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THE 83-THEORY OF R(<,V,A) IS UNDECIDABLE 

RUSSELL G. MILLER, ANDRE O. NIES, AND RICHARD A. SHORE 

ABSTRACT. The three quantifier theory of (Z, T), the recursively enumerable 
degrees under Turing reducibility, was proven undecidable by Lempp, Nies and 
Slaman (1998). The two quantifier theory includes the lattice embedding prob- 
lem and its decidability is a long-standing open question. A negative solution 
to this problem seems out of reach of the standard methods of interpretation 
of theories because the language is relational. We prove the undecidability of 
a fragment of the theory of 1D that lies between the two and three quantifier 
theories with <T but includes function symbols. 

Theorem. The two quantifier theory of (1t,<,V,/\), the r.e. degrees with 
Turing reducibility, supremum and infimum (taken to be any total function 
extending the infimum relation on 1Z) is undecidable. 

The same result holds for various lattices of ideals of R which are natural 
extensions of GZ preserving join and infimum when it exits. 

1. INTRODUCTION 

A major theme in the study of degree structures of all types has been the ques- 
tion of the decidability or undecidability of their theories. This is a natural and 
fundamental question that is an important goal in the analysis of these structures. 
It also serves as a guide and organizational principle for the development of con- 
struction techniques and algebraic information about the structures. A decision 
procedure implies (and requires) a full understanding and control of the first order 
properties of a structure. Undecidability reslllts typically require and imply some 
measure of complexity and coding in the structure. Once a structure has been 
proven undecidable, it is natural to try to determine both the extent and source of 
the complexity. One the one hand, one wants to determine the degree of the theory. 
On the other hand, one strives to find the dividing line between decidability and 
undecidability in terms of fragments of the theory. The first has frequently brought 
with it considerable information about second order properties such as definabil- 
ity and automorphisms. The second requires the most algebraic information and 
development of construction techniques. 

Our interest here is in X, the r.e. degrees under Turing reducibility, and some 
natural extensions of this structure, but, for the sake of comparison, we also dis- 
cuss D and O(< 0'), the Turing degrees of all sets and the ones below 0'. For 
D; oD(< O') the results came fairly early. The first paper on the structure D of 
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the Turing degrees as a whole, Kleene-Post [1954], developed the finite extension 
method (essentially Cohen forcing for one quantifier formulas of arithmetic) and 
proved that all finite partial orderings can be embedded in both D and vD(< 0'). 
As these structures are partial orderings, this suffices to show that the one quanti- 
fier (3) theories are decidable. (An existential sentence is true in either structure if 
and only if it is consistent with the theory of partial orders, or equivalently, if there 
is a partial order with a domain the size of the number of variables in the formula.) 

Once the embedding problem is settled, the next level of algebraic questions 
about the structures concerns extension of embeddings. The first example here 
is density (or, from the other side minimal covers). A long development of con- 
struction techniques building on Spector's original construction [1956] of a minimal 
degree essentially by forcing with recursive trees lead to Lachlan's [1968] result that 
every countable distributive lattice is isomorphic to an initial segment of D. This 
coding of distributive lattices is sufficient to get the undecidability of the theory 
as Lachlan [1968] notes. Combining these initial segment techniques with the fi- 
nite extension method, Simpson [1977] showed that the theory of D is recursively 
isomorphic to Th2(N), true second order arithmetic. 

Finding the dividing line between decidability and undecidability required Ler- 
man's [1971] result that every finite lattice (not just the distributive ones) is iso- 
morphic to an initial segment of D. On one hand, combining this with the finite 
extension method solved the extension of embedding problem in such a way that 
it gave the decidability of the two quantifier (VS) theory of D (Shore [1978] and 
Lerman [1983, Appendix A]). (By the extension of embedding problem we mean 
determining for which partial orders X C y does every embedding of X into tD have 
an extension to one of y.) The ability to code all finite lattices also sufficed for 
Schmerl (see Lerman [1983, Appendix A]) to prove that the three quantifier (V38) 
theory of D is undecidable. 

A similar analysis of D(< 0') was then carried out first by a significant elabora- 
tion of the construction techniques to get enough initial segments results below 0' 
to give undecidability (Epstein [1979] and Lerman). Lerman then proved the full 
analog that every finite (even recursive) lattice is isomorphic to an initial segment 
of D(< 0') (Lerman [1983, ch. XII]). This immediately gives the undecidability of 
the three quantifier theory. Then these results were extended and combined with 
extension-of-embedding results below an arbitrary r.e. degree (Lerman and Shore 
[1988]) to get the decidability of the two quantifier theory. They were also used 
to show (Shore [1981]) that the theory of D(< 0') is recursively isomorphic to true 
first order arithmetic. 

The road has been much longer for the analysis of the r.e. degrees, R. It began 
with the finite injury (or 0') priority method of FYiedberg [1957] and Muchnik 
[1956] that produced incomparable r.e. degrees and so an embedding of the simplest 
nontrivial Boolean algebra. The method sufficed to embed all finite (even countable) 
partial orderings (Sacks [1963]) and so decide the one quantifier theory of R in the 
same way that Kleene and Post's work decided that of oD and vD(< 0'). As the 
r.e. degrees are dense (by the infinite injury (or 0") methods of Sacks [1964]), 
the next steps in the analysis could not follow the path laid out for Z). Many 
years of development of construction techniques and algebraic information ensued. 
Lachlan's monster (or 0"' injury) methods were eventually used by Harrington and 
Shelah [1982] to prove that R is undecidable. The degree of its theory, as by 
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now one should expect, is also that of true first order arithmetic (Harrington and 
Slaman; Slaman and Woodin; Nies, Shore and Slaman [1998]). 

The situation for these three degree structures is summarized in the following 
table: 

This leaves us with determining the boundary line between decidability and un- 
decidability for GZ. Once again, a long hiatus and much work on other developments 
led to the undecidability of the three quantifier theory by Lempp, Nies and Slaman 
[1998]. The extension of embedding problem was solved by Slaman and Soare [2001] 
but the question of the decidability of the two quantifier theory of R remains open. 
A major obstacle is the lattice embedding problem of determining which finite lat- 
tices can be embedded in GZ. Despite some forty years of effort by many researchers 
on both embedding and nonembedding results, this question is still unsolved. The 
best result to date is Lerman [2000] which shows that the question for an impor- 
tant class of lattices is of degree at most 0". Even if the lattice embedding problem 
is shown to be decidable, there are further difficulties related to Lachlan's [1966] 
nondiamond result that there is no embedding of the four element Boolean algebra 
into R that preserves both 0 and 1. 

Thus we remain a long way from the decidability of the two quantifier theory of 
R. On the other hand, the methods used to prove undecidability of other degree 
structures, interpretation of theories with simple fragments known to be undecid- 
able, cannot work for the two quantifier theory of GZ with just T, or even any 
extension by relation symbols, since the most we can code into this fragment is 
the validity (perhaps in all finite models) of an 83 sentence in a finite relational 
language, but this problem is always decidable. (The point here is that, since the 
language is relational, any such sentence with n variables is satisfiable if and only if 
it is satisfiable in some structure of size at most n. As there are only finitely many 
such structures, this question is decidable. The basic result is classical (Bernays 
and Schonfikel [1928] and Ramsey [1930]). Its application to interpretations in 
structures such as R is pointed out in Shore [19997 p. 179].) 

The only hope for an undecidability result at the two quantifier level is to add 
function symbols. One would then try to interpret some theory with function sym- 
bols or, more directly, to code register machines. (The coding of register machines 
is at the basis of much of the work on undecidability of various severely restricted 
quantification classes of formulas as in Borger, Gradel and Gurevich [1997].) The 
natural function on R i5 the join operator V. However, it is uniformly locally finite, 
i.e. the closure of any finite set is finite with size bounded by a fixed recursive 
function of the cardinality of the starting set and so cannot, on its own, be used 
to generate the infinite (or at least unbounded) structures needed for coding even 
register machines. The next thing to try in terms of the known structural work 
on R is the infimum operator /\. This has the advantage that finitely generated 
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substructures can be infinite (Lerman, Shore and Soare [1984]). The obvious prob- 
lem with this approach is that not every pair of r.e. degrees has an infimum, and 
so /\ is not a total function on X, as required. We can, of course, consider total 
extensions of the partial infimum relation but would not want the undecidability 
to be an artifact of our (perhaps perverse) choice of extension. Our solution is to 
prove undecidability in a sufficiently uniform way so that the proof is independent 
of the choice of extension. This we do for our main result. 

Theorem 1.1. For any total extension A of the partial infimum relation on SR, the 
two quantifier (\1g) theory of 1? (<, V, A) is undecidable. 

Now it is routine to eliminate V by replacing it with its definition (as least 
upper bound) at the expense of adding one quantifier. Thus, for example, Vx,y 
Hz(x V y > z) is equivalent to Ex,yGzVw(x,y < w ) w > z). This translation 
shows that the 83-theory of R(<, V) is reducible to the FB8-theory of R(<). The 
same would be true of A (as greatest lower bound) were it a total infimum function, 
i.e. Vx, yHz(x A y < z) would be equivalent to Vx, y3zVw(x, y > w > w < z). This 
need not be true for arbitrary extensions of the partial infimum relation on X, but 
the care that we take with our coding to guarantee that it works for all extensions 
allows us to argue that the 83 sentences of R(<, V, A) that witness undecidability 
can, in fact, be replaced uniformly by equivalent 83V sentences of GZ(<) so that the 
previous best result on undecidability is also a consequence of our proof. 

Corollary 3.1 (Lempp, Nies and Slaman [1998]). The three quantifier (\1HV) theory 
of R( < ) is undecidable 

We will give the details of the proof in Section 3, once we explain the specific 
coding of register machines that we employ. As essentially similar codings of register 
machines can easily be carried out in lattices, the usual interpretation of lattices 
in D as initial segments shows that our main result also holds for the degrees as a 
whole and those below 0'. 

Corollary 3.2. For any total extension A of the partial infimum relation on D 

(D(< O')), the two quantafier (Vi) theory of D (D(< O')) with <, V and /\ ts 
undecidable. 

As for X, the arguments here also imply the previous result that the 838 theories 
of these structures are undecidable. At least in the case of D, the boundary here is 
very fine, as Jockusch and Slaman [1993] have proven that the 8H theory of D(<, V) 
is decidable. 

A new corollary of our proof of undecidability is one for the (lattice) structure 
(R) of ideals of R with V and /\. Here both operations are naturally total on 
the structure. I V J is the ideal generated by I U J, i.e. the downward closure of 
{a V b | a G I & b E J}, and I /\ J is the ideal I n J. This structure is an interesting 
one that has been studied, for example, by Calhoun [1993], Lerman and Calhoun 
[2001] and Nies [2003]. Also of interest are the structures In(1;L) for n > 4 of the 
En ideals of 1Z (those ideals I such that {e | deg(We) E I} is S°) which are each 
lattices with the same operations as 17(1Z). (Note that by standard index set results 
fn(74) iS trivial for n = 1, 2: If an ideal I of R does not contain 0' (but does contain 
0), then by Yates' representation theorem [1966] (see Soare [1987, XII, 1.3]) applied 
to K, the complete Il° set is of the form {k | Ve(W[(] ) E I)} for some recursive f 
and so I must be at least S°. On the other hand, the class of S° ideals is not closed 
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under \/, as can be seen by considering a high degree h and a splitting of h into two 
low degrees a, b. The principal ideals generated by a and b are S° but their join 
is the one generated by h which is S° but not S°.) Each of these lattices (f(R) 
and f;n(8R) for n > 4) is a natural extension of GZ in the sense that the natural 
embedding taking a degree in R to the principal ideal it generates is an embedding 
that preserves order and join as well as infimum when it is defined. 

Corollary 3.3. The two quantifier (\13) theory of 7:(1Z) (Tn(1;L) for n > 4), the 
lattice of (En) ideals of 1t, with C, V and /\, is undecidable. 

Once again, after we have the details of the coding in place, an algebraic analysis 
shows that the principal ideals generated by the degrees doing the coding in R 

perform the same job in 17(R). As both V and A are total functions on T(R), 
their routine elimination as described above gives the undecidability of the three 
quantifier theory. 

Corollary 3.4. The three quantifer (\13\1) theory off(1z) (:In(1;L) for n > 4), the 
lattice of (En) ideals of 1t, with just C, is undecidable. 

We also remark that similar algebraic observations show that we can characterize 
the degrees of the theories of these ideal structures. Indeed the ideas of Nies, Shore 
and Slaman [1998] would have sufficed as well. 

Corollary 3.5. The theory of Z(1z) is recursively isomorphic to that of trve second 
order arithmetic and that of fn(1z) to that of true first order arithmetic for each 
n > 4. 

2. CODING REGISTER MACHINES 

In this section we will explain the algebraic aspects of our codings and derive the 
main theorem, assuming these codings can be interpreted in GZ. The next section 
will provide the proofs of the corollaries about other degree structures. The final 
section will supply the recursion theoretic arguments to show that the structures 
described here can be realized in the r.e. degrees. 

We begin with a standard description of the k-register machines of Shepherdson 
and Sturgis [1963] and Minsky [1961] and their representation in predicate logic as 
in Nerode and Shore [1997, III.8] or Borger, Gradel and Gurevich [1997, 2.1]. 

A k-register machine consists of k many storage locations called registers. Each 
register contains a natural number. There are only two types of operations that 
these machines can perform in implementing a program. First, they can increase 
the content of any register by one and then proceed to the next instruction. Second, 
they can check if any given register contains the number 0 or not. If so, they go 
on to the next instruction. If not, they decrease the given register by one and can 
be told to proceed to any instruction in the program. Formally, we define register 
machine programs and their execution as follows: 

A 1z-register machine program I is a finite sequence I1, . . ., It, It+l of instructions 
operating on a sequence of numbers x1,...,xk, where each instruction Imv for 
m < t, is of one of the following two forms: 

(i) xi := xi + 1 (replace xi by xi + 1). 
(ii) If xi 7& 0, then zi:-xi-1 and go to j. (If xi 7& 0, replace it by xi-1 and 

proceed to instruction Ij.) 
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It is assumed that after executing some instruction Im, the execution proceeds to 
Im+1) the next instruction on the list, unless Im directs otherwise. The execution 
of such a program proceeds in the obvious way on any input of values for xl, . . ., xk 
(the initial content of the registers) to change the values of the xi and progress 
through the list of instructions. The final instruction, It+1, is always a halt instruc- 
tion. Thus, if It+1 is ever reached, the execution terminates with the current values 
of the xi. In general, we denote the assertion that an execution of the program I 
is at instruction Im with values n1, . . ., nk of the variables by Im(nl, . . ., nk). 

The standard translation of a register machine M describes the action of M by 
a system of universal axioms in the language of one unary function s thought of as 
the successor function on N. For technical reasons peculiar to our later coding in X, 
we want to use distinct domains Di with least elements °i and successor functions 
si for each register. In our application, these sets and operations will be defined 
from parameters in R. For now, we describe the axioms needed in predicate logic 
with additional k-ary relations Pm corresponding to the instructions Im. 

For each instruction Im) 1 < m < t, include an axiom of the appropriate form: 

(i) Pm(Xl * * * ) Xk) Pm+l(Xl) * * * ) Xi-1v Si(Xi)) Xi+lX * * X Xk)- 

(ii) Pm(Xlx @ * * * Xi-1) On Xi+lO * * * ) Xk) ) Pm+l(Xlv * * X xi-1n °) Xi+l) * * * ) Xk) 

A Pm(xl, , Xi-1, Si(Y)v Xi+l * * * Xk) Pj(Xln * * * v Xi-1, y, xi+1, , Xk) 

(Note that being a successor is equivalent to being nonzero.) 
Let P(I) be the finite set of universal axioms corresponding in this transla- 

tion to register program I. It is easy to prove that program I halts on input 
(n1, . . ., nk) if and only if the sentence Fk(nl, * * * n nk) _ P1(Snl (O), snk (O)) > 

3x1,...,3xk[Pt+1(xl,...,xk)] is a logical consequence of P(I). More specifically 
for our purposes, the machine halts if and only if Fk(nl, ,nk) is true in every 
model of P(I) in any class of structures that contains ones isomorphic to the stan- 
dard model (where each si on Di is isomorphic to the standard successor function s 
on N) with all possible recursively enumerable k-ary relations Pm on D1 x * * x Dk. 
(Validity implies truth in all the structures in our class and if I fails to halt, the 
standard interpretation of the predicates as the r.e. relations Im(nl,...,nk) gives 
a structure of the required form in which F(nl, . . ., nk) is false.) As it is a classical 
fact (Shepherdson and Sturgis [1963]; Minsky [1961]) that the halting problem for 
2-register machine programs is r.e. complete, it suffices to code all such standard 
models with binary predicates to get undecidability. 

