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Abstract

We investigate degree structures induced by many-one reducibility and
Turing reducibility on the computably enumerable (c.e.), the arithmeti-
cal all all subsets of N. We study which subsets of the degree structure
automorphism bases: for instance the minimal degrees form an auto-
morphism base for the c.e. many one degrees, but not for the other
degree structures based on <,,. We develop a method to show a sub-
set 1s an automorphism base and apply it to the c.e. m-degrees and to
give a modified proof of a result of Ambos-Spies that initial intervals
of the c.e. degrees are automorphism bases. Also, we show that the
arithmetical m-degrees form a prime model.

A central topic of computability theory is the study of sets of natural num-
bers under a notion of relative computability. Specifying a reducibility and
an appropriate class of sets gives rise to a degree structure which may have
interesting “global” properties. This is the case for the degree structures in-
duced by many-one reducibility (denoted <,,) and Turing reducibility (<7)
on all sets, the arithmetical and the computably enumerable (c.e.) sets.
For r € {m, T}, these structures are denoted by D,, A, and R,. The least
element of a degree structure is denotes by o, and the greatest (if any) by
1. In analyzing a degree structure A, the following program is frequently
carried out:

1. Understanding the basic algebraic properties. In other words, one deter-
mines whether A |= ¢, for certain ¢ of algebraic significance. Examples are:
Dr,R,, have minimal elements above o, and R is dense.

2. Studying more general algebraic properties of A. This includes embed-
ding theorems and extensions of embeddings theorems for partial orders,
embeddings of finite lattices (which is most interesting for Rr) and charac-
terizing initial segments (for D1, Dy, Ron).

3. Analyzing properties of Th(A). First one proves that Th(A) is unde-
cidable. This has been done for most degree structures. Next one turns to
fragments of the theories. All the Il5-theories of the degree structures based
on <,,, in the language of u.s.l., are decidable (Degtev [1979]), while, even



in the language of p.o., their 1l3-theories are undecidable (Nies [1996]). The
II3-theory of the p.o. Ry is undecidable by Lempp et al. [1998]. A further
question of interest is whether Th(A) is atomic.

4. Model theoretic properties of A. Now one considers the structure itself,
not only its theory. Interesting topics are the interaction of subsets of A
with the whole (esp. which subsets are automorphism bases), defining a copy
of N without parameters, and whether (in the countable case) A is a prime
model of its theory, or even biinterpretable with N in parameters (i.e. if there
is a parameter defined copy M of (N, +, x) and a parameter definable 1-1
map f: A~ M).

This article contributes mainly to part 4 of the program. The plan is as
follows. In the preparatory Section 1 we state the extension property for
the structures based on <,,, use it to recall characterizations of D,, and
R, and give a characterization of A,,. A subset B of a structure A is an
automorphism base if the only automorphism of A fixing B point-wise is the
identity. In Section 2 we explore automorphism bases of D, and A,,. In
Section 3 we consider codings of copies of (N, 4, x) in these structures and
use them to show that A,, is a prime model and, under the assumption that
V = L, Th(D,,) is atomic. Finally, in Section 4 we develop a general method
to show that a subset B of a structure A is an automorphism base. This
method is applied firstly to show that each definable D C R,,, D Z {0,1}
is an automorphism base. Secondly we improve the proof of Ambos-Spies’
result that each interval o,c] of Ry, ¢ # o, is an automorphism base. As
explained in Nies [ta], the different language used here promises to be useful
in showing that Rt is biinterpretable with N in parameters.

Notation. Let (7.) be an effective list of partial computable functions
defined on initial segments of N which includes all the total computable
functions. Given a degree x in degree structure, z denotes [o, z].

1 The extension property for D,,, A,, and R,,

All three structures D,,,.A,, and R,, can be characterized as distributive
upper semilattices (d.u.s.l.) with certain basic properties and an extension
property (EP). The EP for the degree structure A states that the diagram
below can be completed by a map ¢ such that ¢ = coh, where I, J are ideals
of D and the maps g, h, ¢ are embeddings as ideals, and I, .J, g, h, ¢ satisfy
the restrictions given in Table 1.
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D,, can be characterized as follows. It is the unique distributive u.s.l. of size
2% such that all topped initial segments are countable and the extension
property holds for the embeddings described by Table 1 (see Ershov [1975]).
A structure A over a finite symbol set is called arithmetical if there is an
onto map 3 : N — A such that the preimages of the relations of A under
g are arithmetical (we call n an indez for 3(n)). If the structures A; are
arithmetical via §; (i = 0, 1), then we say amap f: Ag — A; is arithmetical
if the corresponding relation on indices is.

