SUPERHIGHNESS

BJØRN KJOS-HANSSEN AND ANDRÉ NIES

ABSTRACT. We prove that superhigh sets can be jump traceable, answering a question of Cole and Simpson. On the other hand, we show that such sets cannot be weakly 2-random. We also study the class superhigh^{\diamond}, and show that it contains some, but not all, of the noncomputable K-trivial sets.

1. INTRODUCTION

An important non-computable set of integers in computability theory is \emptyset' , the halting problem for Turing machines. Over the last half century many interesting results have been obtained about ways in which a problem can be almost as hard as \emptyset' . The *superhigh* sets are the sets A such that

$$A' \geq_{tt} \emptyset'',$$

i.e., the halting problem relative to A computes \emptyset'' using a truth-table reduction. The name comes from comparison with the *high* sets, where instead arbitrary Turing reductions are allowed $(A' \ge_T \emptyset'')$. Superhighness for computably enumerable (c.e.) sets was introduced by Mohrherr [M]. She proved that the superhigh c.e. degrees sit properly between the high and Turing complete $(A \ge_T \emptyset')$ ones.

Most questions one can ask on superhighness are currently open. For instance, Martin [M] (1966) famously proved that a degree is high iff it can compute a function dominating all computable functions, but it is not known whether superhighness can be characterized in terms of domination. Cooper [C] showed that there is a high minimal Turing degree, but we do not know whether a superhigh set can be of minimal Turing degree. We hope the present paper lays the groundwork for a future understanding of these problems.

We prove that a superhigh set can be jump traceable. Let superhigh^{\diamond} be the class of c.e. sets Turing below all Martin-Löf random (ML-random) superhigh sets (see [N, Section 8.5]). We show that this class contains a promptly simple set, and is a proper subclass of the c.e. *K*-trivial sets. This class was recently shown to coincide with the strongly jump traceable c.e. sets, improving our result [A].

Definition 1.1. Let $\{\Phi_n^X\}_{n\in\mathbb{N}}$ denote a standard list of all functions partial computable in X, and let W_n^X denote the domain of Φ_n^X . We write $J^X(n)$ for $\Phi_n^X(n)$, and $J^{\sigma}(n)$ for $\Phi_n^{\sigma}(n)$ where σ is a string. Thus $X' = \{e: J^B(e) \downarrow\}$ represents the halting problem relative to X.

Kjos-Hanssen is partially supported under NSF grant DMS-0652669. Nies is supported under Marsden fund UOA-08-187.

X is jump-traceable by Y (written $X \leq_{JT} Y$) if there exist computable functions f(n) and g(n) such that for all n, if $J^X(n)$ is defined $(J^X(n) \downarrow)$ then $J^X(n) \in W^Y_{f(n)}$ and for all n, $W^Y_{f(n)}$ is finite of cardinality $\leq g(n)$.

The relation \leq_{JT} is transitive and indeed a weak reducibility [N, 8.4.14]. Further information on weak reducibilities, and jump traceability, may be found in the recent book by Nies [N], especially in Sections 5.6 and 8.6, and 8.4, respectively.

Definition 1.2. A is JT-hard if \emptyset' is jump traceable by A. Let Shigh = $\{Y : Y' \ge_{tt} \emptyset''\}$ be the class of superhigh sets.

Theorem 1.3. Consider the following five properties of a set A.

- (1) A is Turing complete;
- (2) A is almost everywhere dominating;
- (3) A is JT-hard;
- (4) A is superhigh;
- (5) A is high.

We have $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$, all implications being strict.

Proof. Implications: $(1) \Rightarrow (2)$: Dobrinen and Simpson [DS]. $(2) \Rightarrow (3)$: Simpson [S] Lemma 8.4. $(3) \Rightarrow (4)$: Simpson [S] Lemma 8.6. $(4) \Rightarrow (5)$: Trivial, since each truth-table reduction is a Turing reduction.

