
The Undecidability of the 4�–theory for the r.e.

wtt- and Turing�–degrees

Steffen Lempp, University of Wisconsin1
André Nies, Universität Heidelberg2

We show that the 4�–theory of the partial order of
recursively enumerable weak truth-table degrees is
undecidable, and give a new proof of the similar fact
for r.e. T�–degrees. This is accomplished by
introducing a new coding scheme which consists in
defining the class of finite bipartite graphs with
parameters.

1. Introduction. The standard method for proving undecidability of the elementary
theory of a structure, used e.g. in [A,S ta] for the r.e. T�–degrees and in [A,N,S92] for
the r.e. wtt�–degrees, actually shows undecidability of the set of sentences in the theory
with a bounded number of quantifier alternations. So as a further question one can ask
for an optimal bound of this kind, namely one can ask for a number k such that the

k�–1�–theory (or, equivalently, the k�–1�–theory) of the structure is decidable, but the

k�–theory is undecidable. This question is of interest, since determining such a k gives

more information about the theory than a straight undecidability proof, and also since
mathematically relevant first-order sentences about a degree structure usually have a
small number of quantifier alternations. The undecidability proofs cited above do not
give an optimal bound; in particular, from [A,N,S92] only a bound of 12 on k can be
derived for Th(Rwtt). Here we prove a bound of 4 for the p.o. Rwtt of r.e.

wtt�–degrees, and by an extension of the methods, for the p.o. RT of r.e. T�–degrees.

For RT this also follows from an unpublished result of Harrington and Shelah,

([Ha,Sh82]) as was observed in [A,S ta].
The standard method to prove undecidability of the elementary theory of a structure D
is indirect: roughly speaking, a class C of structures whose theory is known to be
hereditarily undecidable (say the class of finite p.o.) is defined with parameters in D.

This gives an interpretation of the theory of a class C' C in the theory of D, which
increases the number of quantifier alternation of sentences by a constant c. Since
Th(C') is undecidable by hereditary undecidability, Th(D) must be undecidable. Let

r�–Th(C) be the set of sentences in Th(C) of the form (�…)(�…)(�…)(�…) ,

1 Supported by NSF grant DMS-
9100114
2Supported by DFG grant Ni 400/1-1

1

with k�–1 quantifier alternations. If the fragment r�–Th(C) is known to be hereditarily

undecidable (h.u.), r+k�–Th(D) must be undecidable. In [N ta], a refinement of this

method to prove hereditary undecidability of fragments is described, which makes it

possible to save one quantifier alternation. The notion "C is p�–elementarily definable

with parameters (p�–e.d.p.) in D" is introduced for a class C of relational structures

and p 1, meaning that the universe of a structure in C, as well as its relations and their

complements are uniformly definable in D with a fixed set of p�–formulas. Using ideas

in [Ler83], it is shown that if C is p�–e.d.p. in D, then

(1) r+1�–Th(C) h.u. r+p�–Th(D) h.u.

This also holds if the language of C does not contain equality. We view the constant p
as a measure for the efficiency of the coding scheme. Then finding a small bound on
the level k where the theory of the degree structure becomes undecidable is also
important from the point of view of definability, since it makes it necessary to find an
efficient coding scheme.
The known proofs of undecidability for fragments of the theory of a degree structure D
have two components, one algebraic and the other recursion theoretic:

(A) Find a suitable class C of finite structures such that r+1�–Th(C) h.u. for

some small r
(R) Define C with parameters in D by an efficient coding scheme.

For two degree structures, namely the structure DT(Ø') of T�–degrees below Ø' and

the structure Rm of r.e. m�–degrees, it is known that the 3�–theory is undecidable [Ler

83] and [N ta]. For the r.e. btt and tt�–degrees, the best known bound is 4. In all cases,
C is a class of finite lattices, viewed as p.o.: for DT(Ø'), the class of all finite lattices

(r=2 by [Ler 83]), for Rm the class of finite distributive lattices (r=2 by [N ta]) and for

Rbtt and Rtt the class of finite partition lattices with reverse inclusion (r=3 by [N ta]).

The coding scheme is as simple as it can be: represent the finite lattice as an interval in

the degree structure. Thus c=1 and the r+1�–theory of the degree structure is

undecidable with the same value for r. For the component (R), in the case of the r.e.
degree structure one can rely on the constructions in the original undecidability proofs
([La72], [Ht,S89] and [N 92] for the r.e. m�–,tt�– and btt�–degrees, resp.). However, for
the dense degree structure Rwtt and RT, the stress must necessarily be more on the

component (R), since one cannot expect to define an appropriate class C as directly.

We show that the class of finite bipartite graphs, which has h.u. 2�– (and hence

3�–)theory is 2�–e.d.p. in Rwtt, which gives a bound of 4. The methodological

advantage of this class is that one can first define the left and right domains separately,

2

and then define the edge relation between them with additional parameters. (In fact the
undecidability results for fragments in [N ta] for the classes of lattices mentioned above
were obtained in the same way.) A bipartite graph is a structure for the language
L(Le,Ri,E) where Le,Ri are unary and E is a binary predicate symbol, which satisfies
the axioms

(x)[(Le x ¬Ri x)] and

(x)(y)[Exy (Le x Ri y)].
The predicates Le and Ri denote the left and the right domain of the graph. In our

applications, it will be the case that LeG={1,�…,n} and RiG={1',�…,m'} for some
copy {1',�…,m'} of the numbers m.
The coding scheme for defining finite bipartite graphs can be described in the context of

uppersemilattices (u.s.l.) with least element (P, , ,0). Given a finite bipartite graph
({1,�…,n},{1',�…,m'},E}, suppose we already know how to define some disjoint sets
A={a1,...,an} and B={b1,...,bm} corresponding to the left and right domain, and

suppose that 0<di,j ai,bj (the elements di,j represent pairs). Moreover, suppose that, if

di,j=sup{dr,s:<r,s> <i,j>} then

(2) inf(ai,bj,di,j)=0.

In this case we can code the edge relation E (and in fact arbitrary edge relations) by the

parameter cE=sup{di,j:Eij'} via a 1�–formula, since

Eij' (u cE)[u 0 u ai,bj].

