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Abstract

We show that the first order theories of the Medevdev lattice and the
Muchnik lattice are both computably isomorphic to the third order theory
of true arithmetic.

1 Introduction

A major theme in the study of computability theoretic reducibilities has been
the question of how complicated the first order theories of the correspond-
ing degree structures are. A computability theoretic reducibility is usually
a preordering relation on sets of numbers, or on number-theoretic functions.
If ≤r is a reducibility (i.e. a preordering relation) on, say, functions, then
f ≤r g, with f, g functions, has usually an arithmetical definition. Therefore, if
(P,≤r) is the degree structure corresponding to ≤r, then first order statements
about the poset (P,≤r) can be translated into second order arithmetical state-
ments, allowing for quantification over functions. This usually establishes that
Th(P,≤r) ≤m Th2(N). (Here ≤m denotes m-reducibility, and by Thn(N) we
denote the set of n-th order arithmetical sentences that are true in the set of
natural numbers N: precise definitions for n = 2, 3 will be given later. Thn(A)
is usually called the n-th order theory of N.)

For instance, if one considers the Turing degrees DT = (DT ,≤T ), it imme-
diately follows from the above that Th(DT ) ≤m Th2(N). On the other hand a
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classical result due to Simpson, [8] (see also [9]) shows that Th2(N) ≤m Th(DT ).
Thus the first order theory of the Turing degrees DT = (DT ,≤T ) is as com-
plicated as it can be, i.e. computably isomorphic to second order arithmetic
Th2(N). For an updated survey on this subject and related topics, we refer the
reader to the recent survey by R. Shore, [7].

An interesting, although not much studied, computability theoretic reducibil-
ity, is Medvedev reducibility. Here the story is completely different, since
Medvedev reducibility is a preordering relation defined on sets of functions.
Therefore we need quantification over sets of functions to express first order
statements about the corresponding degree structure, which is a bounded dis-
tributive lattice called the Medvedev lattice. This suggests that in order to find
un upper bound to the complexity of the first order theory of the Medvedev
lattice, one has to turn to third order arithmetic. The purpose of this note is
to show that third order arithmetic indeed the exact level: we will show that
the first order theories of the Medvedev lattice, and of its nonuniform version,
called the Muchnik lattice, are in fact computably isomorphic to third order
arithmetic.

2 Basics

We briefly review the basic definitions about the Medvedev lattice, and the
Muchnik lattice. For more detail the reader is referred to [6], and [10].

A mass problem is a subset of NN. On mass problems one can define the
following preordering relation: A ≤M B if there is a Turing functional Ψ such
that for all f ∈ B, Ψ(f) is total, and Ψ(f) ∈ A. The relation ≤M induces an
equivalence relation on mass problems: A ≡M B if A ≤M B and B ≤M A. The
equivalence class of A is denoted by degM (A) and is called the Medvedev degree
of A (or, following Medvedev [3], the degree of difficulty of A). The collection
of all Medvedev degrees is denoted by M, partially ordered by degM (A) ≤M
degM (B) if A ≤M B. Note that there is a smallest Medvedev degree 0, namely
the degree of any mass problem containing a computable function. There is also
a largest degree 1, the degree of the empty mass problem. For functions f and g,
as usual we define the function f⊕g by f⊕g(2x) = f(x) and f⊕g(2x+1) = g(x).
Let 〈n〉ˆA = {〈n〉ˆf : f ∈ A}, where nˆf is the function such that nˆf(0) = n,
and for x > 0 nˆf(x) = f(x− 1). The join operator

A ∨B = {f ⊕ g : f ∈ A ∧ g ∈ B} ,

and the meet operator
A ∧B = 0ˆA ∪ 1ˆB

on mass problems originate well defined operations on Medvedev degrees that
make M a bounded distributive lattice M = (M,∨,∧,0,1), called the Medvedev
lattice. Henceforth, when talking about the first order theory of the Medvedev
lattice, denoted Th(M), we will refer to Th(M,≤M ). Clearly Th(M,≤M ) ≡
Th(M,∨,∧,0,1), where the symbol ≡ denotes computable isomorphism.
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One can consider a nonuniform variant of the Medvedev lattice, the Muchnik
lattice Mw = (Mw,≤w), introduced and studied in [4]. This is the structure
resulting from the reduction relation on mass problems defined by

A ≤w B⇔ (∀g ∈ B)(∃f ∈ A)[f ≤T g],

where ≤T denotes Turing reducibility. Again, ≤w generates an equivalence re-
lation ≡w on mass problems. The equivalence class of A is called the Muchnik
degree of A, denoted by degw(A). The above displayed operations on mass
problems turn Mw in a lattice too, denoted by Mw = (Mw,∨,∧,0w,1w), where
0w is the Muchnik degree of any mass problem containing a computable func-
tion, and 1w = degw(∅). The first order theory of the Muchnik lattice, in the
language of partial orders, will be denoted by Th(Mw).