In the following we discuss A,,. Each arithmetical set C' induces an arith-
metical presentation of [o,¢], ¢ = deg,, (C), called the canonical presenta-
tion, in the following way: Let ¢ be an index for the many—one degree of
¥71(C) (a finite set if ¢; is partial, see end of the introduction). Clearly
PN C) < Lb]_l(C) is a ¥9(C @ (') relation of ¢, j.

We say that an u.s.l. W with least element 0 is locally arithmetical if there is
an onto map a : N — W such that for each n, [0,a(n)] is arithmetical via a
map 3, and, if a(n) < a(m), then the inclusion map [0, a(n)] — [0, a(m)] is
arithmetical with respect to these presentations. Clearly A, itself is locally
arithmetical, where a(n) is the many-one degree of the n—th arithmetical
set C' in some effective listing and (3, is the canonical presentation of [0, ¢].

Theorem 1.1 Up to isomorphism, A,, is the only locally arithmetical d.u.s.l.
satisfying the extension property where I,J are topped arithmetical d.u.s.l.
and g, h are arithmetical maps.



Sketch of proof. By a back and forth argument, any two such d.u.s.l. must
be isomorphic. The extension property for A,, is obtained by analyzing the
effective content of Ershov’s construction. For simplicity, let us consider the
case that I = {0}. Thus we have to show that each arithmetical topped
d.u.s.l. J is arithmetically isomorphic to an initial segment of A,,. Here it
suffices to look at Lachlan’s characterization of the topped initial segments
of D, (Lachlan [1970]), which served as a base for Ershov’s work. Effec-
tivizing the proof of Proposition VI.1.12. in Odifreddi [1989], we obtain an
arithmetical sequence of strong indices for finite sets (D;), D; C D;41, which
are subsets of J containing 0 and closed under join such that |J; D; = J. No-
tice that each D; is a distributive lattice. Now the construction in Lachlan
[1970] (with x; being the inclusion map D; — D;41) produces an arithmeti-
cal set U such that J is arithmetically isomorphic to [o,deg,, (U)]. %
The characterization of R,, has been given by Denisov [1978] and is sum-
marized in Nies [2000]. As consequences of the extension properties, we
notice that in all cases the degree structure possesses the maximum possible
number of automorphisms, that any two minimal degrees are automorphic
and that each proper final segment {z : > e} is isomorphic to the whole
structure.

The EP also leadsto a characterization of the k—orbits for D,, and A,,, i.e.
for the orbits under the action of the automorphism group on £ —tuples. For
a k-tuple @ let sz = sup({a; : ¢ < k}).

Proposition 1.2 Suppose @,b are k tuples in D,, [A,.]. Then @,b are in
the same k-orbit iff [0, sz] = [0, s3] via an [arithmetical] isomorphism p such
that p(a;) = b;.

Sketch of proof. The direction from left to right is immediate for D,, and
follows from Lemma 3.4 for A,,. For the converse direction, one utilizes the
EP in a further back and forth argument. &
Below we need the following concept.

Definition 1.3 If I is an ideal in an w.s.l. U, b is a strong minimal cover
(s.m.c.) of I if I =[0,b). In the special case that I = [0,c|, we say that b
is a s.m.c. of c.

As a consequence of the EP (using in the arithmetical case techniques from
the proof of Lemma 3.3 below), we obtain:

Proposition 1.4 Fach countable ideal of D, has a s.m.c. For eachec € A,,,
each arithmetical ideal of € = [0, €] has a s.m.c. in A,,.



2 Automorphism bases for D,, and A,,

Various theorems will have a version for D,, and one for A,,, in which case
we will write the changes for A,, in brackets ”[]”.

Theorem 2.1 Nies [2000] Fach set {z : * > a} is an automorphism base
of Dy. The same holds for A, and (ifa < 1) for R,,. &

The rest of this section is devoted to proving that many interesting subsets,
like the minimal degrees, are not automorphism bases of D,, [A,,]. First we
need to develop some algebra of d.u.s.l.

Definition 2.2 Suppose U is a d.u.s.l., 7 : I — J is an isomorphism of
ideals and M is an ideal of U. We say that 7 fixes M if 7(z) = z for all
zelnNMand = Yz)==z forallz € JNM (and thus M NI =MnJ).

Lemma 2.3 Suppose 7 fizes M. Then there is a unique isomorphism p
between IV M and J vV M which extends m and fizes M. We denote this
map p by ™V M.

Proof. The map is unique because any such p must satisfy p(z Vv m) =
m(z) V m (where z € I,m € M). To see that this equality describes a
well-defined map, suppose 2V m = yV n, where z,y € I,m,n € M. Then
z =7yVnforsomey <yandn <n. Hencew(z) <n(y)vn<7(y)Vn. By
symmetry, 7(z) V. m = 7(y) V n.