Non-implications: $(2) \not\Rightarrow (1)$ was proved by Cholak, Greenberg, and Miller [CGM]. $(3) \not\Rightarrow (2)$: By Cole and Simpson [CS], (3) coincides with (4) on the Δ_2^0 sets. But there is a superhigh degree that does not satisfy (2): one can use Jockusch-Shore Jump Inversion for a super-low but not K-trivial set, which exists by the closure of the K-trivials under join and the existence of a pair of super-low degrees joining to \emptyset' . $(4) \not\Rightarrow (3)$: We prove in Theorem 2.1 below that there is a jump traceable superhigh degree. By transitivity of \leq_{JT} and the observation that $\emptyset' \not\leq_{JT} \emptyset$, no jump traceable degree is JT-hard. $(5) \not\Rightarrow (4)$: Binns, Kjos-Hanssen, Lerman, and Solomon [BKHLS] proved this using a syntactic analysis combined with a result of Schwartz [S].

Historically, the easiest separation (1)(5) is a corollary of Friedberg's Jump Inversion Theorem [F] from 1957. The separation (1)(4) follows similarly from Mohrherr's Jump Inversion Theorem for the tt-degrees [M] (1984), and the separation (4)(5) is essentially due to Schwartz [S] (1982). The classes (2) and (3) were introduced more recently, by Dobrinen and Simpson [DS] (2004) and Simpson [S] (2007).

Notion (3), JT-hardness, may not appear to be very natural. However, Cole and Simpson [CS] gave an embedding of the hyperarithmetic hierarchy $\{0^{(\alpha)}\}_{\alpha < \omega_1^{CK}}$ into the lattice of Π_1^0 classes under Muchnik reducibility making use of the notion of *bounded limit recursive* (BLR) functions. We will see that JT-hardness coincides with BLR-hardness.

Notation. We write

$$\forall n f(n) = \lim_{s}^{\operatorname{comp}} f(n, s)$$

if for all $n, f(n) = \lim_{s} \widetilde{f}(n, s)$, and moreover there is a computable function $g: \omega \to \omega$ such that for all $n, \{s \mid \widetilde{f}(n, s) \neq \widetilde{f}(n, s+1)\}$ has cardinality less than g(n).

2. Superhighness and jump traceability

In this section we show that superhighness is compatible with the lowness property of being jump traceable, and deduce an answer to a question of Cole and Simpson.

Theorem 2.1. There is a superhigh jump-traceable set.

Proof. Mohrherr [M] proves a jump inversion theorem in the tt-degrees: For each set A, if $\emptyset' \leq_{tt} A$, then there exists a set B such that $B' \equiv_{tt} A$. To produce B, Mohrherr uses the same construction as in the proof of Friedberg's Jump Inversion Theorem for the Turing degrees. Namely, B is constructed by finite extensions $B[s] \leq B[s+1] \leq \cdots$ Here B[s] is a finite binary string and $\sigma \leq \tau$ denotes that σ is an initial substring of τ . At stages of the form s = 2e (even stages), one searches for an extension B[s+1] of B[s] such that $J^{B[s+1]}(e) \downarrow$. If none is found one lets B[s+1] = B[s]. At stages of the form s = 2e + 1 (odd stages) one appends the bit A(e), i.e. one lets $B[s+1] = B[s]^{\frown} \langle A(e) \rangle$. Thus two types of oracle questions are asked alternately for varying numbers e:

Does a string σ ≿ B[s] exist so that J^σ(e) ↓, i.e. B ≿ σ implies e ∈ B'? (If so, let B[s + 1] be the first such string that is found.)
 Is A(e) = 1?

This allows for a jump trace V_e of size at most 4^e . First, V_0 consists of at most one value, namely the first value $J^{\sigma}(e)$ found for any σ extending the empty string. Next, V_1 consists of the first value for $\Phi_1^{\tau}(1)$ found for any τ extending $\langle 0 \rangle$, $\langle 1 \rangle$, $\sigma^{\frown} \langle 0 \rangle$, $\sigma^{\frown} \langle 1 \rangle$, respectively, in the cases: $0 \notin A$, and $0 \notin B'$; $0 \in A$ and $0 \notin B'$; $0 \notin A$ and $0 \in B'$; and $0 \in A$ and $0 \in B'$. Generally, for each e there are four possibilities: either e is in A or not, and either the extension σ of B[s] is found or not. V_e consists of all the possible values of $J^B(e)$ depending on the answers to these questions.

