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EFFECTIVELY DENSE BOOLEAN ALGEBRAS 
AND THEIR APPLICATIONS 

ANDRE NIES 

ABSTRACT. A computably enumerable Boolean algebra B is effectively dense if 
for each x C B we can effectively determine an F(x) < x such that x 4: 0 implies 
0 < F(x) < x. We give an interpretation of true arithmetic in the theory of 
the lattice of computably enumerable ideals of such a Boolean algebra. As an 
application, we also obtain an interpretation of true arithmetic in all theories 
of intervals of ? (the lattice of computably enumerable sets under inclusion) 
which are not Boolean algebras. We derive a similar result for theories of 
certain initial intervals [o, a] of subrecursive degree structures, where a is the 
degree of a set of relatively small complexity, for instance a set in exponential 
time. 

1. INTRODUCTION 

We describe a uniform method to interpret Th(N, +, x) in the theories of a wide 
variety of seemingly well-behaved structures. These structures stem from formal 
logic, complexity theory and computability theory. In many cases, they are closely 
related to dense distributive lattices. In spite of the structure's apparent well- 
behavedness, the theory turns out to be as complex as possible, namely it has the 
same Turing degree as 0(). 

An interpretation of a theory T1 in T2 is a many-one reduction from T1 to T2 
which is defined in some natural way on the sentences of the language of T1. A 
good first step towards understanding a theory is to find out which well-understood 
theories can be interpreted. Interpretations of structures are defined e.g. in [11]. 
Our method to interpret Th(N, +, x) uses concepts from effective algebra. First we 
investigate a lattice of ideals of certain effective Boolean algebras, with the goal of 
showing that its theory interprets Th(N, +, x). Then we interpret such lattices in 
all structures under consideration. A precursor of this method was derived in [19], 
where it is proved that such lattices of ideals have an undecidable theory. 

In the following we will discuss the applications. 

Application I: Formal logic. We consider lattices of computably enumerable 
(c.e.) theories under inclusion. In the first-order language based on the symbol set 
{0,1, +, x}, let Q denote Robinson arithmetic, and let T be a recursively axiomati- 
zable, consistent theory containing Q. (Thus T is a theory where Godel's theorems 
apply.) Now, let CT be the lattice of c.e. extensions of T closed under inference. 
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Theorem 1.1. Th(N, +, x) can be interpreted in Th(LT). 
Application II: Complexity theory. In complexity theory, one considers subsets 

X, Y of e.g. {0, 1}<. Polynomial time bounded analogs of the recursion theoretic 
reducibilities are introduced. For instance, polynomial time many-one reducibility 
is defined by X <P Y => 3f C PTIME[X = f-l(Y)], and polynomial time Turing 
reducibility by X <T Y X there is a polynomial time bounded oracle Turing 
machine taking inputs in {0, 1}<W which computes X if the oracle is Y. Analogs of 
other reducibilities, like truth-table reducibility, can be defined in a similar way. We 
let (RecP, <) be the p.o. of polynomial time r-degrees of computable sets, where <P 
is a polynomial time reducibility in between (and possibly equal to) <P and <P. 
Ladner [13] proved that RecP is dense, thereby introducing the method of delayed 
diagonalization (see also [4]). Slaman and Shinoda [20] gave an interpretation of 
Th(N, +, x) in Th(Recp), but left open the case of polynomial time many-one 
degrees. Three years later, Ambos Spies and the author [3] proved that Th(Rec ) 
is undecidable. However, the two latter results use computable sets of very high 
complexity (usually nonelementary sets), and therefore don't allow us to obtain 
information about degree structures based on complexity classes low down. 

Recall that DTIME(h) {X C {0, 1}< : X can be computed in time O(h)}. 
Based on the general method developed in [19], R. Downey and the author proved 

that Th(DTIME(2T), <P) is undecidable [7]. Recall that a function h: N - N 
is time constructible if h(n) can be computed in time O(h(n)). In [7] we prove 
in fact that the result above holds for any time constructible hyperpolynomial 
function h(n) in place of 2n (e.g., nl?g n), where h is hyperpolynomial if h eventually 
dominates all polynomials. Here we prove a related result. First recall that A is 
super sparse [2] if there is a strictly increasing, time constructible f : N F-+ N such 
that A C {of(k) k C N} and "0Of(k) c A?" can be determined in time O(f(k + 1)) 
Here we require that, in addition, Vp (a.e. n) [f(n)P < f(n+ 1)]. Given a reducibility 
<P, we denote the degree of a set X by x and also write degP(X) for x. RecP(< a) 
denotes the initial segment of r-degrees < a. 
Theorem 1.2. If A C {0}* is super sparse and A ? PTIME, then Th(RecP(< a)) 
interprets Th(N, +, x). 

It was proved essentially in [2] that each class DTIME(h), where h is hyperpolyno- 
mial and time constructible, contains such a strongly super sparse set A. Because 
a - degP (A) can be used as a parameter and sufficiently many degrees in RecP(< a) 
are in DTIME(h), Theorem 1.2 implies the result in [7]. 

Notice that there is actually only one type of structure even if <P varies: in [2] 
it is proved that the p-T-degree of a set X <T A collapses to a single 1-tt-degree, 
and that RecP (< a) is computably isomorphic to RecP tt(< a). 

Application III: Computability theory. Recall that S is the lattice of c.e. sets 
under inclusion. We will consider intervals of S and of S* :=- ?/*. 

If an interval is a Boolean algebra, then by a result of Tarski (see [6]), its theory 
is decidable. We show that otherwise the theory has the maximum possible com- 
plexity. Maass and Stob [14] had asked whether the theory of [D, A], for D C, A, 
is undecidable. This was answered to the affirmative in Nies [19]. 
Theorem 1.3. Suppose D C A, where D,A eC . If [D,A]s is not a Boolean 
algebra, then Th(N, +, x) can be interpreted in Th([D,A]). A similar statement 
holds for E*. 
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EFFECTIVELY DENSE BOOLEAN ALGEBRAS 

2. EFFECTIVELY DENSE BOOLEAN ALGEBRAS 

As in [19], a c.e. Boolean algebras is given by a model (N, <, V, A) such that -C is 
a c.e. relation which is a pre-ordering, V, A are total computable binary functions, 
and the quotient structure B = (N, , V, A)/; is a Boolean algebra (where n 
m X n -nm & m -< n.) More generally, for ES-Boolean algebras, one requires 
that - be EO and that A, V be recursive in 0(k-1). Note that the complement of 
b E B can be computed using a 0(k-1)-oracle. 

While developing some theory of ES-Boolean algebras, we will introduce and 
refine three examples which will lead us towards the applications. First we introduce 
the various Boolean algebras we need. 

Examples 2.1. El: Let T be a consistent recursively axiomatizable theory, and 
let BT be the Lindenbaum algebra of sentences over T. 

S0: the Boolean algebra of complemented elements in RecP(< a), where a is the 
degree of a super sparse set (see [7]). 

E0: the Boolean algebra of complemented elements in [D*, A*]c, where D,A E 
S, D C0o A. 

As in [19], for a E?-Boolean algebra B, let 

Z(B) := the lattice of ZS-ideals of B. 
In the following we will use the terminology of c.e. Boolean algebras. It should 

be clear how to relativize the notions to the ES-cases. We list some properties of 
Z(B) which show that, in a sense, I(B) is similar to S. T(B) is a distributive lattice 
with least and greatest elements (the infimum of A, B C Z(B) is A n B, and the 
supremum is {a V b : a C A & b C B}). It is easy to prove that 1(B) also has the 
reduction property (see [21]), namely each supremum of two elements is the disjoint 
supremum of two smaller elements. All principal ideals [0, b]8 of B are in Z(B). The 
class of principal ideals is definable: an ideal is principal iff it is complemented in 
I(B). 

It can occur that 17(B) B 3, even for a dense c.e. B: one can construct a dense 
B such that every c.e. ideal is principal [15]. However, the c.e. Boolean algebras we 
consider now have a very complex lattice of c.e. ideals. A c.e. Boolean algebra B is 
called effectively dense [19] if there is a computable F such that Vx [F(x) < x] and 

(1) V\x 0 0 [0 - F(x) -<x] 
More generally, a ZS Boolean algebra B is effectively dense if the above holds 

with some F <T 0)(k-1) All effectively dense Boolean algebras are isomorphic to D, 
but not necessarily effectively isomorphic. Thus our study of Boolean algebras is in 
the spirit of recursive model theory, and not along the lines of [8], where (classical) 
isomorphism types of c.e. Boolean algebras are investigated. 