To define sets A,B corresponding to the domains of the graph in Rwtt, we use an

algebraic notion from [A,N,S92]. For an element p of P write ncl(p) if p 0 and there

are no r,s P-{0} such that r s=p and r s=0. If ncl(ai) and ai aj=0 (i j), then by the

distributivity of the u.s.l. Rwtt, the complemented elements in [0,sup(A)] are exactly

the suprema of subsets of A. Then A is definable with parameter sA=sup(A) as the set

of minimal complemented elements in [0,sA]. If we proceed similarly for B and also

build degrees di,j such that 0<di,j ai,bj, then (2) holds automatically by the

distributivity of Rwtt, because inf(ai,bj,dr,s)=0 for <r,s> <i,j>. In [A,N,S92], to

ensure ncl(ai), the degrees ai are chosen as degrees which satisfy the stronger property

not to bound a minimal pair. In our case, ai bounds a minimal pair if m 2, since it is

the case that di,1,di,2 ai. So we need a more flexible strategy for constructing degrees

x satisfying ncl(x).

To express that x is a minimal complemented degree in [0,sA] needs a 2 2�–formula

in the language of p.o. However, for our result we need a 2�–definition of A in order

to apply (1) with p=2. Suppose that A corresponds in the same way as above to the left
domain of the "inequality graph" ({1,�…,n},{1',�…,n'},E'), where E'={<i,j'>:i j}.

Then, by distributivity, A can be defined by a 2�–formula as the set of complemented

degrees x in [0,sA] such that inf(a,y,cE')=0 for some complemented degree y in

3

[0,sB]. To make this compatible with the coding of the given finite bipartite graph, we

restrict the class of finite bipartite graphs defined: let F�–BiGraphs1 denote the class of

finite bipartite graphs (Le,Ri,E) such that |Le|=|Ri|. The fact that 2�–Th(F�–BiGraphs) is

h.u. is shown in Cor. 4.5 of [N ta] by coding converging computations in finite
bipartite graphs. The graphs used for coding can be expanded without effect on the
computations coded by adding new isolated points to the left and right domains. This

makes it possible to achieve |Le|=|Ri|. Hence 2�–Th(F�–BiGraphs1) is also h.u.

To extend the proof to the r.e. T�–degrees, we construct all the relevant degrees as
contiguous degrees, i.e. degrees which contain only one r.e. wtt�–degree. This makes it
possible to carry out the algebraic arguments as for Rwtt. Moreover it shows that the

undecidability of Th(RT) can be obtained by a coding which is compatible with

distributivity. Analyzing the coding scheme shows that in fact the 3�–theory of the two

degree structures in the language of p.o. augmented by ternary relation symbols for

"x y=z" and "x y=0" is undecidable.

2. The algebraic part

We now carry out the algebraic ideas introduced above in detail.

2.1 Theorem. Let P=(P, , ,0) be an uppersemilattice with least element 0.
Suppose that for each n 1, there exist elements ai,bj and di,j of P (1 i,j n) such

that

(i) 0<di,j ai,bj for each i,j, and if di,j=sup{di',j':<i',j'> <i,j>}, then

inf(ai,bj,di,j)=0.

(ii) the sets A={a1,...,an} and B={b1,...,bn} are definable from parameters

via a fixed 2�–formula in the language of p.o..

Then 4�–Th(P,) is undecidable.

Proof. We show that the class F�–BiGraphs1 is 2�–e.d.p. in (P,). Then, by the fact

that the 2�–theory and hence the 3�–theory of F�–BiGraphs1 is h.u. and by (ii) of the

Transfer Lemma 3.1 in [N ta], 4�–Th(P,) is undecidable. Suppose a graph (Le,Ri,E)

in F�–BiGraphs1 is given, w.l.o.g. Le={1,�…,n) and Ri={1',�…,n'). We let A

correspond to Le via the map i ai and let B correspond to Ri via j' bj. By (i), it then

suffices to give a 2�–definition with parameters of the relations on A×B corresponding

to E and E=Le×Ri�–E. Let

cE=sup{di,j:Eij'} and

cE=sup{di,j:Eij'}.

4

Then, by (ii),

(3) <i,j'> E (u cE)[u 0 u ai,bj].

This makes it possible to define the relation corresponding to E by a 2�–formula.

Similarly, proceed for the relation corresponding to E.

We now consider relative complements in u.s.l. Let

Compl(x,d) x 0 (y)[x y=0 x y=d].

Note that the binary predicate Compl can be expressed by a 2�–formula in the language

of p.o. (and by a 1�–formula in the language with additional ternary supremum and

infimum relations).

2.2 Lemma. Let P be a distributive u.s.l. with 0. Suppose b,c, y1,�…,ym,

a1,�…,an are elements of P, and let s=supiai.

(i) If b yi=0 for each i, then b supiyi=0. If inf(b,c,yi)=0 for each i,

then inf(b,c,supiyi)=0.

(ii) Suppose that ncl(ai) and ai aj=0 for i j. Then

 Compl(x,s) x=aF:=sup{ai:i F} for some nonempty F {1,�…,n}.

Proof. (i) By distributivity, 0 x supiyi ¬x y j=0 for some j. Then, if

0 x b,supiyi, 0 r b,yj for some j and r. The second part is proved similarly..

(ii). If x=aF for some F Ø, then, by (i), Compl(x,s) holds via aF. Now suppose that

x 0, x y=0 and x y=s. Then, by distributivity, for each i, ai=x1 y1 for some

x1 x,y1 y. Since ai is not the supremum of a minimal pair, x1=0 or y1=0. In the first

case, ai x y x=0, in the second case ai x. Let F={i:ai x}. Then aF x. But also

x aF, since x=supibi for some bi ai and bi=0 if i F. Thus F Ø and x=aF.

3. The 4�–theory of the p.o. of r.e. wtt�–degrees is undecidable

If C is an r.e. set, we write Ncl(C) if ncl(degwtt(C)) holds, i.e.

Ncl(C) (r.e. X,Y)[C X Y X recursive Y recursive

(nonrecursive S)[S wttX,Y]]

3.1 Main Lemma. Let n,m 1. Then there exist r.e. sets Ai,Bj and nonrecursive

r.e. sets Di,j wttAi,Bj. (1 i n,1 j m) such that Ncl(Ai) and Ncl(Bj) holds, and

for all distinct i,i' (1 i,i' n) and all distinct j,j' (1 j,j' m) Ai,Ai' as well as Bj,Bj'
form a T�–minimal pair.

