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Abstract. A set A ⊆ N is low for random if every random set already is
A-random. This preprint contains some proofs which have been superseded,

but still provide interesting methods which can be used elsewhere. 1. We

prove that each such set is ∆0
2, thereby answering to the negative a question

of Kucera and Terwijn [4]. 2. Subsequently we strengthen this by showing

that low for random sets are low for K. 3. Then we use martingales to obtain

yet a stronger result (the final one in [7]): if each (Martin-Löf-) random set is
computably random in A, then A is low for K.

1. Introduction

The most commonly accepted notion of algorithmic randomness is the one intro-
duced by Martin-Löf [5]. A Martin-Löf test is a uniformly r.e. sequence (Un) of
open sets in Cantor Space 2ω such that µ(Un) ≤ 2−n, where µ is the usual Lebesgue
measure on 2ω. A real X is Martin-Löf random if it passes each test in the sense
that X 6∈

⋂
n Un. Schnorr [9] proved that a real X is random in this sense if and

only if the algorithmic prefix complexity K of all its initial segments is large, namely
∀n K(X � n) ≥ n−O(1).
A lowness property of a real A says that, in some sense, A has low computational
power when used as an oracle. We require that such a property be downward closed
under ≤T . The usual lowness, A′ ≡T ∅′, is an example. The lowness property
Low(MLRand)) is itself based on relative randomness: A is low for random if each
random real X is already random relative to A, i.e. X passes all A-r.e. tests, which
means the class of A–random sets is as large as possible, namely it coincides with
the class of random sets. Intuitively, this means that A has low computational
power, because A is not able to recognize any more sets as nonrandom than a
recursive oracle.
1. Kucera and Terwijn [4] construct a nonrecursive low for random set which is r.e.
They ask whether there exists such a set outside ∆0

2. In our first result we answer
their question to the negative. Nies and Stephan gave a characterization of low for
random sets in order to prove that the set of indices of r.e. low for random sets is
Σ0

3. We use a variant of this characterization.
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2 ANDRÉ NIES

A result of Kucera [3] implies that each low for random A satisfies A′ ≤T A ⊕ ∅′.
Thus, by our result A is low (namely, A′ ≤T ∅′). This supports the intuition that
A is close to being recursive.
A further notion of being almost recursive is the notion of an K–trivial set: B is K–
trivial if, for some constant d, ∀nH(B � n) ≤ H(n)+d, that is, up to a constant, the
K–complexity of all the initial segments of B is as low as possible. The study of low
for random sets parallels the investigation of K–trivial sets (in fact, it is unknown
at present if the two concepts differ). Using a similar construction as in [4], one can
construct a nonrecursive r.e. K–trivial set. Zambella [10] proved that all K–trivials
are ∆0

2, by showing that the ∆0
2 tree Td = {y ∈ 2<ω : ∀z ⊆ yH(z) ≤ |z| + d} has

only finitely many (in fact, O(2d)) infinite paths (and clearly B is one of them). Our
basic approach is similar: based on the two parameters from our characterization
of low for random sets A, we define a Π0

2 tree which has only finitely many paths,
and A is one of them. However, the argument is more complex than in Zambella’s
proof, since the tree is defined dynamically.
2. We consider the reals which, when used as an oracle, do not decrease K.

Definition 1.1. A is low for K if ∀y K(y) ≤ KA(y) +O(1).
Let LK denote this class of reals.

In the second (stronger) theorem, we show that Low(MLRand) ⊆ LK.
3. A real Z is computably random if no computable betting strategy (martingale)
which is monotone, i.e. bets on the bit positions in their natural order, succeeds
on Z. If no strategy betting in any order succeeds, the real is called Kolmogorov-
Loveland random. Denoting the classes of such reals by CRand and KLRand, repec-
tively, the inclusions MLRand ⊆ KLRand ⊂ CRand hold. A persistent open question
is whether the first inclusion is strict as well [1, 6].
Given randomness notions C ⊆ D, let Low(C,D) denote the class of oracles A such
that C ⊆ DA. We write Low(C) for Low(C, C) We prove in fact that Low(MLRand,CRand) ⊆
LK, which implies both Low(MLRand)) ⊆ LK and Low(KLRand) ⊆ LK. However,
it is unknown if non-recursive reals in Low(KLRand) exist. If not, then at least for
some oracle X, the relativized classes KLRandX and MLRandX are distinct.
We introduce some notation, but also rely on [4] for further background and ter-
minology. A p.r. function M : 2<ω → 2<ω (also called machine) is prefix free if any
two strings in its domain are incompatible. A p.r. functional M : 2ω × 2<ω → 2<ω

(also called oracle machine) is prefix free if MX = λy.M(X, y) is a prefix free func-
tion for each set X ⊆ N. Let (Md)d>0 be an effective listing of all oracle prefix free
machines. We work with the universal machine V given by V X(0d−11w) = Md(w).
We define the prefix free Kolmogoroff complexity relative to X to be HX(y) =
min{|p| : V X(p) = y}.
We use the usual topological notions for Cantor space 2ω, and denote the Lebesgue
measure on 2ω by µ. For a string y, [y] denotes the clopen set {X : y ⊆ X} (so
that µ[y] = 2−|y|). A set U is Σ0

1 if U =
⋃

y∈W [y] for some r.e. set of strings W (in
particular, U is open).

2. The Kraft-Chaitin Theorem

In this Section we provide an important tool for our constructions.

Definition 2.1. An r.e. set W ⊆ N× 2<ω is a Kraft-Chaitin set (KC set) if∑
〈r,y〉∈W 2−r ≤ 1.
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Given W , for any E ⊆ W , let the weight of E be wt(E) =
∑
{2−r : 〈r, n〉 ∈ E}.

If X ⊆ N, the weight (in the context of W ) is
wt(X) =

∑
n∈X

∑
{2−r : 〈r, n〉 ∈ W}.

The pairs enumerated into such a set W are called axioms.