As usual for interpretations, we now want to provide formulas Ai(q, x),lIm(q, x, y) 
and terms vi (q, x) of GZ(<, V, A) defining, for each choice of parameters q, sets Di 
(i = 1,2), binary relations Pm on D1 x D2 (1 < m < t + 1) and unary func- 
tions si on Di (i = 1, 2). We take ql and q2 to be the interpretations of O in D1 

and D2, respectively. We now interpret our formulas P(I) F(n1,...,nk) in the 

usual way. We relativize the quantifiers to the appropriate domain, i.e. Sxi(. . . ) 
becomes 3xi (/i (q, x) A . . . ) and Vxi ( . . . ) becomes Exi (/\i (q, x) ) . . . ) . We then 
replace occurrences of si(xi) by Ai(q7Si) and ones of Pm(xlXx2) by IIm(q7xlSx2) 
We indicate this translation by *. We also need a correctness condition 6 that 
says that qi e Di and the ai define functions on the Di: /\1 (q, ql ) A A2(q, q2) A 

VXl(l(q, xl) /\l(q, ¢l(xl)) A VX2(/\2(q, x2) <2(q, a2(x2)). The class of sen- 

tences of 1Z(<, V, A) that we want will then be those of the form Eq[03 > (P(I)* 
F2*)], where I ranges over programs for 2-register machines. 
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As long as the class of structures given by all choices of parameters q includes 
ones isomorphic to the standard model with all possible r.e. relations as the Pm) 
truth in R for this class of sentences will be undecidable. It is clear that to get 
these sentences to be 8S ones it is sufficient to get quantifier free definitions (/\i 
and rIm) of the domains and relations (and the worst that would work would be 
equivalent S1 and Il1 definitions). As long as there are realizations of the Di as a 
uniformly low independent set of degrees in GZ, we can define arbitrary r.e. relations 
on them from parameters in a quantifier free form by using the following special 
case of Lemma 7.1 of Nies, Shore and Slaman [1998]: 

Lemma 2.1 (Nies, Shore and Slaman [1998]). If (aj) is a v,niformly r.e. inde- 
pendent set with eai low and S is any r.e. set, then there are u,v s?beh that 
S = {i: u < ai VV}. 

If we assume, for example, that Di = {g2j+i: j E AJ} (identified with N in 
the obvious way) for some independent set of degrees gl with (f3gl low, then we 
can apply the lemma to the set of degrees {g2j V g2k+1: j: sC E AJ} with Sm = 

{ (j, k) : Pm ( j, k) } for any r.e. relation Pm to provide parameters um, vm such that 
the formula um < x1 V x2 V vm defines the isomorphic copy of Pm on D1 x D2 
and can be taken as the desired quantifier free Hm. Thus the source of all our 
concerns is providing a quantifier free definition from parameters of a uniformly 
r.e. independent set (gl) with a term of R that gives the successor relation on 
them. (Once we have such a set we can pick out the even and odd parts using 
the same lemma (or exact pairs) and then take the successor functions on each of 
these two disjoint sets to be simply the two-fold iteration of the original successor 
function.) 

The tWQ known methods for constructing independent sets definable from param- 
eters are essentially those of Harrington and Shelah [1982] and Slaman and Woodin 
(see Nies, Shore and Slaman [1998]). The sets they defined from parameters are as 
follows: 

* HS(r, b, c) = {g < r: g is maximal s.t. g V b j c}. 
* SW(r, p, q) = {g < r: g is minimal s.t. g V p > q}. 

Here the elements gi of the sets typically constructed are uniformly r.e. and 
independent while r is taken to be their effective sum and can be made low. Thus 
the only problem is that the definitions of these sets requires a universal quantifier. 
We could reduce this to a quantifier free definition by requiring that they define 
the same set G, for then 

* G(r, b, c, p, q) = {g < r: g V p > q&g V b f c}. 
As a technical convenience that simplifies the construction we note that if we 

have an HS set (gi) defined from parameters r, b and c, then we can weaken the con- 
ditions corresponding to the definition of the SW set to require only that, for each 
i, gi V p > q and, for any w < gi, if w V p > q, then w = gi. This clearly suffices 
to show that G(r, b, c, p, q) = HS(r, b, c). (That HS(r, b, c) C G(r, b, c, p, q) fol- 
lows from the condition that gi V p > q for each gi E HS(r, b, c). To see that 
G(r,b,c,p,q) C HS(r,b,c), consider any w E G(r,b,c,p,q). By the maximal- 
ity condition on HS(r, b, c) there is a giE HS(r, b, c) such that w < gi. Now our 
weakened requirements guarantee that w = gi as required.) Thus we wish to show 
that there are parameters r, b, c, p, q such that the set G =(gi: i E Ls) they define 
is uniformly r.e. and independent with a low sum. 
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In addition, we want to define a successor function on these degrees. Actually, 
we define one on the g2j taking g2j to g2j+2 and so our required domain will be 
these degrees. (Again they can be defined from parameters using the lemma as 
described above but in fact our construction will also build a degree f1 such that 
D = {g2i}iew = {x: x E G&x < fl V x= g0}.) We use the effective successor 
structure from Shore [1981] employed in Nies, Shore and Slaman [1998]. This calls 
for the construction of additional parameters e0,e1,f0,fl such that, for i E , 
(g2i V eO) A fo = g2i+1 and (g2i+1 V el) A fi = g2i+2. We can then define the desired 
successor function on D by S(g2i) = (((g2i Veo) Afo) Vel) Af1 = g2i+2. The required 
result is then the following: 

Theorem 2.2. There are r.e. sets R, B, C, P, Q, Eo) E1, Fo) F1, (Hi: i e ) and 
(Gi: i E ) with R = fflGi; Hi = ek7&iGk; Fo = 3G2k+1 and F1 = eG2k+2 

such that (for all i and W) 

(1) Gi ST Hi 
(2) R is low. 
(3) If W T Gi and Q <T W i3 P, then Gi T W- 

(4) If W T R and C AT W V B, then (3k)W <T Gk 
(5) C ST Gi V B. 
(6) Q <T GiVP. 
(7) deg(G2i+1) = deg(G2i @ Eo) A deg(F0). 
(8) deg(G2i+2) = deg(G2i+1 @ E1) A deg(F1). 

The proof of this theorem is given in the final section. 
Note that as the structures required for the undecidability are coded by param- 

eters such that all the infima needed to define ai exist in X, the structures coded in 
R(<, V, A) include all the ones needed for the undecidability for any (total) exten- 
sion A of the partial infimum relation on R. Thus the construction of r.e. degrees 
r, b, c, p, q, eO, e1, fo f1 as described above suffices to prove our main result (Theo- 
rem 1.1) that the two quantifier theory of R(<, V, A) is undecidable for any total 
extension A of the infimum relation. 

We now turn to establishing the corollaries mentioned in the Introduction. 

3. APPLICATIONS TO OTHER STRUCTURES 

We first show that our codings provide a new proof of Lempp, Nies and Slaman's 
result that the 838 theory of GZ(<) is undecidable. We need to find a translation of 

the sentences Eq [(3 ) (P(I)* F2 )] of R(<, V, A) into 838 ones of GZ(<) which 

preserve truth in GZ. Note first that the definitions Ai and Ilm of the domains Di 
and predicates Pm use < and V but not A. Our only use of the infimum operation 
is in the definitions ai of the terms representing the successor operations on the 
Di. In our translation these terms are defined by composition from the successor 
function sonD ={g2i} = {X:XE G&x<f1 Vx=go} givenby 

S(g2i) = (((g2i V eO) A fo) V e1) A f1 =g2i+2- 

Our primary task then is to eliminate the uses of s in our formulas. 
We begin with the correctness condition (3 which for s says that Ex E D(s(x) E 

D), i e (((g2i V eO) A f0) V e1) A f1 C D. We use the set D ={g2i+1 } = {X: X E G & 
x < fo} as well and break up the condition into the conjunction of two similar 
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assertions: Vx E D((x V eo) A fo E D) and Ex E D((x V el) /\ fi e D). The first is 
replaced by 

(8x E D)(3y E D)(y < x V eo, fo) 

&(Ex E D)(8y, z E D)(y, z < x V eo, fo ' Y = Z) 

and the second by the analogous statement switching D with D and eo, f0 with 
e1, fi . We can now eliminate V from this sentence at the expense of one additional 
quantifier in the usual way to get our I12 correctness condition @ in the language 
of R(<). The first one becomes 

(8x E D)(8u)(3y E D)[8v(v > x,eO > v > u) ) y < u,f] 

&(Ex E D)(Ey,z E D)(8u)[Ev(v > x,eo v > u) ) ((y,z < u,fo) ) y = z))] 

and the second is analogous. 
Our typical sentence on the list of ones showing undecidability now looks like 

A 

klq [e (P(I)* ) F2 )] Our next task is to eliminate the uses of s (and so A) 

in these formulas. We might as well view P(I)* ) F2 as a single S1 sentence in 
<, V, s. Our correctness condition (D says that for each r E D there is a unique 
v E D and w E D such that (v < rVeO,f0)&(w < vVe1,fl). We can use this 
property to replace each instance of an application of s. We proceed by an induction 
on the complexity of terms. Suppose our formula is of the form 3rf(rR, s(ro)). (Note 
that f necessarily includes a clause ro e D.) We replace this with the sentence 
3r(3vo E D)(3wo E D)[(vo< r V eo,fo) & (wo vOVel,fl) &iO(r,Wo/s(ro))]- (We 
use the notation wo/s(r0) to indicate that we have substituted wo for the term 
s(ro) in the ambient formula.) Assuming the correctness condition (3, this is clearly 
equivalent to the original 3rR,o(r, s(ro)). We can now proceed inductively to elim- 
inate all occurrences of s and produce a S1 formula in <, V equivalent under the 

A 

assumption (3 to our original 3rf(r, s(ro)). We can now apply the dual procedure 
to the one used to eliminate V from fIl formulas in <, V to get a 2 formula @(I) 

in just < equivalent to (P(I)* F2 )- We then have our new family of formulas 

bZq[69 > 4!(I)] which are 838 and whose validity in 7Z is undecidable as required to 
prove Corollary 3.1. 

Corollary 3.1 (Lempp, Nies and Slaman [1998]). The three quantifier (838) theory 
of 1z(<), is undecidable. 

Next, we consider D and D(< 0'). First note that it is straightforward to con- 
struct ?\° lattices with top r, individual elements b, c, p, q, eO, el, foX fl and a family 
of independent (even minimal) elements gi satisfying all the algebraic facts required 
in Theorem 2.2 and additional elements u and v defining any fixed r.e. subset of 
the gq as in Lemma 2.1. We can now use the standard embedding theorems from 
Lerman [1983] to realize these lattices as initial segments of D or D(< 0'). Our 
arguments for undecidability now work just as well in these structures and so we 
have the analogous results. 

Corollary 3.2. For any total extension A of the partial infimum relation on D 

(D(< O')), the two quantifier (83) theory of vD (19(< O')) with <, V and A is 
undecidable. 

Finally, we turn our attention to the lattices T(R) (2;n(R)v n > 4) of (En) ideals 
of R with V and A. Recall that the operations V and A are defined in the usual 
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way for structures of ideals (I V J is the ideal generated by I U J and I A J is the 
ideal I n J) and are both total operators on T(Z) and In(lZ) for n > 4. 

Corollary 3.3. The two quantifier (83) theory of 17(1z) (In(lZ) n > 4), the lattice 
°f (En) ideals of 1t, with V and /\, is undecidable. 
Proof. We claim that the principal ideals generated by the degrees constructed to 
satisfy Theorem 2.2 and Lemma 2.1 have all the required properties in T(R) that 
the degrees themselves had in R. The crucial fact is the quantifier free definability 
of the set {gi} as G(r,b,c,p,q). We denote the principal ideal generated by a 
degree x by (x) and want to establish the corresponding facts in 17(14). Consider 
any ideal I C (r) such that (q) C I V (p) and (c) $t I V (b). The first assumption 
tells us that there is an e C I such that q < e V p while the second guarantees that 
c $ e V b. Thus e is one of the gi and so (gi) C I. On the other hand, if h E I, then 
(by our second assumption again) c $ h V giVb. The HS maximality property of 
gi then guarantees that h V gi < gi and so I C (gi) as required. 

The other facts needed from Theorem 2.2 are that (g2i+1) = [(g2i) V (eO)] A (f0) 
and the anabogous one for (g2i+2)- These follow immediately from the trivial general 
facts about f(2) (1:n(14), n > 4) that, for all degrees x, y, (x V y) = (x) V (y) and, 
if x /\ y exists, (x A y) = (x) A (y). The only other algebraic fact needed is that the 
principal ideals given by the degrees constructed for Lemma 2.1 have the analogous 
property in T(R). This too follows immediately from the first trivial fact. 

The same arguments work for tn(l) for n > 4. g 

As remarked above, when V and A are total functions, the two quantifier theory 
with <, V and A is reducible to the three quantifier theory with just C, and so we 
also have proven Corollary 3.4. 

Corollary 3.4. The three quantifier (83\1) theory of f(1Z) (T:n(1Z), n > 4), the 
lattice of (En) ideals oftR, with just C, is undecidable. 

We now explain how similar considerations characterize the theories of these 
structures of ideals. 

Corollary 3.5. The theory off(1z) is recursively isomorphic to that of true second 
order arithmetic and that of fn(1Z) to that of true first order arithmetic for each 
n > 4. 
Proof. Consider the effective successor models {g2i: i e £} in R with the relevant 
parameters as constructed here. As remarked above the effective successor models 
defined by the ideals (g2i) = {a T g2i} generated by the relevant degrees are 
definable in the same way in 17(R) (n(R): n > 4) using the analogous successor 
function. We begin by noting that we could add parameters to define additional 
relations of the form supplied by Lemma 2.1. We want to choose ones that define 
a structure for arithmetic on one subset of the set D = {(g2i)} of ideals. We let 
Dk = {(g8i+2k): i E £} for k < 3 and define the required relations for order, 
addition and multiplication on Do. We begin with parameters that pick out the 
relations Sk = {{(g8i)n (g8i+2k)}: i E £} for 1 < k < 3 that identify the corre- 
sponding elements of Do and Dk. We can then define, for example, the natural 
ordering on Do by parameters that pick out {{(g2i+1) (g2j+2)}: i < j} and sim- 
ilarly plus and times by picking out {{(g2i+1), (g2j+2)v (g2k+3)} i + j-k} and 
{{(g2i+1),(g2j+2),(g2k+3)}: i * j = k}. One can then say that the structure so 
defined is a model of arithmetic in the usual way. 
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The problem now is to find a nonempty definable class C of structures in 17(7Z) 
(fn(2))7 containing the structure defined above, such that every structure in C is 
isomorphic to the standard model of arithmetic. C will be defined by saying that 
there exist parameters Iet and Ifi (i = 0,1), Ib, Ic) etc. (corresponding to the 
parameters ei, fi, b, c,... in our construction on degrees), and an ideal Jo serving 
as 0 in the model of arithmetic, satisfying a conjunction of correctness conditions. 
(Notice that here we cannot assume or require that these parameters be principal 
ideals.) 

We use the effectiveness of the successor function. As is argued in Shore [1981] 
or Nies, Shore and Slaman [1998], we can generate all representatives of degrees in 
each element Ji = si(J0) of the structure, uniformly in i, in a way that is effective 
in < and V on degrees, beginning with representatives of the degrees in the ideals 
J0, Iei X and Ifi (i = 0, 1). 

deg(Wk) e s(Jo) > deg(Wk) e (((Jo V Ieo ) A Ifo ) V Ie1 ) A I 
- (3b,c,d)[deg(Wb) E Jo & deg(Wc) E Ieo & deg(Wd) E I 

& deg(Wb @ WC) E Ifo & Wk-T Wb @ WC @ Wd 

&deg(Wk)Ifi] 

Now all statements here are Sn (including the Turing equivalence, since n > 4), 
because all these ideals are in fn(1;I). By iterating, we derive a En formulation of 
"deg(We) E st(J0)" uniformly in i. 

The independence of the defined set G(Ir, Ib, Ic, Ip, Iq) can also be guaranteed 
by a correctness condition saying that for each element of the defined set there is 
something above all the others but not above it. Thus the ideal generated by all 
the Ji will not contain any elements of G(Ir, Ib, Ic, Ip, Iq) other than the Ji. So as 
usual, if we require of our model that every proper initial segment have a maximal 
element (all in the ordering defined on the structure), then we have picked out 
precisely the standard models. Once we have defined this class of standard models 
of arithmetic, we have guaranteed that each theory is at least as complicated as true 
first order arithmetic. As each fn(1Z) is arithmetical, this completely characterizes 
the complexity of their theories. For 17(R) we simply note that the independence of 
the Ji guarantees that every subset is uniquely determined by the ideal it generates 
and so quantification over f(1Z) codes full second order quantification over each 
standard model of arithmetic picked out by our definition. As 77(1z) is itself defined 
in second order arithmetic, its theory is equivalent to that of true second order 
arithmetic as required. C] 

Corollary 3.6. For m > n > 4, the ideal lattices im(1t) and in(lZ) are not 
elementarily equivalent, nor is any one of them elementarily equivalent to I (l). 