Examples, continued 2.2. S?: If T is a recursively axiomatizable consistent 
theory containing Robinson's Q, then BT is effectively dense. 

S?: As, before, suppose a is the degree of a super sparse set. Then the comple- 
mented elements in RecP(< a) form an effectively dense ES Boolean algebra. 

ES: If D is a major subset of A (denoted by D Cm A, see [21]), then the comple- 
mented elements in [D*, A*]g* form an effectively dense ES Boolean algebra. 

Proofs. To prove the first assertion, we use Rosser's Theorem (see e.g. [9]), 
which asserts that from an index of a c.e. theory S 2 Q one can effectively obtain 
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a sentence a such that 
S consistent =# S I/ a and S / -la. 

Given po E 3T, to determine F(o) let S = T U {}. If s 6 0 (in BT), then S 
is consistent, so So ; a and o ~ - ia. Thus let F(so) = o/ A a. Notice that, by a 
result of Montagna and Sorbi [16], the Boolean algebras for all such theories are 
effectively isomorphic. (In that paper the notion of effective density for general c.e. 
preorderings is introduced.) 

The effective density of RecP(< a) will be proved in 3.2. Finally, the effective 
density of [D*, A*]?* follows from the Owings splitting theorem (see [19]). C 

3. THE MAIN THEOREM 

Main Theorem 3.1. Suppose 1 is effectively dense. Then Th(N, +, x) can be 
interpreted in Th(Z(B)). 

This seems to be the first time that an interpretation of arithmetic can be given 
for any structure satisfying a fairly general set of conditions. 

The main theorem can also be viewed as a theorem about HI-classes under 
inclusion. C.e. ideals of D correspond to II classes C 2W via the usual Stone duality. 
For a II-class P C 2w, let [0, P] be the set of HI-classes Q C P. The interval [0, P] 
is called effectively dense if, for each basic open set U in 2', one can effectively find 
disjoint basic open sets V,W C U such that UnP # 0 => Vn P, WnP 7 0. 
Thus, U n P is not a singleton, in an effective way. The Main Theorem asserts in 
this context that Th([0, P]) interprets true arithmetic. 

A further application of the Main Theorem to a quite different type of interval 
has been given in [5]. A IIH-class P is decidable if there is a decision procedure to 
tell whether U n P 7 0 for a basic open U. In a partial analogy to Theorem 1.3, it 
is shown that if P is decidable and [0, P] is not a Boolean algebra, then Th([0, P]) 
interprets true arithmetic. However, this fails for P in general. As in the proof of 
Theorem 1.3, one applies the Main Theorem relativized to 0". 

The Main Theorem will be proved in Sections 5 and 6. In this section we apply 
it to give proofs for the Theorems 1.1-1.3. 

3.1. Proving Theorems 1.1 and 1.3. To show that Th(N,+, x) <m Th(LT), 
just notice that elements of LT are the c.e. filters in B3 = BT. So LT r T(B) via 
complementation (which is effective in a c.e. Boolean algebra). 

To prove Theorem 1.3 we rely on some auxiliary results from [19], where it is 
shown that intervals of S* and S which are not Boolean algebras have an undecid- 
able theory. We will obtain the following. 

Claim. Suppose D Cm A. Then there is a fixed interpretation G* of Th(N, +, x) 
in each theory Th([D*, A*]) and an interpretation G of Th(N, +, x) in Th([D, A]). 

(By [14], all these intervals are isomorphic. But we don't make use of this fact, 
since in both cases the interpretation is independent of the particular choices of D 
and A.) 

The claim suffices for the following reason. First, we can assume that A = N, 
since each closed interval of S is isomorphic to an end interval of S. Now, as 
explained in [19], since [D, N] is not a Boolean algebra, there is a subinterval [D, A] 
of [D, N] such that D Cm A. Let ,/(x, y) be the formula describing the major subset 
relation in E*, namely, /,(x,y) = x < y & Vw (y V w = 1 > xV w = 1). If x, y 
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Lemma [21], there is a computable function q(e, t) such that q(e) = limt q(e, t). Let 
(hj) be a list of p-m-reductions. We meet the coding requirements 

Ke : A n Pq(e) <, Cj 

by specifying polynomial time m-reductions to Cr. To do so, we assign Ke-coding 
locations to certain relevant Os. If s = f(m), a Ke-coding location for 0s will have 
the form n: n = (e, r), where r > e and f(m) < n < f(m + 1). We will ensure 
that Ke-coding locations exists for all sufficiently long relevant O0. We require 
that in n steps one can determine that O E Pu, where u is the current guess at 
q(e) = limt q(e, t). We define Ci by specifying a polynomial time computable g such 
that Ci - g-l(A), mapping coding locations for relevant strings Os to 0s. Thus, 
eventually just the relevant Os c Pq(e) are assigned a Ke-coding location, which 
is in CI just if OS is in A. An appropriate choice of the Ke-coding locations will 
ensure that the requirements 

HKi, j : A n Pi <P CI via hj X A Pi <P () A r Pq,) (k - i, j)) 
m<k 

are met. We can suppose that computing hj(x) takes at most pj(|xl) steps, where 

pj (n) = (n + 2). 
The main idea of the proof is how to ensure that the coding of Ke does not interfere 
with the requirements Hi, i < e: We make the length of any &K-coding location 
for 0O exceed p,-- (s). 

The algorithm for g. 
Given an input x, n = x\l, first determine in quadratic time the maximal s < n 

such that Os is relevant. This is possible by the time constructibility of f. Now 
proceed as follows. 

1. See if there are e, r such that x - 0(O,r). 
2. Perform computations q(e, 0), q(e, 1),... till n steps have passed, and let u be 

the last value (or u - 0 if there was no value so far). 
3. See if Os C Pu in n steps. 
4. Check if p,e-(s) < n. 
If (1) and (3) are answered affirmatively and the computation in (4) stops, then 

let g(x) = Os (so x is a Ke-coding location for 0s). Else let g(x) be the string 
(1) M A. This completes the algorithm. Clearly the algorithm takes at most O(n2) 
steps. 

Let C = g-1 (A). We verify that Cl has the required properties. 
Claim 1. Let q(e) = limt q(e, t). Then A n Pq() <Pn Ci. 

Proof. Let p(s) be a polynomial which dominates p,e-(s) and the number of steps 
it takes to compute Pq(e) on the input 0O. Pick an so - f(m) such that the value 
returned in (2.) of the algorithm is q(e) for all s > so and also that, by super 
sparseness, (e,p(f(k))) < f(k + 1) for all k > m. Then for all s > so, 0' relevant, 

O e A n Pq() X o(',p(s)) CI. 

Claim 2. The requirements H(i, ) are met. 
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Proof. Suppose that A n PF <P C1 via hj. We obtain an m-reduction of A n Pi to 
em<k A n Pq(rn) (k - (i,j)) as follows. Given a relevant string 0s, first compute 
x - hj(08). Since Os E A n Pi < x e CC, it is sufficient to determine if x E Ci. 
Run the algorithm for g on input x. If g(x) - (1) then x Cl. Otherwise x is a 
coding location. 

Case 1: |xl < s. Then give A(g(x)) as an answer. Since A is super sparse and 
Ig(zx) < s , this answer can be found in time 0(s). 

Case 2: n = \xl > s. We can suppose that s > so, where so is so large that, for 
all relevant t > so, Ihj(0t)l is less than the least relevant number bigger than t (by 
the last condition in the definition of super sparse), and also the computation in 
Step 2 of the algorithm for g with input 0t gives the final value q(e) for each e < k. 
By the main idea, if x C Ci, then x must be a coding location for a requirement 
Ke, e < k. Since s > so, x c Ci <> g(x) E A n Pq(e). 

Corollary 3.3 ([7]). Suppose that h is time constructible and hyperpolynomial. 
Then the degrees of (1) all sets and (2) all tally sets in DTIME(h) have an un- 
decidable theory. 