Theorem 2.2 (Chaitin, [2], Thm 3.2). From a Kraft-Chaitin set W one can effec-
tively obtain a prefix machine M such that

∀〈r, y〉 ∈ W∃w (|w| = r & M(w) = y)
We say that M is a prefix machine for W .

For later reference, we give a quick review of the proof (based on [2, Thm 3.2]).

Proof. Let 〈rn, yn〉n∈N be an effective enumeration of W . At stage n, we will
find a string wn of length rn, and we set M(wn) = yn. We let D−1 = {λ}. At each
stage n ≥ 0 we have a finite set Dn−1 of strings all of whose extensions are unused.
It is useful to think of a string x as the half-open subinterval I(x) ⊆ [0, 1) of real
numbers whose binary representation extends x. Let zn be the longest string in
Dn of length ≤ rn. Choose wn so that I(wn) is the leftmost subinterval of I(zn) of
length 2−rn , i.e., let wn = zn0rn−|zn|. To obtain Dn, first remove zn from Dn−1. If
wn 6= zn then also add the strings zn0i1, 0 ≤ i < rn − |zn|.
One checks inductively that for each n ≥ 0 the following hold:

(a) zn exists
(b) all the strings in Dn have different lengths
(c) {I(z) : z ∈ Dn} ∪ {I(wi) : i ≤ n} is a partition of [0, 1)

We prove (a) for n ≥ 0, assuming (b) and (c) for n− 1 (these are trivial statements
for n = 0). If zn fails to exist, then rn is less than the length of each string in
Dn−1, so that 2−rn >

∑
{2−|z| : z ∈ Dn−1} by (b) for n− 1. Then

∑n
i=0 2−ri > 1

since
∑
{2−|z| : z ∈ Dn−1}+

∑n−1
i=0 2−ri = 1 by (c) for n− 1. This contradicts the

assumption that W is a KC-set.
Next, (b) for n holds if wn = zn. Otherwise |zn| < |wn| but also |wn| is less than
the next shortest string in Dn−1, so (b) holds by the definition of Dn. Finally, (c)
is satisfied by the definition of Dn. �

3. Two preliminary results

We first provide an oracle version of the Kraft-Chaitin Theorem, and a characteri-
zation of the low for random sets.

Definition 3.1. Consider an r.e. set L ⊆ N × 2<ω × 2<ω. The elements 〈r, z, γ〉
of L (also called axioms) will be written in the form 〈r, z〉γ . L is called an oracle
Kraft–Chaitin (oracle KC) set if, for all ρ ∈ 2<ω,

(1) Lρ = {〈r, y〉 : ∃γ ⊆ ρ 〈r, z〉γ ∈ L}
is a Kraft–Chaitin set.

Proposition 3.2. From an index for an oracle KC set L, one can effectively obtain
an index d for an oracle prefix machine MX

d such that
∀X ⊆ N ∀〈r, z〉γ ∈ L [γ ⊆ X ⇒ ∃w(|w| = r & MX

d (w) = z)].

W. Merkle has pointed out that one can in fact obtain the result with b = 1.
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Proof. For each real X, LX = {〈r, y〉 : ∃γ ⊆ X 〈r, z〉γ ∈ L} is a KC set
relative to X. Applying the construction in the proof of Theorem 2.2, we obtain
an index d (which only depends on an r.e. index for L) such that MX

d is an oracle
prefix machine as desired. �

Theorem 3.3 (with F. Stephan, also see [8]). A is low for random ⇔
∃b ∈ N ∃R ⊆ 2ω ( R ∈ Σ0

1 & µR < 1 &

(2) ∀z ∈ 2<ω[KA(z) ≤ |z| − b ⇒ [z] ⊆ R]).

Proof. To gain insight we reformulate the condition in Proposition 3.3. For
each X ⊆ N and b ∈ N, let RX

b = {z : ∃w ⊆ z KX(w) ≤ |w| − b}, so that (RX
b )b∈N

is a universal Martin-Löf test relative to X (namely,
⋂

b RX
b = 2ω − RAND(X)).

Then A is low for random iff
⋂

b RA
b ⊆

⋂
n Sn for some (unrelativized) Martin Löf

test (Sn). By a method of Kucera (see e.g. [4, Lemma 1.5]), this is equivalent
to

⋂
b RA

b ⊆ R for some Σ0
1 set R ⊆ 2<ω such that µR < 1 (to obtain (Sn), one

“iterates” R). The condition in Proposition 3.3 states that already for some b, RA
b

is contained in such a set R. The direction from right to left follows.
To prove the converse direction, suppose A ∈ Low(MLRand)), and fix a Σ0

1 set
R0 ⊂ 2ω of measure less that 1 containing all the nonrandom sets (say R0 is the
first component of a universal Martin Löf test). We claim that, for some string x
such that [x] 6⊂ R0 and some m ∈ N,

(3) ∀y ⊇ x (KA(y) ≤ |y| −m ⇒ [y] ⊆ R0).

Suppose otherwise. Define a sequence of strings (ym) as follows: let y0 be the empty
string, and let ym+1 be some proper extension of ym such that KA(y) ≤ |y|−m but
[ym+1] 6⊆ R0. Then Y =

⋃
m ym is not A–random, but Y is random since Y 6∈ R0.

Now fix x,m such that (3) holds, and let R = {z : xz ∈ R0}. Then R 6= 2ω. Since
the Π0

1 set Rc is contained in the random sets and no random set can be in a Π0
1

set of measure 0, µR < 1.
Since KA(xz) ≤ KA(x)+KA(z)+O(1), letting b = KA(x)+m+O(1), we obtain,
for each y,

KA(z) ≤ |z| − b ⇒ KA(xz) ≤ |xz| −m ⇒ [xz] ⊆ R0 ⇒ [z] ⊆ R.

�

4. A first restriction: Any low for random set is ∆0
2

Theorem 4.1. Any low for random set is ∆0
2.