To see that p is an isomorphism, define a map ¢ : JV M — IV M by
o(zVm)=7"1(2)Vm. Then o is well-defined and p and o are inverses. ¢
We proceed to the main results of this Section. In the following, an ideal
S of A, is locally arithmetical if S N [o,c] is an arithmetical subset of [o, c]
(with the canonical presentation), for each ¢ € A,,.

Theorem 2.4 Suppose M is a proper ideal of D,,[A,.] which is invariant
under automorphisms [and locally arithmetical]. Then M is not an auto-
morphism base.

We begin with the proof for D,,.

Lemma 2.5 Suppose that my : Iy — Jo is an isomorphism of ideals of size
< 2% which fires M. Then my extends to an automorphism © of D,, which
fizes M.



Theorem 2.4 follows from the Lemma: pick z ¢ M and, by the EP, let
p,q be distinct strong minimal covers of z. Let Iy = [o,p],Jo = [o,q]
and let 7y : Iy — Joy be the isomorphism fixing [0, z]. Then 7y fixes M.
So the automorphism 7 obtained from Lemma 2.5 shows that M is not an
automorphism base.

Before proving the lemma, we give some concrete examples in D,,. Consider
the following ideals.

Example 2.6 For a countable ordinal a, let
M, =[{w: 36 < afo,w] = B}]q4-

For instance, M; is the ideal generated by the minimal degrees. Clearly
M, is automorphism invariant. Moreover, a < § < w; implies that M, is
a proper subideal of Ms, and indeed that there is an automorphism fixing
M., but not Ms, pointwise: By Lachlan [1970] pick w € D,, such that
[0,u] = a. As above, let p, g be distinct strong minimal covers of w. Then
p,q € Ms— M,. Let my be the isomorphism [0, p] — [0, g] and extend it to
an automorphism fixing M,.

Proof of the Lemma. Fix some wellordering < of D,,,. We obtain 7 by a back
and forth—construction through the ordinals < 2%. Suppose 7, : I, — J,
has been defined such that 7, fixes M. If a is even, let w be the <least
degree ¢ I, and let X = @ N M. By the inductive hypothesis and Lemma
2.2, obtain the isomorphism 7, VX : I,VX — J,VX. Nowlet I,11 = [,V©.
Apply the EP for the diagram

Dy,

IN

Ja vX Ta41

(ro V X)™!
I,V w

in order to obtain 7441 : Io41 — D, Let Joyq be the range of mq41.
We verify that 7,41 still fixes M. Suppose that z € M N I,4q with the
intention to show m,41(z) = z. Then z = w’' V y for some v’ < w and
y € I,N M. Since m441(y) = y by inductive hypothesis, it suffices to
show that m,41(w’) = w’. But w’ € X, so, since the diagram commutes,
0 = Taga (7o VX)) = Faga(w).

To prove the second condition in Definition 2.2, it suffices now to show
that Jo41 N M C Iy4q. Let v = mupq(w). Suppose z € Joy1 N M. Then



z =o'V y for some v/ < v,y € J,. By the inductive hypothesis y € I, so
it suffices to show that v’ € I,41. But M is automorphism invariant, so by
Proposition 1.2 (with k = 1), rqp(@N M) =20 M. So v' = mayq(w’) for
some w’ € @ N M = X. This implies w’ = v’, whence v’ € X C I,41.

If a is odd we proceed as before but with I,,.J, interchanged. At limit
ordinals A we take unions of partial isomorphisms. Note that Iy = |J, .\ I«
has cardinality < 2¢ since it is generated by || many principal ideals. {
To prove the Theorem for A,,, we have to adapt Lemma 2.5 and its proof.

Lemma 2.7 Suppose that ng : Iy — Jo is an arithmetical isomorphism of
initial intervals of A,, which fires M. Then mg extends to an automorphism
7w of D, which fires M.

The Theorem for A,, is now obtained as before. To prove the Lemma, go
through a back an forth—construction of w steps, using the EP for A,, and
that M is locally arithmetical. o
Example 2.6 has an application to Aut(D,,). Note that if S is an automor-
phism invariant subset of a structure A, then the pointwise stabilizer of 5
is a normal subgroup of Aut(A).

Theorem 2.8 The automorphism group of D,, possesses a strictly descend-
ing chain (Uy)a<w, of normal subgroups.

Proof. let U, be the stabilizer of M,. Ths sequence is strictly descending
by the remarks after Example 2.6. &
In a similar way, one obtains a descending chain of length w{!¥ of normal
subgroups for Aut(A,). Here wi!® is the first ordinal not given by an

arithmetical wellordering.

3 Atomic theories and prime models

Recall that a structure A is a prime modelif A is an elementary substructure
of each B = A. For countable A, being a prime model is equivalent to each
realized k-type being principal, or again each k—orbit being (-definable.
Thus, a proof that a countable A is prime helps us to understand the orbits.
A complete theory T in a countable language has a prime model iff all it
Lindenbaum algebras are atomic (such a 7" is itself called atomic).