Proof. Choose a strongly super sparse A C DTIME(h) - PTIME. (1) was proved 
in [7]. We obtain it here because all sets A n P , as well as the sets CI, are in 
DTIME(h) (since h is hyperpolynomial). Thus, we get an interpretation of the 
structure (N, +, x) in (DTIME(h), <P) with parameter a, and Th(DTIME(h), <P) is 
undecidable. For (2), observe that all sets involved are tally sets. D 

4. PRELIMINARY FACTS ABOUT C.E. IDEALS 

We first introduce a useful alternative representation of a E( Boolean algebra 
B. Choose a computable sequence (di) of free generators for the recursive dense 
Boolean algebra D. The map f : di -> i extends to a recursive map f: D ,- 
N. Thus, if t(xo,... ,xn-l) is some Boolean term, the element t(do,... ,dn_1) is 
mapped to t(O,... , n - 1) (recall that B is defined as a model with domain N; we 
use the fact that A, V and complementation in B are effective). We write Cpl(d) 
for the complement of d c D and say that d, e D are disjoint if d A e -- 0. If we 
are considering eS-Boolean algebras, the map f is recursive in 0(k-l). The kernel 
of f, 

H - {do,..., dn-) : t(0,... 0 -1) C 0}, 

is a E?-ideal. 
Now suppose that B is effectively dense via F: N -S N. Let F be a "preimage" 

of FB in D, namely, if d c D, let F(d) - e if e < d is the first element of D (with 
respect to some effective listing) such that we discover f(e) F (f(d)). Then F 
can be chosen recursive in 0(k-1). We have obtained the following. 

Fact 4.1. Suppose B is a Yj-Boolean algebra. 
(i) B is 0(k-1)-isomorphic to o/H (with the canonical presentation), for some 

E -ideal H of D. 
(ii) If B is effectively dense, then there is F : D - D), F <T 0(k-1), such that 

Vd c V(d ? H => F(d) / H & d- F(d) X H. 
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Definition 4.2. Throughout, B will be an effectively dense Boolean algebra and H 
will denote the ideal of elements of D representing 0. An ideal X of 7) is principal 
if X - H V [0, t] for some t C D. Given t E DI, we denote by "t" as well the principal 
ideal H V [0, t]. For any ideal D, we write D - t for D n Cpl(t). 

Thus the trivial ideal B is denoted by 1. 
We begin with some simple constructions of c.e. ideals which will be needed later. 

First we prove that Z(B) is not a Boolean algebra if B is effectively dense. See the 
discussion before (1). 
Fact 4.3. There is a nonprincipal ideal E. 

Proof. Let eo - O. If en has been defined, let n = eo V... V en and 

en+i = F(Cpl(e,)). 
Let E be the ideal of D generated by H and {ei : i E N}. We claim that E is 

nonprincipal. First we show that en -< e+ for each n: eo - 0, and if en -< 1, then 
by (1), 0 -< e+i -< Cpl(en). Moreover, en+i A en = 0 (in D), so .n < e+i -< 1. 

If E = H V [0,t] for some t, then there is an n such that E = H V [0,e]. 
So e+l =- h V n for some h E H, which implies that en+l < h, contrary to 
en+1i H. El 

Before we proceed we introduce some notation. We use the language of the 
unrelativized case. 

Definition 4.4. 1. A c.e. ideal X of B = - D/ is given by a c.e. subset X of D 
such that X is the ideal of D generated by X U H. We let (Ve) be a uniform 
enumeration of all c.e. ideals containing H. 

2. For a c.e. ideal X, we let 

(4) s = sup(Xs) , Xs (S > 0), X s ( ) 

Thus, (xn)neN is an effective ascending sequence in ID generating X, and 
(xn)n,E is an effective "partition" generating X. 

3. Capital letters A,... , E, G, X, Y, W range over c.e. ideals of 7D containing H. 
4. (Splittings of ideals) We write B U C - Aif B n C = H and B V C = A. In 

this case we denote C by CplA(B). Note that if a C A and b = Cpl(a) (in 
D), then CplA(a) - A n b. We write B C A if 3C B U C - A, and D - a for 
D n Cpl(a). Then D E 1 means that D is principal. 

When building a c.e. ideal Y we speak of enumerating an element z CE ) into Y 
when we actually mean to enumerate z into Y. 

The following concept is of central importance for the proof of the Main Theorem. 

Definition 4.5. We say that A is locally principal in E if A C E and 

Ve C E[e n A is principal]. 
Note that this property of A, E can be expressed in 7(13) in a first-order way, 

since the principal ideals are just the complemented elements. The motivation is 
that the situation A C E is in a sense similar to an inclusion of sets. Whenever 
e C E, the the intersection A n e has only a finite amount of information. In what 
follows, given a nonprincipal ideal E, we construct A C E which is not a component 
of a split of E, but A is locally principal in E. Note that the hypothesis E t 1 is 
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necessary. As required in (1.) of Definition 4.4, we will enumerate elements of ZD 
into a c.e. set A to determine A. 

Lemma 4.6. Given E, we can effectively obtain an A C E such that A is locally 
principal in E and 

(5) E 1 = A t E. 

Proof. We meet the requirements 

Ri : E t1 - A (Vi E) = E, 

while enumerating A in such a way that A is locally principal in E. Let (en) be 
the "partition" corresponding to E given by (4) in Definition 4.4. We put movable 
markers 7i associated with Ri on the elements en. If E Vt 1, then 7i will come to 
rest on the i-th element ej which is not in H. Thus let 

yi,s = the i-th element t Hi in the sequence eo, el,.... 

After 7i has settled down, Ri enumerates an element < 7i into A at most once. 
This implies that A is locally principal in E: given e C E, we want to show that 
e n A r 1. Since E is the ideal generated by {en : n C N}, we can assume that 
e - en for some n and e t H. Then e = lim, yi, for some i, and after 7y has 
stabilized, since we enumerate at most once into A n [0, e], A n e C 1. 

For (5), if actually A L (V n E) - E, then at some stage s when 7i has settled 
down, we will discover that 7i < as-l V vi,s. In that case we put F(yi - as-1) into 
A, thereby causing A n E n Vi t H. 

Construction. 
Stage s > 0. If i < s is minimal such that Yi,s-1 7i,s, then declare all 

requirements Rj, j > i, unsatisfied. 
For each i < s do the following: if Ri is unsatisfied and now 7i, < as-_ V v,i8, 

then put F(^yi, - as-1) into As and declare Ri satisfied. 

Verification. Clearly Ri enumerates into A at most once after 7i has settled 
down. Moreover, if en , H, then en M A, since the elements < e, we enumerate at 
finitely many stages t have the form F(en - a_-). Finally, it is not the case that 
A U (Vi n E) = E. For choose s minimal such that 7i is stable from s on, and let 
e be its limit. Since e t A, if Ri is never active at stages > s, then A n e -= (as 
ideals), as A e -< e and e t A V (Vi n E). Now suppose Ri is active at t > s. Then 
e A at_l M H, and we put F(e - at-) into At. But F(e - at_) , H by (1), and 
F(e - at_-) C A n E n Vi. 

We next prove the analog of the Friedberg Splitting Theorem (see [21]). First 
some more notation. Recall that (di)iec is an effective free generating sequence of 
)D. It is very useful to make some restrictions on the way ideals can be enumerated, 
which are embodied in the following convention. We continue to use the language 
of the unrelativized case. 

Convention 4.7. 1. (DZs) At stage s of our constructions, we will work only 
with elements in Z,S, the finite Boolean algebra of Boolean combinations of 
do,... , d-_. In particular, we assume an enumeration of H such that Hs is 
an ideal of IDs. 
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2. (Enumerating ideals). We require that a c.e. set X determining an ideal X of 
3 = D/H in the sense of Definition 4.4, (1.) satisfies Xs C D,. We let 

(6) Xs = the ideal of Ps generated by Xs U Hs. 
Note that s, xs C X,. 

The point in (2.) is that ideals of 'P are finite approximations of ideals of ', but 
they behave like sets with respect to the atoms d, (al -- s) of P8. For instance, if 
d, l Hs and X, Y D H are c.e. ideals, then 

(7) d, c Xs V Y5 4 d C EXs or d Ys. 

Another useful property is that, if t < s, then 

(8) d, ? Xt = da A sup(Xt) - 0. 

Suppose that at some stage s of a construction we have x c Ds and want to 
enumerate F(x) into an ideal G. The problem is that F(x) may not be in D,. The 
solution is to replace F(x) b y y x A F* and enumerate y at stage h(s), where F* 
and h are defined below. 

Definition 4.8. 1. If a C 2<:, lcrI = s, then let 

da= A di A A Cpl(di) 
i<s & (i)--=l i<s & 1(i)=0 

(so that d, C O,). 
2. We let 

(9) F -= sup F(d,) 

and define an increasing computable function h by 

(10) h(s) - t > sVs' < s (F/ E Dt). 