Proof. Let S C w be a En+1-complete set. The sentence f which we build to 
distinguish the lattice Im(1z) from fn(tR) will say that there exists a standard 
model of arithmetic encoded in the lattice by parameters Ieo, Ifo, etc., such that 
some element of the lattice can use this model to compute S. The existence of 
a standard model requires only the existence of a set of parameters satisfying the 
conditions given in the preceding proof. In the rest of the sentence, we say that 
there exists an element I in the lattice such that for every i, 

i C S < - Jz C I, 
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where Ji = si(Jo) is the ideal corresponding to i in the specified standard model. 
(Thus I codes the set S in this model.) To say "i E S" in the language of lattices, 
we use the standard model given by the parameters and the En+l definition of S. 

In 7m(tR), by the preceding results, we have a standard model of arithmetic on 
certain ideals {Ji: i E a)}. Let Js be the ideal consisting of finite joins dl V * *Vdp 
with each dj E Jij for some ij E S. We claim that Js lies in l;m(1z): 

p 

{e: (Hp) (3io) . . ., ip E S) [deg(We) E V Jij ] } 
j=O 

= {e: (3p) io) . . . v ip) koX . . . ) kp)(\ll < p)[il e S & deg(Wkl) E sil (Jo) 
p 

& We <T @ Wki]} 

j=O 

As noted above, sil (Jo) is a Em-ideal uniformly in i. Thus Js is indeed a Em-ideal, 
and STm(lZ) (and T(R)) satisfy +. 

Now suppose that we have parameters in In(14) defining a standard model of 
arithmetic on ideals {Ji: i e z}, and that I E Tn(1z) is a (not necessarily principal) 
ideal with {i: Ji C I} = S. Then there would be a En formula 0 defining {e: 
deg(We) e I}, so we would have 

i E S Ji C I < > (Va E Ji)[a E I] J (Ve)[deg(We) E 5i(Jo) > 0(e)]- 

This is impossible for the En+1-complete set S, since the rightmost formula is Hn+l- 
Therefore the sentence + fails in tTn(1z)) whereas it holds in vTm (1z) and in f(Z). g 

4. CONSTRUCTION 

To prove our required technical result on degrees, Theorem 2.2, it suffices to 
construct r.e. sets satisfying the requirements of the following theorem: 

Theorem 4.1. There exist sets Gi (i E z), P, Q, B, C, Eo E1, and R= (13Gi 
satisfying the following requirements for all e, i, j, k, and x ing and all computable 
functionals Q, , A, r, and @: 

Requirements: 
tDi,Q: Gi 7& QHi, where Hi = ksi Gk 

L¢,x: [(i s) b (x)[s] l] ¢ (x) l, 

Mi,j,A,^r: Wj = of Gi ,. [AWj@P = Q > (3e9) Gi = eywj], 

Xe,¢ T =¢R [(ir) C=rWei3B or(ik)(gi\) We =i\ k], 

Pi,: C 7& GieB 

SRk (-)Q = Gk fflP 

Lattice requirements (here Fo = k G2k+1 and F1 = k G2k+2): 
T2i : G2i+1 T G2i ffl Eo, 

S2i+1: G2i+2 T G2i+1 @ E1, 
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Ue,2i ,bG2i@Eo = bRo total e bRo T G2i+1, 
ue,2i+l <;gG2i+l@El = ¢?F1 total > bF1 T G2i 2 

(EIere and afterwards, the notation "[s]" at the end of a term or equation indicates 
that we refer to the approximation at stage s of each set, oracle and function used 
there. Thus, for example, the hypothesis of the requirement LeaXx is that there are 
infinitely many stages s at which 4?R9 (X) converges.) 

As in Nies, Shore and Slaman [19981, we begin by choosing an effective ordering 
of all the D-, M-, JV-, P-, GZ-, and U-requirements, in order type , such that for 
all i and j: 

* zZi precedes every 7)i,Q and every Ue,i in the ordering (i.e. SZi has higher 
priority than tDi,Q and Ue,i); and 

* both 7Zi and Rj precede every Mi,j,A,Y 

(The requirements X are global requirements and will not be given a priority 
rank or placed on the tree. The requirements Lo,x will play a role in priority 
arguments, as described below, but they also are not placed on the tree.) 

This ordering yields a specific priority order on the J\g-requirements, which we 
write as Xo, JV1, . . ., defining ei and bi so that J<i denotes Neeii . Next we construct 
a tree T. Each node on the tree will have a specific requirement assigned to it, will 
play a particular strategy to attempt to satisfy that requlrement, and will have one 
immediate successor for each possible outcome of the requirement. For brevity, if 
the requirement vDi,Q is assigned to a node oe, we will call oe a vDi,Q-node and also 
a D-node; similarly with all other requirements. Below, we name the outcomes 
for each type of node and explain how the construction works to select one of the 
outcomes and satisfy the node's requirement. 

We view the tree T as growing upwards from a root node. The relation < will 
represent higher priority: oe < p if Ol is to the left of: on T or og Cf :, i.e. exactly 
when oe has higher priority than :. To define T and determine which requirement 
is assigned to each node p E T, we need the following definition. 

Definition 4.2. Let p e T. Each requirement is either active along p (via a single 
node c p), or satisfied along p (again via a single node c p), or neither, according 
to the following inductive definition. (Notice that a requirement cannot be both 
active and satisfied along the same node.) 

If p is the empty string, then no requirement is active or satisfied along p. Oth- 
erwise, let r1 = p-, the immediate predecessor of p. 

If a D-, M-, J\g-, R-, or U-requirement is assigned to r1, then every requirement 
active or satisfied along rl via some d is also active or satisfied (respectively) along 
p via p. Also, the requirement assigned to r1 is active along p via r1 (if it is an 
JV-requirement and p = r1^(oo)) or satisfied along p via 71 (otherwise). 

If r} is a Pi,-node, then we must consider the successors of r1 separately. 
* If p = r7^(f) or p = 7/^(w), then every requirement active or satisfied along r1 

via some d is also active or satisfied (respectively) along p via , and pi7@ itself is 
satisfied along p via r1. 

* Otherwise, according to our definition below of the successors of 71, p = r1^(al) 
for some Z e w such that E1 is active along 71 via some oe. We then define this N^l 
to be satisfied along p via oe, and every f-requirement active or satisfied along oe 
via some oB c oe to be active or satisfied (respectively) along p via the same p. All 
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other J\g-requirements are neither active nor satisfied along p. (In particular, J\g- 

requirements which were active or satisfied along 71 but not along oe will be injured 

by the action we take at node p and hence are neither active nor satisfied along p.) 

Requirements of types other than J\/ which were active or satisfied along r1 via any 

: remain active or satisfied (respectively) along p via , and Pi,@ itself is satisfied 

along p via r1. 

With this definition, we assign to p the requirement of highest priority that is 

neither active nor satisfied along p. The immediate successors of p depend on the 

type of requirement assigned. For each possible outcome y of p as defined below, 

we add an immediate successor p^(y) of p to T. 
The possible outcomes of each node, and their meanings, are as follows: 

* If p is a Di,Q-node, then the two possible outcomes for p, in order, are f < w. 

The node p finds a witness element wp, as in a FFiedberg-Muchnik construction, 

waits for the witness to be realized, and then attempts to put it into Gi. The 

outcome w holds while we wait for the witness element to be realized. If it is never 

realized, then it never enters Gi, so the requirement is satisfied. If it is realized at 

some stage, then we preserve the convergence of the computation QHi (Wp) 1= 0 by 

initializing all nodes > p, and attempt to enumerate the witness element into Gi by 

allowing it to enter the pinball machine associated with the satisfaction of the U- and 

f-requirements, starting at node p. Each U- and F-node below p periodically allows 

elements ("balls") to pass its gate, thereby giving those elements its permission to 

enter their target sets. Other elements may be assigned to the witness as traces and 

targeted for sets Eo) E1, or Gi_1, Gi_2, . . . to satisfy the f-requirements. Assuming 

that p is on the true path, wp will eventually pass every gate below p and enter Gi, 

at which point we switch to the outcome f. This represents a "finite win" for the 

requirement Di,q, since we have now satisfied Gi(wp) f QHi(Wp). 

tD-nodes (and M-nodes, described below) do injure the negative requirements 

£s,x by enumerating elements into R. At certain stages a requirement £m,x may 

initialize cofinitely many nodes on T in order to preserve the computation bR(x). 

Also, each time the node p is initialized by another node (as opposed to being 

initialized by an L-requirement), it loses some priority vis-a-vis the LD-requirements. 

This guarantees that even if p is to the right of the true path and enumerates 

infinitely many elements into R, it will only injure each £-requirement finitely 

often. 
* If p is a Se,i-node, then the possible outcomes of p are 

PO <P1 P2 < * - ) 

ordered as given. The outcome Pr represents a restraint of length r placed on Gi@Eo 
and Fo (or on Gi d3 E1 and F1, depending on the parity of i) as in the pinball-style 

constructions for lattice embeddings in Lerman [1973] and related works. A "ball 

targeted for Gi" is a number which some D- or M-node oe would like to put irlto 

Gi, and will be named wt . The node p acts as a gate in the pinball machine. For 

every oe 2 p, every ball wt must wait at gate p until the ball can enter Gi without 

injuring the requirement Ue,i. Occasionally such an oe may also want to put a ball 

eJ into the set Ej (for j = 0 or 1), and again the gate p will make that ball wait 

until the enumeration will not injure Ue,i. If the hypothesis of Ue,i is satisfied, then 

the restraints will drop to 0 infinitely often; if not, then they will converge to a 
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finite limit, and every node above that outcome will have the correct guess about 
the limit, hence will only use witnesses large enough not to injure that restraint. 

* If p is an GZk-node, then the only possible outcome is oo. At eaoh p-stage, we 
extend the functional -GkG3P being built by lzk. The only possible injury to this 
construction occurs when some Mk,j,A,-node wishes to enumerate an element into 
Q, for reasons described below. Each M-node enumerates at most one element x 
after its last initialization, and any M-node 2 p will enumerate its x into Q only 
after ensuring that some change in Gk @ P will allow p to redefine pGkd3P(X) = 1. 

* If p is an Mi1j,A,r-node, then the possible outcomes are 

f < oo < w. 

We have some control over the enumeration of Wj using the hypothesis Wj = y>Gt v 

and this in turn affects the hypothesis AwJ0P = Q. The outcome w denotes a non- 
expansionary stage for the latter hypothesis, meaning that the length of agreement 
between Wj and y>Gi is not sufficient for us to guarantee any increase in the length 
of agreement between AWj@P and Q. If there are cofinitely many nonexpansionary 
stages, then Mi,j,?V, will be satisfied. 

On the other hand, if the length of agreement between Wj[S] and TGt[s] has 
increased sufficiently to enable a longer length of agreement I between AWJ@P[S] 
and Q[s] to be computed, we call s + 1 a p-expansionary stage, and we attempt to 
extend our functional (3p to compute Gi from Wj on the domain 1, setting the use 
SpWj (y) [S + 1] = AWj eP (y) [S] and preserving the equality of these uses, as described 
below. If we succeed, the outcome is oo. If there are infinitely many p-expansionary 
stages and we succeed in extending (3p at every one, then the true path will contain 
P (X) 

If, at some p-expansionary stage s + 1, we cannot extend Op as above, then 
we will be able to achieve a finite win, denoted by the outcome f. Some number, 
which we designate as xp, must have entered Gi since the last p-expansionary 
stage r + 1, with no change to Wj F AWjd3P(xp)[r] up until stage s (since such a 
change would allow us to redefine oWj(Xp)[s + 1]). We attempt to enumerate xp 
into Q to make AWj@P + Q, since the absence of any Wj-change ensures that 
lVWjd3P(xp)[s] 1= O. (Recall that the use Sp matches the use A.) We will preserve 
this finite win by initialization, imposing sufficient restraints on P and Gi to prevent 
Wj from changing, since Wj = TGt. 

Before enumerating xp into Q, however, we must ensure that this enumeration 
will not injure any higher-priority 7Zk-node , since such a p builds a functional 
p with the intention that Gk 3P = Q. When we enumerate xp into Q at a later 
stage t + 1, therefore, we will want to enumerate (pGk 6$3P(Sp) [t] into P, allowing pk 

to redefine its functional at the next pk-stage. On the other hand, if (pkk@P(Sp) < 

AWip(Sp)[t]v then this enumeration would allow AWj(Xp)[t+ 1] to change as well, 
which would destroy our diagonalization. For k 7& i, we avoid this problem by 
first enumerating an element Wpk = (pk eP(Xp)[S] into the set Gk, which allows 
dk to increase the (k-use without permitting any change in Op. (Of course, this 
takes time, since Wk must proceed through the pinball machine, starting at p, 
before entering G.) When we finally enumerate xp into Q at a stage t + 1, our P- 
enumerations at that stage will allow for changes in dki (xp)[t+1] while maintaining 
AWi@P(Xp) [t + 1] l= ° 
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The requirement GZi is also assigned to some di C p, and the strategy above would 
not work for it, since any Gi-enumeration after stage s could allow a change in Wj = 
Y>Gt[s], hence in AWjfE3P(xp)[s], ruining our diagonalization. (P-enumerations, 
which could also ruin the diagonalization, are discussed below.) Fortunately, we 
do not need any Gi-enumeration, because the ball xp was chosen at a stage s + 1 
when it had just entered Gi itself. pi will have increased the use (pii@P(Sp)[s] 

to be large, hence > AWj0i3P(xp)[s]. (Recall that any change in this A-use be- 
tween stages r and s would have allowed us to extend the functional (3p so that 
EWi(xp) = Gi(xp)[s + 1].) Therefore, we make no further Gi-enumerations, but 
simply enumerate (pii@P(Xp)[S] into P at the stage t + 1 when xp enters Q. pi will 
then be able to redefine pii@P(Xp) = 1 at the next di-stage, as required. 

It is important in the preceding construction that we keep the use Swj (x) equal 
to AWi@P(x) at each stage. If the A-use became larger, then a number > Swj (xp) [r] 
which entered Wj between stages r and s might leave AWi@P(Sp) > (pii@P(Xp)[s] 

so that the P-enumerations would destroy our diagonalization against AWid3P _ Q, 
without letting us redefine Owj (xp)[s+1] = 1. So we must ensure that PLAwjp(x) 
is preserved for every x which might eventually play the role of xp, i.e. any ball wa 
(with p^(oo) C ty) targeted for Gi. 

To make this happen, we refuse to allow any ball wk to enter the pinball ma- 
chine (the preliminary step to entering Gi) if its entry into Gi could create a P- 
enumeration which might upset the strategy for a higher-priority w. In particular, 
if p^(oo) C al, then oe thinks that the expansionary outcome of p holds, and so Ol re- 
fuses to release any ball Wk into the pinball machine until wk E dom(@Wj), that is, 
until the A-use on all numbers < wk has been chosen and guaranteed by agreement 
between Wj and tGi. (In particular, the A-use of all balls from higher-priority 
nodes ty has been chosen by then.) If wk does enter Gk, then the Rk-node yB C oe 
will subsequently choose the use ( kd3P(wk) to be large, hence larger than the A-use 
of any ball w? from any node ty < c. This use (pk@P(wk) may subsequently be 
enumerated into P by some other M-node, but it will not change P[>Wi@P(Wa) for 
any ny < cv. Thus, it will not injure the strategy of any M-node of higher priority 
than oe. 

(The same is true for any trace for Wk: the corresponding R-node will choose 
the --use of the trace to be large after the trace enters its target set, hence after 
Wk iS released, hence after wa enters dom(03Wj ). So this -use will also be greater 
than AWj@P(Wa) and can safely be enumerated into P. Therefore, we define every 
trace to be certified automatically. Only witness balls chosen by D- and M-nodes 
must wait for certification.) 

We will say that wk is certified when it has entered the domains of all such (3Wj_ 
functionals (for all p with p^(x) C al), and we require all balls targeted for any 
Gk (whether from D-nodes, from M-nodes, or traces for other balls) to be certified 
before moving through the pinball machine. If oe is on the true path, then the 
expansionary outcome p^(x) does hold, and so the domain of Ewj will eventually 
grow large enough to include Wk. Thus no ball from a node on the true path will 
be forced to wait forever before entering the pinball machine. 