It is well known that the Turing degrees can be embedded into both M and
Mw. Indeed, the mappings

i(degT (A)) = degM ({cA}),
iw(degT (A)) = degw({cA})

(where, given a set A, we denote by cA its characteristic function ), are well de-
fined embeddings of (DT ,≤T ) into (M,≤M ) and (Mw,≤w), respectively. More-
over, i and iw preserve least element, and the join operation. Henceforth, we
will often identify the Turing degrees with the range of i, or iw according to the
case. Thus, we say that a Medvedev degree (respectively, a Muchnik degree) X
is a Turing degree if it is in the range of i (respectively, iw). It is easy to see that
X ∈M (respectively, X ∈Mw) is a Turing degree if and only if X = deg({f})
(respectively, X = degw({f})) for some function f . When thinking of a Turing
degree X within M, or Mw, we will always choose a mass problem that is a
singleton as a representative of X.

Lemma 2.1 The Turing degrees are first order definable in both (M,≤M ) and
(Mw,≤w) via the formula

ϕ(u) =def ∃v[u < v ∧ ∀w[u < w → v ≤ w]].

Proof. See [1]. �
It is perhaps worth observing that the Medvedev lattice and the Muchnik

lattice are not elementarily equivalent:

Theorem 2.2 Th(M) 6= Th(Mw).

Proof. We exhibit an explicit first order difference. Let

0′ = degM ({f : f non computable}),
0′w = degw({f : f non computable}).
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Notice that 0′ and 0′w are definable in the respective structures by the same
first order formula, expressing that 0′ is the least element amongst the nonzero
Medvedev degrees, and 0′w is the least element amongst the nonzero Muchnik
degrees. (Notice that 0′ is the element v witnessing the existential quantifier
in the above formula ϕ(u) when u is interpreted as the least Turing degree in
the Medvedev lattice; similarly 0′w is the element v witnessing the existential
quantifier in the above formula ϕ(u) when u is interpreted as the least Turing
degree in the Muchnik lattice.) It is now easy to notice an elementary difference
between the Medvedev and the Muchnik lattice, as it can be shown that 0′ is
meet-irreducible in M: this follows from the characterization of meet-irreducible
elements of M given in [1], see also [10, Theorem 5.1]. On the other hand,
let f be a function of minimal Turing degree, and let A = degw({f}), B =
degw({g : f 6≤T g}). Then, in Mw, 0′w = A ∧B, i.e. 0′w is meet-reducible. �

3 The complexity of the first order theory

We will show that the first order theories of the Medevdev lattice and the
Muchnik lattice are both computably isomorphic to third order arithmetic.

3.1 Some logical systems

We now introduce second and third order arithmetic and some useful related
logical systems.

Third order arithmetic Third order arithmetic is the logical system de-
fined as follows. The language, with equality, consists of: The basic symbols
+,×, 0, 1, < of elementary arithmetic; first order variables x0, x1, . . . (for num-
bers); second order variables p0, p1, . . . (for unary functions on numbers); third
order variables X0, X1, . . . (for sets of functions, i.e. mass problems). Terms
and formulas are built up as usual, but similarly to function symbols, second
order variables are allowed to form terms: thus if t is a term and p is a second
order variable, then p(t) is a term; if p a second order variable and X is a third
order variable then p ∈ X is allowed as atomic formula. Finally, we are allowed
for quantification also on second order variables, and on third order variables.
Sentences are formulas in which all variables are quantified. A sentence is true if
its standard interpretation in the natural numbers is true (with first order vari-
ables being interpreted by numbers; second order variables being interpreted by
unary functions from N to N; third order variables being interpreted by mass
problems. The symbol ∈, here and in the following systems, is interpreted as
membership). The collection of all true sentences, under this interpretation, is
called third order arithmetic, denoted by Th3(N). Notice that by limiting our-
selves to adding to elementary arithmetic only variables for functions, we get
what is known as second order arithmetic, denoted by Th2(N).
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Second order theory of the real numbers The second order theory of
the field R of the real numbers is the logical system (with equality) defined as
follows. The language, with equality, consists of the basic symbols +,×, 0, 1, <.
We have first order variables r0, r1, . . . (for real numbers); second order variables
X0, X1, . . . (for sets of real numbers). Terms, atomic formulas and formulas are
built in the usual way, where we regard r ∈ Y as an atomic formula if r is a
first order variable, and X is a second order variable. Quantification on both
first and second order variables is allowed. Sentences are formulas in which all
variables are quantified. A sentence is true if the standard interpretation of
the sentence in the field of real numbers is true (where first order variables are
interpreted by real numbers; second order variables are interpreted by sets of
real numbers). By second order theory of the field R, denoted by Th2(R), we
mean the collection of all such true sentences.

