{[ρ] : |ρ| = k & ρ ⊆ U & ∀n σn 6� ρ.}

Then
⋂

k Ck = U \ S, since [σn] ∩ Ck = ∅ whenever k ≥ |σn|. So one may in an
effective (over L(ωck

1 ) way determine k such that λ(C) ≤ λ(U − S) + ε. �

Next we cover an effective sequence of basic clopen sets by such a sequence which
is almost disjoint in the sense that the sum of the measures is small.

Proposition 3.8. Let α 7→ Uα be a Σ1 over L(ωck
1 ) function mapping ordinals to

basic clopen sets in 2ω. Then we may find, uniformly in the sequence (Uα)α<ωck
1
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and rational ε > 0, a Σ1 over L(ωck
1 ) mapping α 7→ Cα of ordinals to clopen sets

such that at each β ≤ ωck
1⋃

α<β Uα ⊂
⋃

α<β Cα, and
∑

α<β λ(Cα) ≤ λ(
⋃

α<β Uα) + ε.

Proof. Let (ρn)n∈ω be a computable listing of 2<ω. Let
Xβ = {m : [ρm] ⊂ Uβ} \ {m : [ρm] ⊂

⋃
α<β Uα}

(see the explanatory remark after the proof of Theorem 3.9.) As long as Uβ is not
included in the union of the earlier Uα’s we will have Xβ 6= ∅. Clearly, β 7→ Xβ is
Σ1 over L(ωck

1 ). At each stage β, applying 3.7 for S =
⋃

α<β Uα and U = Uβ , we
choose a clopen set Cβ such that

Uβ \ (
⋃

α<β

Uα) ⊂ Cα,

λ(Cβ) < λ(Uβ \
⋃

α<β

Uα) +
∑

m∈Xβ

2−m−2 · ε.

Then at any stage β we have∑
α<β

λ(Cα)− λ(
⋃

α<β

Uα) ≤

∑
α<β

(λ(Cα)− λ(Uα \
⋃

γ<α

Uγ)) ≤

∑
m∈

⋃
α<β Xα

2−m−2ε ≤ ε

2
< ε.

�

This proposition allows itself to be further massaged. Given the sequence (Cβ)β

arising as above, we can break them up into basic clopen sets, and in this way find
a new sequence ([xβ ])β , each xβ ∈ 2ω,⋃

Cβ =
⋃

[xβ ],∑
λ(Cβ) =

∑
λ[xβ ],

and the assignment β 7→ xβ is still Σ1 over L(ωck
1 ).

Theorem 3.9. The following are equivalent.
(i) Z is ML-random
(ii) ∃b ∀n K(Z � n) > n− b, that is, ∃b Z 6∈ Rb.

Proof. (i)⇒(ii) holds because (Rb)b∈ω−{0} is a ML-test. For (ii)⇒(i), suppose that
(i) fails for Z, that is Z ∈

⋂
m Sm for a ML-test (Sm)m∈ω−{0}. We may assume

that λSm ≤ 2−2m−1 and Sm =
⋃

β<ωck
1

Um
β where each Um

β is basic clopen, and the
associated map (m,β) 7→ Um

β Σ1 over L(ωck
1 ).

Following 3.8 we may find a Σ1 over L(ωck
1 ) map (m,β) 7→ xm

β such that at each m

Sm ⊂
⋃
β

[xm
β ],

λ(
⋃
β

[xm
β ]) < 2−2m.
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In particular, at each m,∑
β

2m−|xm
β | < 2m

∑
λ([xm

β ]) < 2m(2−2m) = 2−m,

and hence L = {〈|xm
β | − m,xm

β 〉 : m ∈ ω, β < ωck
1 } is a KC set. Let Md be the

prefix-free machine for L given by the KC-Theorem 3.2. Given b, let m = b+d+1.
Since Z ∈ Sm, xm

i ≺ Z for some i. Because of the axiom enumerated for compress-
ing x = xm

i , K(x) ≤ |x| −m + d + 1 = |x| − b. �

Certain steps were taken in the course of the proof above which did not need
to be considered in Schnorr’s original argument. There is a kind of continuing
approximation, and giving ground, with the sets Xα from 3.8 serving as a kind of
clock – letting us know how much to give, so that at the end of the process we did
not give in too far.
The reason for this extra precaution can be illustrated by the following kind of
example which could arise in 3.8 if we try to steadfastly insist that∑

α<β

λ(Cα) = λ(
⋃

α<β

Uα).