* If p is an J\Ee,¢-node, then the possible outcomes of p are x and w, ordered 
with oo < w. The outcome w denotes a nonexpansionary stage, i.e. a stage at which 
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the length of agreement between We and bR has not increased, so that we wait 
without taking any action. oo represents the outcome of an expansionary stage; if 
we have infinitely many such stages, then Nwe,¢ goes about the business of trying 
to build rp to compute C from We d3 B. As described below, this process can be 
injured by lower-priority P-nodes, making this a O"'-construction. 

* If p is a P-node, let K be the finite set of higher-priority N^-requirements which 
. . p may lnJure: 

K = {k: N^k iS active along p via some oe} = {ko < k1 < < kn} 
Then the set of possible outcomes of p is the following, ordered as given: 

f < akO < akl < *-- < akn < W. 

For P-nodes p, we attempt to achieve a finite win by choosing a witness zp, 
waiting for Gi@B(Zp)[S] 1= 0 at some stage s, and then putting zp into C, so as 
to force C 7& Gi@B. The outcome f denotes our success in doing so, with the 
construction initializing nodes F p at stage s to preserve (Gi @ B) p fGt@B(zp)[s]. 
The outcome w denotes that we are waiting for this convergence to occur. (If we 
wait forever, then Pi, will be satisfied.) 

However, an N^e,<>-node oe C p may object to letting zp enter C, since this would 
disrupt its own computation of C from We @ B via its functional rO. The easiest 
way around this difficulty is to enumerate the current use aWed3B(zp)[s] into B, 
thereby allowing or to change the value Of rWe@B(Zp) to 1. However, we can only 
do this if aWe@B(zp) > fGi@B(Zp)[S]) since otherwise the change in B would ruin 
the convergence Gt@B(Zp)[S] = O and leave Pi, still unsatisfied. 

To handle this issue, we check in turn with each requirement N^k = N^ek,bk active 
at p via one of the (Xk, starting with the lowest-priority one Nfkn and working down 
to the highest-priority one JVko. If 7ak k (Zp) > fGi@B(zp)[s]) then Xk does not 
object to the entry of zp into C, and we continue with the next-higher-priority S- 
requirement. Otherwise, we wait until the next p-stage, offering Wek p7° k k@ (Zp)[S] 

the opportunity to change (for technical reasons having to do with Lemma 5.15). 
If no such Wek-change occurs, we then enumerate ak kffl (Zp)[S] into B[s + 1], 
destroying both of the computations rsxk kffl (Zp)[5] and Gi@B(zp)[s]. In this case 
we make the outcome ak eligible at stage s. In doing so, we give up our hope of a 
finite win for p with the current realization of zp, and also disrupt the computations 
r,>lel @ (zp) [s] for every I > k. This procedure will result in a win for p if we repeat 
it infinitely often, since in that case tGt@B(Zp) must diverge. For the node Ak, each 
time we make such a B-enumeration, we take a further step in the construction of a 
functional /\p,k- If p^(ak) lies on thetrue path, thenthe functional /\p,k will receive 
such attention infinitely often and will compute Wek from Gi, thereby satisfying 
N-k. Hence we say that.NSk iS satisfied via oe along nodes D p^(ak), meaning that 
Ogk does not actively try to protect its functional r,>k at such nodes, since p has 
constructed /\p,k to satisfy N^k instead. This outcome is described in more detail 
on page 3047, in Subcase 3 of the construction for P-nodes. 

While the outcome ak does satisfy Xk, it also disrupts the functionals ral for all 
I > k in K, without doing anything to build /\-functionals for the requirements J\Al. 
Those requirements all have lower priority than Xk, and are immediately reassigned, 
in the same order, to p^(ak), its immediate successors, their immediate successors, 
and so on until each has been assigned to another node ff on each path through 
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p^(ak). Thus, along every path through p^(ak), each such El is now assigned to 

a new oe 2 p, with the assurance that the requirement JVwk will never destroy the 

functional r,l the way it destroyed r,tl. By induction, therefore, each Ez will be 

reassigned to higher nodes only finitely often along any fixed path through the tree. 

The N^j-requirements which are active along (Rk emerge with their r-functionals 

unscathed by p. These nodes all have higher priority than Nk (i.e. have j < k), so 

will have 
Wei B (Z ) < a ek (ZP ) [Sl - 

Therefore the numbers enumerated into B by p will not injure the functionals r,>j. 

The outcome ak leaves J<k satisfied, not active, and, assuming inductively that 

all higher-priority f-requirements remain either active forever or satisfied forever 

along the true path, N^k will remain satisfied forever there as well. 

The P-node also functions as a gate in the pinball machine, temporarily restrain- 

ing balls targeted for sets Gj. When zp is realized at a stage s, the restraint will 

keep balls < fGi@B(zp)[s] from entering Gi, thereby protecting the convergence of 

Gi@B(Zp)tS]. (In the finite-win situation, of course, the source nodes for all such 

balls are initialized when zp enters C. If the true path passes through p^(ak), then 

this restraint becomes arbitrarily large, but drops back to 0 each time we destroy 

the convergence of Gt@B(Zp).) At other stages, for the sake of Lemma 5.15, we 

wish to ensure that the only balls which enter the set R = ej Gj are balls en- 

tering Gi, so we restrain balls targeted for sets Gj with j 7& i. Since wMk assumes 

that Wek = bRn this restraint will ensure that any change in Wek at these stages 

can be traced to a change in Gi, allowing us to redefine the functional AGk on 

the element which entered Wek, as Xk requires. These retraints are also set to 0 

periodically, at stages s when a change in Wek would allow us to increase the use 

7akeke (zp)[5 + 1] to be > fGt@B(:p)[s]. Such a change in Wek would let us move 

closer to the finite-win situation and would lead to initialization of the node p^(ak), 

so there is no reason to protect Wek at such stages. Thus no ball will be restrained 

forever by any P-node on the true path. 
This completes our description of the outcomes of nodes on T and the meaning 

attached to each. 

Construction. As in Nies, Shore, and Slaman [1998], each stage s + 1 of the 

construction consists of (at most) s substages, along with two steps which are 

executed at the end of every stage. At each substage t < s, only one node p C T, 

of length t, will be eligible to act, and that p will then designate at most one 

of its imInediate successors in T to be eligible to act at the following substage. 

(Alternatively, p may refuse to make any of its successors eligible.) The empty 

node is always eligible to act at substage 0 of any stage. The choice of which 

nodes are eligible to act corresponds to our approximation at stage s of the true 

path through T, i.e. the path g such that for each p c 9, the successor of p along 9 

denotes the ultimate outcome of the strategy played by p to satisfy the requirement 

assigned to it. g(n) will be the leftmost node of length n which is eligible to act at 

infinitely many stages. 
To initialize a strategy means to make all its parameters undefined and all func- 

tionals which it constructs completely undefined. At stage 0, we initialize every 

node. At each subsequent substage we initialize every node which lies to the right 

of any node eligible to act at that substage. Occasionally the construction will 
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instruct us to initialize other nodes as well, but each node on the actual true path 
will only be initialized finitely often. 

A number is larpe if it is greater than every other number seen thus far in the 
construction. By convention, our functionals are built so that, for any fixed oracle, 
the use function is strictly increasing. 

At stage s + 1 and substage t < s, let p be the node of T eligible to act at this 
stage and substage. If we have just completed substage s-1, or if an eligible node 
refuses to make any of its successors eligible to act at the next substage, then we 
proceed to the final steps of the stage, which describes which balls are allowed to 
move on the pinball machine at that stage. We then terminate the stage. 

Let s" + 1 be the last stage at which p was initialized, and let s' + 1 be the most 
recent stage > s" + 1 at which p was eligible to act. (If there has been no such stage 
since s" + 1, we take s' = s".) The action of p depends on the type of requirement 
assigned to it. 

If p is a Di,Q-node, we proceed in the style of Friedberg and Muchnik. 
(1) If no witness element wp is currently defined, then pick a large witness element 

wp and target it for Gi. (Thus, for every gate oe c p on the pinball machine, this 
wp will be greater than the restraint currently maintained by that gate. If p is on 
the true path, then wp will be large enough that every such a will eventually allow 
wp to pass its gate.) We also choose a large number e2, where j is O if i is odd 
and 1 if i is even, and target it for Ej. The ball eJ serves as a trace for wp, for the 
sake of requirement fi-1. We then initialize every requirement D p and end this 
substage, with no node eligible to act at the next substage. 

(2) If wp is currently defined but either QHi(Wp) T [S] or QHt(Wp) 1+ O[s], then 
continue with the next substage, making p^(W) eligible to act at that substage. 
(Recall that Hi = skf i Gk. In this case we say that Wp has not yet been realized.) 

(3) If wp is currently defined and QHt(Wp) 1= O[s], we check whether wp is 
certified at stage s. By definition, wp is certifed at stage t if for every node ff c p 
such that a requirement Mi,j,lv,r is assigned to ff and a^(oo) C p, we have wp E 

dom(@Wi)[t], where t' + 1 is the greatest a-expansionary stage < t. 
(It is important to note that this definition of certified only applies to balls chosen 

by O- and M-nodes, not to their traces. Every trace, whether targeted for Ej or 
for a set Gk, is automatically certified and enters the pinball machine immediately 
upon being chosen by Instruction 4.4.) 

If wp is not certified at stage s, then we initialize all nodes D p (so they will 
never injure the computation QHi(Wp)[s]) and terminate this substage, with no 
node eligible to act at the next substage. 

(4) If wp is currently defined and certified and QHi(Wp) 1= O[s], we let wp and 
ep enter the pinball machine, following Instruction 4.3 below. We then initialize all 
nodes D p and end this substage, with no node eligible to act at the next substage. 

(5) If wp has entered the pinball machine, but has not yet entered Gi, we end 
this substage, with no node eligible to act at the next substage. 

(6) If wp has already been enumerated into Gi by stage s, then end this substage, 
making p^(f) eligible to act at the next substage. 

Instruction 4.3 (Entering the Pinball Machine). The gates of the pinball machine 
are precisely the P-nodes and the U-nodes. If a ball entering the pinball machine at 
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stage s + 1 has subscript p, we call p the source node for that ball. p will be either 
a D-node or an M-node. 

* If there is no gate a c p, then we enumerate eJ into Ej [s + 1] and wp into 
Gi[s + 1]. (Notice that every ball which enters the pinbalt machine, either 
from avD-node or an M-node, is already certified, hence allowed to enter 
its tarpet set.) 

* If there is a gate ot c p, then we drop wp to the greatest such a, and drop 
eJ to the greatest gate a C oe to which a requirement Ue,2k+j is assigned. If 
there is no such a, then we enumerate eJ into Ej[s + 1] and appoint a new 
trace or traces for wp, following Instruction 4.4. 

Instruction 4.4 (Assigning Traces). At stage s + 1, if the ball W;3 is waiting at a 
vP-gate, we assign a large trace e,B (if i is odd) or e,B (if i is even). If it is waiting 
at a Ue,2k-gate a, we follow these directions: 

* If i is even and i > O, then we assign a new trace eoB, chosen larpe and 
tarpeted for E1. This baZl starts at gate a. 

* If i is odd and i + 2k + 1, then we assign a new trace w,B-1, chosen large 
and targeted for Gi_l, and this trace is assigned its own trace eg3 tarpeted 
for E1. Each of these two balls starts at gate a. (Since i-1 78 2k, this will 
not threaten the restraint imposed by UeX2k ) The trace w:-1 is immediately 
considered certified. 

* If i = 2k+1, then the ball W,f3 is not assigned any traces at this gate. Instead, 
w,B passes gate a immediatety and drops to the greatest gate (x' C oe to which 
either a P-requirement or a requirement Ue/,k, with k' + 1 7& i is assigned. 
We then follow these same instructions with ' in place of a. If there is no 
such node ', then WA3 enters Gi[s + 1]. In this case we check whether W;3 
was a trace for another ball. If so, then we follow these same instrtuctions 
for that ball at the gate at which it is currently waiting. 

* If i = O, then the ball woB waits at gate al but is not assigned any traces. 

To create traces for a ball Wt3 waiting at a Ne,2k+l-gate a, we follow the analogous 
directionsn with the special case occurring when i = 2k + 2. The ball w,B and the 
one or two traces defined above together constitute a block, with lead ball W,3. Any 
previously existing blocks which contained WA3 become undefined. 

The point of this process is that (barring initialization of oe) at any subsequent 
oe-stage at which the restraint r at gate oe is less than w:, all the balls in the block 
will be able to pass gate Ol simultaneously. For instance, in the case where oe is a 
Ue,2k+1-gate, either no ball in the block is targeted for F1 (if i is odd) or none of 
them is targeted for G2k+1 d3 E1 (if i is even and j 7£ 2k + 2). As noted above, the 
case i-2k + 2 is an exception, but then the ball wp is targeted for G2k+2, allowing 
G2k+2 to compute bF1, so Ue,2k+1 will still be satisfied. Finally, if i = O, then no 
T-requirement applies to Gi, so no trace is required. Therefore the entire block 
will be able to drop down to the next gate of the pinball machine simultaneously 
without violating requirement Ue,2k+1. If more than one block of balls is waiting 
at a gate, we allow the block with highest-priority subscript to pass first; if several 
blocks have the same subscript, then the one with the largest lead ball goes first, 
since the larger lead ball will be a trace for the smaller lead ball. 
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If p is an Rk-node, we extend the functional p it builds. If s' = s", then 
_Gk@P[S/ + 1] iS empty, and we let y =-1; otherwise we let 

y = max(dom(-Gkd3P))[s' + 1]. 

We check whether there is any x < y such that _pGk@P(X)[S] does not converge to 
Q(x)[s]. If there is no such x, we define pGk@P(y + l)[s + 1] = Q(y + l)[s] with 
large use. If there is, then for each such x we act as follows: 

* If x has entered Q[s] since s', then it must have done so on behalf of 
an M-node above p, and this node will have enumerated an element into 
P, allowing us to redefine-pGfflP(x)[s + 1] = 1. We do so, since now 
Q(x)[s] = 1, and we leave the use of the computation unchanged. 

* If Q(x)[s] = Q(x)[s'], then there must have been a change in Gk d3 P since 
stage s' + 1 on the use of the computation pGk@P(X)[S/ + 1]. Therefore, 
we simply redefine Gk@P(X)[S + 1] = Q(x)[s]. If either x E Gk[s]-Gk[s'] 
or x-xOt for some Mi,j,a,y-node Ol 2 p such that wk E Gk[s]-Gk[s'] 
(as defined below), then we choose the use of this computation to be large. 
Otherwise, we retain the previous use. 

tRk has only one outcome, namely oo, and we end this substage, making p^(oo) 
eligible to act at the next substage. 

If p is an Mi,j,,v,-node, then there may be a witness element xp already defined, 
which we will use to try to make AWi@P 7& Q. We will also ask whether the stage 
s + 1 is p-expansionary, defined as follows. Let 

m(p,s) = max{y < s: (8x < y) tpGi(X)1-Wj(Z)[S]} 

I ( p, s) = max{z < s: (Ex < z) AWj P (x) 1= Q(x) [s] with use < m f p, s) } . 

The stage s + 1 is p-expansionary if p is eligible to act at s + 1 and I (p, S) > t (p, t) 

for every t with s" < t < S at which p was eligible to act. Thus, we are considering 
not the actual length of agreement between lVwjep[s] and Q[s], but rather that 
portion of the length of agreement which we can guarantee by putting sufficient 
restraint on Wj @ P. Of course, we cannot restrain Wj directly, but we achieve 
this purpose by putting restraint on Gi and noting that the use of AWj@P[s] is less 
than the length of agreement between tpGi [S] and Wj [s]. We define r + 1 to be the 
greatest p-expansionary stage such that s" < r < s. (If there has been no such 
stage, then s' = s", and we set r = s".) 

(1) If xp E Q[s], then we end this substage, making p^(f) eligible to act at 
the next substage. (This preserves any finite win we may have achieved 
through Substep (6) at a previous stage since s".) 

(2) If s + 1 is not p-expansionary and xp is not defined, then we end this 
substage, making p^(w) eligible to act at the next substage. 

(3) If s + 1 is p-expansionary but no witness element xp existed at stage r + 1, 
then we check whether there exists x E dom(@Wj)[r + 1] such that x E 

Gi [s]-Gi [r] and Wj [s] has not changed on the use Spwj (x) [r] since stage r. 
(a) If there is no such x, then we extend dom(@pWj )[s + 1] up to l (p, s)- 

1 by defining eWj(x)[s + 1] - Gi(x)[s], with use SWj(x)[s + 1] = 
AWj@P(x)[s], for each x for which OWj(x)[s] is not already defined 
(Possibly this defines Owj (x) [s + 1] 78 Opwj (x) [r + 1] for certain x, but 



3046 RUSSELL G. MILLER, ANDRE O. NIES, AND RICHARD A. SHORE 

only if Wj[s] has changed on the use of the computation at r.) We 
make p^(oo) eligible to act at the next substage, and end this substage. 