Proof. Suppose A is low for random. We will define a Π0
2 subtree T of 2<ω which

has only finitely many paths (a path is a maximal linearly ordered subset), A being
one of them. Relativizing a standard argument for Π0

1 trees to ∅′, we conclude
A ≤T ∅′: fix a string σ such that A is the only path extending σ. We use that the
set of strings not on T is r.e. in ∅′. For an input p ≥ lg(σ), use the oracle ∅′ to
compute s such that only one string of length p extending σ has not appeared in
the complement of T , and output that string.
Fix b, U as in Proposition 3.3. We will define an effective sequence of finite trees
(Ts)s∈N such that



LOW FOR RANDOM SETS: THE STORY 5

(4) T = {σ : ∃∞t σ ∈ Tt}.

T clearly is Π0
2. Along with (Ts) we will enumerate an OKC set L. The following

is not essential, but reduces the complexity of the construction below. By the
Recursion Theorem, we can assume that an r.e. index for L is given. Then, in
fact, we can assume that an index d for a machine Md corresponding to L is given,
because, for any r.e. set B ⊆ N × 2<ω × 2<ω, we can effectively obtain an index
for an OKC set B̃ such that B̃ = B in case B already is an OKC set. Let Md

be the machine effectively obtained from B̃ via Proposition 3.2. Our construction
effectively produces an OKC set L from d. Thus, if B = L, then B is an OKC set
and Md is a machine for L.
Let c = b + d. We define Tt and Lt by recursion on t. We will enumerate finitely
many axioms 〈r, y〉σ, r = |y| − c, into L at stages t.
Let T0 contain only the empty string and let L0 = ∅. Suppose t > 0 and Ts and
Ls have been determined for s < t. We define Tt by a subrecursion on the length
of strings. We begin by putting the empty string into Tt. Suppose currently the
string γ, |γ| < t, is a leaf of Tt. For i = 0, 1, let si < t be the greatest s such that
γ î ∈ Ts or si = 0 if there is no such stage. For i = 0 or i = 1, if

∀y[〈|y| − c, y〉γ î ∈ Lsi
⇒ [y] ⊆ Ut]],

then put γ î into Tt.
It remains to define Lt by enumerating finitely many axioms at stage t. We first
show that, no matter how we do this, as long as L =

⋃
t Lt is an OKC set (and

B = L), A will be a path of T .

Lemma 4.2. Suppose L is an OKC set. Then each set A satisfying (2) is a path of
T .

Proof. If 〈|y| − c, y〉σ ∈ L then, for each set X extending σ, MX
d (w) = y for some

w of length |y| − c. Hence V X(0d−11w) = y and HX(y) ≤ |y| − b (recall that
c = b + d).
Suppose A satisfies (2). We show by induction on p that A � p is on T for each p.
We can suppose that p > 0. By inductive hypothesis, there are infinitely many s
such that A � p − 1 ∈ Ts. Suppose for a contradiction that t is greatest such that
σ = A � p ∈ Tt. Then, by the above remarks (for σ = A|p and X = A), there is
v > t such that [y] ⊆ Uv for each of the finitely many y such that 〈|y| − c, y〉σ ∈ Lt.
Then at a stage s ≥ v such that A � p− 1 ∈ Ts, we define Ts to contain σ, contrary
to the choice of t. ♦

We now describe how to enumerate L in a way that T has few incompatible strings.
For each σ, if g =

∑
{2−r : 〈r, y〉σ enters L at s}, then we say we put measure g on

σ at s. We view this as a cost, as it conflicts with our goal to make K an OKC set.
Let k = 2c+3. We view k–element subsets of 2<ω as strategies whose goal it is to
increase µ(U) (U belongs to the opponent). Let α, β denote such strategies, and
let αi denote the i-th element of α in lexicographical order. If α ⊆ Tt, we say α is
available at t. Slightly simplifying, when α acts at s, it puts axioms 〈|yi| − c, yi〉αi

into L for each i < k, where the yi’s are distinct strings of the same lenght r such
that [yi]∩Us = ∅. Suppose α is available again at a stage t > s. Our cost at s was
to put measure 2−r+c on each αi, while the opponent now enumerated each [yi]



6 ANDRÉ NIES

into U , so that he needed to increase µ(U) by k2−r. Since k = 2c+3, he puts the
eightfold amount into U than we put on each αi. If some α is available infinitely
often, this leads to a contradiction.
Instead of the single strings yi we actually use pairwise disjoint clopen sets Ci

which are disjoint from Us and sets previously reserved by other strategies, and
have measure 2−cpα, where pα is a fixed small quantity. Thus our strategy α puts
measure pα on each αi when acting, and the opponent puts 8pα into U . Since
µ(U) < 2, we can only put 1/4 in total on each path that way. Thus any α which is
even available 2l−2 times (where pα was chosen to be 2−l) leads to a contradiction.
Then, by definition of T , there are no k incomparable strings on T .
In the construction below, we have to ensure that clopen sets Ci as specified can be
chosen, and we need to limit the negative effects of strategies which do not reappear
on the tree after they act. Let nα ∈ N − {0} be a code number assigned to α in
some effective way.
Definition of Lt

We assume Ts (s ≤ t) and Ls (s < t) have been defined. At stage t, for any
α which is available, i.e., a subset of Tt, do the following in order of nα. Pick
clopen sets C0, . . . , Ck−1 which are pairwise disjoint, disjoint from Ut and from sets
previously reserved by other strategies, and have measure 2−cpα (the precise value
of pα is defined below). For each i < k and each string y ∈ Ci which is minimal
under inclusion of strings, enumerate an axiom 〈|y| − c, y〉αi into L. Note that this
puts measure pα on each αi. We say α acts via C0, . . . , Ck−1. This completes the
definition.
If α acts at t via C0, . . . , Ck−1 and is not available at any later stage, then this
action has the following negative effects:

(a) It jeopardizes (1) for each i and each ρ extending αi, by wasting measure
on αi

(b) It keeps all strings y, [y] ⊆ Ci for some i, permanently away from assign-
ment to other strategies.