We could be given an open set S with λ(S) < 2−2, S enumerated as (Uα)α∈ωck
1

. In
the naive attempt to copy Schnorr’s earlier argument we try to effectively build a
corresponding KC set, {〈rα, yα〉 : α < ωck

1 } which has∑
2−rα = λ(S),

and at each α we have some ordinal γ(α) < ωck
1⋃

β<α

Uβ =
⋃

β<γ(α)

[yβ ],

∑
β<γ(α)

2−rβ = λ(
⋃

β<α

Uβ).

It could then happen that at ω we already have that
⋃

n<ω Cn contains the interval
[0, 1/4] with the exception of a Cantor set of positive measure. Eventually we are
going to settle on some stage γ(ω) with

⋃
β<γ(ω)[yβ ] equal to that complement. But

there is no way of doing this which will rule out the possibility of the unpleasant
discovery at the next stage that Uγ(ω)+1 includes some non-null piece of the Cantor
set, at which there is no way of choosing the next 〈rβ , yβ〉 without overbiting.
Thus, Z is ML-random just if Z is in the complement of some open set Rb, that
is the set of paths through a Σ1

1 subtree of 2<ω. Recall the version of the Gandy
low basis theorem for Σ1

1-sets (folklore): A non-empty Σ1
1 class always contains a

member Z with OZ ≤T O. Thus:

Proposition 3.10. There is a ML-random set Z such that OZ ≤T O.

One can also consider the analog of Chaitin’s halting probability, in order to obtain
a ML-random set Z which is left-Π1

1. Let

Ω = λ(domU) =
∑
{2−|σ| : U(σ) ↓}.

Adapting Chaitin’s proof one can show that Ω is ML-random.
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3.5. An analog of the Kučera-Gács Theorem. Finite hyperarithmetical
reducibility ≤fin−h between sets X, Y ⊆ ω is a restriction of hyperarithmetical
reducibility, where the use is finite for each input.

Definition 3.11. (i) A fin− h reduction procedure is a partial function Φ :
2<ω 7→ 2<ω with Π1

1 graph (or, equivalently, Σ1 over L(ωck
1 ) graph) such

that the domain is closed under prefixes, and, if Φ(t) ↓, then s � t ⇒
Φ(s) � Φ(t).

(ii) A = ΦZ if ∀n∃m Φ(Z � m) � A � n. A ≤fin−h Z if A = ΦZ for some
fin− h reduction.

(iii) A ≤wtt−h Z if A = ΦZ for some fin− h reduction such that the use is
recursively bounded.

Notice that if A is hyperarithmetical, then A ≤fin−h Z for any Z, because {σ : σ �
A} is Π1

1.

Theorem 3.12. Let b ∈ ω − {0} and let Q be the (closed Σ1
1) class of ML-random

sets 2ω −Rb = {Z : ∀n K(Z � n) > n− b}. For each A, there is Z ∈ Q such that
A ≤wtt−h Z.

Proof. For S ⊆ 2ω, λ(S|z) denotes the local measure 2|z|λ(S ∩ [z]). For each n,
λ(S) is the average, over all strings z of length n, of the local measures λ(S|z).

Lemma 3.13. Suppose S ⊆ 2ω is measurable, r ∈ ω and λ(S|x) ≥ 2−r. Then there
are y0, y1 � x, |yi| = |x|+ r + 1, such that λ(Q|yi) ≥ 2−(r+1) for i = 0, 1.