This "finer" choice x A F. instead of F(x) makes the combinatorics of our main 
construction, the proof of the Trace Lemma below, much easier, roughly speaking 
because we never completely put a d, ? H, Idal = s (an element some other re- 
quirement could rely on) into G at stage s. The reason we wanted F(x) in G was 
that 0 --< x = 0 -< F(x) -< x. But this holds for x A F* as well: if 0 -< x, pick a of 
length s such that 0 -< da < x. Then 0 -< F(d,) < x A F1 - x. 

Theorem 4.9. If A E, then, effectively in indices for A, E, one can obtain ideals 
B, C such that A- B L C and B, C 5z E. In particular, each non-principal A can 
be split into two non-principal ideals. 

We begin with a lemma. For a c.e. ideal W let W \ B be the ideal X given by 
enumerating (into a set X) at stage s those x such that 

x E W1s_ & cx 0 B,_1 & x E B,, 

(and, as always, letting Xs be the ideal of Ps generated by Xs U HI). 
Lemma 4.10. For each A there is a splitting A = B U C such that 

1Ve[Ve \A?H = Ve \ B Bg H & Ve \ C IH. 
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Proof. The construction of B, C is simple: if t - h(s) + 1, then at stage t enumerate 
a, A F* into B and a - F,* into C. 

Clearly, A = B U C. Now suppose that V, \ A Z H. Then there exist r < s 
and a string a of length r such that da X H, da c Ve,r and d, E As -- A,s-. 
Pick p D a of length s such that also dp f H. Then dp < a,, and dp A as-i = 0 
using the fact (8). So dp < as(=, a - -_), and F(dp),dp - F(dp) d IH. But 
as A IFs > F(dp) and as - Fs > dp - F(d). Now, if t = h(s) + 1, then as A Fs is 
enumerated into B at stage t and a, -- F` into C at t. Moreover, sup Bt-_1 < s-1 
by the monotonicity of h, whence F(dp) Bt_l, and similarly dp - F(dp) X C. 
Therefore, F(dp) C Bt - Bt_, dp - F(dp) Ct - Ct_. Both elements are already 
in Ve,t_-. 
Proof of the Theorem. Obtain B, C as in the preceding lemma. Assume for a con- 
tradiction that B L W - E for some W. We claim that W \ A 7 H. Then also 
W \ B g H, contrary toW B = H. 

Let 

Ds = fx C Ds : x < Ws - as}. 

We show that W \ A C H implies A U D - E. For A V D = E, given e C E, 
choose an s so that e < bs V ws. Then 

e < [(bs V w,) A as] V [(bs V w) -as]. 
The first term in this supremum is in A; the second is in D, since, by the definition 
of the enumeration of B, bs < a,. To see that A n D = H, assume that there are 
u H and s such that u < WS - A, and u E A. Then u < at for some t. Since 
t> s, u E W \ A; hence u C H. We can conclude that A L D = E. Since our 
assumption was that A _ E, in fact W \ A Z H. D 

5. PROOF OF THE MAIN THEOREM 

To prove that Th(N, +, x) can be interpreted in Th(Z(B)) for any c.e. effectively 
dense B, we will give an interpretation of Th(S7, C) in Th(I(B)). (More generally, 
if B is a S?-Boolean algebra, we will give an interpretation of (E'+, C) in 1(B).) 
By a result of Harrington (see [10]), Th(N, +, x) can be interpreted in Th(?). This 
result relativizes to 0(6), so the same interpretation works for Th(N, +, x) and 
Th(ES, C). Altogether we will have the following interpretations: 

Th(N, +, x) => Th(E, C)= Th(Z(B)). 
In analogy to Harrington and Nies [10], we consider the Boolean algebra of 

splittings of a non-principal ideal A. Let 

B(A) {X : X L A}. 
Since Z(B) is a distributive lattice, (B(A), n, V, CplA, H, A) is a ES-Boolean al- 

gebra. We consider ideals of B(A). To avoid confusion, we will write "IDEAL" if 
we mean such a level 2 ideal. Boldface letters I, J, M will denote IDEALS of some 
Boolean algebra 3(A). For certain A, E such that A C E, we will view 

RE(A)- {X c E: X C A} 
as the IDEAL of negligible splittings of A. They play the same role as the recursive 
sets in [10]. The reason why we cannot take the principal ideals instead is that, 
in a construction of ideals, a principal ideal is done after a finite number of steps, 
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while building a splitting of E may be distributed over the whole construction. 
In this way, we allow for a more flexible notion of negligibility. This idea only 
works because A is locally principal in E, else all the complexity of A could be 
concentrated on e n A for some e E E, and splittings of E would be no more useful 
than splittings of e. 

In (ii) and (iii) below we make key definitions: we introduce classes of complex 
IDEALS with the goal of being able to quantify over them in the first-order language 
of Z(B). 
Definition 5.1. Suppose that A C E. 

(i) The index set for an IDEAL I <3 (A) is the set {e: Ve C I}. 
(ii) Let k > 3. An IDEAL I < B(A) is k-acceptableE if I has a ES index set and 

RE(A) C I. 
(iii) A class C of IDEALS of B(A) containing RE(A) is uniformly definable if, for 

some formula <(X; P,... , Pn, A, E) in the language of lattices with 0, 1, 
C = {Xr A: Z(B) P- i(X; P,... ,P , A, E)}: Pi,... ,P, C Z(B)}. 

Recall that A is locally principal in E if A C E and Ve C E[e n A C 1]. 
Definability Lemma 5.2. Suppose that A is locally principal in E. Then for each 
odd N > 3, the class of N-acceptableE IDEALS of 3(A) is uniformly definable. 

The Definability Lemma is trivial if A C E, since in that case TE (A) -- B(A). 
In our applications it will be the case that A Z E, and hence E Ci 1. 

We first show that the Definability Lemma is sufficient to give the desired in- 
terpretation. By Fact 4.3, choose any nonprincipal E, and let A i E be an ideal 
locally principal in E obtained by the Subideal Lemma 4.6. Recall that a Boolean 
algebra is atomic if each nonzero element bounds an atom. 

Lemma 5.3. There is a 5-acceptable I < B3(A) such that B3(A)/1 is an infinite 
atomic Boolean algebra. 

Proof. By iterating applications of Theorem 4.9, we obtain a uniformly c.e. sequence 
(Ak) such that Ak E A, Ak _ A and Ai n Aj = H for i 4 j. Next, let Ik be the 
pre-image in B(Ak) of a maximal IDEAL of B(Ak)/ gE(Ak). Clearly we can ensure 

that Ik is recursive in 0(3), uniformly in k. Now let I = {X C A : Vk XnAk C Ik}. 
I is 5-acceptable, and, for each k, I n B(Ak) -= I. Therefore Ak/I is an atom in 
3(A)/I. Clearly, Ak/l 7: A4 /I for k :4 r. Finally, if X , I, then X n Ak f Ik for 
some k, so Ak - X C Ik and therefore Ak/I << X/I. i 

The IDEAL J generated by {Ak} and I is 5-acceptable and is the pre-image in 
B(A) of the IDEAL generated by the atoms of B(A)/I. Let L be the lattice of 
7-acceptable IDEALS of B(A). Whenever we are in the above situation, namely 5- 
acceptable IDEALS I, J are given such that B(A)/I is infinite atomic and J is the 
pre-image in B3(A) of the IDEAL generated by atoms in B(A)/I, then the lattice 
[I, J]I of 7-acceptable IDEALS between I and J is isomorphic to (E?, C): Notice 
that "Ve/I is an atom of B(A)/I" is a HIl-property of indices, so there is a function 
f <, 0(6) such that (Vf(n)/I)ncN is an enumeration of the atoms of B(A)/I without 
repetition. This implies that 

S - {n e N: f(n) c S} 
is an isomorphism between [I, J]c and (Eo, C). 

ANDRE NIES 5000 



EFFECTIVELY DENSE BOOLEAN ALGEBRAS 

Finally, to obtain the desired interpretation, we have to express in a first-order 
way that parameters code the above situation. First we can express that A is locally 
principal in E and A _ E. By the Definability Lemma 5.2, we can quantify over 
5-acceptable and 7-acceptable IDEALS of B(A). We express that our parameters 
code 5-acceptable I C J such that 

(a) B(A)/I is atomic, 
(b) J/I is non-principal in B(A)/I, and 
(c) J is the pre-image of the IDEAL generated by the atoms of B(A)/I, i.e. 