3.2 Theorem. 4�–Th(Rwtt,) is undecidable.

Proof. Let x=degwtt(X) for each set X mentioned in the Lemma above. We show that

5

the wtt�–degrees ai,bi and di,j satisfy the hypotheses of Theorem 2.1. For (i), note that,

by distributivity, inf(ai,bj,di,j)=0 follows from the fact that inf(ai,b j,d i',j')=0

(<i',j'> <i,j>) and (i) of Lemma 2.2. For (ii), to show the definability of

A={a1,...,an} and B={b1,...,bn} via a fixed 2�–formula, we make again use of

the possibility to code bipartite graphs with left domain A and right domain B as in (3)
(as described in the introduction): The parameter

u=sup{di,j:i j}

codes the relation {<ai,bj>:i j}. Let sA=supiai and sB=supibi. We claim that

a A Compl(a,sA) (y)[Compl(y,sB) inf(a,y,u)=0].

Since inf(a,y,u)=0 is expressible by the 1�–formula (z)(w)[z a,y,u z w], this

gives a 2�–formula which defines A with the parameters sA,sB and u. By symmetry,

the same formula defines B with parameters sB,sA and u.

For the direction from left to right, if a=ai, let y=bi. For the other direction, suppose

that the right hand side holds. If a A, then by (ii) of Lemma 2.2 ai,aj a for some i j

and bk y for some k. But then k i or k j, so di,k or dj,k is below a,y and u.

Proof of the Main Lemma 3.1. We use a finitely branching tree T of strategies. Each
node on T is an R�–strategy for some requirement R. The tree T is defined inductively
as a set of strings of possible outcomes of a strategy. The outcomes are linearly ordered
with rightmost element <r>, and the ordering on T is given by

 <L .

As usual, during stage s inductively we define an approximation s to the true path.

At substage p<s of stage s, the R�–strategy , = s|p becomes accessible, performs

some action and determines its outcome <X>. We then let s(p)=<X>. If s or

s=0, s is called a �–stage. Since T is finitely branching, there exists a true path,

namely a path f through T such that, for each e, if =f|e,

(a.e.s)[s] and

(s)[s].

We build r.e. sets Ai,Bj (1 i n, 1 j m) and nonrecursive r.e. sets Di,j wttAi,Bj. The

requirements fall into three groups. To make Di,j nonrecursive, we satisfy

Pe
i,j: Di,j {e}

by the standard strategy. For Di,j wttAi,Bj, if a number x is enumerated into Di,j,

6

we enumerate numbers x into Ai and into Bj.

Fix a set C among the sets Ai and Bj. To ensure that Ncl(C) holds, we adapt

A. Lachlan's proof of the Non�–Diamond Theorem ([La 66]). A strategy of the type
used here relies on the hypothesis

(4) C= (X Y) X Y= (C),

where X,Y are given r.e. sets and , are T-functionals, and has the goal to build a
nonrecursive r.e. set S wtt�–below X and Y, or to show that X or Y are recursive.

Let L=<C, , ,X,Y>. This goal is accomplished collectively by a strategy QL,

substrategies QL,k and strategies QL,k,h which are substrategies of QL,k (k,h).

The candidates for S are sets EL and FL,k. The strategy QL builds a wtt�–reduction

of EL to X and Y. For each k, QL,k tries to show that E {k} or that X is recursive.

There is also a marginal case where QL,k acts only finitely often, in which case Y

must be recursive. If all these fail for some k, QL,k builds a wtt�–reduction of FL,k
to X,Y, and, for each h, QL,k,h succeeds in showing that FL,k {h} or that Y is

recursive. Thus the requirements in the second group are

QL: C= (X Y) X Y= (C) EL wttX,Y

QL,k: C= (X Y) X Y= (C) EL {k} X recursive Y recursive

FL,k wttX,Y

QL,k,l: C= (X Y) X Y= (C) EL={k} Fk {h} Y recursive

In the proof of the Non�–Diamond Theorem, L is fixed (where C is replaced by the
creative set K and a K-change is forced indirectly by using the recursion theorem).
In our adapted strategy, one works with a triple of numbers m,x,y such that

(X Y)(m)=0 and x,y> (m). The number x is a candidate for showing E {k},
and y is a candidate for showing Fk {h}. If X has changed below x and Y has

changed below y, then m is enumerated into C. Then X or Y must change below
min(x,y) again; in the first case y is enumerated into Fk, in the second, x into E. The

reductions of E to Y and of Fk to X are built by usual permitting, while E wttX and

Fk wttY are built by delayed permitting: for the moment call the reduction of E to

X, which we build, . It will be the case that the use of X(z) is z, so is a

bounded reduction. We can only enumerate z into E while X(z) is undefined. If
X(z)[s] is defined and X|z changes, we may declare X(z) to be undefined, but

we must redefine it at a later stage t to the value Et(z) and such a stage t must be

bounded by stage g(s) for a recursive function g. Then if X|z has settled down at s,

7

E(z)= X (z)[g(s)], so E wttX. In the following we will not name the

wtt�–functionals we build explicitly, but rather say that "E wttX(z) is declared to be
undefined" etc.
We discuss how the strategies are implemented in our tree construction. A

QL�–strategy guesses at (4) in the following way. Let

lengthL,1(s)=max{x:(y<x)[C(y)= (X Y)(y)[s]]} and

lengthL,2(s)=max{x:(y<x)[X Y(y)= (C)(y)[s]]}.

If t is the greatest ^< > stage <s, then gives outcome < > if both lengthL,1
and lengthL,2 have a bigger value than at t. Below ^< >, there are nodes

working on QL,k, which have the possible outcomes <E {k}>,<E={k}>,<X rec>

and <r>. Below the nodes ^<E={k}>, there are nodes working on QL,k,h,

which have the outcomes <Fk {h}>, <Y rec> and <r>.

QL

QL,k

QL,k,h

<Xrec> <r>
<E={k}>

<r>

<E {k}>

<Yrec> <r><Fk {h}>

< >

Fig. 1. A cooperating triple of Q�–strategies

We call nodes as above a cooperating triple of Q�–strategies. We drop the

subscript L. The Qk,h�–strategy works with a fixed small number m<length1(s),

and assumes that the computation (X Y)(m)=0 does not change unless m is

enumerated into C. At �–stages s, Qk,h appoints larger and larger numbers y. At

�–stages s, the Qk�–strategy checks whether, since the preceding �–stage t, there

was a Y|y change for some number y<length2(s) already appointed at t such that

{h}t(y)=0, in which case is activated by the Qk,h�–strategy. (Actually, is

activated by the highest priority such Qk,h'�–strategy for all h'.) It declares

Fk wttY(y) to be undefined and starts appointing larger and larger x at �–stages s.