(b) If some x E dom(@pWj)[r + 1] has entered Gi[s] since stage r, without 
any corresponding Wj-change as above, we choose xp be the least 
such x. For each k 7& i such that some dk C p iS an Rk-node, we set 
Wk = (pk fflP(XP)[8] and assign to it a large trace elp targeted for the set 
El, where I = O if k is odd and I-1 if Sc is even. In order to preserve 
(Wj @ P) F AW@P(xp)[s]) we initialize all nodes above p and end this 
substage, with no successor eligible to act at the next substage. 

(4) If xp is defined and no balls with subscript p are currently on the pinball 
machine, but some ball Wpk is defined and has not yet entered the machine, 
then for the least such k, we check whether Wk is certified at stage s (using 
the same definition as for D-nodes, from page 3043). If so, then we allow Wpk 

and its trace to enter the machine at node p, in accordance with Instruction 
4.3; if not, we do nothing. In either case we end this substage, with no 
successor eligible to act at the next substage. 

(5) If xp is defined and some ball Wpk has entered the pinball machine but is 
not yet in Gk, then we end this substage, with no successor eligible to act 
at the next substage. 

(6) If xp is defined but not in Q[s], and every ball Wpk currently defined has 
entered Gk[s], then we enumerate xp into Q[s + 1]. For every k such that 
some pk C p iS an Rk-node, we enumerate (ak eP(Xp)[S] into P[s + 1]. We 
initialize every node 3 p and terminate this substage, with no node eligible 
to act at the next substage. 

(The initializations when xp was defined guarantee that either 

aW2@P(xp) 1-o + Q(p)[S + 1] 

or Wj has changed in such a way that Wj 7& TGi. Each possibility yields 
a finite win on requirement Mi,j,A,Y- For each k 7& i, the enumerations 
of wpk into Gk guarantee that (:k P(XP)[S] has been chosen large since xp 
was defined. Also, before xp was chosen as xp, it entered Gi, and at the 
next di-stage t + 1, (:ii@P(Xp) [t + 1] was chosen large. Since AWi p(xp) has 
not changed since before xp entered Gi, our P-enumerations at this stage 
do not affect the convergence Awjp(xp) 1= 0[s]. Moreover, now each 13k 

(including k = i) will be allowed to redefine -pkfflP(xp) = 1 at the next 
dk-stage, since now Q(xp)[s + l] = 1.) 

If p is an Se,-node, we define the length of agreement for p at this stage by 

l(p,s) = max{x: (8y < X)¢R(8)l= We(8)[s]} 

The stage s + 1 is p-expansionary if p is eligible to act at s and l(p, S) > I(p, t) for 
every t with s" < t < s at which p is eligible to act. 

If s + 1 is not p-expansionary, we end this substage, with p^(w) eligible to act 
at the next substage. Otherwise, for each y < I(p,s) for which rWe@B(y)[s] is 
undefined, let rWe@B(y)[s + 1] = C(y)[s]. To define the use aWed3B(9)[s + 1], we 
ask if any of the following apply: 

* aWe@B(y)[s' + 1] was not defined; or 
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* aWe@B(z)[sl + 1] E B[s] for some z < y (which happens if some P-node 

D p^(oo) has enumerated it into B in order to allow aWe@B(z)[s' + 1] to 

increase); or 

* for some z < y, some node D p^(oo) in T has requested that aWe@B(z)[s'+1] 

be increased. 

If so, we choose aWe@B(8)[s + 1] to be large. If none of the conditions applies, 

then apparently no node above p has tried to destroy the functional rp, SO we set 

aWe@B(8)[s + 1] = aWei3B(8)[st + 1]) in order to keep ryWefE3B(y) from approaching 

oo. We then make p^(oo) eligible to act at the next substage, and end this substage. 

If p is a Pi,-node, we first check if any balls with subscripts 2 p are presently 

waiting at any gate below gate p. If so, then we end this substage, with no successor 

eligible to act at the next substage. Otherwise p continues to try to satisfy Fi,@, 

and any N^-requirement active along p may be injured by the action of p. Let 

K = {k: Xk iS active along p via some Ak} 

Define ek and ¢!k such that Afk = Nek,@k: and for brevity write rk for the function 

r>k ke [S]) the current version of the functional being built by Ak (k C K), with 

associated use function ak = ototkeke [S]. We also define a restraint r(p, i, k, s + 1) 

associated to each k E K, denoting the restriction which p places on elements 

targeted for Gj. (Restraining Gj, coupled with the expansionary outcome of Olk, 

will help ensure that Wek does not change, or else will ensure that if it does change, 

we can trace the source of the change to some set other than Gj.) The restraint 

finally enforced by p on such elements will be 

r(p, j, s + 1) = max r(p, j, k, s + 1). 

(Any restraint r(p, j, k, s + 1) which is not mentioned is assumed to retain its value 

from stage s' + 1, or is reset to 0 if p^(ak) was initialized at or since stage s' + 1.) 

Subease 1: If no witness zp is presently defined for Fi,i, then pick a large number 

z and designate it as the witness element zp for Pi,. Let p^(w) be eligible to act 

at the next substage, and end this substage. 

Sqxbease 2: If zp E C[s], then let p^(f) be eligible to act at the next substage, 

and end this substage. 

Subease 3: If zp ¢ C[s] and p enumerated any elements into B at stage s' + 1 

(using Subcase 6(b)), then we set kS+l = kS,+l, wS+l = wS+l, and e = ek +1 and 

redefine the same functional Ap k +1 which we extended at that stage (using the 

notation from Subease 6(b) below): 

p,kS+l p s+l [S + 1] = We p Ws+l [S]. 

If this involves adding any axioms to lOp k +1 t we choose the use to be large. (Sub- 

lemma 5.17 will ensure that our redefinition of i\p k +1 iS allowed.) We also set 

r(p, i, k5+l, s + 1) = f R(7ks+l (Zp))[S]) which (along with the restraints set at stage 

s'+1) guarantees that atk +1 will preserve We pak e@B(ZP)[S] until the next p-stage. 

We then end this substage, with p^(ak +l) eligible to act at the next substage. (This 

is the stage where we complete the business begun in Subease 6(b) at stage s' + 1. 

Between s' + 1 and s, any ball targeted for Gi can pass gate p without injuring 

the outcome ak +17 since our B-enumeration at stage s' + 1 already destroyed the 
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convergence of 4!Gi@B(zp)[s']. Also, this is the only subcase in which p^(ak +1) is 
made eligible. If p^(ak) is on the true path, then after stage s" we will cycle for- 
ever from Subease 4 to 5 to 6 to 3 and back to 4, with ACs+l = k infinitely often 
and kS+l < k only finitely often, and in Subeases 6(b) and 3 we will build a total 
function ApGik = Wek to satisfy }k * ) 

Subease 4: If zp ¢ C[s] and p made no B-enumeration at stage s' + 1 and zp is 
not yet realized (i.e. either Gi@B(Zp)[S] T or Gi@B(Zp)[S] lt 0), then we let p^(w) 
be eligible to act at the next substage, and end this substage. 

Subease 5: If zp ¢ C[S] and Gi@B(Zp) [S] 1= 0 and p made no B-enumeration at 
stage s', then consider each J\Ee,¢-node b c p (for each e and b) such that Xe, iS 
not active along p via oB. Let rX3 be the greatest node c p such that 2<e, iS active 
along rp via p; there must be such a node rd, and it must be a P-node. If for some 
such p we have ny: e@B(z) 1< fGtfflB(zp)[s], then we let p^(w) be eligible to act 
at the next substage, and end this substage. 

(If p is on the true path, then for each such ,B the requirement Se,¢ iS either 
satisfied or destroyed at rp. Hence nyd e@B(z) will eventually be redefined to be 
> fGi@B(zp)[s]. We wait for this to take place, because we do not want to enter 
Subcase 6 until we are certain that the convergence Gi@B(Zp) 1= 0 will not be 
disrupted even if rd decides to enumerate nyg3 e@B(zr) into B.) 

Subease 6: Otherwise zp ¢ C[s] and Gi@B(Zp)[SI 1= 0 and p made no B- 
enumeration at stage s' + 1 and there is no node p as described in Subcase 5. We 
choose kS+l to be the greatest k E K such that 

(l) 'Yk(Z ) < I>Gtd3B(Z )[S] 

If no k satisfies this condition, then let kS+l =-1. 
If kS+l =-1, we enumerate zp G C[s + 1] (to satisfy tPi,) We enumerate into 

B[s + 1] every number in the set 

{7t3 e@'B(Zp)[S] 3 C p &: iS an J-node} 
in order to allow the corresponding functionals rp to change their value on the 
argument zp. To preserve the computation Gid3B(Zp) 1= 0[s], we initialize every 
node 8 p. We set all restraints r(p, j, k, s + 1) to 0, since no further restraint is 
necessary after these initializations. Then we end this substage, with no successor 
eligible to act at the next substage. (Now that we have enumerated zp into C, 
each such p will wait until the next stage at which it is eligible and then adjust r: to compute C correctly. Our B-enumeration ensures that these changes will be 
possible.) 

If-1 < kS+1 < kS,+1 (or if-1 < kS+1 and kS+1 was not defined), we request 
that the node Ak +1 increase the use ak +1 (Zp) at the next opportunity, and revoke 
any corresponding request for (Xk, , since that request must have been fulfilled in 
order for k to have decreased. We also set 

r (p, i , ks+ 1 , s + 1 ) = max( (zp ) [s] u f (tZks+ 1 (Zp) ) [s] ) , 

and for all j 7& i we set r(p, j, kS+l, s + 1) = O (since at this stage balls targeted for 
Gj with j 7& i may pass node p without injuring our strategy for satisfying Pi,). 
We then end this substage, with no successor eligible to act at the next substage. 
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Finally, if kS+l-kS,+l >-1, we write k = kS+1, e = ek, @ = ¢?k) ff = P^(ak)' 

and ey = eYk(= rYWe@B) for simplicity, and let t + 1 be the greater of s" + 1 and the 
last stage at which Ap k was extended. We select the appropriate step among the 
following: 

a. If some Gj with j 7& i changed on fR(a(zp))[s'] between stage s' and stage 
s, then we initialize all nodes to the right of a and end this substage, with 
no successor eligible to act at the next substage. 

b. Otherwise, we let 

ws+l = min(7(zp), 1 + dom(Gik))[t + 1] 

(here regarding dom(/Gik) [t+ 1], a finite initial segment of , as an integer) . 
We define 

i,\ Gik F Ws+ l [S + 1] = We F Ws+ l [S] - 

If this involves adding any axioms to /\p k) we choose the use to be large. 
Sublemma 5.17 will ensure that these redefinitions are allowed. 

We enumerate 7(Zp)[St + 1] into B[s + 1], making rwe@B(zp)[s + 1] unde- 
fined, so that (Rk will increase the use oy(zp) at the next oek-stage. (Notice 
that ty(zp) [s' + 1] did not already lie in B[s]. Only numbers in the ranges of 
the oy-functions are ever enumerated into B, and such numbers are always 
chosen large.) By (1), Gi@B(Zp)[S + 1] also becomes undefined. We set 
r(p, i, k, s + 1) = 0 and r(p, j, k, s + 1) = f R(7(Zp))[s] for all j + i, to ensure 
that until the next stage at which zp is realized, Wepws+1 can only change 
on account of a Gi-change, which will allow us to redefine tGi wherever 

p,k 
needed. We also revoke our request for Ak to increase the use ak(ZP). We 
initialize all nodes to the right of Cs and end this substage, with no successor 
eligible to act at the next substage. 

This completes the instruction for P-nodes. 
If p is a Ue,i-node, let m = 0 if i is even and m = 1 if i is odd, and set 

l(p,s) = max{x: (8y < X)4>e iffl m(v)l= 4>em(g)1 [S]}- 

The stage s + 1 is p-expcinsionary if s = O or {(p, s) > t(p, t) for all stages t + 1 
with s" < t < s at which p was eligible to act. We define r(p, s) = 0 if s + 1 is p- 
expansionary, while otherwise r(p, s) is the greatest number used in the construction 
up until the last p-expansionary stage. If no ball with a subscript D P^(Pr(p,s)) is 
waiting at any gate C p at stage s, then we make P^(Pr(p,s)) eligible to act at the 
next substage, and end this substage. If any such ball is waiting at any gate below p, 
then we initialize all nodes to the right Of P^(Pr(p,s))) but end this substage without 
making any nodes eligible to act at the next substage. 

This completes the instructions for the substages of the stage s + 1. Once we 
have completed all s substages, or reached a substage at which no new node is made 
eligible to act at the next substage, we proceed to the final two steps of the stage: 
satisfying the £-requirements and allowing balls on the pinball machine to drop to 
lower gates. 

First we consider the L-requirements. If Lk = oCb,z, then k is the priority of 
that requirement. For each oe E T, define n(oe, s) to be the number of times that 
Ol has been initialized (up to stage s) by other nodes on T. (We do not courlt any 
initializations by L-requirements themselves in this total.) For the least k < s such 
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that bR(X)[S] 1 and bR(X)[s-1] either diverges or converges with a different use, 
the requirement Lk initializes every oe E T satisfying: 

ratn + n(a) s) > k- 

(Here raen E g iS a code for the node al, with T viewed as a subtree of z<S.) This 
guarantees that none of the oe initialized will later injure lzk. 

Finally, we use a pinball-style approach to determine which ball(s) currently on 
the pinball machine can pass the gate at which they are currently waiting. Choose 
the highest-priority Ol such that there is a gate p which was eligible at the current 
stage s + 1 such that: 

* there is a block of balls waiting at p, with lead ball wiog or eXi>; and 
* if p is a U-gate, then the lead ball of the block is > r(p, s); and 
* if p is a P-gate, then the lead ball of the block either is of the form eJ or 

is>r(p,j,s+1); and 
* no ball which passed gate p at any earlier stage is currently waiting at any 

gate below p. 
If there is no such oe, then end the stage. If Ol exists, then the corresponding p is 

unique (by the last condition), and we choose the greatest lead ball with subscript 
oe currently waiting at gate p. We allow all balls in its block to pass gate p, initialize 
all nodes s oe, and follow Instruction 4.5 below for the balls in the block. Once 
the balls pass gate p, they are no longer in the same block. (For convenience, we 
usually think of the node oe as having performed the initialization of the nodes s al, 
even though Ol itself may not have been eligible at this stage.) 

Instruction 4.5 (Dropping to a new gate). (1) For each ball ek which passed 
gate p, we drop e, to the highest Ue,2l+k-gate T C p (for any 1), if such a r 

exists. Its block at gate r consists only of itself. 
(2) For each baZl wk which passed gate p, we drop wk to the highest gate r C p, 

if such a or exists. For the time being, its block at gate r consists only of 
itself, but traces may be added later. 

(3) If there is no such , then we enumerate the ball into its tarpet set (wk into 
Gk[s + 1] or ek into Ek[s + 1]). If this ball was a trace for another ball wJ 
which does not enter Gj at this same stage, then we add new traces for w,it 
in accordance with Instruction 4.4, to form a new block at the gate at which 
wsi, is currently waiting. (If wi^ is waiting at a Ue,j_l -gate, this process will 
involve dropping it to a lower gate or into Gj.) 

If the ball was not a trace, then it was of the form wk. Either it was 
enumerated into Gk for the saAce of some M,,j,A,y-node cx with i 7& k, so 
as to allow an GZk -node d c oe to redefine its functional-d kd3P, helping 
a achieve a finite win, or it was a witness element for a 19-requirement 
assigned to sx, in which case that l)-requirement is now satisfied. 

Notice that under these instrllctions, no balZ wJ can end up at a lower gate than 
its trace. 

This completes the construction. 

5. VERIFICATION OF THE CONSTRUCTION 

To prove that the structure of our tree allows every node to be satisfied, we first 
need a sublemma. 
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Sublemma 5.1. At every node p on T, iffj is active or satisfied along p and 
i < j, then Ni is active or satisfied along p also. 

Proof. We use induction on the level of the node p. Suppose J\Ej is active or satisfied 
along p, and let i < j. Write 71-P- 

Case 1. Suppose fj was active or satisfied along 71. Then by induction so was 
J\ti The only way for Ei not to be active or satisfied along p is if a P-requirement 
was assigned to r1 and p = 71^(al), for some I such that JVI is active along 7 via 
some og along which J<i is neither active nor satisfied. Since oe C p, the inductive 
hypothesis ensures that fj was neither active nor satisfied along oe either. But 
then J\/<j cannot be active or satisfied along p, contradicting the assumption of the 
sublemma. 