* J/I contains all the atoms, and 
* for each 7-acceptable K D I, if also KII contains all the atoms, then 

J C K. 
The interpretation is given by 

(SE, C) F X (13) = 3A, E(A C E & A locally principal in E 
& 3I, J satisfying (a)-(c) [I, J]c = ). 

"[I, J]C t p" can be expressed by a formula involving the parameters for the 
5-acceptable I, J and quantifying over parameters coding 7-acceptable IDEALS. 

6. PROOF OF THE DEFINABILITY LEMMA 

We proceed by induction over odd N > 3. First we prove that, whenever A is 
locally principal in E, then the class of 3-acceptableE IDEALS of B(A) is uniformly 
definable. Then we show that, if A is locally principal in E, there are ideals C C 
G C A such that C is locally principal in G, and there is a 3-acceptablec IDEAL M< 
B(C) such that any N + 2-acceptableE IDEAL I < B(A) can be defined from a N- 
acceptablec IDEAL J<B(C) and M, i.e. the formula to define I contains statements 
of the form "X E M" and "X C J". Since C is locally principal in G, these 
statements can then be eliminated by the inductive hypothesis. On the other 
hand, the first-order formula obtained in this way only allows us to define N + 2- 
acceptableE IDEALS . 

We need some more preliminaries. Several times we will show that ideals are 
splittings using the following fact. 

Fact 6.1. Suppose B C E is an ideal such that Vm B n [0, e,] = [0, br,], where bm 
is obtained effectively in m. Then B E- E. 

Proof. Let C be the ideal generated by H U {e, - bm}mcN. Then B U C = E. D 
Next we introduce some more notation for splittings of ideals. It is our goal to 

define a u.c.e. sequence (Xe) of ideals in B(A) such that each element of 3(A) is 
represented. Also, we will define a uniformly c.e. sequence (Xe) of ideals such that 
Xe n Xe = H and Xe V Xe is principal or equals A. 

Definition 6.2. Given e = (i, j), consider the pair Ui = Vi n A, Uj = Vj n A with 
the canonical enumerations. We define enumerations 

(Xe,s)sCMN (Xe,s)sEN 

by enumerating at certain active stages. We declare s = 0 active and define Xe,o = 

Xe,o = Ho. At stage s > 0, if t < s is the last active stage, see if Uit n Uj, c 
Hs & at E Ui,s V Uj,s. If so, declare s active and let X,,, = Ui,s, Xe,s = Uj,s. Else 
Xe,s = Xe,_s- and Xe,s = Xe,s-- 
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We are now ready to begin our proof by induction. 

Lemma 6.3. Suppose that A C E is locally principal in E. Then the class of 
3-acceptableE IDEALS of B(A) is uniformly definable. 

Proof. In this proof, if C, D C A, we use the notation C <E D for 3S E 'TE (A) C < 
D V S. Let 

(12) 3(X; C, A, E)- = R(R C A & RE E & c n x c R). 

Thus, b3(X) expresses that C n X is negligible. Clearly, each subset of B3(A) 
defined via O3 is an IDEAL which is 3-acceptableE. Conversely, we now show that 
each 3-acceptableE IDEAL I equals {X : 3(X; CI, A, E)} for some CI C A. We 
use some ideas from [19], where a similar fact is proven for splittings of sets in S. 
First we find a good representation of I. 

Fact 6.4. If g <l< 0", there is a uniformly c.e. sequence (Yi) of elements of I(A) 
such that Vi3S C R7E(A) Xg(i) V S = Y v S. 

Proof. We make use of the hypothesis that A is locally principal in E in an essential 
way. Since "p = g(i) is E?, we can choose a u.c.e. sequence (V1) of initial segments 
of N such that 

Xp = Xg(i) X 3n V<(i,,n) = N. 

Now, for each i, in a uniform way define an ideal Yv = Xh(i) by determining 
Yi n [O, em] for each m. At stage s, for each r - (i, p, n) < s, if 

max J V(i,p,,n'),s < m < max(Vr,,) 
(,p',, n') <,r 

and V,Ws 7 Vr,s-l, then put b = sup(Xp,s) A em into Yi (em was defined in 4.4). We 
say that b is enumerated via V,. 

We will now determine S E E S C A, such that Y V S = Xg() V S . Let q be the 
least number of the form (i,p, n) such that Vq = N. Choose a t such that Vq,r - VqI 
for each q' < q of the form (i,p', n'). Let k be the maximum of all elements of such 
Vq,. Since A is locally principal in E, An ek =- a for some a C A. Let S be the 
ideal generated by a and all the elements enumerated via Vr, where r > q and r is 
of the form (i,p', n'). Then S C A. Since Vq - N, given m we can determine bm 
as needed in Fact 6.1 in order to show that S [- E: let b, = em A sup(St), where 
t > t is least such that max(Vqt) > m. 

We verify that Y VS Xg(i) VS or, equivalently, Y, CplA(S) - Xg() CplA(S) 
Suppose u E CplA(S) and u X H; then u A a C H and hence u A ek E H, so 
u -< ek+1V V...V eh for some h > k. Let s be least such that u E Xp,, and 
h < max(Vq,,); then u C Yi,4. Conversely, if u c Yi, then, because u E CplA(S) 
and u A ek C H, for some vl,... ,vl enumerated via Vq, u - v:t V... V vl. Since 
q (i, p, n), we obtain u E Xp - Xg(i). I 

We have to find C = Ci such that 

(13) I ={X: Xn C <E H}. 

Since I is ES and complementation in 13(A) is recursive in 0", there is g <7< 0" 
such that {Xg(j)} is the filter of complements in B(A) of elements of I. Applying 
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the preceding fact to the sequence (Xg(i)), we obtain a uniformly c.e. sequence (Yi). 
Let Zn = nm<n Ym. We satisfy the requirements 

P, : Xn Zn H X X,, Cn c H, 
while ensuring that Vn C <E Zn. This suffices to show (13): 

For the inclusion "C", if Xj C I, then Zn <E CplA(Xj) for some n, so Zn n 
Xj <E H and hence C nXj <E H. 

For the converse inclusion, if Xj ? I, then for each R E 7ZE(A), Xj n CplA(R) f 

I, so CplA(Xj) V R is not in the filter. Thus, if Xn = Xj n CplA(R), Zn SE 

CplA(Xn), so Xn n Zn g H. By the requirements Pn, Xn 0 C X H, i.e. Xj n 
CplA(R) n C H. This implies that Xj n C g R. 

Construction of C. At stage s > 0, for each n < s do the following. Let t < s be 
the greatest stage such that t = 0 or Pn acted at stage t. If Xn,t n Ct g Hs, then 
declare Pn satisfied at stage s. Else Pn acts by enumerating sup(Xn,s n Zn,s) into 
C. 

Claim 1. Vn3u C A[C C Zn V u]. Thus C <E Z,. 

Proof. For each m < n, if Pm is permanently satisfied from some stage on, let u, 
be the last element Pm enumerates into C. Let u be the supremum of all such u,. 
Then u c A and C C Zn V u, because a requirement P, m > n, only enumerates 
elements which are in Zn and those P, m < n, which will never be permanently 
satisfied only enumerate elements which later go into H. 

Claim 2. For each n, the requirement Pn is met. 

Proof. Suppose z E Xn 0 Zn and z X H. Let s be a stage such that z e Xn,s n Zn,s. 
If Pn never acts at a stage t > s, then it is satisfied from s on and therefore met. If 
it acts at t > s by enumerating y into C, then z < y. So y ~ H, and Pn is satisfied 
from t on. O 

Next we carry out the inductive step in the proof of the Definability Lemma. 
Suppose that N > 3 and A is locally principal in E. As described above, we 
want to define a given N + 2-acceptableE IDEAL I < 3(A) from an N-acceptableG 
J < B(C), for some fixed C C G C A to be constructed. The main idea is to 
use a "tracing" procedure. Through a Trace Lemma, we construct G such that 
each X : A is assigned a trace px C X in a 0"-way, with the property that 
X E - Px n G E. In the following, let p, q be traces. The construction 
ensures that G p n q - H for p 4 q. We apply the Subideal Lemma 4.6 to each 
ideal G n p inside [0,p], and obtain an ideal Cp C p which is locally principal in 
G np. Let C C G be the ideal generated by all the ideals Cp. Since Gnpnq = H for 
p 4 q, we see that Cp =C n p for each p, and C is locally principal in G. If X N E, 
then Px n G i 1; hence by the Subideal Lemma 4.6 C n px CG n px. Thus the 
trace for X carries some non-negligible information about X into B(C), where we 
view the splits in 'G(C) as negligible. We let J < B(C) be the IDEAL generated by 
RG(C) and all intersections of the form X n Un n C, where uo - 0 and, for n > 0, 
Un is the supremum of traces for finitely many ideals Y - Un-l C A, and one of 
the ideals is X; moreover X is guessed to be in I according to the n-th guess of an 
approximation procedure to the index set of I. Similarly to [10], such a procedure 
consists of an array of finite ES sets Zn C {0,..., n}, where an index for Zn can 
be obtained using a 0(N-1) oracle, and e e Zn means that Xe is guessed to be in 

5003 



I. This implies that J is N-acceptablec. The auxiliary 3-acceptableG IDEAL M is 
generated by 7RG(C) and all the intersections u,n n C. We will verify that 

X e I X 3R e MVS e M[S nR J-- H X n S J1], 
so I can be defined in a first-order way from J and M. See Table I near the end 
of the paper for a summary of all the objects introduced. 