We say that the Qk,h�–strategy is now run by node . Now, similarly, at

8

^< >�–stages s the Q�–strategy checks whether, since the last ^< >�–stage t,
there was an X|x change for some number x<length2(s) already appointed at t by the
Qk�–strategy such that {k}t(x)=0. In this case, the Q�–strategy is activated by Qk: Q

enumerates m into C and declares E wttX(x) to be undefined. We call this a
secondary C�–enumeration, since it was induced by C�–enumerations which allowed

Y|y and X|x to change. The strategy is now run by node . At the next

^< >�–stage t, (X Y)(m) is defined again, now with value 1, so there was a
change of X|min(x,y) or of Y|min(x,y). In the first case y is enumerated into Fk, in

the second case, x into E. Q also redefines E wttX(x) and Fk wttY(y) to the correct

values. Note that redefining a functional always is carried out by a fixed node in
order to make the stage when it is redefined recursively bounded. This is why we
need the activation procedures. The conditions x<length2(s) and y<length2(s) above
are needed to meet the minimal pair requirements.

The outcomes of the strategies , are determined as follows: if, at s, the strategy

enumerates y into Fk, it sends an instruction to the Qk�–strategy to give <E={k}>

as outcome at the next �–stage, and it sends an instruction to the Qk,h�–strategy to

give <Fk {h}> as outcome from the next �–stage on. If x is enumerated into E,

strategy sends an instruction to Qk to give <E {k}> from now on. If Qk has

found a new realized candidate x, i.e. an already appointed number
x<length2(s)such that {k}(x)=0, but does not receive a message from Q, it gives

<Xrec> as outcome. In the similar situation, Qk,h gives <Yrec> as outcome.

We call the QL,k,h�– and the Pe
i,j�–strategies primary strategies. A strategy is

initialized by setting its program to the initial state, declaring all its parameters
undefined, cancelling all instructions it may have received and redefining all values
of functionals the strategy may have declared undefined. For a QL,k,h�–strategy we

cancel a possible run on a node higher up. Candidates chosen by a primary strategy
must be bigger than the stage number sinit when it was initialized the last time. So

the enumeration of such a candidate cannot destroy any computation that already
existed at stage sinit.

We now discuss the strategies to make Ai,Aj minimal pairs for i j. For Bi,Bj, the

strategies are similar. We satisfy the requirements

Ne
Ai,Aj: Z={e}Ai={e}Aj Z recursive.

Let lengthe
Ai,Aj(s)=max{x:(y<x)[{e}Ai(y)={e}Aj(y)[s]]}

and suppose the node µ works on Ne
Ai,Aj. If at a µ�–stage s>0, lengthe

Ai,Aj(s) is

bigger than at the preceding µ^< >�–stage, then µ gives < > as outcome and

initializes all strategies >Lµ^< >.

The standard minimal pair strategy relies on the following. Let s<t be consecutive

µ^< > stages. Then, for k=i or k=j

9

(5) if x<lengthe
Ai,Aj(s), then the computation {e}Ak(x)[s] is not destroyed

at any stage t', s t'<t.

Then Z={e}Ai={e}Aj implies Z(y)={e}Ai(y)[s] for the first µ^< >�–stage s such

that lengthe
Ai,Aj(s)>y, since from one µ^< >�–stage s' to the next one side of

{e}Ai(y)={e}Aj(y)[s'] is preserved.
To make (5) true, we first ensure that at s, only one of the sets Ai,Aj is enumerated

into , say Ai. Then, by initialization at s, no primary Aj�–enumeration at a stage t',

s t'<t can violate (5). We will be able to show that the same holds for secondary

Aj�–enumerations which may be carried out by strategies QL, L=<Aj, , ,X,Y>.

The argument is that, since we hold X Ys(z)= (Aj)(z)[s] for each z<lengthL,2(s)

(by initialization at s), an activation of QL which might result in a secondary

enumeration of a number <s into Aj cannot occur at a stage t', s t'<t.

To make sure that only one set among A1,�…,An, say, is enumerated into at each

stage we proceed as follows. If at substage t of stage s a primary strategy wants to
enumerate a number z into a set S among Ai,Bj, Di,j (1 i n,1 j m), then instead it

enumerates <z, > into an auxiliary set S which was empty at the beginning of the
stage s. At the end of stage s, the strategy with the highest priority (i.e. the one with

minimal) which enumerated into S succeeds and initializes all the others. If is a

Pe
i,j�–strategy, this still ensures that an enumeration into Di,j is permitted by Ai,Bj.

Note that, by activation, may be left of s.
We now describe the construction formally. Order the requirements in a priority list
so that, for each L,k,h, QL precedes QL,k and QL,k precedes QL,k,h. By induction

on n, define the n-th level T[n] of the tree of strategies, and what it means for a

strategy to receive attention along T[n]. A string T[n] is an R�–strategy for

the highest priority requirement R which does not receive attention along .

Let T[0]={ }. A requirement R receives attention along a string T[n] if some

 is an R�–strategy or

(i) R is QL,k or QL,k,h and some , ^<r> , is a QL�–strategy or

(ii) R is QL,k,h and there is a QL,k�–strategy such that

^<E {k}> or ^<Xrec> or ^<r>

Suppose T[n] is an R�–strategy. The immediate successors of , from left to

right, are ^X, where X is a possible outcome of R. These possible outcomes are
<r> if R is Pe
< >,<r> if R is Ne or QL
<E {k}>,<E={k}>,<X rec>,<r> if R is QL,k

<Fk {h}>,<Y rec>,<r> if R is QL,k,h.

10

We describe the actions of an R�–strategy in form of PASCAL�–like programs.

Whenever is accessible, it carries out one step of its program, thereby changing
the values of its parameters and determining its outcome. The step to be carried out

is given by an instruction received from a node , or has been determined at the

last �–stage if there is no such instruction. If no outcome is specified, we assume

the default value <r>. We let sinit be the last stage where was initialized, and let s

be the current stage. A number x is unused for the strategy if x sinit and x is

not currently appointed by any other strategy which is not >L .

Construction.

Stage 0. Let 0= . Initialize all strategies.
Stage s, s>0. Carry out substage 0.

Substage p: Let = s|p. Carry out one step of the program of node . L e t

s(p)=outcome(). If p<s carry out substage p+1. Else carry out the terminating
substage.

Terminating substage. For each set S among Ai,Bj and Di,j do the following. Let be

the minimal node such that some <x, > has been enumerated into S at stage s. If is

defined, enumerate each corresponding x into S. Initialize all strategies > .

Program for a Pe
i,j�–strategy . Parameter: x

APPOINT Let x be an unused number

REALIZE IF {e}s(x)=0 BEGIN enumerate <x, > into Di,j, Ai and Bj; goto WIN

END
ELSE goto REALIZE

WIN goto WIN.