Hence B is jump traceable, no matter what oracle A is used. Thus, letting $A = \emptyset''$ results in a superhigh jump-traceable set B.

Question 2.2. Is there a superhigh set of minimal Turing degree?

This question is sharp in terms of the notions (1)-(5) of Theorem 1.3: minimal Turing degrees can be high (Cooper [C]) but not JT-hard (Barmpalias [B]).

Cole and Simpson [CS] introduced the following notion. Let A be a Turing oracle. A function $f: \omega \to \omega$ is boundedly limit computable by A if there exist an A-computable function $\tilde{f}: \omega \times \omega \to \omega$ such that $\lim_{s}^{\text{comp}} \tilde{f}(n,s) = f(n)$.

We write

 $\mathsf{BLR}(A) = \{ f \in \omega^{\omega} \, | \, f \text{ is boundedly limit computable by } A \}.$

We say that $X \leq_{BLR} Y$ if $\mathsf{BLR}(X) \subseteq \mathsf{BLR}(Y)$. In particular, A is BLR -hard if $\mathsf{BLR}(\emptyset') \subseteq \mathsf{BLR}(A)$.

It is easy to see that \leq_{BLR} implies \leq_{JT} (Lemma 6.8 of Cole and Simpson [CS]). The following partial converse is implicit in some recent papers as pointed out to the authors by Simpson.

Theorem 2.3. Suppose that $A \leq_{JT} B$ where A is a c.e. set and B is any set. Then $BLR(A) \subseteq BLR(B)$.

Proof. Since $A \leq_{JT} B$, by Remark 8.7 of Simpson [S], the function h given by

$$h(e) = J^A(e) + 1$$
 if $J^A(e) \downarrow$, $h(e) = 0$ otherwise,

is B'-computable, with computably bounded use of B' and unbounded use of B. This implies that h is BLR(B). Let ψ^A be any function partial computable in A. Let g be defined by

$$g(n) = \psi^A(n) + 1$$
 if $\psi^A(n) \downarrow$, $g(n) = 0$ otherwise.

Letting f be a computable function with $\psi^A(n) \simeq J(f(n))$ for all n, we can use the *B*-computable approximation to h with a computably bounded number of changes to get such an approximation to g. So g is $\mathsf{BLR}(B)$. By Lemma 2.5 of Cole and Simpson [CS], it follows that $\mathsf{BLR}(A) \subseteq \mathsf{BLR}(B)$. \Box

Corollary 2.4. For c.e. sets A, B we have $A \leq_{JT} B \leftrightarrow A \leq_{BLR} B$.

Corollary 2.5. JT-hardness coincides with BLR-hardness: for all B, $\emptyset' \leq_{JT} B \leftrightarrow \emptyset' \leq_{BLR} B.$

By Corollary 2.5 and Theorem $1.3((3) \Rightarrow (4))$, BLR-hardness implies superhighness. Cole and Simpson asked [CS, Remark 6.21] whether conversely superhighness implies BLR-hardness. Our negative answer is immediate from Corollary 2.5 and Theorem $1.3((4) \neq (3))$.

3. Superhighness, randomness, and K-triviality

We study the class Shigh^\diamond of c.e. sets that are Turing below all ML-random superhigh sets. First we show that this class contains a promptly simple set.

For background on diagonally non-computable functions and sets of PA degree see [N, Ch 4]. Let λ denote the usual fair-coin Lebesgue measure on $2^{\mathbb{N}}$; a null class is a set $S \subseteq 2^{\mathbb{N}}$ with $\lambda(S) = 0$.