We will define pα (in advance) so small that these effects can be tolerated. To limit
(a), we want to ensure that the total measure put on each σ by all such strategies
together is at most 2−|σ|−2. Thus we require that

pα ≤ 2−q(α)−22−nα ,

where q(α) is the maximum length of a string in α.
Next, by hypothesis on U , fix a rational q > 0 such that µU < 1− q. To limit (b),
we want that the total measure of the strings kept away is less that q/2. Thus we
require that

k2−cpα ≤ 2−nαq/2,

Let pα be the greatest number of the form 2−l satisfying those two conditions.
We notice some features of the construction and verify that L is an OKC set. By
the conditions on the numbers pα and since µU c > q, at any stage we have a clopen
set of measure ≥ q/2 at our disposal. Since k2−cpα ≤ q/2 by the second condition,
this gives enough space to choose new Ci’s for a strategy α which wants to act.
(Note, however, that we may not be able to choose singleton Ci’s.)
Let 〈rj , yj〉

σj

j∈N be the effective list of axioms in L produced by the construction
(putting the finitely many enumerated at each stage in some order). For each
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string ρ, let Sρ =
∑
{2−rj : σj ⊆ ρ & 〈rj , yj〉σj is enumerated by a strategy α

which is available again at a later stage}. We claim that

Sρ < 1/4.

For when α acts at s via C0, . . . , Ck−1 , it puts measure pα on σj . When α is
available at a later stage t, then Ci ⊆ Ut for each i. Since the Ci were chosen
pairwise disjoint and disjoint from Us and sets chosen by other strategies, the
measure of U increases by at least k2−cpα = 8pα due to any action of an α which
becomes available again. Since µU < 2, we conclude that Sρ < 1/4.
To see that L is an OKC set, fix ρ. We need to show that, for each ρ,

∑
〈r,y〉∈Lρ 2−r ≤

1, where Lρ is defined in (1). This sum equals Sρ +
∑
{2−rj : σj ⊆ ρ & 〈rj , yj〉σj is

enumerated by a strategy α which is not available again at a later stage}. By the
definition of the numbers pα, the second sum is at most 1/4. Note that the argu-
ments above work regardless whether or not the set L we construct equals the given
r.e. set. Thus we always produce some OKC set, as required for our application of
the Recursion Theorem.
We now verify that T has no k–element subset α of incomparable strings, assuming
that a correct index for L was given. For a contradiction, suppose there is such an
α. Then α is always available again at some stage after acting. Let ρ be any string
in α. Each time α acts, it causes an increase of Sρ by pα = 2−l. Thus if it acts
more than 2l−2 times, we contradict Sρ < 1/4.

5. A stronger restriction: low for K

Theorem 5.1. Any low for random real is low for K, in a uniform way.

Proof. Suppose A is low for random. The proof will be uniform: a constant
for the strong K–triviality of A is obtained effectively in b, R, q, where b, R are
as in (2) and q > 0 is a rational such that µR ≤ 1 − q. We define an effective
sequence (Ts)s∈N of finite subtrees of 2<ω (viewed as characteristic functions) such
that the limit tree T given by T (γ) = limsTs(γ) exists. The real A is a path of T ,
and each path of T is K-trivial, via a constant which can be determined effectively
from b, R and q. To ensure this, we enumerate a KC set W such that, for some
constant c determined below, if γ ∈ T and Kγ(y) = p, then 〈p + c, y〉 ∈ W (so that
Kγ(y) ≤ p+O(1) by the Kraft-Chaitin Theorem). Of course, the condition “γ ∈ T
and Kγ(y) = p” is only ∆0

2, so we need to work with approximations. At stage t,
if γ ∈ Tt, Kγ

t (y) = p and some further conditions hold, then we plan to enumerate
〈p + c, y〉 into W . While defining (Ts) we enumerate an auxiliary oracle KC set
L, which ensures that we do not make too many errors in this enumeration of W
(putting axioms for strings γ 6∈ T ), so that W is indeed a KC set. Our enumeration
of L at stage t exploits (2) in a way which makes it harder for a string γ ∈ Tt to
reappear on Ts at a later stage s.
Preliminaries and the general framework. We may assume that an index d for
the oracle prefix machine Md corresponding to L is given (d can even be obtained
effectively in the parameters b, q and a Σ0

1–index for R). The reason is that, for any
index of an r.e. set Q ⊆ N × 2<ω × 2<ω, we can effectively obtain an index for an
oracle KC set Q̃ such that Q̃ = Q in case Q already is an oracle KC set. Let d be
an index for the oracle prefix machine effectively obtained from Q̃ via Proposition
3.2. Our construction will effectively produce an oracle KC set L from d (for any
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d ∈ N). By the Recursion Theorem with parameters, we can assume that Q = L.
Thus Q is an oracle KC set, and Md is a machine for L.
Let c ∈ N be least such that c ≥ b + d and 2−c ≤ q/2. We define Tt and Lt by
recursion on t. For strings γ ∈ Tt we will enumerate finitely many axioms 〈r, z〉γ ,
r = |z|−c, into L at stages t. Such an enumeration will cause z ∈ Rs in case γ ∈ Ts

at a later stage s.
Let T0 contain only the empty string and let L0 = ∅. Suppose t > 0 and Ts and
Ls have been determined for s < t. We define Tt by a subrecursion on the length
of strings. We begin by putting the empty string into Tt. Suppose currently the
string γ, |γ| < t, is a leaf of Tt. For i = 0, 1, let si < t be the greatest s such that
γ î ∈ Ts or si = 0 if there is no such stage. For i = 0 or i = 1, if

∀z[〈|z| − c, z〉γ î ∈ Lsi ⇒ [z] ⊆ Rt]],

then put γ î into Tt.
It remains to define Lt, by enumerating finitely many axioms at stage t. We first
show that, no matter how we do this, as long as L =

⋃
t Lt is an oracle KC set

(and Q = L), A will be a path of T . Sometimes in variants the limit tree may fail
to exists, but we can as well work with the Π0

2-tree T = {γ : ∃∞t γ ∈ Tt}.