Program for a QL,k,h-strategy . Parameters: m,y

(y is the maximal candidate for Fk {h} such that {h}(y)=0).

START Let m be an unused number

WAIT IF m<lengthL,1(s) goto APPOINT (in this case (X Y)(m)=0 as m was
not enumerated so far) ELSE goto WAIT

APPOINT Appoint an unused number y'>use (X Y)(m)

REALIZE IF {h}(y')=0 y'<lengthL,2(s) for some y'>y which was appointed at a
stage s'>sinit BEGIN y:=y'; Outcome:=<Yrec> END;

Goto APPOINT

WIN Outcome:=<Fk {h}>; Goto WIN

11

Program for a QL,k-strategy . Parameters: ,m,y,x

(is the strategy currently run on node , m,y are the parameters of , and
x is the maximal candidate for E {k} such that {k}(x)=0)

Let t<s be the preceding �–stage.

APPOINT 1. (Update run). A strategy ' wants to activate if ' is a

QL,k,h'�–strategy, and at t, y(') was defined and Yt|y(') Ys|y('). Let 0

be the <-minimal such node. IF 0< OR (is undefined AND 0 is

defined)

BEGIN initialize (thereby redefining Fk wttY(y()); := 0;

m:=m(0); y:=y(0); Declare Fk wttY(y) to be undefined END;

2. (Appointing). Appoint an unused number x'> (m)

REALIZE 1. (Update run). As 1. in APPOINT. IF the value of changed goto
APPOINT;

2. IF{k}(x')=0 x'<lengthL,2(s) for some x'>x which was appointed at a
stage s'>sinit
BEGIN x:=x'; Outcome:=<Xrec>, Goto APPOINT END;
ELSE Goto REALIZE

FORWARD Outcome:=<E={k}>; Goto APPOINT (this state is only reached by
instruction)

WIN Outcome:=<E {k}>; Goto WIN

Program for a QL-strategy (L=<C, , ,X,Y>).

Parameters: oldlength1,oldlength2, , ,m,x,y

Let t<s the preceding ^< >�–stage.
START RUN 1. (Test if s is expansionary). IF lengthL,1(s) oldlength1 OR

lengthL,2(s) oldlength2 goto START RUN

ELSE BEGIN Outcome:=< >; oldlength1:=lengthL,1(s);

oldlength2:=lengthL,2(s) END

2. (Check) For each QL,k,h�–strategy ', | '| s, ^< > ', ' if is

defined, which is not in state WIN see if the computation

(X Y)(m(')) has changed at some stage s', t<s' s. If so, send the
instruction "Continue at WAIT " to node '. (Note that still m() C.)

3. (Start a new run) A QL,k-strategy wants to activate if at t, x()

was defined and Xt|x() Xs|x(). IF no such exists GOTO START

RUN ELSE BEGIN

Let be the strategy which wants to activate so that () is <-

minimal; := (), m:=m(),x:=x(),y:=y(); Enumerate m into C;
Declare E wttX(x) to be undefined END;

END RUN 1.,2. as in START RUN

12

3. (Terminate run) Redefine E wttX(x) and Fk wttY(y) to the correct

value;
IF Xt|x Xs|x BEGIN enumerate y into Fk; send the instruction

"Continue at FORWARD" to node and "Continue at WIN" to node
END
ELSE (Y|y has changed) BEGIN enumerate x into E; send the

instruction "Continue at WIN" to node END;
Goto START RUN

Program for an Ne
Ai,Aj or Ne

Bi,Bj-strategy µ. Parameter: oldlength.

Let t<s is the preceding µ^< >�–stage.

ACT IF lengthe(s)>oldlength BEGIN oldlength:=lengthe(s); outcome:=< >;

initialize all strategies >Lµ^< > END;

goto ACT

Verification.
Note that each primary strategy causes an enumeration of at most one number into

an associated set E. Since initialization of a strategy f is only caused by an

Ne�–strategy or, at a terminating substage, by a primary strategy , a strategy f is

initialized only finitely often.
Lemma 1. Di,j wttAi,Bj.and Di,j is nonrecursive.

Proof. Di,j wttAi,Bj is immediate by the program for the requirements Pe
i,j. To show

that Di,j {e}, let f be a Pe
i,j�–strategy. Let s0 be a stage such that is not initialized

after s0. Then, from the �–stage following s0 on the parameter x is defined. If

¬{e}(x)=0 then x is not enumerated into Di,j. If {e}t(x)=0 for a minimal �–stage t

where x is appointed, then x is enumerated at t.

Lemma 2. Fix L.

(i) If ^<Yrec> f for some QL,k,h�–strategy , then Y is recursive.

(ii)If ^<Xrec> f for some QL,k�–strategy , then X is recursive.

Proof. (i). Suppose that is a strategy of minimal length associated with L such

that ^<Yrec> f. Let belong to the cooperating triple of Q�–strategies , and

let s0 be a stage such that ^<Yrec> s for s s0 and

(6) if < is a primary strategy then it does not cause an enumeration into
any set at a stage s s0

(7) if ' is a QL,k,h'�–strategy such that '<L or '<r> , and if y(')[s0]

13

is defined, thenY|y[s0]=Y|y.

Note that for ' as in (7), y(') reaches a maximum value, so s0 exists. By (7) and

the minimality of , a run of the strategy on node has highest priority at all stages

s s0, and by (6) the strategy is not initialized at the terminating substage of s.

Then ^<Yrec> f implies that y()[s] is increasing for s s0 with limit , and we

can compute Y as follows. Given z, compute a �–stage s s0 such that y()[s]>z.

Then Y(z) has the final value: any Y|z+1�–change after s would lead to an activation

of the QL,k strategy . Since ^<E={k}> f, each such run of the strategy on

node eventually leads to an activation of the QL strategy , which will send an

instruction "Continue at WIN" to the strategy . This contradicts ^<Yrec> f.

(ii). First, if ^<Xrec> f then for some , there is eventually a permanent run of

the strategy on the node . For let s() be a stage such that ^<Xrec> s for

s s(). Now ^<Xrec> s only if a QL,k,h�–strategy is run on node . Since

^<E={k}> for such a , was accessible before s0. Hence, for s s(), after

finitely many initializations or changes to a run of a higher priority strategy,

stabilizes. We denote this strategy by ()

Let be the strategy of minimal length associated with L such that ^<Xrec> f.