Fact 3.1 (Jockusch and Soare [JS]). The sets of PA degree form a null class.

Proof. Otherwise by the zero-one law the class is conull. So by the Lebesgue Density Theorem there is a Turing functional Φ such that $\Phi^X(w) \in \{0, 1\}$ if defined, and

 $\{Z: \Phi^Z \text{ is total and diagonally non-computable }\}$

has measure at least 3/4.

Let the partial computable function f be defined by: f(n) is the value $i \in \{0, 1\}$ such that for the smallest possible stage s, we observe by stage s that $\Phi^Z(n) = i$ for a set of Zs of measure strictly more than 1/4. For each n, such an i and stage s must exist. Indeed, if for some n and both $i \in \{0, 1\}$ there is no such s, then $\Phi^Z(n)$ is defined for a set of Zs of measure at most $\frac{1}{4} + \frac{1}{4} = \frac{1}{2} \not\geq \frac{3}{4}$, which is a contradiction. Moreover, we cannot have f(n) = J(n) for any n, because this would imply that there is a set of Zs of measure strictly more than 1/4 for which Φ^Z is not a total d.n.c. function. Thus f is a computable d.n.c. function, which is a contradiction.

Theorem 3.2 (Simpson). The class Shigh of superhigh sets is contained in a Σ_3^0 null class.

Proof. A function f is called diagonally non-computable (d.n.c.) relative to \emptyset' if $\forall x \neg f(x) = J^{\emptyset'}(x)$. Let P be the $\Pi_1^0(\emptyset')$ class of $\{0, 1\}$ -valued functions that are d.n.c. relative to \emptyset' . By Fact 3.1 relative to \emptyset' , the class $\{Z : \exists f \leq_T Z \oplus \emptyset' [f \in P]\}$ is null. Then, since GL_1 is conull, the class

$$\mathcal{K} = \{ Z \colon \exists f \leq_{\mathrm{tt}} Z' \, [f \in P] \}$$

is also null. This class clearly contains Shigh. To show that \mathcal{K} is Σ_3^0 , fix a Π_2^0 relation $R \subseteq \mathbb{N}^3$ such that a string σ is extended by a member of P iff $\forall u \exists v R(\sigma, u, v)$. Let $(\Psi_e)_{e \in \mathbb{N}}$ be an effective listing of truth-table reduction procedures. It suffices to show that $\{Z : \Psi_e(Z') \in P\}$ is a Π_2^0 class. To this end, note that

$$\Psi_e(Z') \in P \leftrightarrow \forall x \,\forall t \,\forall u \,\exists s > t \exists v \, R(\Psi_e^{Z'} \upharpoonright_x [s], u, v).$$

Corollary 3.3. There is no superhigh weakly 2-random set.

Proof. Let R be a weakly 2-random set. By definition, R belongs to no Π_2^0 null class. Since a Σ_3^0 class is a union of Π_2^0 classes of no greater measure, R belongs to no Σ_3^0 null class. By Theorem 3.2, R is not superhigh. \Box

To put Corollary 3.3 into context, recall that the 2-random set $\Omega^{\emptyset'}$ is high, whereas no weakly 3-random set is high (see [N, 8.5.21]).

Corollary 3.4. There is a promptly simple set Turing below all superhigh *ML*-random sets.

Proof. By a result of Hirschfeldt and Miller (see [N, Thm. 5.3.15]), for each null Σ_3^0 class S there is a promptly simple set Turing below all ML-random sets in S. Apply this to the class \mathcal{K} from the proof of Theorem 3.2.