We now focus on a main recursion theoretic ingredient, which corresponds to 
Lemma 3 in the Appendix to [10]. 
Trace Lemma 6.5. Suppose that A is locally principal in E. Then there is a 
G C A such that 

(i) Vi 3pi E Xi[Xi [ E = Pi n G L E], and the function i H-+ pi is recursive in 
0", and 

(ii) there are a recursive subset P C D and a u.c.e. sequence of ideals (Gp)pE-p 
such that 
(a) Vp C P Gp C p, and G is the ideal generated by UpeP Gp, 
(b) Vi Pi C P U {0}, and 
(c) if p, q E P are distinct, then Gp n Gq - H. In particular Gp = G n p. 

If X - Xi, we will also use the notation px instead of pi. Thus, px actually 
depends on an index for X. 

Proof. We first concentrate on (i). The additional properties (ii) will follow easily. 
Since pi c Xi C E, for pi n G 5t E in (i) it is sufficient to ensure that pi n G X 1. 
For each i, a strategy Ri attempts to define a trace px E X (where X = Xi). The 
main task for the Ri strategy is to find a value for Px which is not in H. If X g_ E, 
such a value will eventually appear in X. So if Ri abandons the old value once it 
has been enumerated into H, it will eventually make a good choice. However, if 
Xi C H, Ri may go through an infinite list of possible values, and all of them are 
useless because they turn out to be in H. 

To make px n G non-principal, similarly to the proof of Fact 4.3, the Ri-strategy 
will, at each stage s where px is defined, enumerate px - /s A F* into G (where 
9s = sup(G,)). To conform with the convention that elements enumerated at a 
stage t be in Dt, the element (px - s) A F* will in fact be enumerated only at stage 
h(s) (see Definition 4.8), and the construction resumes at stage h(s) + 1. Thus we 
proceed in stages so < sl < ..., where so = 0 and s,,+ = h(s,) + 1. 

When considering the interaction of different strategies, the problem is to avoid 
that Px e G due to the action of other strategies (in which case Px n G = Px would 
be principal). To ensure Px f G is difficult, because the Ri-strategy may go for a 
long while with some useless px, which eventually appears in H. Or, a good choice 
for Px may appear very late in Xi, but at an early stage in some other X3. In these 
cases, Ri has to prevent other strategies from putting a possible future choice for 
px into G completely. 

1. The G-enumeration of a higher priority strategy Re is not too hard to deal 
with, since the Ri strategy may assume (a) its parameter p, has already reached 
its limit, which means a finitary restriction, unless (b) all values of Pe are in H 
anyway, in which case Re cannot enumerate an element X H into G. In case (a), 
since Xi E A, if Xi {g E, then also Xi - pe 5 E, so Ri can trust that a good choice 
for pi which is disjoint from Pe exists. The condition (15) in the construction takes 
into account the higher priority strategies. 
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2. We must force a strategy for Rj of priority lower than Ri not to assign 
its parameter pj until pj is in sup(Xi) V sup(Xi). Then, by the properties of F* 
discussed after Definition 4.8, Rj will never put a possible choice of the Ri-strategy 
for Px into G completely, but rather certain elements -< px. 

The strategy Rj now needs a guess whether Xi V Xi = A. If so, as explained 
above, only those elements are candidates for pxj which have already appeared in 
Xi V Xi. In that case, Rj also needs to know whether the limit of Ri's p parameter 
exists or not (i.e. whether Case (a) or (b) above with Ri in place of Re holds). If 
Xi V Xi 74 A, then the Ri-strategy will be ignored by Rj. 

To equip the strategies Ri with such a guess, we organize them on the tree 3<`. 
We use the usual terminology for tree constructions (see [21]). In particular, a,/ 
denote strings on the tree and a <L /3 means that a is to the left of /3, where the 
tree is pictured as growing downward. Moreover, a </3 ` a <L 3 V a C /3. At 
stage s, of the construction, we define a string 6n E 3<W of length n. We let the true 
path f be the leftmost path visited infinitely often. If a C 3<W and lal = i, then a 
is a version of the Ri-strategy. If a = fli, then f(i) = 2 means that Xi V Xi 74 A. 
Otherwise f(i) = 1 signifies that the limit of the parameter p, exists, f(i) = 0 
that it fails to exist. The guessing procedure is as follows. At stage s,, if we have 
determined a -= 5|i, let 6,(i) = 2 if no new active stage for Xi in the sense of 
Definition 6.2 appeared. Else let n,(i) = 0 if at this stage we cancelled pc (since 
we discovered that it is in H), and 6n,(i) = 1 otherwise. Note that we do not guess 
at whether p, C G. Now a strategy on the true path can assume that, for /3 C a, 
limsppo,s has been reached if it exists at all, else a is initialized another time. For 
the rest of the discussion, assume that al C f. 

An extra problem is now that we have a new type of lower priority strategy: 
the strategies /3 >L al, whose G-enumeration also may cause pa C G. We will 
initialize such a /3 whenever al C 6n. This means that, at stages > sn, /3 can only 
enumerate elements which are disjoint from e6. By Fact 6.1, all the /3-strategies 
>L al together will then only contribute a negligible set S C RE(A) to G. But if 
Xi C E, then also Xi n Cpl (S) 7[ E. Thus a good choice for the strategy a will 
appear. In the construction we implement this idea in (16). 

Of course, strategies 7 <L a will do the same to a, so a further problem is that 
a good choice p for pa may be forbidden because p < et, where t = Sm is the last 
stage such that a is initialized (namely 6m <L (a). Here the hypothesis that A is 
locally principal in E saves us: for some a C A, a (viewed as an ideal) = et n A, 
so if Xi n CplA(S) C E, then also Xi n CplA(S V a) / E. Hence some good choice 
p c Xi n CplA(S) must appear such that p A a = 0, and hence p A et = 0. See (17) 
in the construction below. 

Since A C E, we can assume that Vs as < es. 

Construction of CG, (6n)n,c.N,P and (P,3,s)/3c3< ,sN.- 

Stage so - 0. Initialize all the strategies /3 by declaring p3,o to be undefined. 
Let 50 be the empty string. 

Stage s = Sn = h(sni_) + 1, n > 0. 
Go through the substages i, for i < n, thereby defining 6,n (i + 1). After that, 

initialize all the strategies /3 such that 6n <L /3 by declaring Pp,sn to be undefined. 
Substage i. Suppose that a -= n \ i has been defined. Let I = |{m < n : 

a C dm}|. If I is not an active stage in the Definition 6.2 of Xi, let 6n(i) = 2 and 
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terminate substage i. Now suppose I is active. Let pa,s be the largest possible new 
candidate for pa,s, namely 

(14) pi,,s A= xAs A A [sup(Xj,(8)V sup(XVs)] 
y7OCa V ylCc 

(15) -g(, s) 
(16) - b(a,s) 
(17) - et 

where t < s is greatest such that ac was initialized at stage t, g(ca, s) -sup{p,s,: 
71 C o}, and b(a, s) is the supremum of all the elements which have been enumer- 
ated into G at stages < s by a strategy / >L cl. 