Then () is< minimal among all ('), ' a strategy associated with L such that

'^<Xrec> f, as '^<E={k}> ('). Choose s0 s() such that (6) and (7) hold

(by <Lf) and, if '< () is a QL,k',h'�–strategy then ' is not run at stage s s0 on

any node ' such that '^<Xrec> f. Let be the QL�–strategy. Again a run of

the strategy on node or has highest priority at a stage s s0 and cannot be

initialized at the terminating substage of s. To compute X, given z, compute an

�–stage s s1 such that x()[s]>z. Then X(z) has the final value: any X|z+1�–change

after s would lead to an activation of the QL�–strategy at the next �–stage. By (6)

QL will succeed in enumerating a number m into C, and hence will send an

instruction to the node at the following �–stage. This causes t<L ^<Xrec> for

some t>s0, contradiction.

Lemma 3. For each L,k,h, the requirements QL, QL,k and QL,k,h are met.

Proof. Suppose that C= (X Y) X Y= (C). We drop the subscript L.

1. To show that Q is met, suppose that f for the Q�–strategy . Then ^< > f.

It is obvious that E wttY, since a number x is enumerated into E only if Y|x

changed since the last ^< >�–stage. For E wttX, we need to show that if the

14

wtt�–reduction E wttX(x) is declared to be undefined at stage s by some

Qk'�–strategy , it is redefined at a later stage which can be bounded effectively in s.

Let s1<s2 be the ^< >�–stages following s such that is in state START RUN at

stage s1. If the ()[s]�–strategy has been initialized by the end of stage s2, the

reduction is redefined. Otherwise, at s1 has the highest priority for activating .

So the reduction is redefined by the end of stage s2 through the QL�–strategy.

2. Suppose that f for the QL�–strategy . We go through the possible true

outcomes of . If ^<E {k}> f, then at some stage we must have diagonalized

against E={k}, so Qk is satisfied. Now suppose ^<E={k}> f. We show

Fk wttX,Y. As above, Fk wttX is immediate. For Fk wttY, suppose that

Fk wttY(y) has been declared undefined at a �–stage s, and let s' be the least

^<E={k}>�–stage >s. Then the strategy activated at some stage t, s<t<s'. If
t' s' is the least ^ < >�–stage >t, then at the end of stage t', either the

()[s]�–strategy has been initialized, or Fk wttY(y) has been redefined by the

Q�–strategy.

The case ^<Xrec> f was covered in Lemma 2. Finally assume that ^<r> f.

Note that if Y is nonrecursive, infinitely often there is a �–strategy QL,k,h which

wants to activate (since there are infinitely many h such that {h} is constant zero).

Since never gives outcome <Xrec> from some stage on, there must be a number

x' appointed by such that ¬{k}(x')=0. Such a number is not enumerated into E,
so E {k}.

3. Suppose that works on Q
k,h

, f. The case ^<Fk {h}> f is treated as the

case ^<E {k}> f above, and the case ^<Yrec> f was covered in Lemma 1.

Suppose ^<r> f. Since the strategy is initialized only finitely often, from some

stage on has a stable parameter m. Then, since C= (X Y), from some later stage

on the strategy is not send to WAIT . Since gives outcome <Yrec> only finitely

often, from some stage on there must be a number y' Fk appointed by such that

¬{h}(y')=0. Therefore Fk {h}.

Lemma 4. The requirements Ne
Ai,Aj are met.

Proof. Suppose Z={e}Ai={e}Aj and that µ works on Ne
Ai,Aj. Then µ^< > f.

Let s0 be a stage such that, for s s0, µ^< > s and no primary strategy <µ^< >

causes an enumeration at any stage s s0. We verify (5), referring to the discussion

there. Suppose that s<t are consecutive µ^< > stages, s s0. By the construction, at

most one set among Ai,Aj is enumerated into at any stage. Then, for (5), it suffices

to show that, if Aj is not enumerated into at stage s, then no secondary enumeration

of any number m<s into Aj takes place at a stage t', s<t'<t. Suppose for a

15

contradiction that is a cooperating triple of Q�–strategies concerned with Aj
and that a run of on node causes an enumeration of the number m<s into Aj at

the end of stage t'. By the choice of s0 and since the �–strategy is not initialized at

stage s, µ^< > . Moreover ^< > µ, since ^< > , µ , and t' is an

^< >�–stage but no µ^< > stage. Now ^< > µ implies that X Y cannot
change between s and t:

(8) if z<length2(s), then X Ys(z)=X Yt(z).

Else there can be no further ^< >�–stage after s, since Aj|s does not change at s to

correct (Aj)(z)[s], nor can it (by initialization through µ at s) change during the

µ^<r>�–stages following s.

Case 1. µ^< > Then the parameters of the strategy have the same values

x,y,m, at the end of any stage s', s s'<t', and x<length2(s). Since s,t' are

^< >�–stages and was activated at t', Xs|x Xt'|x, contrary to (8).

Case 2. ^<E={k}> µ. Then the parameters of the strategy have the same values
y,m at the end of any stage s', s s'<t', and again y<length2(s). The activation of

the run of on which is terminated at t' takes place at a stage s" s, since it cannot

be that Ys'|y Ys'+1|y for a stage s', s s' t' by (8). But at stage s, gives the

outcome <E={k}>, so actually s"<s, and by the end of stage s already has

terminated the run of the strategy run on from stage s" on, a contradiction.

4. The 4�–theory of the r.e. T�–degrees

In [Ld,Sa75], the transfer method to carry over results from Rwtt to RT, using

contiguous degrees, was introduced. We give another application of this method: we
ensure that all sets involved in the Main Lemma 3.1. have contiguous degree,

thereby giving an alternative proof that 4�–Th(RT,) is undecidable. Note that

contiguous degrees can be simultaneously viewed as r.e. wtt�– and T�–degrees, and
observe the following two facts:
(9) If yi (1 i k) and s are contiguous, then

s=supwtt{yi:1 i k} s=supT{yi:1 i k}.

(10) If yi (1 i k) are contiguous then

infwtt{yi:1 i k}=0 infT{yi:1 i k}=0.

 4.1 Main Lemma. There exist disjoint r.e. sets Ai, disjoint r.e. sets Bj and

16

sets Di,j wttAi,Bj satisfying the conclusions of the Main Lemma 3.1 such that in

addition, the sets AF=Ui FAi, BG=Uj GBj (Ø F,G {1,�…,n}) and

DE=U{Di,j: <i,j>E} (Ø E {1,�…,n}×{1,�…,m})

have contiguous T�–degrees.