3.1 Schemes

The following is discussed in more detail in Nies et al. [1998]. A scheme for
coding in an L-structure A is given by a list of L-formulas ¢1, ..., ¢, with
a shared parameter list p, together with a correctness condition «(p). If a
scheme Sy is given, X, Xg, X1, ... denote objects coded via Sy by a list of
parameters satisfying the correctness condition.

Example 3.1 A scheme Sy for coding models of some finitely axiomatized
fragment PA~ of Peano arithmetic (in the language L(+, X)) is given by the
formulas @pum(2,D), 0+(2,y,2;D), ox(2,y,2;P) and a correctness condition
ag(p) which expresses, among others things, that ¢, and ¢y define binary
operations on the nonempty set {z : @pum(z;p)}, and that {z : @rum(z;D)}
with the corresponding operations satisfies the finitely many axioms of PA™.

For our applications it is sufficient to work with Robinson arithmetic @.
Then all coded models N have a standard part isomorphic to N. If this
standard part equals N we say that N is standard.

Example 3.2 A scheme S, for defining a function g is given by a formula
v1(z,y;p) defining the relation between arguments and values, and a cor-
rectness condition a(z,y;p) which says that a function is defined.

3.2 Coded copies of (N, +, x)

In the following “ar.” abbreviates “arithmetical”. First we need some facts
on distributive upper semilattices. Recall that a sequence (u;) in an u.s.l. U
is independent if no wu; is below a finite supremum of other elements in the
sequence. In the following, when we say the d.u.s.l. U is embedded into V,
we mean hat U is isomorphic to an ideal of V.

Lemma 3.3 Suppose U is a countable [ar.] d.u.s.l. and (a;) is an [ar.]
sequence in U. Then U can be embedded into a countable [ar.] d.u.s.l. V
with greatest element which contains an [ar.] independent sequence (b;) such
that, for all 7, b; is a s.m.c. of a;.

Proof. FEach countable [ar.] d.u.s.l. can be embedded into a countable [ar.]
Boolean algebra B preserving 0, V. By the Stone representation theorem we
can suppose that elements of B are [ar.] subsets of T where 7' C 2<% is an
[ar.] tree, and the operations of B are the usual operations on sets. Coding
the elements of T' by odd numbers, we can assume that U is a subsemilattice

of (P({2n+1:n € N}, U,0).



First we add only one s.m.c. by to ag. Let by = ag U {0}, and let Vj be the
collection of sets generated under finite unions by U U {bg}. Clearly, each
element of Vi — U has the form 2 U by for somce x € U. Thus U is an ideal
of Vy and by is a s.m.c. of ag. It remains to be shown that V{ is distributive.
Given z C y U 2z, we want to find ¢’ C y,2’ C 2z such that x = ¢y’ U 2/. If
y Uz € U, this is possible by the distributivity of U. Otherwise, say z ¢ U
sothat z =2Uao U {0}. Then yUz=gyUZzZUaoU{0} where y€ U,y C y.
If x € U, then z C ¥ U Z U ag, and we obtain z’,3" by distributivity of U.
Otherwise z = 7 U ag U {0}, where 7 € U. Then 7 C y U z U ap implies
T =y Uz forsomey C¥y, 2" CZUay. Let 2’ =2"UaU{0} €V, then
r=19y U2\

Now continue this process, adding for ¢ > 0 a s.m.c. b; = a; U {2¢} in order
to embed V;_; into V;, and let V = {N} U J; Vi. Clearly (b;) is independent
and V has a greatest element. Finally, in the arithmetical setting, V is
arithmetical. O
The following Lemma on coding of copies of (N, 4, X ) has again versions for
Dy and A,,. The coding schemes used, which will be kept fixed from now
on, do not change from one version to the other.

Lemma 3.4 There are schemes Sy, Sy as in Frample 3.1 and Example
3.2 with the following property. For any sequence (a;)ien [any ar. sequence
of degrees in an initial interval of A,,], there is a standard M and a map f
such that a; = f(iM). Moreover, the domain of M is an independent set.
[Finally, Sy can be evaluated in an initial interval of A,,.]

Proof. We first consider D,,,. Let U = [{a; : i € N}];q. We will embed
U into a d.u.s.l. V encoding M, f as desired, and then apply the EP. The
first step is to apply Lemma 3.3 to the sequence ag,0,ai,0,... in order
to obtain an extension V' and a sequence of s.m.c. (b;). The domain of
M will be {b; : i even }. By the proof of Thm 4.2 in Nies [1996], there is
a scheme without parameters via which that a copy M of (N, +, X) can be
encoded into a symmetric graph (N, /), where the even numbers serve as the
domain of the coded model. Embed V' into a d.u.s.l. V' by applying Lemma
3.3 to a sequence listing {b; V b; : Eij} (notice that, by independence, all
these suprema are distinct). Let (¢z) be the sequence of s.m.c. obtained in
this way. Now apply the EP to U,V and identify the elements of V' with
many-one degrees. By Proposition 1.4, there are s.m.c. b, ¢ for the ideals
[{b; : i € N}]iq and [{ck : ¢ € N}];q, respectively. Then the sets {b; : i € N}
and {c; : k € N} are definable in [0,b) and [0, ¢) as the maximal join-
irreducible elements. Since we can now recover a copy of (N, £)in a first—
order way, this gives a scheme 53 involving parameters b, ¢ to code M. The



scheme Sy in the same parameters is determined by f(z) =a & z € M
is a s.m.c. of a.