Next we show that $\mathsf{Shigh}^{\diamond}$ is a proper subclass of the c.e. *K*-trivial sets. Since some superhigh ML-random set is not above \emptyset' , each set in $\mathsf{Shigh}^{\diamond}$ is a base for ML-randomness, and therefore *K*-trivial (for details of this argument, see [N, Section 5.1]). It remains to show strictness. In fact in place of the superhigh sets we can consider the possibly smaller class of sets *Z* such that $G \leq_{\mathrm{tt}} Z'$, for some fixed set $G \geq_{tt} \emptyset''$. Let $\mathsf{MLR} = \{R : R \text{ is ML-random}\}.$

Theorem 3.5. Let S be a Π_1^0 class such that $\emptyset \subset S \subseteq MLR$. Then there is a K-trivial c.e. set B such that

$$\forall G \exists Z \in S [B \not\leq_T Z \& G \leq_{\mathrm{tt}} Z'].$$

Corollary 3.6. There is a K-trivial c.e. set B and a superhigh ML-random set Z such that $B \not\leq_T Z$. Thus the class of c.e. sets Turing below all ML-random superhigh sets is a proper subclass of the c.e. K-trivials.

Proof of Theorem 3.5. We assume fixed an indexing of all the Π_1^0 classes. Given an index for a Π_1^0 class P we have an effective approximation $P = \bigcap_t P_t$ where P_t is a clopen set ([N, Section 1.8]).

To achieve $G \leq_{\text{tt}} Z'$ we use a variant of Kučera coding. Given (an index of) a Π_1^0 class P such that $\emptyset \subset P \subseteq \text{MLR}$, we can effectively determine $k \in \mathbb{N}$

such that $2^{-k} < \lambda P$. In fact $k \leq K(i) + O(1) \leq 2 \log i + O(1)$ where *i* is the index for *P* (see [N, 3.3.3]). At stage *t* let

(1)
$$y_{0,t}, y_{1,t},$$

respectively be the leftmost and rightmost strings y of length k such that $[y] \cap P_t \neq \emptyset$. Then y_0 is left of y_1 where $y_a = \lim_t y_{a,t}$. Note that the number of changes in these approximations is bounded by 2^k .

Recall that $(\Phi_e)_{e\in\mathbb{N}}$ is an effective listing of the Turing functionals. The following will be used in a "dynamic forcing" construction to ensure that $B \neq \Phi_e^Z$, and to make B K-trivial. Let $c_{\mathcal{K}}$ be the standard cost function for building a K-trivial set, as defined in [N, 5.3.2]. Thus $c_{\mathcal{K}}(x,s) = \sum_{x < w \leq s} 2^{-K_s(w)}$.

Lemma 3.7. Let Q be a Π_1^0 class such that $\emptyset \subset Q \subset \mathsf{MLR}$. Let $e, m \ge 0$. Then there is a nonempty Π_1^0 class $P \subset Q$ and $x \in \mathbb{N}$ such that either

(a)
$$\forall Z \in P \neg \Phi_e^Z(x) = 0$$
, or

(b)
$$\exists s c_{\mathcal{K}}(x,s) \leq 2^{-m} \& \forall Z \in P_s^s \Phi_{e,s}^Z(x) = 0,$$

where $(P^t)_{t\in\mathbb{N}}$ is an effective sequence of (indices for) Π_1^0 classes such that $P = \lim_t^{\operatorname{comp}} P^t$ with at most 2^{m+1} changes.

The plan is to put x into B in case (b). The change in the approximations P^t is due to changing the candidate x when its cost becomes too large.

To prove the lemma, we give a procedure constructing the required objects.

Procedure C(Q, e, m). Stage s.

- (a) Choose $x \in \mathbb{N}^{[e]}, x \ge s$.
- (b) If $c_{\mathcal{K}}(x,s) \ge 2^{-m}$, GOTO (a).
- (c) If $\{Z \in Q_s: \neg \Phi_{e,s}^Z(x) = 0\} \neq \emptyset$ let $P^s = \{Z \in Q: \neg \Phi_e^Z(x) = 0\}$ and GOTO (b). (In this case we keep x out of B and win.) Otherwise let $P^s = Q$ and GOTO (d). (We will put x into B and win.)

Clearly we choose a new x at most 2^m times, so the number of changes of P^t is bounded by 2^{m+1} .