4.2 Theorem (cf. [A,S93]). 4�–Th(RT,)is undecidable.

Proof. Let x=degT(X) for each set X mentioned in the Main Lemma 4.1. Note that

degwtt(AF)=supi Fdegwtt(Ai) by disjointness. We show that the contiguous

degrees ai,bi and di,j satisfy the hypotheses of Theorem 2.1. First, by (9), di,j is

the same in RT and Rwtt and, by (10), inf(ai,bj,di,j)=0, since this holds in Rwtt.

To show the definability of A={a1 ,...,an} and B={b1 ,...,bn} via a fixed

2�–formula, again let sA=supiai and sB=supibi. We only need to verify that

 Compl(x,sA) x=aF for some nonempty F {1,�…,n}.

also holds in RT; then we can argue as in the proof of Theorem 3.2. If x=aF, then

Compl(x,sA) holds via aF, since this is the case in Rwtt. Now suppose x 0,

x y=0 and x y=sA for x=degT(X) and y=degT(Y) Then the same is true for the

wtt�–degrees of X,Y. Hence X wttAF for some F Ø by (ii) of Lemma 2.2, whence

x=aF.

Proof of the Main Lemma 4.1. We first give a general procedure for building
contiguous degrees, which works in an environment with finitary primary strategies
as in the proof of the Main Lemma 3.1. To make the T�–degrees of a set C
contiguous, the requirements

ContC, , ,i: C= (Wi) Wi= (C) Wi wttC

are satisfied, where , are T�–functionals. If a computation (X)(y) is defined,

(y) denotes the use, i.e. 1+the maximal oracle question asked. Similarly, (y)[s]
(or s(y)) denotes the use of (X)(y)[s], if the latter is defined. We assume that

(y)[s] is nondecreasing in y and s. Let L=<C, , ,i> and define the (C)�–correct
length of agreement between C and (Wi) by

ClengthL(s)=max{x:(y<x)[C(y)= (Wi)(y)[s]

(z< (y)[s])[Wi(y)= (C)(y)[s]]]}.

A ContL�–strategy works at stages where ClengthL has increased, in which case it

gives outcome < > and initializes the strategies >L ^< >. Moreover, it defines a

stream (R. Downey) of numbers x0,s<x1,s<�…which are <ClengthL(s) and have the

17

property that if xi+1,s is defined then

(11) ((xi,s))[s]<xi+1,s.
The strategy relies on the following:

(12) a primary strategy , ^< > , only causes numbers xi,s to be
enumerated into C at stage s.

(13) for almost every ^< >�–stage t, if x is enumerated into C at t, then

Cr [x,r)=C [x,r) for the ^< >�–stage r following t.

Also suppose that a primary strategy , ^< > , only enumerates xi,s if i | |.

Then lims xn,s exists for each n. Now C wttWi, since it can be shown that

C(y)=Ct(y) for the first stage t such that, for some s<t ClengthL(s)>y, some xi,s y

is defined, and the oracle Wi,t has stabilized on [0, (y))[s]. To show Wi wttC,

given input y, compute If k and s s* such that y< s(xk,s) (by convention, we

assume s(z) z). Ask the oracle if xk',s C for some k' k If not, Wi(y) has the final

value already at s. If so, compute a minimal�– ^< >stage t>s such that xk',s Ct.

Then, by (13), C|r=Cr|r for the ^< >�–stage r following t. Since at stage r again

Wi(y)= (C)(y), Wi,r(y) has the final value.

We now give the program and the verification in detail. Since (12) must be met for

all contiguity strategies, each contiguity strategy refines the stream put out by ,

where is the string of maximal length such that = or is a contiguity strategy

and ^< > . The root just puts out an increasing sequence of unused numbers

xk.
Program for a ContL�–strategy . Parameter: oldClength, i (the maximal index of a

number appointed so far), numbers xk (-1 k i).
The strategy is initialized by setting i to �–1 and cancelling all xk,s. Formally we let

x-1,s=0. Let t<s be the preceding ^< >�–stage.
ACT IF ClengthL(s)>oldClength BEGIN

oldClength:=ClengthL(s); outcome:=< >;

initialize all strategies >L ^< >;

(Adjust i) IF Ct|xk,t+1 Cs|xk,t+1 for some minimal k, let i:=k�–1 (we

say that the xk' are cancelled for k' k);

(Appoint) IF there is a number x=xj,s such that

x sinit, ((xi,s))[s]<x and

(14) x the ^< >�–stage following the last stage when xi+1 was
cancelled, if there is such a stage (to meet (13))

BEGIN i:=i+1; appoint xi,s:=x END
goto ACT

18

Verification.

Suppose that ^< > is on the true path for the ContL�–strategy . Let s0 be a stage

such that ^< > s for all s s0 and no primary strategy < causes an enumeration

at s. Note that

(15) if s<s' are consecutive ^ < > stages, s0 s, x<ClengthL(s) and

Cs| s(x)=Cs+1| s(x) then Wi,s+1(x)=Wi,s'(x).

Otherwise, by initialization at s, a Wi(x) change at t', s<t' s' would cause ClengthL
to drop back permanently and ^< > would not be on the true path.
We first prove that xn=lims xn,s exists for each n. By induction suppose this holds

for . Choose a ^< >�–stage s1 s0 such that xm,s (m<n) have reached their limits

and Clength(s1)>xn�–1. Then ((xn�–1)) has reached a final value at s1 by (11) and

(15). By inductive hypothesis for , arbitrarily big numbers x=xj,t appear as

possible choices for xn,t for stages t s1. Thus xn,t is defined infinitely often. Now

by initialization at ^< >�–stages, xn,t can only be enumerated by primary strategies

, | |<i, ^< > . So after finitely many such enumerations, xn,t reaches its limit.

Note that, for s s0, ((xi,s))[s]<xi+1,s remains valid unless xi,s is cancelled. We

verify (13) for t s0. Suppose x=xi,s is enumerated into C at stage t. By initialization

at stage r, we only need to consider numbers enumerated into C at ^< >�–stages>r.
The next possible value for xi is r by (14). Since the next possible value for xj
(j<i) (if it is cancelled at a stage r) is also r, this shows (13).

Suppose that C= (Wi) and Wi= (C). We drop the superscript . To show

Wi wttC, given input y, compute a ^< >�–stage s s0 such that for some minimal

k, y< (xk,s,s).

Case 1. If Cs|xk,s+1=C|xk,s+1, then ((xk,s))[s] has reached a final value at

stage s by (11). Then Wi,s(y)=Wi(y).