All the constructions involved are arithmetical, and V has a greatest ele-
ment. This gives the Lemma for A,,. O
As a consequence we can quantfy over countable subsets [arithmetical sub-
sets of initial segments]. Then we are able enrich the scheme Sy by a
correctness condition implying that all coded M are isomorphic to N: the
standard part of any M is a set of the required type, so we can express in a
first-order way that the standard part equals M. In the following we assume
this additional correctness condition.

In the case of D,,, arbitrary subsets Y of M can be represented by elements
d of D,,, because by the independence of the domain of M and the existence
of a s.m.c. for [Y];4, Y = M NJo,d] for some d. Thus, for each second—order
formula (X)) in the language of arithmetic, there is a formula §(d,q) such
that, if M is coded by parameters q, then X C M satisfies ) in M iff
D.. E p(d,q) for any d representing X.

3.3 Results for D,, and A4,,

The following Theorem connects the three classical areas of Mathematical
Logic.

Theorem 3.5 If there is an analytical wellordering on P(w) (for instance
if V.= L), then Th(D,,) is atomic.

Proof. Suppose the set theoretical hypothesis holds. We must show that
each nonempty definable k-ary relation R on D,, contains a (-definable
k—orbit.

The functions ; were defined at the end of the introduction. From here on,
let us assume also that, for all 4, y; is a total 1-1 map onto NI = {(n, ) :
n € N}. For A C N, the following set of numbers describes [0, a]:

(1) Diag(A) = {(i,7) : 97" (A) <m ¥7 ' (A)}.

In the following, we call a set X C N second-order definable if {X} is
projective. Xo @ ...® Xp_1 denotes the set {(n,7):n € X; & 5 < k}.

Claim 3.6 Suppose A; (i < k) are sets, A= Ag @ ...® Ay_y and Diag(A)
is second-order definable. Then the k—orbit of (ao, ... ,ar_1) is O—definable.
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To prove the Claim, by Lemma 3.4, choose a standard M and f such that
f(M) = deg,, (7' (A)) and in particular, for i < k, f(2i™) = a,.
By the remark after Lemma 3.4, replacing set quantifiers by degree quanti-
fiers in a second-order definition of Diag(A), one obtains a formula §(c, q)
such that, given My (this notation indicates that M is coded by the tuple
q), #(c,q) holds iff €N My is Diag(A) (viewed as a subset of M). Then b is
automorphic to a iff
dq Elf: Mgz — [0, s3] onto Je [B(c,q) & Vi < k f(QiMfi) =b &

{(i,7) € Mg : f(i) < f(5)} = €N Mg]
(for the direction from right to left one uses Proposition 1.2). Since the
second statement can be formulated in the first—order language of u.s.l.,
this proves the Claim. Now, if 5 is a nonempty projective k—ary relation,
then the class of sets {Diag(Ao @ ... P Ar—1) : (Ao,...,Ap—1) € S} is
projective. By the set theoretic hypothesis, this class contains a 2nd—order
definable element. If we let S be the (projective) relation on subsets of N
corresponding to R, by the Claim we obtain a definable k—orbit in R. &
G. Hjorth and the author have proved that Th(D,, ) is not atomic in a Cohen
extension of the universe.

Theorem 3.7 A,, is a prime model.

Proof. We must show that each k—orbit is (—definable. Suppose @ is a k—
tuple in A,,, and that A; is a set in a;. Let A = Ag®...6 Ar_1. Then the
set Diag(A) given by (1) can be defined in (N, +, x) by a formula §(n). We
conclude that b is automorphic to @ iff
M 3f: M — [0, s3] onto [Vi < k ]T(QiM) =b &

{(r.5)e M f(1) < f(3)y={neM: M| én)}

(once again, we use Proposition 1.2). &

4 Proving sets are automorphism bases

To prove a subset B of a structure A is an automorphism base, one might
try to find a 1-1 B—definable map H : A — B. Then, if the automorphism
F fixes B pointwise, it must be the identity. Our method uses this idea
in a more general setting: a 1-1 map H maps elements of A (or, more
generally, of an automorphism invariant subset C' which is already known
to be an automorphism base) to complex objects of one and the same “B-
type” 7, which are constructed from elements of B. Such a map is first—order
definable in a more general sense described below. The proofs that such a
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map H is 1-1 are described by finite games. Given distinct elements x,y €
C, we try to show H(z) # H(y) while the opponent claims H(z) = H(y).
We begin with an example with the structure Ry, where ¢ = Rp and
B = NC is the set of noncappable degrees. For this we need the following
splitting theorem, which can be readily proved using the finitary techniques
in Soare [1987].