We are now ready to give a useful, although simple, characterization of third
order arithmetic Th3(N).

Lemma 3.1 Th3(N) is computably isomorphic to Th2(R).

Proof. Let EA1 be the logical system obtained from elementary arithmetic as
follows. The language, with equality, consists of the basic elementary symbols
od arithmetic +,×, 0, 1, <; we have first order numerical variables x0, x1, . . .,
and in addition we have first order variables of a different sort, r0, r1, . . ., called
real variables. Then the system EA1 is obtained by taking all sentences which
are true under interpreting numerical variables with numbers, real variables with
real numbers, and interpreting + and × accordingly. This system is known as
elementary analysis. It is known (see for instance [6, Theorem 16.XIII], for a
proof) that Th2(N) ≡ EA1. Let now EA2 be the logical system obtained by
adding to the language of EA1 second order variables R0, R1, . . . (for sets of
reals); and by adding atomic formulas of the form r ∈ R, where r is a real
variable and R is a second order variable. Then EA2 is the collection of all
sentences in this language that are true under interpretation of second order
variables as sets of real numbers. Following up the argument in Rogers, [6],
it is now easy to show that Th3(N) ≡ EA2. It is then sufficient to show that
EA2 ≡ Th2(R). Indeed, EA2 ≤1 Th2(R) follows from the fact that N ⊆ R is
second-order definable in (R), being the smallest inductive set. On the other
hand, it is clear that Th2(R) ≤1 EA2. �

Lemma 3.2 Let A ⊆ DT be an antichain, let B ⊆ A, and via the embedding of
the Turing degrees into M directly regard A as a subset of M. For every X ∈ A
let fx be a function such that X = degM ({fx}). Let C be the Medvedev degree
of the mass problem C = {fy : Y ∈ B}. Then

(∀X ∈ A)[C ≤M X⇔ X ∈ B].

A similar result applies to the Muchnik lattice. In this latter case, we of course
regard each X ∈ A as the Muchnik degree degw({fx}) of some function fx, and
we work with ≤w instead of ≤M .
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Proof. Suppose we work with the Medvedev lattice, and let A ⊆ DT be an
antichain, viewed as an antichain in M via the embedding of the Turing degrees.
Let B ⊆ A, fx, C and C be defined as in the statement of the lemma.

If C ≤M X then C ≤M {fx}, which implies that fx ∈ C, hence X ∈ B. For
the other direction, if X ∈ B then fx ∈ C, implying C ≤M {fx}, i.e. C ≤M X.

The case of the Muchnik lattice is similar. �

3.2 The complexity of the theory

We now show that the first order theories of the Medvedev lattice and the
Muchnik lattice have the same m-degree as Th3(N).

One direction is trivial:

Lemma 3.3 Th(M),Th(Mw) ≤m Th3(N).

Proof. Trivially, the first order theories of M and Mw can be interpreted in
third order arithmetic. �

For the converse, we first need a computability theoretic result. All unex-
plained computability notions which are used in this section can be found in
[2], see in particular Chapter V. Following [2], we say that a tree T is a func-
tion from binary strings to binary strings such that for every binary string σ,
T (σˆ0) and T (σˆ1) are incomparable extensions of T (σ). Here the symbol ˆ
denotes concatenation of strings. If σ is a string and n is a number then we let
σˆn = σˆ〈n〉: a similar convention holds of nˆσ. The length of a string σ is
denoted by |σ|. A tree T is computable if T is computable as a function. We
also say that T ′ is a subtree of T if range(T ′) ⊆ range(T ). Given a tree T , the
collection of all infinite paths in T will be denoted by [T ].

Lemma 3.4 There is a tree T such that, for any Turing degrees x,y, z of dis-
tinct paths of T , the following hold:

(i) x is minimal;

(ii) x 6≤ y ∨ z.

Proof. Given any tree T and any σ, σ′ let Ext(T, σ)(σ′) = T (σˆσ′): if d is a
number then Ext(T, d) = Ext(T, 〈d〉). For every computable tree T and every
n let Min(T, n) be a computable subtree of T such that if A ∈ [Min(T, n)] then
ϕAn total⇒ [ϕAn computable ∨ A ≤T ϕAn ]: see for instance [2] for the details of
the construction of Min(T, e) starting from T .