Case 2. Otherwise JWj was neither active nor satisfied along 71, so in order to 
become active or satisfied at p it must have been assigned to r1. Since Si has higher 
priority than J\fj, this implies that J\li was already active or satisfied at 77. But with 
an JV-requirement assigned to rZ, every requirement active or satisfied at 71 will still 
be active or satisfied at p, including J\fi g 

Lemma 5.2. For every path h through T and every requirement JVI7 there exists 
an J\fi-node oe c h such that either: 

* E1 is active via cz along every oB with oe C p C h; or 
* there exists ff c h such that J\fil is active via ae along every 13 with al C vB C (n, 

and satisfied via a along every jB with (J C , c h 

Proof. Fix h, and assume by induction that the lemma holds for every J-require- 
ment of higher priority than Ez. This yields a node °ei C h for each i < 1, as well 
as nodes ¢i C h for certain i < 1, and we take ( to be the largest of all these nodes 
(both oei's and ai's). Then no J\J<i with i < I is assigned to any node on h extending 
- 

Case 1. Suppose first that there exists an Ez-node oe c h above (. J\ll must be 
active or satisfied along the immediate successor of og on h. We argue inductively 
that JVI must be active or satisfied via oe along every p 2 a on h. Let p = p-. 
Then the only way JVI could possibly fail to be active or satisfied at p via og is if a 
P-requirement is assigned to p, and vB = p^(am) for some nx such that JVm is active 
along p via some 7/. According to the construction, Nym is then satisfied along , 
so by the inductive hypothesis on 1, we have m > 1. But then, in order for NSm to 
have been assigned to rB, N^l must have been active or satisfied along . Hence < 
remains active or satisfied along p via oe, by Definition 4.2. 

Case 2. Otherwise J\fil is not assigned to any node on h above (. Then J%l must 
have been assigned to some node below ( (since otherwise it would eventually be 
assigned to some node above (, as no higher-priority requirement can be assigned 
to more than one node on h above (). So let oe be the greatest XI-node C (. If Xl 
were neither active nor satisfied via oe along any node on h above oe, then a new 
node on h above oe would be chosen as an J%l-node, contrary to hypothesis. Thus 
in both of these two cases, JVI is either active or satisfied via the chosen a along 
every node ,3 with al c ,B C h. 

Finally, we note that J\ll cannot switch from satisfied via og at a node p to active 
at any of its immediate successors p. According to Definition 4.2, if E1 is satisfied 
via a at p, then either J\El is satisfied via Ol at :, or ,B = p^(am) for some m and 
E1 is neither active nor satisfied at :. Since this does not happen at any p with 
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ag c p c h, we see that either N^l is active via oe along every such , or it is satisfied 

via oe along every such :, or it is active via Ol along oe^(oo), switches to satisfied via 

or along some higher cr c h, and then stays satisfied via oe along all extensions of a 

on h. In each of these cases, the lemma holds for JVI. g 

The true path g through T is defined inductively. It begins at the root of T, and 

for each p c 9, we extend 9 to include the leftmost immediate successor r of p such 

that r is eligible to act at infinitely many stages. The existence of such a r will be 

shown by induction in Lemma 5.9. To begin this induction, however, we need some 

sublemmas first. 

f)- and M-nodes are the only nodes that ever try to enumerate balls into the sets 

Gk. To see that these enumerations do occur, we need the following sublemmas. 

Sublemma 5.3. If the ball w, is ever chosen as Xa by an M-node a, then a^(oo) C 

ck . 

Proof. The node ff has three immediate successors, corresponding to its outcomes 

f, oo, and w. To be chosen as xa at a stage s + 1, wt must have been enumerated 

into Gi since the last ^(oo) stage r + 1. If oe < , this enumeration would have 

initialized a, in which case ff would not have chosen any xa at s + 1. If a^(f) C ct, 

then oe was never eligible until after xa was selected. If oe lies to the right of a^(oo), 

then wt must have been chosen after the last a^(oo)-stage, hence could not lie in 

dom(@Wj)[s] and would not have been chosen as XXJ. Finally, oe 7& a, since a does 

not target balls for any set Gk until it chooses xa. Hence a^(oo) C cv. z 

The next sublemma will be used extensively throughout the rest of our proofs. 

It guarantees that balls entering the pinball machine are sufficiently large not to 

injure any higher-priority requirements. 

Sublemma 5.4. Let s" + 1 be the greatest stage < s + 1 at which oe was initialized, 

and let t + 1 be the least a-stage > s" + 1. If a ball wk enters the pinball machine 

at stage s + 1, then wk is greater than any number used in the construction up to 

stage t. 

Proof. If Ol is a vD-node, then its current witness was chosen at stage t + 1, so wk 

was chosen large at some stage > t + 1. If ck is an Mi,j,,y-node, then wk = 

(ak@P(Xa)[St] for some Rk-node p c a and some a-stage s' + 1 < s + 1, and 

x,> = wt, for some ' D oe^(x) (by Sublemma 5.3). If (x' is a D-node, then we are 

done, since wk > xa and oe' is initialized every time oe is. If not, then we continue 

by induction. Eventually we must reach a witness or trace for a D-node, since only 

finitely many nodes have been eligible up to stage s. O 

Sublemma 5.5. For a D-node a c 9, if wOt is realized at a stage after which oe is 

never again initialized, then eventually w, will enter Gi. For an M-node a c 9, if 

wt is a ball targeted for Gi by cx at a stage after which oe is never again initialized, 

then eventlbally wOt will enter Gi. 

Proof. Every Mi,;,A,r-node ff with a^(oo) c al has a^(oo) c 9. At each a^(oo)- 

stage s + 1, the domain Of Owjo is extended to the new length of agreement l(p, s). 

Hence for each ball wJ (j < i) there exists a stage s + 1 such that wJ is certified at 

all stages t + 1 > s + 1. So wJ will eventually enter the pinball machine and drop 
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to the highest gate below al, as dictated by Instruction 4.3. (For M-nodes oe, this 
involves an easy induction on j < i. For D-nodes, it only applies with j = i.) 

Leaving Ol and i fixed, we argue by induction, first on gates p c oe and then on 
j < i, that every ball wJ (including traces for other balls) which reaches a gate 
p c oe must eventually pass that gate. This will prove the sublemma. 

Suppose wJ is currently waiting at a U-gate p and let P^(Pr) be the immediate 
successor of p on 9. Since Ol is never again initialized, no ball with subscript < ot 
will ever move again. By induction on p, every current trace for wJ at any gate 
below p will eventually enter its target set. (If ^ = O, no trace is ever assigned, 
and similarly for traces targeted for Eo or E1.) By Sublemma 5.4, wg and all its 
traces must be > r, since P^(Pr) C (R. There may be a trace wi-l for wg which 
is also waiting at gate p but in a different block from w2. However, by induction 
W,il-1 eventually passes gate p and enters Gj_l, with Instruction 4.4 assigning a 
new trace (or two) to w2. The new trace(s) lie in the same block as wJ, so after 
that, the next time P^(Pr) is eligible, wJ and its new trace(s) will pass p and drop 
to lower gates, in accordance with Instruction 4.5. Thus, by induction on p, wJ 
will eventually enter Gj. 

Now suppose wJ has been waiting at a Pi,,-gate p since the last v-stage, where 
ff C oe is the immediate successor of p below oe. If ff = p^(f), then there is a 
stage so + 1 after which p sets all its restraints to 0. We also note that each time 
a restraint r(p, j, 1c', s) is changed, all nodes to the right of p^(ak) are initialized. 
Hence if ff = p^(w), then no restraint is redefined after the last initialization of a, 
so by Sublemma 5.4, wJ is larger than all such restraints and is allowed to pass 
gate p. Finally, if ff = p^(ak), then wJ > r(p, j, k', s + 1) for all s and all k' < k by 
Sublemma 5.4, and all restraints r(p, j, k', s + 1) with k' > k are reset to O whenever 
kS+l = k. We know that ff is eligible infinitely often. If i' = j, then r(p, j, k, s + 1) 
is set to O infinitely often irl Subcase 6(b) with k5+l = k; if not, it is set to O each 

- - . 

time kS+l = k 7& kS,+l in Subcase 6. Thus liminfsr(p,j,s) < w. This completes 
the induction. O 

Lemma 5.6. Let p c g be an Mi,j,A,r-node such that tGi = Wj and AWj@P = Q, 
and let p^(oo) c ey. Fix a ball w^, chosen byoy at a stage after which p is never again 
initialized. Let so + 1 be the least p-expansionary stage with wr, E dom((3Wi ) [so + 1], 
and let sl +1 be the greatest p-expansionary stage before which wz, has not yet entered 
the pinball machine. Let s2 + 1 be the greatest p-expansionary stage < the stage at 
which wa either enters Gi or is cancelled, and let s3 + 1 be the least p-expansionary 
stage > s2 + 1. Then: 

(1) For every p-expansionary stage t + 1 with so < t < s1, let t' + 1 be the least 
p-expansionary stage > t + 1. Then we have 

PUl [t] = PUl [t'], 

where I = Swj (w) [t + 1] . 
(2) For every p-expansionary stage t + 1 with s1 < t < s2 we have 

(Wj@P)pI1 [t]=(Wj@P)I1 [t'], 

with t' as above, and where Ik = AWj@P(w^r)[sk] (for k = 1,2). Hence 
1 = 12- 
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(3) If w> is chosen as xp at stage S3 + 1, then for every p-expansionary stage 
t + 1 > S3 + 1, we have 

(Wj @ P) 11 [t] = (Wj @ P) [11 [s1] 
with 11 as above. Hence Awj eP (w>r) = O. 

If w? is never cancelled nor ever enters Gi, then the items above hold with S2 = 

S3 = 00. If wa never enters the pinball machine, they hold with sl = oo. 

In fact we will use this lemma to show that wa cannot be chosen as xp, so that 
(assuming tGt = Wj and AWj@P = Q) the third item never actually applies. 

Proof. For the first item, let t + 1 be a p-expansionary stage with s0 < t < s1. We 
will proceed by induction on such t. Only M-nodes enumerate elements into P, so 
suppose an Mk,jt,AX,/-node a enumerates some x into P at a stage s + 1 such that 
t + 1 is the greatest texpansionary stage < s + 1. For this s, the node (x must be 
unique, since every node > a is initialized at s + 1. (This also forces a < , since 
oy is not initialized before sl + 1.) We wish to show that x > 1. 

Now the least number enumerated into P by a at s+1 is of the form (: k@P(x<7)[s], 

for the 7Zk-node of c , and (r also enumerates x¢ into Q at stage s + 1. If ff lay to 
the right of p^(oo), then xa and its use (: k@P(xa)[s] would both have been chosen 
after stage t + 1 (since the ball xa would have been cancelled at stage t + 1, by 
Sublemma 5.3), hence could not be < 1. 

So assume p^(oo) C a. Now xa = wk for some a 3 a, by Sublemma 5.3, so 
ny < oe. Let Wk be the original ball released by oe (so either Wk = Wk, or wk is a trace 
for Wk, or a trace for a trace for Wk, etc.). Sublemma 5.4 shows that wa < wk. 
By the construction for D- and M-nodes, Wk did not enter the pinball machine 
until after the first texpansionary stage to + 1 < t + 1 with wk G dom(li3pWi)[to], 
by which stage w) E dom((3pWi)[to] as well, since at every p^(x)-stage this domain 
is an initial segment of . Thus s0 < to. Let lo = AWi@P(w)[t0], and let a0 be the 
use of the computation TGi(lo)[to]. Then ($Gk@P(Xa)[S] must be > lo) having been 
chosen large after Wk entered Gk, hence after to. 

Now if Wj [ lo has changed between to + 1 and t, then there must have been a 
corresponding change in Gi [ uo between those same stages, since to + 1 and t + 1 
are both Rexpansionary. So some ball wt, < u0 entered Gi between to + 1 and 
t. Now wt, must have been chosen by stage to, by Sublemma 5.4, and so c>' < oe, 
since wt, was not cancelled at to + 1. But the entry of w,>, into Gi took place after 
to + 1, hence after Wk entered Gk, since otherwise it would have cancelled Wk. 

Now we apply the same argument to wt, as we did to Wk. If to is the greatest 
texpansionary stage before wt, (or the ball for which it was a trace) entered 
the machine, with corresponding uses lo and u0, then wa 6 dom((3Wj)[tO], and 
s0 < to < to, and so (;3k@P(xa)[s] > lo. But any change to Wj p lo between to 
and t would require a corresponding change in Gi p u0 between those same stages, 
by a ball wa,, entering Gi, and so forth. Since Gi[t] is finite, this process must 
terminate. Thus eventually we find a stage t(n), with corresponding l(n) and u(n), 
for which &,}Bk@P(xa)[s] > t(n) and no change occurred in Wjpl(n) between t(n) + 1 
and t. But by the inductive hypothesis on t, P[l(n)[t(n)] = Ppl(n)[t] as well, and so 
in fact l(n) = 1. Hence (: k@P(Xa)[S] > 1, completing our induction on t. 
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For the second item, let t + 1 be a p-expansionary stage with s1 < t < s2. Now 
all nodes oe F ty are initialized at stage sl + 1 when w? enters the pinball machine. 
Hence no such oe ever again enumerates any element < 11 into P, nor any ball < ul 
into Gi, where u1 is the use of the computation tGi(ll)[5l]. Also, no node < a 

could enumerate any ball into Gi or any element into P without cancelling wy, which 
would contradict t' < s2. Finally, a itself never has two distinct balls on the pinball 
machine which are both targeted for the same set Gi, and ey cannot make any P- 
enumerations until wa has entered Gi. For P, this shows that PFll [t] = Ppl1 [s1]. 
For Gi, it shows that GiFu1 [t] = Gipu1 [s1], and since t + 1 is p-expansionary, 

Wjpll [t] = T iFll [t] = T ipll [s1] = Wjrl1 [s1] 
The conclusion that 12 = 11 is immediate, by induction on t; this completes the 
proof of the second item. 

For the third item, assuming s2 < oo, we know wr, E Gi[s3]. First we show that 
Prll [S2] = Ppll [S3]. Nodes F 7 were initialized after s1 + 1, hence they cannot 
enumerate elements < 11 into P. Among nodes < Py, those < p could not enumerate 
elements into P without initializing p, and those 8 p do not enumerate into P at 
s2 + 1 (since this would initialize oy when wa has yet to enter Gi) and are not eligible 
after that until S3 + 1, hence they cannot enumerate any elements into P. 

Now we induct on texpansionary stages t + 1 > s3 + 1. Since wz is chosen as 
xp at stage S3 + 1, all nodes D p^(oo) are initialized at S3 + 1, and the only nodes 
above p that are ever again eligible are those D p^(f). These nodes have not been 
eligible since the last initialization of p, so they will never enumerate any elements 
< 13 into P, nor any elements < U3 into Gi. Since Wj = TGi, this yields our result 
for (Wj @ P) in the third item. 

It is now clear that the final value AWj@P(Wa) will be the value AWj@P(Wa)[s2]. 

Since wa ¢ Gi[s2], we must have wa ¢ Q[s2]. Since s2 + 1 is p-expansionary, this 
forces AWj eP(w) [S2] = O- 

Lemma 5.7. The requirements Gj are all satisfed by our construction. 

Proof. We show that G2i+1 T G2i d3 Eo) as required by T2i (The proof for T2i+ 
is analogous.) To compute whether n E G2i+1, we run the following steps: 

(1) Check whether n is targeted for G2i+1 at or before stage n, either as a 
witness for some f)- or M-requirement or as a trace. If not, halt and 
conclude that n 0 G2i+1. 

(2) If n is targeted for G2i+1 by stage n, then when it was so targeted, it must 
have had a trace appointed. Use the oracle to check whether this trace ever 
entered G2i (33 Eo. If it never entered them, conclude that n ¢ G2?+1. 

(3) If the trace did enter G2i d3 Eo, find the stage s + 1 at which it did so, and 
check if n C G2i+1[s + 1]. If so, conclude that n E G2i+1. If not, then 
another trace must have been appointed at stage s. Repeat Step (2) with 
this new trace. 

We claim that this process must eventually terminate with the correct answer. 
The conclusion in Step (1) is justified by Sublemma 5.4, and the conclusion in 
Step (3) is abundantly clear. For Step (2), we note that the construction does 
appoint a trace when n is targeted for G2i+1, and each time such a trace enters its 
target set, either n itself simultaneously enters G2i+1 or another trace is appointed. 
Furthermore, this new trace becomes part of the same block as n, so they will pass 



3056 RUSSELL G. MILLER, ANDRE O. NIES, AND RICHARD A. SHORE 

the current gate simultaneously. Hence n must advance by at least one gate down 

the tree before that trace can enter its target set, which implies that only finitely 

many traces for n will ever be appointed. (In particular, if n = w2i+1, then after 

its first trace, it can only have as many traces appointed as there are gates below 

p on T.) Thus the process does eventually terminate. 
Finally, notice that at each gate oe on the tree, the blocks waiting at gate Ol are 

prioritized so that if n and a trace for n lie in different blocks waiting at gate oe, then 

each is the lead ball of its block, and the trace will get to pass the gate first. Hence 

at every stage until a trace enters its target set, the trace will be waiting at a gate 

C the gate at which the ball itself is waiting. Therefore n cannot enter its target 

set G2i+1 unless all its traces have entered their target sets by the same stage. This 

proves the correctness of our conclusion in Step (2) of the above procedure. g 

Lemma 5.8. Each requirement LeaXx is satisfied by our construction, and initializes 

other nodes at only finitely many stages. 