Proposition 4.1 If p is low and ¢ £ p, then for each x there are low
degrees xg, 1 such that € = zgV @1 and ¢ L pV z; for i = 0,1. Moreover,
if € € NC, one can ensure that g, 1 € NC. &

Proposition 4.2 The map H given by H(z) = {[p,1]N NC,[g,1]N NC':
pVq==a}is 1-1. Hence NC is an automorphism base.

Proof. Suppose & # y. We play the following game. Say £ y.

Round 1. We provide low degrees p,q such that y = p VvV g. To support his
claim, the opponent has to provide p,q such that z = pV q, [p,1] N NC =
[p,1]N NC and [g,1]NNC = [¢g,1] N NC.

Round 2. Since x £ y, p £ p or ¢ £ q, say the first. By Proposition 4.1,
we choose u € NC such that p < u but p £ u. (Let 2 = 1,¢ = p. At least
one z; is noncappable, so let w = p V @; for this ¢.) The opponent loses. ¢
Next we introduce the formalism of B-types and the corresponding maps.

Definition 4.3 Suppose A is a structure and B C A.
(i) Each formula ¢(z,y) with parameters in B is a B-type.

(ii) If 7v,...,7, are B-types and o(x,y1,...,Yyn) is a formula with pa-
rameters in B, then 7 = (1,...,Ty; ) is a B-type.

Definition 4.4 Suppose B C A and 7 is a B-type. We define a map H.p
by induction on T.

(i) If 7 is p(z,y), let H.p(x) ={y € B : p(z,y)}.

(i) If T = (11, ..., T} ), then let H.g(x) = {(H~B(Y1),-.., H:B(Yn)) :
S‘o(wfyla e 7yn)}

To see how this applies to the preceding example, for ¢ = 0, 1 let ¢;(z;,y) be
y € NC & z; < y. Moreover, let ¥(z,z9,21) be z = 29 V z1. Then for the
NC-type 7 = (@0, ¢1;%), H_N is the map introduced in Proposition 4.2.
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Suppose I : A — A. We define F'(H.g(x)) by applying I to the atomic
components of H,g(z):

In Case (i) of Definition 4.3, let F(H,g(z)) ={F(y): ¢(z,y) & y € B}.
In Case (ii), let F(H;p(®)) = {(F(H;B(Y1)),..., F(H;,B(Ys))):
o(x,y1,...,Yy,)}. Clearly, if F' fixes B pointwise, then F fixes H,p(x).
Moreover, by induction over the length of 7, one verifies that, whenever F’
is also an automorphism, then H, g(F(x)) = F(H,p(x)).

Proposition 4.5 Suppose C' is an automorphism invariant automorphism
base and H,g[C is 1-1. Then B is an automorphism base.

Proof. Suppose the automorphism F fixes B pointwise. Then, for each
xeC,H(F(x))=F(H(x)) = H(zx). Since F(z) € C, by hypothesis on
this implies that F'(z) = . Thus F fixes C' pointwise. ¢
Our first application of the method is to R,,. Recall that Z denotes [o, z].

Theorem 4.6 Suppose D C R, is D—definable and D € {0,1}. Then D is
an automorphism base of Ry, .

As an example, for each finite distributive lattice L, the set {z : [0, 2] = L}
is an automorphism base. In Nies [2000], this was proved for the special
case of L = {0,1}. A similar result holds for . = (w", <), n < w (compare
this to Example 2.6!).

Proof. Consider the first—order property

(2) o(y) =Vq([0,y) LG =3de D (d<y & d£q).
Many degrees enjoy this property:
Claim 4.7 VzVz[z £ z = Je > z(z £ e & 7p(e))].

Before proving the Claim, we apply it to provide an appropriate 7D-map
showing that D is an automorphism base: let

H,p(e) = {lo.y) N D : 1p(y) & y > ).

To show that this map is 1-1 on €' = R,,, given z,x such that z £ x, using
the Claim we play e > @ such that z £ e and yp(e). The opponent answers
with w > z such that yp(w) and claims that [o,u) N D = [0,e) N D. But
[0,u) € e, so this contradicts yp(u).