Lemma 5.2. Suppose L is an oracle KC set and Md is an oracle machine for L in
the sense of 3.2. Then each real A satisfying (2) is a path of T .

Proof. If 〈|z| − c, z〉γ ∈ L then, since Md is a machine for L, for each set X
extending γ, MX

d (w) = z for some w of length |z| − c. Hence UX(0d−11w) = z and
KX(z) ≤ |z| − b (recall that c = b + d).
Suppose A satisfies (2). We show by induction on m that A � m is on T for each m.
We may suppose that m > 0. By inductive hypothesis, there are infinitely many s
such that A � m− 1 ∈ Ts. Suppose for a contradiction that t is greatest such that
γ = A � m ∈ Tt. Then, by the above remarks (for γ = A � m and X = A), there is
v > t such that [z] ⊆ Rv for each of the finitely many z such that 〈|z| − c, z〉γ ∈ Lt.
Then at a stage s ≥ v such that A � m− 1 ∈ Ts, we put γ into Ts, contrary to the
choice of t. �

For each γ, if g =
∑
{2−r : 〈r, z〉γ enters L at s}, then we say we put measure g on

γ at s. We view this as a cost, as it conflicts with our goal to make L an oracle KC
set, which requires that, for each ρ, the total measure put on substrings of ρ be at
most 1.
Some more intuition. Recall that if γ ∈ Tt and Kγ

t (y) = p, then we want to
enumerate 〈p + c, y〉 into W . A strategy α is a triple 〈σ, y, γ〉, where σ, y, γ ∈ 2<ω,
|y| < |γ| and |σ| ≤ |y| + 2 log |y| + c∗ (σ will be a Uγ-description of y). We start
α at a stage t which is least such that γ ∈ Tt & Uγ

t (σ) = y, and γ is the shortest
among such strings at t.
Let p = |σ|. Simplifying, the idea is to choose a clopen set C = C(α), µC = 2−(p+c),
which is disjoint from R and the sets chosen by other strategies. The strategy α
puts an axiom 〈|z| − c, z〉γ into L for each string z ∈ C of minimal length. If at
a stage s > t, once again γ ∈ Ts, then C ⊆ Rs. At this stage, we put 〈p + c, y〉
into W . Using that µR ≤ 1 and that the sets belonging to different strategies are
disjoint, we want to argue that W is a KC set. Moreover, L is an oracle KC set,
since the measure put on any substring γ of a string ρ is a sum of quantities 2−|σ|,
where Uγ(σ) = y for some y. Then each set Lρ in (1) is a KC-set.
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The problem is to make the sets C chosen by strategies at different stages disjoint.
Suppose β 6= α is a strategy which chose its set C(β) at a stage before stage t. If
β, or rather, its last component, has reappeared on the tree, then C(β) ⊆ Rt, so
there is no problem since α chooses its set disjoint from R. However, if β has not
reappeared (and it possibly never will), then β keeps away its set from assignment
to other strategies. The solution is to build up the set C(α) in small pieces Dα,
whose measure is a fixed fraction of 2−(p+c). Recall α = 〈σ, y, γ〉 and p = |σ|. If
α always reappears after assigning such a set, then eventually C(α) reaches the
required measure 2−(p+c), in which case we are allowed to enumerate the axiom
〈p + c, y〉 into W . Otherwise, α only keeps away one single set Dα, whose measure
is so small that the union (over all strategies) of sets kept away is at most q/2.
Thus there is always a clopen set of measure ≥ 1 − µR − q/2 ≥ q/2 available for
other strategies.
For a strategy α = 〈σ, y, γ〉, let nα ≥ |σ| be a natural number assigned to α in some
effective one-one way.
Inductive definition of Lt and of the sets Ct(α).
Let L0 = ∅ and C0(α) = ∅ for each strategy α. Suppose t > 0, and Ts (s ≤ t) and
Ls (s < t) have been defined.
1. For each γ ∈ Tt, if α = 〈σ, y, γ〉 is a strategy, V γ

t (σ) = y, V γ
t−1(σ) is undefined

and, for σ, y, the string γ is the shortest such string, then start the strategy 〈σ, y, γ〉.
2. For each strategy α = 〈σ, y, γ〉 which is now running, if γ ∈ Tt, then do the
following. If µCt−1(α) = 2−(|σ|+c), then let α end. For the remaining such strategies
α, pick pairwise disjoint clopen sets Dα such that µDα = 2−(nα+c), and

Dα ∩Rt = ∅ & ∀β 6= α [Dα ∩ Ct−1(β) = ∅]

(we will verify that this is possible). Put Dα into C(α) and, for each string z ∈ Dα

which is minimal under inclusion of strings, enumerate an axiom 〈|z|− c, z〉γ into L
(this puts measure 2−nα on γ). We say α acts via Dα. This completes the definition
of Lt.
Verification. Note that, by definition of Tt, for each α = 〈σ, y, γ〉, if γ ∈ Tt, then
Ct−1(α) ⊆ Rt. Thus for each strategy β, µ(Ct−1(β) − Rt) ≤ 2−(nβ+c). Then the
union S of all such sets, which represents the strings outside R being kept away for
assignment for other strategies, has measure at most q/2 (recall that 2−c ≤ q/2).
Thus we always have a clopen set of measure at least q/2 at our disposal at a stage
t, which suffices for the strategies α which want to choose sets Dα at stage t.
Let C(α) =

⋃
t Ct(α). Clearly α 6= β implies C(α) ∩ C(β) = ∅.