Proof. We may assume that x = ∅. Let y0 be a string of length r + 1 such that
λ(Q|y0) is greatest among those strings, in particular λ(Q|y0) ≥ 2−(r+1) since the
average is ≥ 2−(r+1). Since λ(Q ∩ [y0]) ≤ 2−(r+1),∑

y 6=y0 & |y|=r+1 λ(Q ∩ [y]) ≥ 2−(r+1),

or
∑

y 6=y0 & |y|=r+1 λ(Q|y) ≥ 1. Hence there is a further y1 6= y0 of length r + 1
such that λ(Q|y1) ≥ 2−(r+1). ♦

Let f(r) = r(r + 1)/2 and consider the closed Π1
1 class Q̂ given by the tree

{y : ∀r.f(r) ≤ |y| [λ(Q|(y � f(r))) ≥ 2−r]} .
Define a tree T of strings (xτ )τ∈2<ω , where |xτ | = f(|τ |). Let x∅ = ∅. If xτ has been
defined, let xτ0 be the leftmost y on Q̂ such that xτ ≺ y and |y| = f(|τ |+ 1). Let
xτ1 be the rightmost such y. By Lemma 3.13, xτ0 and xτ1 exists and are distinct.
For each A, the ML-random set Z coding A is simply the path

⋃
τ≺A xτ determined

by A.
We verify A ≤wtt−h Z, where f is the computable bound on the use. Given an
input n, to determine A(n), let x = Z � f(n) and let y = Z � f(n + 1). Find α
such that Qα ∩ {v : x � v & |v| = |y| & v <L y} = ∅, or Qα ∩ {v : x � v & |v| =
|y| & v >L y} = ∅. In the first case, output 0, while in the second case, output 1. �

4. Lowness properties

4.1. K-triviality.

Definition 4.1. (i) A is K-trivial if, for some b ∈ ω,
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∀n K(A � n) ≤ K(n) + b.
(ii) Given a limit ordinal η ≤ ωck

1 , A is K-trivial at η if for some b ∈ ω,
∀n Kη(A � n) ≤ Kη(n) + b.

Thus K-trivial is the same as K-trivial at ωck
1 .

Using the Π1
1-version of the KC Theorem (Theorem 3.2 above), one can adapt the

cost function construction from [1] (also see [10, Theorem 4.2] in order to show:

Theorem 4.2. There is a K trivial Π1
1 set A which is not hyper-arithmetical. �

Recall our convention that no element is enumerated into a Π1
1 set at a limit stage.

Then, A is K-trivial at η iff for some b ∈ ω, ∀n∀α < η ∃β < η Kβ(A � n) ≤
Kα(n) + b.
Fix b and η ≤ ωck

1 . The subsets of ω which are K-trivial at η are the paths of the
following tree:

Tη,b = {s : ∀t � sKη(t) ≤ Kη(|t|) + b}.
If η < ωck

1 then Tη,b is hyper-arithmetical, by ∆1 comprehension in L(ωck
1 ) (see [11,

p. 67]) Tη,b is a subset of 2<ω which is ∆1 (with η ∈ L(ωck
1 ) as a parameter).

Let gD be the function obtained in Theorem 3.4, where D(x) = |U(x)|. Recall
that η a gD-closed if ∀α < η [gD(α) < η]. We show that for such η < ωck

1 , if A is
K-trivial at η, then A is hyper-arithmetical.

Theorem 4.3. Let η < ωck
1 be gD-closed.

(i) There is c ∈ ω such that the following holds: for each b there are at most
2c+b sets that are K-trivialat η with constant b.

(ii) If a set A is K-trivial at η for η < ωck
1 then A is hyper-arithmetical.

(iii) Each K-trivial set is computable in O.

Proof. By Theorem 3.5 (ii), there is a constant c such that the size of each level of
Tη,b is at most 2c+b, which shows (i). Note that each path A of Tη,b is isolated, hence
recursive in Tη,b. For (ii), if η < ωck

1 this shows A is hyper-arithmetical. For (iii),
note that since K ≤T O, the tree Tωck

1 ,b is computable in O. Now argue as in (ii). �

Proposition 4.4. If A is K-trivial via b and ωA
1 = ωck

1 , then A is hyper-arithmetical.