Proof. Let s" + 1 be a stage after which no L:j with j < k ever initializes any 

node, and write zk = Ls,x. If bR(X)[S] 1 with the same use at every s > s", 

or if bR(X)[S] T for all such s, then Lk is satisfied and never again initializes any 

nodes. Otherwise, zk initializes cofinitely many nodes at some stage s + 1 > s" + 1. 

Thereafter, none of those nodes will put any number < fR(x)[s] into R. Among 

the finitely many remaining nodes oe, O- and M-nodes may injure N^k, but each 

of them can put only finitely many numbers into R without being initialized itself. 

(A witness ball for oe drops by at least one gate every time a new trace targeted 

for R is assigned.) Such an Ol will not be initialized by any other £-requirement 

after s" + 1, and if other nodes initialize og infinitely often, then eventually n(og, s) 

becomes so large that zk will initialize a along with everything else. Hence we 

will reach a stage at which zk initializes every node except those which will never 

again injure it, and thereafter Lk iS satisfied and never needs to initialize any more 

nodes. g 

Lemma 5.9. The true path g is infinite, and every node on it is initialized only 

finitely often. 

Proof. Suppose the node p lies on 9. Now p may have infinitely many immediate 

successors, so we must show that one of them will be eligible infinitely often. Since 

the immediate successors of p are well-ordered, there will be a leftmost one T eligible 

infinitely often, and that T will then lie on 9. 
By induction we assume that p is initialized only finitely often by nodes q p 

(and never by nodes F p). Hence n(p) = limS n(p, s) exists, and only requirements 

zk with k < rpn + n(p) will ever initialize p. By Lemma 5.8, therefore, p will only 

be initialized finitely often. Let s" + 1 be the last stage at which p is initialized. 

Now we argue that p itself initializes its successors only finitely often, and that one 

of its immediate successors will be eligible infinitely often (so g does not terminate 

at p). 
If p is an J\g- or GZ-node, then p has only finitely many immediate successors. 

Every time p acts, one of its successors will be eligible, and such a p never initializes 

any of its successors, so the lemma is clear. 
A Pi,-node p also has only finitely many immediate successors, but may initial- 

ize its successors. We claim that this only happens once after stage s" + 1, however. 
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It occurs at only a stage s + 1 such that zp has been realized and kS+1 =-1, and 
the initialization preserves the computation GifE3B(zp)[s] = 0. Thereafter p^(f) 

will be eligible whenever p is, and no further initialization occurs. 
Even if no initializations occur after s" + 1, however, there may be infinitely 

many stages after s" + 1 at which p is eligible but no immediate successor of p is 
eligible. Such stages occur in Subcase 6 of the construction for p. To complete the 
induction for P-nodes, therefore, we need the following sublemma. 

Sublemma 5.10. In this situation, let k be the least number such that Xk = N^e, 

is active along p via some a and sCs+l = k at infinitely many p-stages s + 1. Then 
a = p^(ak) is eligible at infinitely many stages. 

Proof. p^(f) can never be eligible after s" + 1, or k would never again be defined. 
By minimality of k, there is a stage s0 + 1 after which no node to the left of ff 
is ever eligible. Hence at stages s + 1 > s0 + 1, og must never have been able to 
obey the request from Subcase 6 and increase zyOg ekq3 (zp)[5] on its own. Therefore, 
the only increases come at stages s + 1 when Subcase 6(b) applies with kS+1 = k 
and 7aeke (zp)[5] is enumerated into B. After each such B-enumeration, Cr will 
be eligible at the next p-stage. Hence if ff were eligible only finitely often, then 
ty,>ekfE3 (zp) would only be redefined finitely often, so would converge to some c. 
However, since oe^(oo) c 9, Lemma 5.8 ensures that bR iS total, so there will exist 
tstages s + 1 with kS+1 = k at which R F fR(c)[s] l At such stages we have no 
Gj-change on (pR(c)[s], so we enter Subease 6(b), and at the next p-stage we will 
be in Subease 3 and ff will be eligible again, yielding a contradiction. O 

If p is a Di,Q-node, then p initializes all its successors when the witness element 
wp is defined, again if wp is realized, again at every p-stage until wp enters the 
pinball machine, and again each time any ball with subscript p moves down the 
pinball machine. Once we reach a stage after which p is never initialized again, the 
next witness wp will never be cancelled, and by Sublemma 5.5, if it is realized, then 
it will eventually enter its target set, after which p will never again initialize any of 
its successors. 

Among the immediate successors of p, p^(f) will be eligible infinitely often if 
wp enters Gi after the last initialization of p. If this wp never enters Gi, then by 
Sublemma 5.5 it must never have been realized, so p^(w) is eligible infinitely often. 

An M-node p has only finitely many immediate successors, and the only stages 
> s" + 1 at which p either fails to make one of them eligible or initializes its 
successors are those stages s + 1 (if any) at which Substeps 3(b), 4, 5, or 6 of the 
construction for M-nodes apply. To reach any of these substeps after s" + 1, p must 
enter Substep 3(b) first. After that, zp is permanently defined. By Sublemma 5.5, 
p can only stay in Substep 4 for finitely many steps for each of the finitely many 
balls Wk, and then can only stay in Substep 5 for finitely many steps for each such 
ball. Finally p spends exactly one tstage in Substep 6, at which xp enters Q. 
Thereafter p^(f) will be eligible (via Substep 1) at every p-stage, and p will make 
no further initializations after its one stage in Substep 6. Thus the lemma holds at 
M-nodes. 

Finally, if p is a Ue,i-node, we let r = liminf5r(p,s) and ff = P^(Pr)- The 
existence of this r follows from the definition of r(p,s) in the construction: if 
there are infinitely many texpansionary stages, then r = O; otherwise r equals 
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the greatest number appearing in the construction at or before the greatest p- 
expansionary stage. Clearly, once we reach a stage s" + 1 after which r(p, s) > r, 
p will never again initialize any node above . We claim that a c 9. 

Now the proof of Sublemma 5.5 actually showed slightly more than was stated: 

Sublemma 5.11. Let p c g be a Ue,2i-gate, and choose r as above. Any ball 
wJ > r waiting at gate p at a stage s + 1 after which oe is never again initialized 
must eventually enter Gj. g 

Fiom this it follows that there will be infinitely many v-stages. If not, then 
eventually all of the (finitely many) balls emanating from above a which had passed 
gate p would either enter their target sets or be cancelled by initialization of their 
source nodes. (All such balls are > r by Sublemma 5.4.) At the next stage at which 
r(p, s) = r, ff would then be eligible again. By induction, then, we have established 
Lemma 5.9. 2 

Lemma 5.12. Every zD-, M-, 19-, vR-, and U-requirement is satisfied by our con- 
struction. 

Proof. Every one of these requirements is assigned to some unique node on the 
true path 9. (J>-requirements, which may be assigned to several nodes, are handled 
in Lemma 5.16.) We argue by induction along 9, proving that the requirement 
assigned to each p c g is satisfied by the sets we construct. Assume this holds for 
every ff C p, and let s" + 1 be the last stage at which p is initialized. 

* Suppose p is a Di,Q-node. Once we reach the first Rstage > s" + 1, the 
construction selects a witness element wp which will remain fixed through all sub- 
sequent stages. If this witness element is ever realized, then by Sublemma 5.5 we 
see that wp E Gi, so that Di,Q is satisfied. If it is never realized, then QHt(Wp) ei- 
ther diverges or converges to a value 7& 0. However, in this case wp never enters the 
pinball machine on behalf of p, and it cannot simultaneously be a witness or trace 
for any other node, since such witnesses are always chosen large (including balls 
from M-nodes, whose values were originally chosen as the uses of --functionals). 
Hence wp ¢ Gi, satisfying Di,Q. 

* Suppose p is an Rk-node. Then at each p-stage we either extend the functional 
p to a larger domain, or add new axioms so as to redefine it on some value x in its 
current domain. However, the use of Gk@P(X) is only changed when x enters Gk 
or when x = xa for some oe 2 p and wk enters Gk. Since each of these can happen 
only once after--Gk@P(X-1) has converged, the function--Gk@P must be total. 

If s' + 1 < s + 1 are consecutive p-stages and a number x enters Q at a stage 
t with s' + 1 < t < s + 1, we have x = x, for some Mi,j,s,-node oe s p (since 
if Ol < p, p would be initialized). If Ol lies to the right of p, then x,> must have 
been chosen by a node to the right of p at a stage > s' + 1, so x, cannot be in the 
domain of -Gk@P[s' + 1]. Otherwise p c oe, and by the construction for M-nodes, 
oe will have enumerated the use (Gk@P(X)[S/ + 1] into P at the same stage that 
x entered Q. Since s + 1 is the first p-stage since then, p is allowed to redefine 
-Gk@P(X)[S + 1] = 1. Thus _pGk@P-Q, satisfying Rk. 

* Suppose p is an Mi,j,Ar-node, and suppose Wj = TG* and AWj@P = Q. Then 
there must be infinitely many p-expansionary stages. Now if a witness element xp 
becomes defined at any stage s + 1 > s" + 1, then as noted in the construction we 
have xp = w? for some oy 2 p^(oo) (by Sublemma 5.3), and xp must have entered 
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Gi by stage s but since the previous p-expansionary stage r + 1. At stage s + 1 
we enter Substep 3(b) of the construction for p, and at the next p-stage we enter 
Substep 4. By Sublemma 5.5, the balls chosen by p in Substep 3(b) all eventually 
enter their target sets, so we eventually enumerate xp into Q[t + 1] via Substep 6 
at some stage t + 1. However, applying Lemma 5.6 to the ball wz,, we see that 
Awjp(Sp) = 0, contradicting the assumption that AWj@P = Q. 

Hence xp is never defined. But this means that Owj = Gi on all elements of , 
since in Step 3(a) of the construction for p we define it thus, with the same use as 
AW)@P, for all x < I(p, s) (and limS l(p, s) = x). Moreover, we made sure in that 
step that any redefinition of (3 was allowed by some Wj-change, so @ is indeed a 
computable functional. (Had there been no W-change, we would have defined an 
element to be xp instead.) Thus Mi,j,,r is satisfied. 

* Suppose p is a Ue,2i-node, and that bG2t@Eo _ bFo with domain w. (The 
argument for Ue,2i+1 is analogous.) Then the node a = p^(po) will lie on 9. 

We make the standard argument for a pinball construction. In the construction, 
we only allow a block to pass gate p if its lead ball is targeted for the infimum (as 
discussed below) or for E1, or is > r(p, s). (A ball is always smaller than its trace. 
Hence if the lead ball is > r(p, s), then the entire block consists of balls > r(p, s).) 

A single block can injure both <>G2z@E0 and bFo only if it contains a ball targeted 
for the infimum G2i+1. Otherwise, we protect the uninjured side by initializing all 
nodes of lower priority than the source node of the balls in the block and refusing to 
allow any other ball to pass the gate until all the balls of the first block have either 
entered their target sets or disappeared due to initialization of their source nodes, 
and until the injured computation has recovered and achieved a longer length of 
agreement with the uninjured computation. (Notice that p has the correct guesses 
about liminf5r(oe,s) for every 2X-gate oe C p and about liminfsr(oe,i,s) for every 
P-gate oe C p and every , so any ball emanating from a node above p is large 
enough that such an Ol will eventually allow that ball to pass. Thus no ball which 
passed g;ate p will have to wait permanently at any gate below p, so we know that 
eventually each block waiting at gate p will be allowed to pass.) 

In Instruction 4.4, however, we allowed a ball W2i+1 targeted for G2i+1 to pass 
gate p at stage s + 1 even if it was < r(p, s). (NQ other instruction allows balls 
< r(p, s) to pass gate p, except balls targeted for E1, which will not injure either 
side of the computation. Also, Instruction 4.4 applies when W2i+1 needs a new 
trace, so W2i+1 passes gate p by itself; its block at stage s + 1 contained no other 
balls.) Therefore, when we attempt to compute bF°(x), we use a G2i+1-oracle to 
look for the least cr-stage so + 1 > s" + 1 by which the length of agreement between 
bFo [so] and bG2i@E0 [So] exceeds x and such that both computations on input x are 
G2il-correct, i.e. 

G2i+1p(80 + l)[sO] = G2i+lL(uo + 1), 

where uo is the greater of the uses of the two computations G2t@E°(x)[s0] and 
bF°(x)[s0; Set h(x) = be 2i (X)[S0]- 

(Such a stage s0 must exist. 4?Fo (x) and bG2i@Eo (x) both converge by some stage 
s with some use u, and there must be infinitely many a-stages > s by which G2i+1 
stabilizes on u. Pick any Dj,Q-node oe 3 p such that oe c 9, j G , the functional 
Q evaluates to 0 on every input and every oracle, and Ol is never eligible until after 
G2i+l P u has stabilized. Then oe must subsequently enumerate an element into 
Gj. We claim that the least a-stage s0 + 1 > s + 1 by which oe has completed its 
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enumerations into all sets Gj will satisfy the above conditions. Clearly the length 
of agreement exceeds x, so we must show that so is G2i+l-correct. Now oe is never 
initialized again, since otherwise it would have to enumerate another element into 
Gj to get back to the outcome ol^(j), so no ball from any node < oe ever moves 
after stage so + 1. Since so + 1 is a a-stage, every node to the right of a = p^(po) 

is initialized at stage so + 1. Nodes s oe above ff were initialized when the witness 
wJ entered Gj, and cannot have been eligible since then, because a has not been 
eligible since then. Also, no ball from any node q Ol can have been below p when 
wJ passed p, or can have moved since then. Hence no ball at all is at any gate C p 
at stage so + 1, except those which wait there permanently.) 

We note that no balls below p at stage so + 1 ever move again. Balls from nodes 
< p cannot move without initializing p, which is impossible since so + 1 > s" + 1. 
Balls from nodes to the right of cr are all cancelled at the a-stage so + 1, and in 
order for so + 1 also to be a a-stage, no ball from any node D Cs can be waiting at 
any node below p at stage so + 1, since otherwise ff would not be eligible at so + 1. 

We argue by induction that at every a-stage s + 1 > so + 1, at least one side 
of the computation is G2i+1-correct - that is, either 4XF°(x)[s] = h(x) with use 
Us such that G2i+1 p (us + l)[s] = G2i+1 r (us + 1), or bG2i@E0(X)[S] = h(x) with 
use satisfying the same condition. Assume this holds for all a-stages t + 1 with 
so < t < s', where s' + 1 is the last a-stage before s + 1. 

Suppose that 4XF°(x)[s'] = h(x) is G2i+l-correct with use ust. (The analogous 
argument will hold if the other side was G2i+1-correct, as shown below.) The 
induction is trivial unless some ball < us enters Fo before stage s + 1, so suppose 
w = w2k+1 is the first such ball to do so, entering G2k+1 at a stage t + 1 with 
s' < t < s. Since no ball from any node < p ever moves after s" + 1, we must have 
cl F sr. With w < us, Sublemma 5.4 ensures that w must have been chosen before 
stage s' + 1, and hence ff C oe, since all nodes to the right of a were initialized at 
stage s' + 1. Thus w cannot have been below p at the a-stage s' + 1, so w must have 
passed p at a stage t' + 1 > s' + 1. By G2i+1-correctness, w was not targeted for 
the infimum G2i+1, so we must have r(p,t') < w < us, < s', and thus r(p,t') = O. 
This forces t' + 1 to be a (X-stage < s + 1, so in fact t' + 1 = s' + 1. Notice that due 
to the instructions for gate p, no other ball from above p can have been below p at 
stage s' + 1, or can have passed p between stages s' + 1 and t. Traces may have 
been chosen for w after it passed p, but they would all be chosen > uSX, and will 
all enter their target sets before w enters G2k+1. After stage t + 1, the restraint 
r(p, ) will be set to prevent any other ball from above a from passing gate p, until 
the next time the length of agreement recovers and exceeds l(p,s') - which must 
be the next cr-stage, namely s + 1. Thus w was the only ball chosen before s' + 1 
to pass gate p between stages s' + 1 and s. 

Now we claim that if bF°(X)[S] is no longer G2i+1-correct, then the computation 
bG2id3E0(x)[s] = h(x) is G2i+l-correct. The preceding paragraph shows that no 
ball entered G2i @ Eo between stages s' + 1 and s, except balls which were chosen 
large after s' + 1, so that 

4?e (z)[s] = be (X)[S ] = 4?e (X)[S ] = h(x). 