To see that L is an oracle KC set, fix ρ. We need to show that, for each ρ,∑
〈r,z〉∈Lρ 2−r ≤ 1, where Lρ is defined in (1). For each γ ⊆ ρ, a strategy

α = 〈σ, y, γ〉 puts measure at most 2−|σ| on γ, since the maximum measure C(α)
can reach is 2−(|σ|+c). Then, the total put on all substrings of ρ is bounded by
µ(dom(Uρ)) ≤ 1. (Note that we did not assume Md is an oracle machine for L, as
required. Such an assumption is only needed in the proof of Fact 5.2.)
Defining a KC set W which shows that each path of T is K-trivial. We first verify
that limsTs(γ) exists. There are only finitely many strategies α = 〈σ, y, γ〉. Each
time such a strategy acts and then γ reappears on the tree, we increased µC(α) by
at least 2−(nα+c). So eventually the strategy ends, and the limit exists.
Define W as follows. For each α = 〈σ, y, γ〉, if α ends at t, then put 〈|σ|+ c, y〉 into
W . To verify that W is a KC set, we note that



10 ANDRÉ NIES∑
t

∑
{2−(|σ|+c) : 〈|σ|+ c, y〉 is put into W via 〈σ, y, γ〉 at stage t} ≤ µR.

For, when α ends at t then µCt−1(α) = 2−(|σ|+c) and Ct−1(α) ⊆ R. Since the sets
C(α) are pairwise disjoint, the required inequality holds.
Let Me be a prefix machine for W according to the Kraft-Chaitin Theorem 2.2. We
claim that, for each path X of T and each string y, K(y) ≤ KX(y)+c+e. For choose
a shortest UX -description σ of y, and choose γ ⊆ X shortest such that |γ| > y and
Uγ(σ) = y. Then at some stage t, we start the strategy 〈σ, y, γ〉. Since γ ∈ T , the
strategy ends and we put 〈|σ|+ c, y〉 into W , causing K(y) ≤ KX(y) + c + e.
We obtained the constant c+ e effectively from the parameters b, R and q, since we
used the Recursion Theorem with parameters in the proof. �

6. The final result: each Low(MLRand,CRand) real is low for K

Recall that, if C ⊆ D are randomness notions, then Low(C,D) denotes the class of
oracles A such that C ⊆ DA. We review the definition of CRand, but see [1] for more
details, and also for a definition of Kolmogorov-Loveland randomness. A martingale
is a function M : {0, 1}∗ 7→ R+

0 such that, for all strings x, M(x0)+M(x1) = 2M(x).
M succeeds on a real Z if lim supn M(Z � n) = ∞. We write S(M) for this success
set. Z is computably random (CRand) if no computable martingale M succeeds on
Z. By a result of Schnorr [9], we can restrict ourselves to Q-valued martingales.

Theorem 6.1. Each Low(MLRand,CRand) real is low for K.

If C ⊆ C̃ ⊆ D̃ ⊆ D are randomness notions, then Low(C̃, D̃) ⊆ Low(C,D). So the
following are immediate consequences of the theorem.

Corollary 6.2. Each Low(MLRand) real is low for K.

Corollary 6.3. Each Low(KLRand) real is low for K.

Proof. To prove Theorem 6.1, we apply the usual topological notions for
Cantor space 2ω. For a set S of strings, [S] denotes the open set {X : ∃y ∈ S y ≺
X}, which is identified with the set of strings extending a string in S. For a string
y, we write [y] instead of [{y}] (so that µ[y] = 2−|y|). An open set R ⊆ 2ω is Σ0

1 if
R = [W ] for some r.e. set of strings W . Given a string v, we let

µv(X) = 2−|v|µ(X ∩ [v]).

A martingale operator is a Turing functional L such that, for each oracle X, LX is a
total martingale. Let R be any r.e. open set such that µR < 1 and Non-MLRand ⊆ R
(for instance, let R = [{z : K(z) ≤ |z| − 1}]. We will define a martingale operator
L. If A ∈ Low(MLRand,CRand) then S(LA) ⊆ Non-MLRand, and we can apply the
following to N = LA.

Lemma 6.4. Let N be any martingale such that S(N) ⊆ Non-MLRand.
Then there are v ∈ 2<ω and d ∈ N such that v 6∈ R and

(5) ∀x � v[ N(x) ≥ 2d ⇒ x ∈ R].

Proof. Suppose the Lemma fails. Define a sequence of strings (vm) as follows:
let v0 be the empty string, and let vm+1 be some proper extension y of vm such
that N(y) ≥ 2m but y 6∈ R. Then N succeeds on Z =

⋃
n vn but Z 6∈ R. �
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Note that v 6∈ R implies that µv(R) < 1 (otherwise let X 6∈ R be a real extending
v, then X is a random real in a Π0

1 class of measure 0, which is impossible). In the
following we fix an enumeration (Rs)s∈N of R (viewed as a set of strings) such that
Rs contains only strings up to length s and is closed under extension within those
strings.
We will independently, but uniformly in m, build martingale operators Lm for each
m ≥ 1 which have value 2−m on any input of length ≤ m. Then L =

∑
m≥1 Lm

is a martingale operator (L is Q-valued since the contributions of Lm, m > |w|,
add up to 2−|w|). We define L in order to ensure that for each A, if N = LA and
S(N) ⊆ Non-MLRand, then A is low for K. Fix an effective listing (δm)m≥1 of all
triples δm = 〈v, d, u〉, where v is a string, and d, u ∈ N. Given δm, we let q = 2−u.
If δm represents witnesses v, d in Lemma 6.4 and 0 < q < 1 − µv(R), the we can
define a KC set W based on Lm showing A is low for K. So only Lm matters in
the end. However, we need to consider all δm together, since we do not know the
witnesses in advance.
Fix m. We define an effective sequence (Tm,s)s∈N of finite subtrees of 2<ω (viewed
as characteristic functions). The limit tree Tm given by Tm(γ) = limsTm,s(γ)
exists, and if δm is a witness, the real A is a path of Tm. Roughly speaking, γ is
on Tm,s if the condition (5) looks correct at stage s for N = Lγ

m (the martingale
operator where only γ is used as an oracle). Each path of Tm is low for K, since we
enumerate a KC set W such that, for some constant c determined below, if γ ∈ Tm