Proof. We show that A is K-trivial at η via b, for some gD-closed η. We define by
recursion a function h : ω → ωck

1 which is Σ1 over Lωck
1 [A]: let h(0) = 0, and

h(n + 1) = µβ > gD(h(n))∀m ≤ n Kβ(A � m) ≤ Kβ(m) + b.
Since A is K-trivial, h(n) is defined for each n ∈ ω. Let η = sup(range(h)), then
η < ωA

1 = ωck
1 , so η is as required. �

4.2. Lowness for ML-randomness. The notion of ML-randomness and the
theorems in subsection 3.4 can be relativized to oracle sets A in the usual way.
MLRA denotes the class of sets which are ML-random relative to A. A set A is low
for ML-random if MLRA = MLR. A is a strong base for ML-randomness if
A ≤fin−h Z for some Z ∈ MLRA (see Definition 3.11). By Theorem 3.12, if A is low
for ML-random then A is a strong base for ML-randomness. (We say strong base
because the reduction is ≤fin−h and not merely ≤h. The theory for ≤h remains
unexplored.)
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Theorem 4.5. A is a strong base for ML-randomness iff A is hyper-arithmetical.

Proof. If A is hyper-arithmetical, then A ≤fin−h Z for each Z, so A is a strong base.
Now suppose that A is a strong base, namely A = ΦZ for some fin− h reduction
Φ and Z ∈ MLRA. First we show that ωA

1 = ωck
1 . We may assume that A is not

hyper-arithmetical, so that λ{Y : A = ΦY } = 0 (see [11, 2.4.IV]). For each k, let

Vk = [{ρ : A � k ≤ Φρ}]� = [{ρ : ∃α < ωck
1 A � k ≤ Φρ

α}]�

(recall that, for a set of strings G, [G]� is the open set generated by G). If ωA
1 > ωck

1 ,
then Vk is uniformly hyperarithmetical relative to A, so the function k 7→ Vk is in
L(ωA

1 )[A]. Note that, since ωA
1 > ωck

1 , the binary statement “λW ≤ q”, for open
W ∈ L(ωA

1 )[A] and a rational q, is Σ1 over L(ωA
1 )[A]. So the function

h(n) = µk λVk ≤ 2−n

is also Σ1 over L(ωA
1 )[A]. Then (Vh(n))n∈ω−{0} is a ML-test relative to A which

succeeds on Z, contrary to the hypothesis that Z ∈ MLRA.
The principal part of the proof is to show that a strong base A is K-trivial. Then,
by Proposition 4.4, A is hyper-arithmetical. To show that A is K-trivial, one pro-
ceeds exactly as in the proof of the corresponding theorem in the r.e. case, [2,
Thm 2.1] (also see [8]), with mere notational changes. One restricts the enumer-
ation into open sets Cτ

d,α to successor stages, and for limit stages η, one defines
Cτ

d,η =
⋃

α<η Cτ
d,α. The verification works as before, making use of our Π1

1 version
of the Kraft-Chaitin theorem. �

Corollary 4.6. Each low for ML-random set is hyperarithmetical.

Proof. Immediate from Theorems 3.12 and 4.5. �

We first had a more technical but direct proof of this corollary, along the lines of
the direct proof that in the r.e. case, each low for ML-random is ∆0

2 (see [9]).

5. An even stronger effective notions of randomness

We consider the even stronger randomness notion where the null properties to be
avoided are simply the Π1

1 sets of reals (we will write “Set”, capitalized, when we
mean a set of reals).
Some preliminaries. According to [11, 5.2.I], a Π1

1-Set (also called predicate) S(Z)
can be written in the normal form ∀f∃nR(f(n), Z) where R is recursive and f(n)
is defined to be the tuple (f(0), . . . , f(n − 1). This gives an indexing of the Π1

1-
sets. Sacks also obtains a recursive functional ΨZ

R such that ΨZ
R is a set of codes

for tuples in ω<ω (sequence numbers) and S(Z) ⇔ ΨZ
R is well-founded (under the

prefix relation on sequence numbers). Using the length-lexicographical (also called
Kleene-Brouwer) ordering, one can effectively “linearize” ΨZ

R (see [11, proof of Thm
3.5.III]). Thus there is a Turing functional Φ such that for each Z, ΦZ is a real which
is a code for a linear order with domain ω, such that

S(Z) ⇔ ΦZ is well-ordered.

By [11, Exercise 1.11.IV], we have

Lemma 5.1. The binary relation “λS > q” is Π1
1, where S is an (index for a)

Π1
1-Set and q a rational.
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In particular, λS is a left-Π1
1 real. A ∆1

1 Set B is given by Π1
1-indices for B and

2ω − B. By the Lemma, the function which assigns to a ∆1
1 set its measure is ∆1

over L(ωck
1 ).