1. If pO,s is undefined, let p,.s - ,s. Let ,n(i) = 1 and end substage i. 
2. If pa,s is defined but pa,s H8, declare Pc,s to be undefined. Let An(i) = 0 

and end substage i. 
3. Otherwise enumerate pa,s - s A F,* into Gh(s) and let 6 (i) = 1. 
Verification. Before verifying (i) and (ii) we need some preliminary facts. Let 

f C 3W be the true path. In the following let ac - f [ i. Then f(i) = 2 X: Xi V Xi 
A, and if f(i) < 2 then f(i) - 1 X lim p,, exists. Suppose that i > 0 and that 
f(i) 7 2. Let 

(18) k - the least number > 0 such that Vn > k[[a < 6n]. 
Since ac is not initialized at a stage > s, 

limpa.s exists X for some stage s -= n > sk, Pa,s 9 H. 

First we verify that if Xi ? E, then the strategy a eventually makes a choice 
pa X H. Subsequently we show that actually pa X G. 

Lemma 6.6. If Xi V Xi = A and Xi f E, then, for some n > k, pas,s is newly 
defined at stage ,Sn and p,a s H. In particular, ps,, reaches its limit p, at s, and 
f(i) - 1. 

Proof. Since XiVXi A, there are infinitely many active stages for Xi in Definition 
6.2, and hence infinitely many stages s where pa,s is defined. It is sufficient to show 
that p,,, is redefined only finitely often. Suppose not. Let t be greatest such that 
a was initialized at stage t (in fact t - k-i). Since A is locally principal in E, 
A n e, = a for some a E A. Let R be the ideal generated by a, g(ca, s) and all 
the elements which are enumerated into G by strategies 3, al <L /3, and let Rsn 
be the approximation by the end of stage Sn. We claim that R C RZE(A). First, 
R C A because &e n A is principal and g(ct, sk) E A. Moreover R - E by Fact 6.1: 
given m, to obtain bm compute an n > m, k such that va0 C 6n or al C 6,. Since 
strategies 3 such that al <L 03 are initialized at stage s,,, they can at stages > Sn 
only enumerate elements x such that x A e6n = 0. So R E by Fact 6.1, where 
bm - em A sup(RS ). 

Since R E ZE(A), Xi C (Xi n CplA(R)) V R and 7RE(A) is an IDEAL of B(A), 
Xi V E implies that Xn CplA (R) 7 H. So we can choose u f H, u E X nCplA(R) 
and s* > sk such that u E Xi,s* and also u e X,, * V Xe,s* for all e < i such that 
f(e) y 2. 
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Suppose that pa.s is redefined at a stage s - sn > s*. Let g = g(a, s), b - b(a, s), 
and recall that a A ' et. Since u c CplA(R) C A and b V g V a C R, it follows 
that u - - g - t u-b g - ga H. Moreover, u < x,s and 

u < A [sup(Xll,) V sup(Xi|,s)]. 
^y0Ca V 7lCa 

Since at Stage s of the construction we define pa,s > u- b-g-t - , we can conclude 
that p,,,s H. [D 

We now prove that actually p, ~- G. To do so, we analyze how it can happen 
that some d, , H such that n - la is an aO- or al-stage is enumerated into G. 
This is the threat for the Ri strategy a trying to define at s, a successful value for 
Pa,s > d,. We make two observations. 

1. If 1al = sn > sk, then d? , G if d, is not already in G by stage Sn, up to H. 
Here "up to H" means that da - sn E H. (This is in general not a decidable 
statement.) 

2. If da is in C at stage s.n up to H, and also d, < p5,, then there is a shorter 
string v = Fa [ s' which has the similar property d, < pa,s', where s' is an aO- 
or al-stage, Sk < s' < S-. 

The argument why the Ri-strategy a will define a value pa , G provided that 
Xi 7_ E is as follows. By the preceding lemma, a will eventually define a value 
pa X HT. So some do, Irr = s, is not in H, and d, < a,s = Pa,sn =: P- If dcr C, 
then, by the first observation, d, - .s c H. So a minimal v C a obtained using 
the second observation must have the property that d, - s' ? H (where s' -= Iv). 
Then, by the first observation once again, d, ' G. Now d, - p < pa,, - p E G, 
because by the choice of k this difference consists solely of elements enumerated 
into G by strategies to the right of al at stages between s' and s. Therefore p X G. 

We now state and verify the two observations in detail. 
Claim 6.7. Suppose n > k (k was defined in (18)) and ao- - s,. If da - .s,n F H, 
then in fact d,, G. 

Proof. We prove by induction on m > n that d, - gsnL H. For m - n this is 
our assumption. Now suppose inductively that d, - gsL H for an m > n. Let 

= Sm. We can pick v D cr, Ivl - s, such that d,, H and d, A gs 0. Then 
d, - F* ? H. Because d, A sup(G,) = 0 and all elements enumerated into G at 
stage h(s) are < F*, we can conclude that d, - H.s+i X H. ] 

Claim 6.8. Suppose s - sn > sk is an aO- or al-stage. Suppose a\o = s, d, ? HT 
and da < p5,s. Then da - s E H => 3 aO-or al-stage s', sk < s < s, such that 
dv < a,s,, where v - a s'. 

Proof. If da - gs E H, an element > do is enumerated at a stage s* < sn into G by 
a strategy /3: Else all elements enumerated into G at stages < Sn are disjoint from 
d,, so do - g H implies that da C H. Thus d, < p' := p3,s,, where s' < s* is 
the stage where ps,,' was defined. Let v = a F s'. 

First we prove that s' > Sk. By definition, k 0 (see (18)). If s' < sk then 
s' < t =- s1_, the stage where a is initialized for the last time. So p,,s' < et by our 
assumption that &s, < ',, since po,s, <_ 5l,s, < as, < s, < et. But do A et =- 0 
because of clause (17). Thus s' > Sk. 

If a - /, then s' is an al-stage and da < pa,s,, so d, - da F s' < pa,, 
Otherwise, we show that a0 C / or al C 3 (so that s' is an a0- or an al-stage). 
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* If al <L 3, then because p,,, A b(a, s) = 0, d, is disjoint from any element 
enumerated by 3 into G at a stage < s. 

* If /30 c a then, since a is on the true path, p' C H, so d, : p' because 
d, H. 

X If 31 c a then po has reached its limit already at stage sk_- (otherwise a is 
initialized at a stage > Sk), so po cannot be newly defined at s' > Sk. One 
can argue in a similar way if 32 C a. 
/3 <L a is not possible because s' > Sk. 

We conclude that ca0 C 3 or al C /. Then p' < sup(Xi,s,) V sup(Xi,s,) (recall 
that i =- lvl). So if v =- a s', then d, X H implies that dv E Xi,,, or d c Xi,s, by 
(7). But then, since d, C Xi,s, and d, X H, we have d, C Xi:s' Moreover, d, < p'. 
Since a C 3, b(a,s') < b(/, s'), it follows that g(a, s') < g(/3,s'), and the largest 
stage < s' where / is initialized is > Sk-1- So d, < p' < p3a,s'. 

We now complete the argument sketched above. 

Lemma 6.9. Suppose at a stage s = Sn > Sk, P - p, is newly defined. If p , H, 
then p f G. 

Proof. First note that if sk < s' < s and s' is an a0- or cal-stage, then 

(19) pa,s, - p G. 

For g(ca, s) = g(a, s') by the definition of k, and b(c, s) - b(a, s') consists of the 
elements put into G by strategies >L cil at stages t, s' < t < s. 

Suppose that p X H but p C G. Choose a string a of length Sn such that 
d, < p(:= P,s) and d, , H. If d, X G then we are done. Otherwise d, - s G H 
by Claim 6.7. By Claim 6.8, choose the minimal a0- or cal-stage s', sk < s' < s, 
such that v = a [ s' < pa,,, Then d, - ,s, ? H, else we could find a yet smaller 
stage s'. So d, X G by Claim 6.7. But dy -p E G, since d, -p < p/,s, - p C Gs 
by (19). Because G is an ideal, we can conclude that d, A p C G. DC 

By the preceding two lemmas, if Xi _ E then p = limt p,,t G, where a = f \ i. 
Thus the G-enumeration of a at a stage s where the limit has been reached will 
ensure that p n G Z 1. Indeed, suppose H V t = p n G. Then p- t H (else p C G), 
so F* A p - t F H and Fs A p - t will be enumerated into G, a contradiction. 