The first two of these computations have the same use u, and we claim that both 
are G2i+1-correct. Suppose that some ball Wpi+l was chosen before stage s' + 1 
(since any ball chosen after s' + 1 would be > u) and eventually enters G2i+1. Then 
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wpi+l was waiting either at gate p or at a gate D ff at stage s' + 1 (since no ball 
was waiting below p at s' + 1, balls from the right of ff were initialized then, and 
balls from nodes < p never move again). Also, we have: q oe, since wdi+l was not 
cancelled when W2k+l moved. Hence wvBi+l was chosen before w2k+l was chosen, 
and so Wf3i+l < W2k+l. (If d = og, then k < i, since w2k+l passed gate p first. 
Then W2k+l would be a trace for w!3i+l, hence larger.) But w2k+l < uSo, so this 
would contradict the G2i+l-correctness of the computation 4XF°(x)[s'], which was 
the inductive hypothesis. 

The analogous argument, assuming beG2id3Eo(z)[st] = h(x) to be G2i+l-correct 
with use uS,, is similar. However, in the second paragraph, when we claim that no 
ball chosen before s' + 1 entered Fo between s' + 1 and s, we must worry about balls 
wdi+l targeted for the infimum, since such balls could pass p at a stage t between 
s' + 1 and s despite a large restraint r(p, t). The only way for this to happen is 
under Instruction 4.4, if the trace for WBi+l entered its target set at stage t+ 1. This 
is possible only if that trace was the ball W2i or e° which passed p at stage s' + 1, 
which forces both p = Ol and wdi+l < uS/. This contradicts the G2i+l-correctness 
of the computation eG2t@E0(z)[S/]) so in fact no such ball W,Bi+l can have passed p 
between s' + 1 and s. The rest of the argument goes through essentially unchanged, 
showing that beF°(X)[S] = h(x) must be G2i+1-correct. 

* Suppose p is a Pi,-node. Then at the first tstage after s" + 1, a witness 
element zp will be chosen and will remain fixed at all subsequent stages. We will 
need the following two sublemmas for our argument. The first one guarantees that 
if p is in Subease 5 at infinitely many stages but only reaches Subease 6 at finitely 
many stages, then the use fGii3B(Zp) > oo. 

Sublemma 5.13. Suppose some a C g is an Ek-node, with J\fik = jvfeb7 but there 
is a node ff with a c ff c g such that Xe,<? is not active along ff via a. Then for 

all sutheiently large z, tyWe@B(z)[s] oo as s > oo. (More specihically, let r be 

the immediate predecessor of the least such a. Then oE c , r is a 19-node, and for 
each z > ZT and each n E g there exists a stage so such that at all stages s > so we 
have either aWe([3B (Z) [S] > n or rWe ff3B (Z) [S] T .) 

Proof. JVk iS active via oe along every immediate successor of c>, so the r described 
must lie above oe. The node r must be a Fi,-node for some i and , since only 
at successors of P-nodes can Xk change from active via oe to inactive via oe. If 
ff D r^(ak), then Subease 6(b) must apply infinitely often with kS+1 = k in the 
construction for r. Hence aWe@B(z)[5+l] is chosen large at infinitely many stages 
s + 1, so the sublemma is satisfied for z = z. Otherwise ff D r^(al) for some I < k 

with J%l assigned to some p c al. In order for this ff to be eligible infinitely often, 
k must fail Condition (1) from page 3048 infinitely often. But eyp elG3 (z)[s + 1] 
is chosen large at infinitely many stages s + 1 since r^(al) c 9, and we must have 
IfiGi(3B(Z)[s] > 00 as s > oo to allow k = I infinitely often. By Condition (1), 
therefore, tyWe@B (z) [s] > oo as well. 

By convention the use function tyWe@B is increasing, so the result holds for all 
z > zz. g 

Sublemma 5.14. Let s+1 > s"+1 be a p-stage at which the construction for p is in 
Subease 6. Then (Gi @ B) p fGi@B (zp) [S] will be preserved (and 4!G*@B (zp) [S] 1= °) 

until we enter either Subcase 6(b) or Subease 2 of the construction for p. 
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Proof. Let t + 1 > s + 1 be a p-stage such that p has not entered Subcase 2 or 6(b) 
since stage s + 1. By induction on , p has not entered any of Subeases 1, 3, 4, or 5 
since stage s + 1 either. (For Subease 5, this follows because ty-uses never decrease 
from one stage to the next.) 

For preservation of Gi, notice that no ball targeted for Gi was below gate p at 
stage s + 1 (except possibly balls from nodes to the left of p, and such balls never 
move again). The construction set r(p,i, ks,s Jr 1) > fGi@B(Zp)[S], ensuring that 
no ball < fGi@B(zp)[s] from above p has passed p since stage s + 1, and all balls 
from nodes to the right of p are cancelled by initialization at s + 1. (Balls from 
nodes < p never move again, since p is never initialized again.) 

Now a node must be eligible in order to enumerate an element into B. Hence 
no node to the left of p nor any node above p will violate our B-preservation, since 
nodes above p are never eligible when p is in Subcase 6. Each node ff to the right 
of p is initialized at s + 1, so any element which ff enumerates into B at stage t + 1 
will be of the form tyWe@B(za)[t], hence > za[t] > fGtfflB(zp)[s]. A node T c p 
never again enumerates anything into C (since doing so would initialize p), so its 
only B-enumeration can come when r is in Subcase 6(b). Assume T^(ak) C p, and 
suppose that at stage t + 1, r enumerates some element tyWe@B(z)[t] into B, with 
J\lwl = Nwe,¢ assigned to Ol c T. Then k < 1, since otherwise p would be initialized at 
this stage, so Ea is not active via oe along p, and r is precisely the node ,> described 
in Subease 5. But then tyWe@B(zT) > fGti3B(zp)[t], since we are not in Subcase 5. 
Thus the B-enumeration by r at stage t + 1 does not violate the sublemma. O 

If p^(f ) ever becomes eligible at some stage s+ 1 > s" + 1, then our initializations 
when zp entered C will preserve the convergence Gi@B(zp)[S] l= 0 7& C(zv) forever 
after, satisfying Fi,. (The same argument as in Sublemma 5.14 shows that no 
T < p will injure this computation by any subsequent B-enumeration.) 

If p^(w) c 9, then either Subease 4 holds infinitely often (so Gi@B(zp) l7& 0 or 
diverges) or Subease 5 holds infinitely often (so Gi@B(Zp) t, by Sublemma 5.13 
and the conditions of Subease 5). Sublemma 5.13 excludes the possibility of our 
remaining in Subease 5 without eventually entering Subeases 2 or 3, both of which 
give outcomes to the left of p^(w) c 9.) Moreover, zp never enters C, so Fi, holds. 

Otherwise, zp is realized infinitely often, and Sublemma 5.13 guarantees that 
each time it is realized, we will eventually enter Subease 6 of the construction for p. 
If k =-1 at any subsequent tstage, p will enumerate zp into C, and p^(f) becomes 
eligible, as described above. Otherwise there is some k such that N*k = N*e,<> iS active 
alongpviasomeaanda=p^(ak) cg. Let so+1 < s1+l < beallthe- 
stages occurring after the last initialization of p. We claim that Pi i holds because 
in this case 4!G*@B(zp) must diverge. At each stage Sn + 1, we are in Subcase 3 
of the construction for the node p, so we have been in Subease 6(b) at some stage 
t + 1 > sn_l + 1. At that stage t + 1, we enumerated ^/k e@B(Zp)[t] into B, and at 
the next ol-stage s + 1, akWe@B(Zp)[S + 1] was chosen large. Since ksn+1 = k, we 

know tykWe@B(zp) < fGtfflB(zp)[Sn] ) SO fGi@B(zp) [Sn] oo as n -) oo, satisfying 

Pi, - 
This completes the proof of Lemma 5.12. g 

The following lemma ensures that the functionals i\p,k built at P-nodes p with 
p^(ak) C g are indeed computable. 
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Lemma 5.15 (/\-Correction Lemma). Let p be a Pi,-node, and let ff = p^(ak) lie 
on the true path g through T, with Xk = Xe, Then there is an so such that for 
every w E S and every -stage s + 1 > so + 1 such thsLt w E dom(/\Gk)[s + 1], no 
bal l W;3 with d Gk (w ) [s + 1 ] < w,B < f R (W ) [S] enters Gi from stage s + 1 until the 
next a-stage. 

Proof. Since ak is an outcome of the node p, the requirement Xk must be active 
along p via some node r C p. Now dom(/\Gk) C dom(¢R)[t] at every stage t, since 
tp,k iS extended only at tstages, all of which are r-expansionary. Let so + 1 be the 
last stage at which ff is initialized, so that no ball with subscript < ff ever moves 
after stage so + 1. Let s1 + 1 be the first a-stage > so + 1 at which i\Gk(w)[sl + 1] 
is defined. Then the use aGk(W)[Sl + 1] is chosen large, hence is greater than 

f (W) [S1], 

We argue by induction on v-stages s + 1 that no ball wt with aGk(W) < wt < 
(pR(w)[s] and ff < al even exists at any (T-stage > sl + 1. (By the above remarks, 
this holds at stage sl + 1.) Since no ball with subscript < cs moves after stage so + 1 
and no ball defined after a -stage s + 1 can be < fR(w)[s], this will prove the 
lemma. 

For the inductive step, let s + 1 > s' + 1 be consecutive a-stages > s1 + 1, and 
fix cx F . Now any new witness or trace chosen at an intervening stage must be 
greater than (pR(W)[SI], so the induction will be trivial unless (pR(w)[s] > SoR(w)[s']. 
This implies that some element y < fR(w)[s'] entered R after stage s'. (Recall that 
R = k Gk-) Then y must have been appointed as a witness or trace before stage 
s' + 1, by some node yB D . 

If y entered Gi, then by our induction on s' + 1, we have y < dGk(w)[st + 1] 

as well, so at stage s + 1 we redefine \Gk(W) and set dGk(w)[s + 1] > fR(w)[s], 
completing the induction for s + 1. 

Otherwise y = wp entered Gj for some i t i. If oe s p on T, then oe was 
initialized when y entered Gj and is not eligible again before stage s + 1, so any 
new ball with subscript oe at stage s+l will be greater than (pR(w)[s], by Sublemma 
5.4. 

If oe < :, then no ball y' with subscript or has moved or been chosen since wd 
was chosen (since otherwise p would have been initialized). Sublemma 5.4 then 
ensures that such a y' is < w:, hence < qaR(w)[s'], and the inductive hypothesis 
guarantees that either y' < dGk(w)[s' + 1] or y' is targeted for a set other than Gi. 

Finally we consider the case og = vB. Since wp entered Gj after stage s', it must 
have passed gate p at a stage > s', since otherwise ff could not have been eligible 
at s' + 1. When w: passed gate p, all its traces either had already entered their 
target sets or were targeted for Eo or E1. Moreover, if w,B was a trace for another 
ball w,jB+1, then wjp+1 must have been waiting at a gate D ff at stage s' + 1. (Two 
balls targeted for R cannot pass a P-gate simultaneously.) The ball W,B+1 may have 
dropped as far as gate p when w: entered Gj, but the construction does not allow 
it to pass p until the next a-stage s + 1. When wd entered Gj, a new trace (or 
traces) was appointed for wip+l. However, these new traces will each be targeted 
for either Eo) E1, or Gj, not for Gi, and will begin at the same gate at which wi:+l 
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is currently waiting. Hence none of these traces will move until stage s + 1, so no new trace will be targeted for Gi until at least stage s + 1. This proves our claim, and the lemma follows. 
O 

Lemma 5.16. Every requirement.N<k =*ge,¢ is satisfied by our construction. 
Proof. Let g be the true path, and let Ol be the node described by Lemma 5.2 for Nwk. If Ol^(W) c 9, then We + bR, S0 Xk holds. Otherwise we have two cases. Case 1. There exists a P,-node p 2 oe, for some i and @ such that ff = p^(ak) c 9. By the construction and our choice of oe, Mk must be satisfied via oe along every node D a on 9. Once we have reached a stage s" + 1 after which (r is never again initialized, Subcase 6(b) guarantees that the domain of the function /\Gk built by p will be extended by at least one element between every pair of a-stages, subject only to the restriction that every element in the domain at stage s + 1 must be < PyWe@B(zp)[s + 1]. As noted in the proof of satisfaction of Fi, 

above, ak e@B(Zp)[S] ) 00 as s oo, so for each n E , i\Gk(n)[s + 1] is defined 

at infinitely many stages s + 1. The L-requirements will then ensure that /\Gk is total, so that We <T Gi, given the following. 
Sublemma 5.17. In the situation above, tp,k is a computable functional, with i\ G k = We 

Proof. In Subeases 3 and 6(b) we always redefine /Gk to equal We on its domain. We must prove that Ap,k iS computable, i.e. that these redefinitions are allowed. If the construction is in Subease 3 at the Rstage s + 1, let s' + 1 be the most recent Rstage (at which we must have been in Subcase 6(b)). If any y < w5/+1 has entered We since stage s' + 1, then some change in fR(y) rnust have taken place since s' + 1 to allow it, where b is the functional assigned to N^k. With the restraints r(p, j, k, s' + 1) > fR(y) [s'] for all j t i, this means that Gi p fR(y) [s'] has changed since s'. Indeed, by Lemma 5.15, G[dGk(y)[s'] must have changed, so our redefinition of /\pGk(y)[s + 1] is allowed. 
In Subease 6(b) at stage s + 1, if some y < ws+1 < tyWe@B(zp)[t + 1] has entered We since the last stage t + 1 at which we were in Subcase 3 with kt+1-k, then y must have been allowed to enter We by some change in R[R(y)[t]. Now we set r(pX i, k, t + 1) = (pR(7k (Zp)) [t] v and this restraint has stayed at least that large at all subsequent stages up through s+1. Hence some Gj[R(zp)[t] with j 7& i must have changed after zp was realized. However, the change would have happened before the previous p-stage s' + 1 (since otherwise we would be in Subease 6(a) at stage s + 1) and after the stage t' + 1 > t + 1 at which we re-entered Subease 6 with kt,+1-k and reset r(p, j, k, t' + 1) = O. However, at stage t' + 1 we also requested that a = °rk increase aWei3B(zp)[tt] Hence by stage s + 1, oe would have recognized the We-change and obeyed our request, setting ywe@B (zp) [s + 1] > f Gt@B (Zp) [S] . This would contradict Condition (1), since our restraints have preserved fGtd3B(zp)[t'] since we entered Subease 6. Thus no such Gj-changes can have taken place, so We has not changed, and Subease 6(b) only extends the domain of the functional /\p,k without redefining it on any arguments. 

2 
Case 2. By Lemma 5.2, if Case 1 does not hold, then J\lSk iS active via oe along every node on g above al. Therl at every oe-expansionary stage we extend the domain 
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of rWe@B by another element. Once the use oyWe@B(x-1) stabilizes, eyWed3B(x) 
increases only when: 

* x enters C; or 
* x = zp for some eligible p 2 al at which.N^k iS satisfied; or 
* x = zp for some eligible p 3 oe at a stage at which k = k in the construction 

at p. 

In the second case, p cannot lie on 9, so either p is eligible only finitely often or 
zp is eventually cancelled by initialization and redefined to be > x. In the third 
case, if p c 9, then there are only finitely many such stages. Hence the use will 
increase only finitely often, and rWe@B is total. 

It only remains to show that this function computes C correctly - which is clear 
for any argument x ¢ C. Now no node < oe ever enumerates any element into C 
without initializing oe, and after each initialization we start building a new ra, so 
the version of r,> constructed after the last initialization of Ol will never be injured 
by those nodes. Among nodes p s oe, only P-nodes ever enumerate any elements 
into C. When such a p does so, the element is the witness zp, and it enters C at a 
stage s + 1 with kS+1 =-1 in the construction for that p. 

If p lies to the right of oe, then zp is cancelled each time Ol is eligible. If such a zp 
is enumerated into C, therefore, then there were no oe-stages between the definition 
of zp at some stage s + 1 and its entry into C. Since zp was chosen large, it cannot 
have been in the domain of rwe@B[s]) nor can it have entered that domain since 
stage s + 1. When rwe@B(zp) is finally defined, therefore, it will be correct. 

So suppose oe lies below the Fi,-node p, and p enumerates zp into C at stage 
s+1 (using Subease 6 of the construction for p). Since kS+1 =-1 and Subcase 5 did 
not apply, either tywe@B (zp) [s] T or PywefE3B (zp) > f Gi@B (Zp) [S] . In the latter case 
p enumerates aWe@B(zp)[s] into B[s + 1]. In either case, therefore, og will be able 
to define rWe@B(zp)[t + 1] correctly at the next oe-stage t + 1. Hence rWe(33B = C, 
satisfying 2<k 
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