For any computable trees T0, T1, T2 and any n, let for each i < 2,

Diagin(T0, T1, T2) = T̂i

for some computable T̂i ⊆ Ti such that if A0 ∈ T̂0, A1 ∈ T̂1 and A2 ∈ T̂2

then A0 6= ϕA1⊕A2
n . That Diagin(T0, T1, T2) exists can be seen as follows: Let

T0, T1, T2 and n be given. We distinguish the following cases:
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Case 1) (∃x)(∃ρ1)(∃ρ2)(∀τ1 ⊇ ρ 1)(∀τ2 ⊇ ρ2)[ϕT1(τ1)⊕T2(τ2)
n (x) ↑]: in this case

choose ρ1 and ρ2 and define

T̂0 = T0 T̂1 = Ext(T1, ρ1) T̂2 = Ext(T2, ρ2)

Case 2) Otherwise, we can find strings τ1 and τ2 such that

(∀x < |T0(0)|, |T0(1)|)[ϕT1(τ1)⊕T2(τ2)
n (x) ↓].

Since T0(0) 6= T1(1) we can choose j ∈ {0, 1} such that

T0(j)(x) 6= ϕT1(τ1)⊕T2(τ2)
n (x),

for some x < |T0(0)|, |T0(1)|, and define

T̂0 = Ext(T0, j) T̂1 = Ext(T1, τ1) T̂2 = Ext(T2, τ2).

We now define T which satisfies the hypothesis of the lemma in stages,
defining T (σ) for all σ of length n at stage n. For each σ we also define an
auxiliary value Tσ.

Stage 0. Let T (λ) = λ and define Tλ = Id.

Stage n + 1. Let {T 0
i : i < 2n+1} be the set of all values Ext(Tσ, d) such that

σ is of length n and d ∈ {0, 1} and for each i < 2n+1 let σi = σˆd for σ and
d such that T 0

i = Ext(Tσ, d). Let r be the number of triples (k, l,m) with
k, l,m < 2n+1 and k 6= l 6= m.

Step (1). Fixing any order on the set of all such triples, proceed as follows
for each such triple in turn. For the jth triple (k, l,m), given T j−1

k , T j−1
l and

T j−1
m , let T jk = Diag0

n(T j−1
k , T j−1

l , T j−1
m ), T jl = Diag1

n(T j−1
k , T j−1

l , T j−1
m ) and

T jm = Diag2
n(T j−1

k , T j−1
l , T j−1

m ). For each i < 2n+1 such that i /∈ {k, l,m} define
T ji = T j−1

i .

Step (2). For each i < 2n+1, define Tσi
= Min(T ri , n) and T (σi) = Tσi

(λ).
�

Lemma 3.5 Th2(R) can be interpreted in both Th(M) and Th(Mw).

Proof. Again the proof is given for M, but mutatis mutandis it works for Mw

too. By the usual coding methods, see e.g. [5], the ordered field R can be first-
order defined in a symmetric graph (V,E), where we may assume V = 2N, the
Cantor space. Since T as in Lemma 3.4 is homeomorphic to 2N, we may assume
that in fact V is the set of paths of T . We can now obtain a coding scheme
RA,B to code with two appropriate parameters A,B a copy of the ordered field
R into M. Let B be the collection of Turing degrees of the paths of T (viewed
inside M). The parameter A picks up B among the minimal Turing degrees,

7



that are first order definable in M, via Lemma 3.2. The parameter B picks the
edge relation

{x ∨ y : Exy},

for x, y ∈ V , obtained by applying Lemma 3.2 to the antichain

{x ∨ y : x 6= y ∧ x,y ∈ B}.

Applying Lemma 3.2, we may now quantify over subsets of the coded copy of
R. It is clear how to translate each second order sentence Φ in the language
of Th2(R,+,×) into a formula Φ̂A,B with parameters A,B, according to this
coding scheme of R into M.

We obtain a correctness condition on parameters, α(A,B), saying that the
coded model RA,B is isomorphic to R, by requiring the second order axioms of
a complete ordered field (i.e. each bounded nonempty subset has a supremum).
So

Φ ∈ Th2(R)⇔M |= ∃A,B[α(A,B) ∧ Φ̂A,B ].

�

Theorem 3.6 Th(M),Th(Mw) ≡ Th3(N).

Proof. By Lemma 3.3, we get Th(M),Th(Mw) ≤1 Th3(N). On the other
hand, by Lemma 3.5, we get Th2(R) ≤1 Th(M),Th(Mw), and thus by Lemma
3.1, Th3(N) ≤1 Th(M),Th(Mw). �
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