13



Proof of the Claim. We can assume that D is a (-definable subset of R~ =
Rum-{1} and D € {0}. We make use of a technique which was introduced in
Nies [2000] to prove that for some e < 1, [0,e) is an elementary submodel
of R..,. By recursion over k > 0, increasing functions Fj on indices of
c.e. many—one degrees were defined with the property that, for each a <
1, [0, Fi(a)) <k R,,. (i.e., the inclusion map preserves ¥j-formulas). In
addition, [0, Fo(a)] is effectively isomorphic to R,
Given z,z as in the Claim, we will let e = Fj (), where £ > 1 is a number
such that D can be defined by a Xj-formula. Since we need z £ e, we have
to slightly extend the construction in Nies [2000]. For each r we want to
achieve that z £ @ = z £ F.(a).
For r = 0 this is possible by Remark 2.4 (2) Nies [2000]. F},4+1(a)is a degree
y such that [o,y) = Ui[o,Fy)(a)). By Lemma 2.1 there, which goes back
to Ershov and Lavrov, this strong minimal cover of can be chosen distinct
from z. Thus z < y would imply z < F}Z)(a) for some 1.
It remains to show yp(e). Suppose [0,e) € q. Since [0,e) < R, there
exists d € (0,e)N D. If d £ g, we are done. Otherwise we replace d by an
automorphic image d’ in € such that d’ £ q: Let I = e N q. By hypothesis
on q, I # [o,e). Therefore, for some 7 > 0, b = FO(Flgl_)l(a:)) g1 and b <e.
By the definition of Fp, bis effectively isomorphic to R,,. We apply Lemma
2.1 in Nies [2000] to the %9—ideal I N b of b and obtain an @ < b such that
Inbd C a. Now we apply the EP for R,,, again with b in place of R,,, to
the following diagram:

5

a x

in order to obtain the map ¢. Let d' = ¢({(0,d)), then d’ < b, d’ £ a and
therefore d’ £ q. By a back and forth—construction within €, the map ¢
can be extended to an automorphism of e. Since [0,e) <; R,,, this implies
deD. %

Little is known about the structure of Aut(R,,). However, since

—{1}=

-~

d
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is isomorphic to the AY m-degrees (Denisov [1978]), one can infer the exis-
tence of an automorphism of order 2 which corresponds to complementation
of AY-sets.

Our second application is to Rr.

Theorem 4.8 Ambos-Spies [ta] For each ¢ € Rr-{o}, [0,¢c] is an auto-
morphism base.

Proof. We will apply Proposition 4.5 with C' = NC (a (-definable set which
is an automorphism base by Proposition 4.2) and B = ¢. We will introduce
an appropriate H,z—map, where o is a B-type. The map is based on Ambos-
Spies’ “downward splitting property”: let

DSP={a:VbgaV¥dZbVvaldna+dnb|}

This property corresponds to yp in the previous proof. Note that DSP C
NC. The next Lemma shows that sufficiently many degrees are in DSP.

Lemma 4.9 Ambos-Spies [ta] Suppose p £ g, p € NC and q is low. Then
there is an a such that a € DSP, a < p and a £ q.

H,s(z) is a complex object constructed from ideals € N @, where @ € DSP:
let H,a(z) =
{{{{ena :a € pyNDSP},{cna :a € piNDSP}) : poVp1 = p & p; € NC},
{{ena :a € goyNDSP},{cna:a € ¢NDSP}) : qoVq1 = q & q; € NC} :
pVg=z & p,qfckpqecNC}
We must show that H,z[NC ia 1-1. Suppose z,y € NC are given, and
x £ y. The game is as follows.

Round 1. By Proposition 4.1, we play a split y = p V ¢q, where p,q €
NC N Low and ¢ £ p,q. The opponent responds with a split « = pV ¢
where p,g € NC and ¢ £ p,q.

Round 2. Say p £ p. Again by Proposition 4.1, we split p = dg V dy, where
d; € NC and ¢ £ d; V p. The opponent responds with a split p = eg V eq,
where e; € NC. Then e; € Low.

Round 3. Say do £ eqg. Using Lemma 4.9, we play b such that b € DSP,
b < dy and b £ eg. The opponent responds with a such that @ € DSP and
a < eg, and claims that ane = bne.

But his claim is wrong: b £ a since @ < eg while b £ eg. Moreover,c £ aVb
since a Vb < dgVeg while ¢ £ dgVp. Thus his claim contradicts @ € DSP.
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Proof of Lemma 4.9 We sketch Ambos-Spies’ construction of a c.e. set A such
that @ € DSP. By the finitary character of the strategies, the construction
can be easily expanded in order to prove the Lemma.
Given c.e. sets B,C, we enumerate sets I' <7 A,C and G. (e € N) such
that, under the assumption that B €7 A and C' €7 B & A, the following
requirements are met:
P.: FP£{e}? v G. <1 B,C