We are now ready to verify (i) and (ii). 
(i). We give a procedure to obtain the trace px - Pi from X = Xi C A, using 

0" as an oracle. First determine a = f I i. If f(i) 7 1, let pi =0. Else determine 
n(i) minimal such that, where s = s(i), Vt > s Pa,t = P,,s, and define 

(20) Pi = P.s -s 

(note that s is an al-stage). Then pi G Xi. Since pa,s n G [ 1, also pi n G g 1. 
Because pi C E, this implies that actually pi n G C E. Clearly i t-s pi is recursive 
in 0". 

(ii). Let 
P = {Pc,s - gs Pa,s is newly defined at stage s}, 

and for each p = p,s, - ,5 C P, let Gp be the ideal generated by H and the 
elements the strategy ac enumerates into G at stages > s but before (if ever) p, 
is declared undefined. Clearly (ii.a) is satisfied, and Vi pi E P U (0}. For (ii.c), 
suppose p = pa,s - gs, q = pp,t - at, where Pa,s, P3,t are newly defined at the stages 
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s = s,,,t = s, respectively. Then cal C 6a and /31 C 56,. If n = m, then a / /3. 
Say al C /3. Then p,s 5 g(/ , s) and therefore p A q = 0. 

Now suppose that n < m (the case that m > n is handled analogously). We 
can suppose that p,,s is not declared undefined at a stage t', s < t' < t, else by 
the definition of Gp we would have Gp = sup Gp,t, C .t, and so q n Gp = H. We 
distinguish four cases. 

* a C 3. Then a 75 /3, else we would not have to redefine pp at stage t. 
Moreover a0 g /3, else p, is declared undefined at stage t. If al C /3, then 
Pa,s = pat < g(3, t) and therefore p A q = 0. If a2 C P then / is initialized 
at stage s; thus p < s < et and q A t = 0. 

* a <L 3. Then at stage s, P is initialized. Now argue as before. 
* /3 <L a. Then at stage t, a is initialized, contrary to our assumption. 

/3 c ca. If /2 C a, then a is initialized at stage t. If /31 C , then, since we 
are assuming that pp is newly defined at t, there is a stage Sm,, n < m' < m, 
such that 30 C 6m,. Then a is initialized at s,m. Finally, suppose that 
/30 C a. Since q A gt = 0 (recall that t = s,), a G-enumeration of a which 
can contribute elements X H to Gp n Gq must be at a stage h(sm,), m' > m, 
when p, has not yet been declared undefined. Therefore a and hence /3 
have not yet been initialized. Since P30 C 6m,, the last value pp had before 
stage Sm, is in H. Either this value equals q, or the earlier value q had to be 
abandoned because it was found to be in H. In any case q C H. 

This shows that Gp n Gq = H. By (ii.a) we immediately obtain that G np = Gp. 
This completes the proof of the Trace Lemma. D 

Lemma 6.10. Suppose N > 3, A is locally principal in E, and G has been obtained 
by the Trace Lemma. Then there is a C, which is locally principal in G, and a 3- 
acceptablec IDEAL M<B3(C) with the following property. For each N+2-acceptableE 
IDEAL I<13(A), there is an N-acceptablec IDEAL J<B3(C) such that, for each X E A, 

(21) X c I RX 3R c MVS c M[S nR =H X n S E J]. 

Proof. For each p E P, apply the Subideal Lemma 4.6 to the ideal Gp given by (ii) 
of the Trace Lemma. We obtain a u.c.e. sequence (Cp)pEp of ideals. Let C C G be 
the (c.e.) ideal generated by all the ideals Cp. 

First we show that C is locally principal in G. If g E G, then by (ii.a) of the 
Trace Lemma, for some ql,... ,qgm P and gj E Gq, we have g = supl<j<mgj. 
Since 1(B) is distributive, Cng = supl<j<m(Cngj). By (ii.c) of the Trace Lemma, 
C n qj = Cqj. SO C( n gj = j n g c 1 for each j. Thus Cng 1. 

Next we define a 0"-sequence (un) of elements of A. Let B<e be a finite set 
of indices for the subalgebra of 3(A) generated by {X0,... ,Xe+i} (13<e can be 
obtained from i using a 0"-oracle). Let uo = 0 and 

(22) un+l = V{pz-n : Z E 3B<} 

(recall that we write Px instead of pi if X = Xi), where un = OU V... V Un. Clearly 
ui n uj - 0 for i 4 j, and (un) is a 0" sequence by (ii) of the Trace Lemma. Let 
S = u, n C and let 

(23) M < B(C) = the IDEAL generated by RG(C) U {S: n E N}. 

Then M is 3-acceptableG. 
We make use of a relativizable lemma from [10, Appendix, Lemma 4]. 
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TABLE 1 

Object Defined in Function Compl. 
I < 13(A) given N + 2--acc.E 

G C A Trace Lemma to A, E G, C create a frame- 
C C G Lemma 4.6 to all Gp work for reduction 

J < B(C) (24) Reduce I to J N-acc.c 
M < B(C) (23) Codes true path f 3-acc.c 

Lemma 6.11 ([101). If P is a E?-set, then there is a uniformly c.e. sequence (Zi), 
Zi C {O,... i}, such that e C P = a.e. i [e E Zi] and 3'i [Zi C P]. D] 

Relativized to 0(N-1), the lemma states that, if P is E?+2, then there is a 0(N)-- 
sequence of EN sets (Zi) with the properties above. Applying this to P = Ind(I): 
{e : Xi I}, we obtain 

* Xi E I = a.e. i [e E Z]], 
3??i [Zi C Ind(I)]. 

Let J < B(C) be the IDEAL generated by 7Gc(C) and 

(24) {Xe Sn :e Zn}. 

Clearly J is N-acceptableG. In Table 1 we summarize our definitions of ideals and 
IDEALS. 

We now verify (21). 
"=>" Suppose that Xe C I. Choose n such that Vn > n (e E Zn) and let 

R = So V... VS. If S c M and SnR = H, then, for some n > n and W C ZG(C), 
S C Sn V ... V Sj V W. But Xe n S, C J for all n > n and X n W C RG(C) C J. 
Therefore X n S C J. 

"=" Now suppose that Xe I. Given R E M, choose k such that R C 
So .. . V Sk V W for some W C RG(C). Choose n > k such that Zn C Ind(I) and 
also n > e + 1. We show that the witness Sn is a counterexample to the right hand 
side in (21), i.e. Xe n Sn F J. 

Let V = XenCplA(VjEz, Xj)-Ln-1. Then V r E: else, since i_l C RTE(A) C 
I and Vj-cz Xj E I, we could infer that Xe C I. Therefore, by (i) of the Trace 
Lemma, G n pv _ E. But by (ii.c) of the Trace Lemma, Pv n G = Gpv and hence 
Pv n C = Cpv . Thus Gpvv f 1 and, by the Subideal Lemma 4.6, Cpv V Gpv. We 
can conclude that Pv n C t G. 

Also Z - Xe n CplA(Vjz., Xj) C B<n-i, so V occurs in the disjunction (22) 
where Un (and hence Sn) is defined. Hence we see that pv n C c Sn n V and 
Sn n (Xe - Vjcz Xj) X G. But this implies that Sn is a counterexample as 
desired: if Xe n Sn C J, then by the fact that the ideals (Sk) have pairwise meet 
H we have X n Sn C W V Vjcn Xj for some W E RZG(C). This means that 

Sn n (Xe- V X) W c G 

whence S (X - X) , a contradiction. 
whence Sn n (X - Vjcz~ X) [- G, a contradiction. D - 
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We conclude the inductive step by determining a formula ON+2 which shows 
uniform definability of the class of N + 2-acceptableE IDEALS . By Lemma 6.3, M 
is definable via the formula O3 introduced in (12). By the inductive hypothesis, J 
is definable via a fixed formula ON. Let P be the list of parameters (including G 
and C) needed to define M, J, and let 'N+2(X; P, A, E) be the formula derived 
from the right hand side in (21), but with M, J replaced by their definitions via 
3b3, ON, and the constant symbol 0 in our language of lattices replacing H. Then I 

is definable via /N+2. 
On the other hand, if a subset I of B(A) is defined via <N+2(X; P, A, E), where 

P is an arbitrary list of parameters of the appropriate length, then I is an IDEAL of 
1(A) and has a E+2 index set, since by the inductive hypothesis any set J defined 
by ON is N-acceptableG. However, it may not be the case that RE(A) C I. To 
enforce this, let 

bN+2(X; P, A, E) 3U E RE(A) nN+2(X n CplA (); P, A, E). 
Then the class of N + 2-acceptableE IDEALS of B(A) is uniformly definable via 

'N+2. D 
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