Case 2. Else let k' k be minimal such that xk',s C. Compute a minimal stage t>s

such that xk',s Ct and let r be the ^< >�–stage following t. Then r(C)(y) is

defined. Since r(y)<r and C|r=Cr|r by minimality of k' and (12),

Wi,r(y)= r(C)(y) has the final value.

To show C wttWi, given input y, compute a ^< >�–stage s s0 such that some

xk,s y is defined. If not y=xk,s, then y C by (12) and the choice of s0. If y=xk,s
determine a ^< >�–stage t s such that Wi,t| s(y)=Wi| s(y). We claim that

19

Ct(y)=C(y). Since s(y) was computed effectively, this gives a wtt�–reduction of C

to Wi.

If Cs | y + 1 C t|y+1, then the claim follows from (12). Else actually

Cs|xn+1,s=Ct|xn+1,s by (12) and initialization at s, and so by (14) and since

((y))[s]<xk+1,s
Wi,s| s(y)=Wi,t| s(y)=Wi| s(y),

i.e. the computation (Wi)(y)[s] was already final. Since C(y)= (Wi)(y)[s], this

proves the claim.

We now apply this method to prove the Main Lemma 4.1, by modifying the
construction in the proof of the Main Lemma 3.1. Let A=UAi, B=UBj and

D=UDi,j . There are three types of contiguity requirements: for C=AF, C=BG and

C=DE. We call these A�–type, B�–type and D�–type contiguity requirements. The

primary strategies choose their candidates from the appropriate streams: if a number
is targeted for Ai, say, it is chosen from the stream of the contiguity requirement

A, where, for a string and X {A,B,D}, X is the string of maximal length

such that = or is an X�–type contiguity strategy and ^< > .
Although the A�–type requirements (say) are concerned with different sets AF, they

all refine each others stream. An X�–type contiguity strategy now refines the stream

of X (which plays the role of above) and works with X instead of C when i is
adjusted. Thus any change of X below xj +1 leads to the cancellation of xj .
However, it measures the length of agreement with respect to C.
The contiguity requirements (with the possible outcomes < > and <r>) are included
into the priority list of requirements R, and the tree of strategies is modified
accordingly. The programs for the primary strategies are modified as follows.

If is a QL,k,h-strategy, L=<Ai, , ,X,Y>:

START IF there is an unused number m=xk,s
A, k | | BEGIN appoint m;goto WAIT

 END (here it is essential that "unused for " means "not used by any

strategy which is not >L ", as the possible choices for m are now more

restricted)
ELSE goto START

�…(as before)

If L=<Bj, , ,X,Y>, appoint m=xk,s
B instead.

20

A Pe
i,j�–strategy has to appoint three parameters x and a,b x from streams of the

appropriate contiguity requirements D, and . The numbers a,b are needed
to ensure Di,j wttAi and Di,j wttBj.

APPOINT 1. Initialize all primary strategies '>L
2.IF there are unused numbers x,a,b such that a,b x and

 x=xk,s
D, a=xk',s

A, b=xk'',s
B for some k,k',k" | |

appoint x,a,b.

REALIZE IF {e}s(x)=0 BEGIN enumerate <x, > into Di,j; enumerate <a, > into Ai
and <b, > into Bj; goto WIN END

ELSE goto REALIZE

WIN goto WIN.

Now (13) holds for each set X among A,B,D and therefore also for the sets AF,BG
and DE. The verification for the requirements from the Main Lemma 3.1 can be

carried out mostly as before. We use the fact that the candidates in a stream reach a
limit to prove that the primary strategies finally appoint fixed candidates. The
verification for the contiguity requirements is as above, with the exception that in the

proof of Wi wttC we have to include one more case due to the fact that a number

xi,s may be enumerated , but not into C. Suppose for instance that C=AF.

Case 1. C|xk,s+1=Cs|xk,s+1..

Case 1a. A|xk,s+1=As|xk,s+1. Then x0,�…,xk have reached a limit, and we argue

as before in Case 1.

Case 1b. Else. Then, for some minimal k' k, there is a first ^< >�–stage p s such
that at p xk',s has been enumerated into A (but not into AF). By (13), this implies

Cp|p=C|p, so (C)(y)[s] already has the final value.

4.3. Open problems.

(i) Is 3�–Th(Rwtt) undecidable ?
(ii) Does every nontrivial initial segment [0,a] of Rwtt have an

undecidable theory ?

Our coding methods cannot be applied in every nontrivial initial segment, for if a is
the degree of an antimitotic set [A85], then each closed subinterval of [0,a] embeds
the 4�–element Boolean algebra preserving the least and the greatest element.

21

References.

[A83] K. Ambos-Spies. Contiguous r.e. degrees. Proc. of Logic Colloqi. Aachen,

LNM 1104 (1983), 1-38.

[A85] K. Ambos-Spies. Anti-mitotic recursively enumerable sets. Z. f. math.

Logik u. Grundlagen d. Math.31(1985), 461-477.

[A,N,S92] K. Ambos-Spies, A. Nies, R. Shore. The theory of the r.e. weak truth-

table degrees is undecidable.J. Symb. Logic, 57(1992), no 3, 864-874.

[A,S93] K. Ambos-Spies, R. Shore. Undecidability and 1-types in the r.e. degrees.

Ann. Pure Appl. Logic 24, 3-37.

[Ha,Sh82] L. Harrington, S.Shelah. The undecidability of the recursively enumerable

degrees (research announcement). Bull. Am. Math. Society 6(1982) no 1,

79-80.

[Ht,S90] C.A. Haught, R. Shore. Undecidability and initial segments of the (r.e.) tt-

degrees. J. Symb. Logic 55 (1990), 987-1006.

[La66] A. H. Lachlan, Lower bounds for pairs of recursively enumerable degrees,

Proc. London Math. Soc. 16 (1966) 537-569.

[La72] A.H. Lachlan. Recursively enumerable many-one degrees. Alg.Log.

(transl) 11 (1972), 186-202

[Ld,Sa75] R. Ladner, S. Sasso. The weak truth-table degrees of r.e. sets. Ann. Math

Logic 8 (1975) ,429-448.

[Ler83] M.Lerman. Degrees of Unsolvability. Springer 1983.

[N92] A. Nies. Definability and Undecidability in Recursion Theoretic

Semilattices. Ph.D. thesis, Universität Heidelberg, 1992.

[N ta] A. Nies. Undecidable Fragments of Elementary Theories. To appear in

Algebra Universalis.

e mail adresses:

lempp@math.wisc.edu

nies@schaefer.math.wisc.edu

22