Qe,i: F= {e}B = G. 7£ {i}Av
where P, has higher priority than any ().;. The reductions I’ <7 A,C are
by direct permitting, G. <7 C (if applicable) by delayed permitting, while
G. <t B is is a proper T-reduction (but with no delay in correcting). We
do not name these reductions and write e.g. G, <7 C(y) for the output on
input y.
A set-up for (). ; at stage s is a pair z € Wl y e wlted] such that {e}B(z) =
{i}4(y) = 0[s] and u(A;i,y,s) < z < vB(y,s), where y5(y, s) is the “stan-
dard marker” maz{t < s: Bi[y # Bi+1]y}. The number z is targeted for
F’, while y is targeted for GG.. The strategy for (). ; is the following: if the re-
quirement is unsatisfied, a set-up z,y exists at stage s and Cs[y # Cs11[vy,
then we say the strategy requires attention. At this stage s, attempt to
meet P, by putting z into /" and A (note that this A-enumeration does not
destroy {i}*(y)). Moreover, initialize the strategies of lower priority than
Qe,i. This is a win for the higher priority requirement P. (and hence all
(e,i) unless, at a stage t > s, for the first time B changes below the use of
{e}B(z). The use of the computation G. <7 B(y) at a stage r is defined
to be u(B, e,v5(y))[r] (where we assume that the use of {e}” is monotonic
in the input). So this B-change makes G, <7 B(y) undefined. Also, at
stage s we used the C'—change to make G. <7 C(y) undefined, and redefine
it only now at stage t. Thus we are allowed to put y into G, and declare
the requirement satisfied. If F/ = {e}?, then the B-change must occur, so
we always redefine G, <t C(y) (if Q. is initialized before, we also redefine
the reduction).
In the construction we start the highest priority strategy ¢).; which requires
attention, and later do the G, enumeration (which does not injure other
strategies) when necessary. Also we update the functionals as described
above.
The verification is as follows. Clearly the action of the (). ; is finitary after
it is no more initialized. Suppose that F' = {e}?. The reduction G, < C' is
total since it is always redefined and its use equals the input. The reduction
G. <r B is total since {e}? is. Now suppose Qe is no met, i.e. G, = {i}A.
If B £7 A, then infinitely many set-ups z,y for ). ; must appear at stages s
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such that {e}B(z) and {i}*(y) are stable, and thus the set-up is permanent.
Since A& B can recognize such permanent set-ups, C' £7 A@ B implies that
infinitely often a C'[y change must occur when a set-up z,y exists. Thus,
after (). ; is no more injured, we win the requirement. o
One can define composition of maps as above: for instance, if H is the
map from Proposition 4.2, H,e = H o H,a(z) is {{H,e(y1) : 1 € [p,1]N
NC},{H,&(y2) :y2 € [g,1]NNC} : pV g = x}. This is a 1-1 map from the
whole structure into objects of type pc. It follows that Ry is biinterpretable
with N in parameters if, for some ¢ # o, there is a parameter defined copy

M of (N, +, x) and a parameter definable 1-1 map g : ¢ — M.
This research was partially supported under NSF grant DMS-9803482.
E-mail address: nies@math.uchicago.edu

5 Bibliography

K. Ambos-Spies [ta]. Automorphism bases in the recursively enumerable degrees.
To appear.

A. Degtev [1979]. Several results on uppersemilatiices and m-degrees. Algebra and
Logic,textbf18, 664-679.

S. D. Denisov [1978]. The structure of the uppersemilatiice of recursively enumerable
m-degrees and related questions, I. Algebra and Logic 17, 418-443.

Yu. L. Ershov [1975]. The upper semilattice of numerations of a finite set. Algebra
i Logika 14, 258-284 (Russian).

A. H. Lachlan [1970]. Initial segments of many-one degrees. Canad. J. Math 22,
75-85.

S. Lempp, A. Nies, and T. A. Slaman. The I3-theory of the enumerable Turing
degrees is undecidable. Trans. Amer. Math. Soc. 350 (7), 2719-2736.

A. Nies [ta]. Definability in the computably enumerable degrees: Questions and
result. To appear in Contemporary Mathematics.

A. Nies [2000]. Model theory of the computably enumerable many -one degrees. To
appear in the Logic Journal of the IGPL, http://www.dcs.kel.ac.uk/journals/IGPL.
A. Nies [1996]. Undecidable fragments of elementary theories. Algebra Universalis
35, 8-33.

A. Nies, R. Shore, and T. Slaman [1998]. Interpretability and definability in the
recursively enumerable Turing-degrees. Proc. Lond. Math. Soc. 3 (77), 241-291.
P. Odifreddi [1989]. Classical Recursion Theory (Volume I). North—Holland
Publishing Co., Amsterdam.

R. L. Soare [1987]. Recursively Fnumerable Sets and Degrees. Perspectives

in Mathematical Logic, Omega Series. Springer—Verlag, Heidelberg.

17