and Kγ(y) = r, then 〈r+c, y〉 ∈ W (so that Kγ(y) ≤ r+O(1) by the Kraft-Chaitin
Theorem).
Given δm = 〈v, d, u〉, the value of c is m + d + u + 3. A procedure α is a triple
〈σ, y, γ〉, where σ, y, γ ∈ 2<ω, |y| < |γ| and |σ| ≤ |y| + 2 log |y| + c∗. We start α
at a stage s which is least such that γ ∈ Ts & Uγ

s (σ) = y, and γ is the shortest
among such strings at s. Now α wants to put 〈r + c, y〉 into W , where r = |σ|.
But it first needs to cause a clopen set C ⊆ [v] of measure µv(C) = 2−(r+c) into
R. Simplifyingly, α chooses such a clopen set C̃ = C̃(α) of that measure, which is
disjoint from Rs and the sets chosen by other procedures, and causes (in a way to
be specified) LX

m(z) ≥ 2d for each X � γ and each string z ∈ C̃ of minimal length.
If at a stage t > s, once again γ ∈ Tm,t, then C̃ ⊆ Rt, and α now has permission
to put 〈r + c, y〉 into W . If the sets belonging to different procedures are disjoint,
then W is a KC set.
To guarantee disjointness, suppose β 6= α is a procedure which chose its set C̃(β)
at a stage before stage s. If (β)2, the third component of β, has reappeared on
the tree, then C̃(β) ⊆ Rs, so there is no problem since α chooses its set disjoint
from R. However, if (β)2 has not reappeared (and it possibly never will), then β
keeps away its set from assignment to other procedures. The solution is to build
up the set C̃(α) in small pieces D̃, whose measure is a fixed fraction of 2−(r+c).
If α always reappears after assigning such a set, then eventually C̃(α) reaches the
required measure 2−(r+c), in which case α is ‘ allowed to enumerate the axiom
〈r + c, y〉 into W . Otherwise, α only keeps away one single set D̃, whose measure
is so small that the union (over all procedures) of sets kept away is at most q/4.
In the formal construction, Et denotes the union of sets of strings appointed by
procedures by stage t. Then the measure of Et −Rt is at most q/4 at any stage.
We discuss how α = 〈σ, y, γ〉 ensures LX

m(z) ≥ 2d for a string z, and each X � γ.
The procedure α “owns” the amount 2−(r+m) of the initial capital 2−m of LX

m,
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for any X. So the total capital owned by all procedures is 2−mΩX < 2−m, for
each oracle X. Unless α decides otherwise, its capital is kept constant along both
sucessors of a string. The procedure chooses its strings z of the form y01+r+m+d,
and “withdraws” its capital at y, increasing LX

m(y0) by ε for oracles X � γ. To
maintain the martingale property, it also has to decrease LX

m(y1) by ε. Now it
doubles the capital along z and reaches an increase of 2d at z.
Let Ct(α) denote the set of strings y′ used by α up to stage t. We must ensure
y 6∈ Cs−1(α) so that α’s capital is still available at y. Such a choice is possible
for sufficiently many y, since for all t, µvC̃t(α) ≤ 2−(r+c), so that µvCt(α) ≤
2−(r+c)21+r+d+m = q/4. We have to choose the extension z outside [Es−1], where
Es−1 is the set of strings previously appointed by other procedures β, but there
is no conflict with such a β as far as the capital is concerned: if γ′ = (β)2 is
incomparable with γ then γ and γ′ can only be extended by different oracles X.
Otherwise α and β own different parts of the initial capital of LX

m.
We are now ready for the formal definition of the martingale operator Lm. For a
procedure α = 〈σ, y, γ〉, let nα > max(|σ|+ m + d + 1, |γ|, |v|) be a natural number
assigned to α in some effective one-one way. Each procedure α defines an auxiliary
function Fα : 2<ω 7→ Q. The set C̃(α) discussed above coincides with the set of
minimal strings in {w : Fα(w) ≥ 2d}. For each oracle X, let

(6) LX
m(w) = 1 +

∑
{Fα(w) : (α)2 � X}.

Given α = 〈σ, y, γ〉, let r = |σ|. We ensure
(F1) Fα(w) = 0 if |w| ≤ |γ|,
(F2) Fα(w) ≥ −2−(r+m), and
(F3) ∀w Fα(w0) + Fα(w1) = 2Fα(w).

Based on those properties, we check that LX
m is a martingale operator. Firstly, LX

m

is total for each X, and the use of LX
m(w) is |w|, since by (F1) only the procedures

α such that |(α)2| < |w| contribute to the sum in (6). Next, for p = |w|,

LX
m(w0) + LX

m(w1) = 2 +
∑

{Fα(w0) + Fα(w1) : (α)2 � X � p + 1}

= 2(1 +
∑

{Fα(w) : (α)2 � X � p + 1}

= 2LX
m(w)

(for the last equality we used (F1)). Finally, LX
m(w) ≥ 0, since Fα(w) ≥ −2−(r+m),

and each α occuring in the sum (6) is based on a computation Uγ(σ) = y where
γ � X. So, for each w, LX

m(w) ≥ 2−m(1− ΩX) ≥ 0.
We run a construction for each m. Let δm = 〈v, d, u〉, q = 2−u. The construction
works at stages which are powers of 2; letters s, t denote such stages. At stage s we
define Tm,s and extend the functions Fα(w) to all w such that s ≤ |w| < 2s. For
each w such that s ≤ |w| < 2s and each string η (which may be shorter that w),
by the end of stage s we may calculate

Lm(η, w) = 1 +
∑
{Fα(w) : (α)2 � η}.

Stage 1. Let Tm,1 contain only the empty string and let Fα(w) = 0 for each α and
each w, |w| ≤ 1. Let E1 = ∅.
Stage s > 1. Suppose Tm,t has been determined for t < s, and the functions Fα(w)
have been defined for all w, |w| < s. Let
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Tm,s = {γ : ∀w � v[(|w| < s & Lm(γ, w) ≥ 2d) ⇒ w ∈ Rs]}.