A randomness notion based on Π1
1-Sets of reals. Recall that to introduce ML-

randomness, both in the classical (r.e. case and in the form of Subsection 3.4, we
used a test concept based on uniformly r.e., or Π1

1, open sets. In both cases there
is a universal test (Rb)b∈ω, namely,

⋂
k Sk ⊆

⋂
b Rb for each ML-test (Sk)k∈ω.

(Naively one would want to use tests of uniformly Π1
1 Sets Sk in place of the open

sets, λSk ≤ 2−k. However, for such a test,
⋂

k Sk is a null Π1
1-Set, and trivially each

null set also induces a test. Thus the null sets are the analog of tests.)
We show that there is a largest one. There is a topological counterpart: Kechris
[4] shows that there a largest thin Π1

1-Set (a Set is thin if it has no perfect subset).
See also [7, Thm 4F.4].

Theorem 5.2. There is a null Π1
1-set Q such that S ⊆ Q for each null Π1

1-Set S.

Proof. We claim that one may effectively assign to each Π1
1 class S a Π1

1 class Ŝ ⊆ S

such that λ(Ŝ) = 0 and if λ(S) = 0 then Ŝ = S. Then to obtain Q we take the
union of all Ŝ, as S ranges over the Π1

1 sets.
To prove the claim, let Φ be a functional representing S in the sense above. At each
α let Sα be the collection of all Z ∈ S for which the corresponding well ordering
ΦZ has rank less than α. Let Ŝ be the set of all Z such that there exists some
α < ωZ

1 with
Z ∈ Sα

λ(Sα) = 0.

Following 5.1 membership of Z in Ŝ is uniformly Σ1(Z) over L(ωZ
1 )[Z]. Thus by

Spector-Gandy Ŝ is Π1
1. Since the set of Z such that ωZ

1 = ωck
1 is conull, Ŝ is the

union of a null set and all Sα, α < ωck
1 which are null, hence Ŝ is null. When S is

null every Sα, α < ωZ
1 , will be null, and hence we will have Ŝ = S. �

The Set Q has the interesting property that Q ∩R 6= ∅ for each non-empty Π1
1-Set

R. For if λR > 0 then R has a hyperarithmetic member X by [11, Thm 2.2.IV],
so that {X} is a Π1

1 Set of measure 0.

Definition 5.3. Z ∈ 2ω is strongly random if it avoids every null Π1
1 set. Or,

equivalently, if it is not an element of the largest null Π1
1 set. Let S denote the class

of strongly random sets.

This notion is called Σ1
1-random in [11]. Of course it implies the Π1

1 version of
ML-randomness, and is in fact much stronger. For instance, each strongly random
set Z satisfies ωZ

1 = ωck
1 , since the class {Z : ωZ

1 = ωck
1 } is Σ1

1 and has measure 1.
By Gandy’s basis theorem, some strongly random set satisfies OZ ≤T O.
The analog of van Lambalgen’s Theorem [12] holds:

Proposition 5.4. For any sets X, Y ,
X ⊕ Y ∈ S ⇔ X ∈ SY & Y ∈ S.

Proof. For the “⇒” direction, note that the Set L = {X ⊕ Y : X ∈ SY } is Σ1
1.

Since λSY = 1 for each Y , by Fubini’s Theorem L has measure 1. Hence S ⊆ L.
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For the “⇐” direction, let S[B] = {A : A⊕B ∈ S}. Then the Set {B : λS[B] = 1}
is Σ1

1 and has measure 1, again by Fubini’s Theorem (otherwise there are rationals
ε > 0 and q < 1 such that λ{B : λS[B] ≤ q} ≥ ε, so that λS =

∫
Y

(λS[Y ])dλ ≤
εq + (1 − ε) < 1). Thus if Y ∈ S then λS[Y ] = 1. Since S[Y ] is Σ1

1 relative to Y ,
X ∈ SY implies X ∈ S[Y ], that is, X ⊕ Y ∈ S. �

It is unknown if there is a low for strongly random set which is not hyper-arithmetical.
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