(1.) If µv(Rs) > 1− q goto (4.) (If δm is a witness this case does not occur.)
(2.) For each α = 〈σ, y, γ〉, nα < s, if Uγ

s (σ) = y, Uγ
s/2(σ) is undefined and, for σ, y,

the string γ is the shortest such string, then start the procedure α.
(3.) Carry out the following for each procedure α = 〈σ, y, γ〉 in the order of nα < s.
Let r = |σ|.

(3a.) If α is has been started and γ ∈ Tm,s, first check if the goal has been
reached, namely µvC̃s/2(α) = 2−(|σ|+c). In that case we put 〈|σ|+c, y〉 into
W , and we say that α ends. Otherwise we say that α acts, and we choose
a set D = Dα ⊆ [v] of strings of length s such that µvD = 2−(nα+u+2)

and

[D] ∩ [Rs ∪ Es/2 ∪G ∪ Cs/2(α)] = ∅,
where G =

⋃
{Dβ : β has acted at stage s so far}. (We will verify that

D exists.) Let D̃ = {y0m+d+r+1 : y ∈ D}, put D into Cs(α), and put
D̃ into C̃s(α) and Es. Note that |x| < 2s for all strings in D̃, since
m + d + r + 1 < nα < s.

(3b.) For each y ∈ D, let Fα(y) = 0, Fα(y1) = −ε and Fα(y0) = ε, where
ε = 2−(r+m). Now double the capital along y0r+d+m+1: for each x, |x| ≤
r + m, let Fα(y0x) = ε2l if x = 0l, and Fα(y0x) = 0 otherwise. (This
causes Lm(γ, w) ≥ 2d for each w ∈ D̃.)

Go on to the next α.
(4.) For each string w, s ≤ |w| < 2s such that Fα(w) is still undefined, let Fα(w) =
Fα(w′), where w′ � w is longest such that Fα(w′) is defined. End of Stage s.
Verification. We go through a series of Claims. Let α = 〈σ, y, γ〉.
Claim 1. The properties (F1)-(F3) are satisfied. (F1) holds because when we
assign a non-zero value to Fα(w) at stage s, then |w| ≥ s > nα > |γ|. (F2) and
(F3) are satisfied since each y chosen in (3b.) goes into C(α). So by choice of D in
(3a.), no future definition of Fα on extensions of y is made except for by (4.)
Claim 2. α is able to choose Dα in (3a.) Firstly, by definition of Tm,s, for
each β = 〈σ′, y′, γ′〉, if γ′ ∈ Tt, then C̃t/2(β) ⊆ Rt. Thus for each procedure β,
µv(C̃t(β)−Rt) ≤ 2−(nβ+u+2) as C̃t(β)−Rt consists of a single set D̃β . Then, letting
t = s/2, µv(Es/2−Rs) ≤ 2−(u+2) = q/4. Secondly, each set Dβ chosen during stage
s satisfies µv(Dβ) ≤ 2−(nβ+u+2), hence µvG never exceeds q/4. Thirdly, for each s,
µvC̃s(α) ≤ 2−(r+c), and hence µvCs(α) ≤ 2r+d+m+12−(r+c) = q/4.
Since the test in (1.) failed, inside [v] a measure of q/4 is available outside [Rs ∪
Es/2 ∪G ∪ Cs−1] for choosing Dα.
Claim 3. Each procedure α acts finitely often. Each time α acts at s and s′ > s is
least such that γ ∈ Tm,s′ , we have increased µ(C̃(α)) by a fixed amount 2−(nα+c+r).
So eventually α ends.
Claim 4. For each string η, there is a stage sη such that no procedure α, (α)2 � η,
acts at any stage ≥ sη. Moreover, for each w, |w| ≥ sη, Lm(η, w) = Lm(η, w′) for
some w′ � w of length < sη. This follows because there are only finitely many
procedures α such that (α)2 � η. By (3.) there is a stage sη by which those
procedures have stopped acting, and further definitions Fα(w) are only made in
(4.)
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Claim 5. Tm(η) = limsTm,s(η) exists. Suppose s ≥ sη is least such that η ∈ Tm,s.
We show η ∈ Tm,s for each t ≥ s. Suppose |w| ≤ t and Lm(η, t) ≥ 2d. By (4.),
m(η, w) = Lm(η, w′) for some w′ � w of length < sη. Then w′ ∈ Rs since η ∈ Tm,s,
and hence w ∈ Rt.
In the following we assume δm is a witness for Lemma 6.4 where N = LA.
Claim 6. A is on Tm. Given l, let η = A � l. Suppose |w′| < sη and Lm(w′, η) ≥ 2d.
Then LA(w′) ≥ 2d, since LA(w′) ≥ LA

m(w′) ≥ Lm(w, η). By (5), w′ ∈ R. Let s be
a stage so that all such w′ are in Rs. Then by Claim 4, η ∈ Tm,t for all t ≥ s.
Claim 7. Each path of Tm is low for K. We first verify that W is a KC set. Note
that∑

s

∑
{2−(|σ|+c) : 〈|σ|+ c, y〉 is put into W by 〈σ, y, γ〉 at stage s} ≤ µvR.

For, when α ends at s then µC̃s/2(α) = 2−(|σ|+c) and C̃t/2(α) ⊆ R. The sets [C̃(α)]
are pairwise disjoint by the choice of D in (3a.). Hence the required inequality
holds.
Let Me be a prefix machine for W according to Theorem 2.2. We claim that, for
each path X of Tm and each string y, K(y) ≤ KX(y)+ c+ e. For choose a shortest
UX -description σ of y, and choose γ ⊆ X shortest such that |γ| > y and Uγ(σ) = y.
Since γ ∈ Tm, at some stage t, we start the procedure 〈σ, y, γ〉, and the procedure
ends. At this stage we put 〈|σ|+ c, y〉 into W , causing K(y) ≤ KX(y) + c + e. �
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