To prove the theorem, we build at each stage t a tree of Π_1^0 classes $P^{\alpha,t}$, where $\alpha \in 2^{<\omega}$. The number of changes of $P^{\alpha,t}$ is bounded computably in α . Stage t. Let $P^{\otimes,t} = S$.

(i) If
$$P = P^{\alpha,t}$$
 has been defined let, for $b \in \{0,1\}$,

$$Q^{\alpha b,t} = P^{\alpha,t} \cap [y_{b,t}],$$

where the strings $y_{b,t}$ are as in (1).

(ii) If $Q = Q^{\beta,t}$ is newly defined let $e = |\beta|$, let m equal n_{β} (the code number for β) plus the number of times the index for Q^{β} has changed so far. From now on define $P^{\beta,t}$ by the procedure C(Q, e, m) in Lemma 3.7. If it reaches (d), put x into B.

Claim 1. (i) For each α the index $P^{\alpha,t}$ reaches a limit P^{α} . The number of changes is computably bounded in α .

(ii) For each $\hat{\beta}$ the index $Q^{\beta,t}$ reaches a limit Q^{β} . The number of changes is computably bounded in β .

SUPERHIGHNESS

The claim is verified by induction, in the form $P^{\alpha} \to Q^{\alpha b} \to P^{\alpha b}$. This yields a computable definition of the bound on the number of changes.

Clearly (i) holds when $\alpha = \emptyset$.

Case $Q^{\alpha b}$: we can compute by inductive hypothesis an upper bound on the index for P^{α} , and hence an upper bound k_0 on k such that $2^{-k} < \lambda P^{\alpha}$. If N bounds the number of changes for P^{α} then $Q^{\alpha b}$ changes at most $N2^{k_0}$ times.

Case P^{β} , $\beta \neq \emptyset$: Let M be the bound on the number of changes for Q^{β} . Then we always have $m \leq M + n_{\beta}$ in (ii), so the number of changes for P^{β} is at most $M2^{M+n_{\beta}+1}$.

Claim 2. (i) Let $e = |\beta| > 0$. Then $B \neq \Phi_e(Z)$ for each $Z \in P^{\beta}$.

This is clear, since eventually the procedure in Lemma 3.7 has a stable x to diagonalize with.

Given G define $Z \leq_T \emptyset' \oplus G$ as follows. For e > 0 let $\beta = G \upharpoonright_e$. Use \emptyset' to find the final P^{β} , and to determine $y_{\beta,b,t}$ $(b \in \{0,1\})$ for $P = P^{\beta}$ as the strings in (1). Let $y_{\beta,b} = \lim y_{\beta,b,t}$.

Note that $y_{\gamma} \prec y_{\delta}$ whenever $\gamma \prec \delta$. Define Z so that $y_{G(e)} \prec Z$.

For $G \leq_{\text{tt}} Z'$ define a function $f \leq_T Z$ such that $G(e) = \lim_s^{\text{comp}} f(e, s)$ (i.e., a computable bounded number of changes). Given e, to define $f \upharpoonright_e [s]$ search for t > s such that $y_{\alpha,t} \prec Z$ for some α of length e, and output α .

References

[CS]	Joshua A. Cole and Stephen G. Simpson, Mass problems and hyperarithmeticity,
	J. Math. Log. 7 (2007), no. 2, 125–143. MR 2423947
[B]	George Barmpalias, Tracing and domination in the Turing degrees. To appear.
[BKHLS]	Stephen Binns, Bjørn Kjos-Hanssen, Manuel Lerman, and Reed Solomon, On a
	conjecture of Dobrinen and Simpson concerning almost everywhere domination,
	J. Symbolic Logic 71 (2006), no. 1, 119–136. MR 2210058 (2006m: 03070)
[C]	S. B. Cooper, Minimal degrees and the jump operator, J. Symbolic Logic 38
	(1973), 249-271. MR 0347572 (50 #75)
[DS]	Natasha L. Dobrinen and Stephen G. Simpson, Almost everywhere domination,
	J. Symbolic Logic 69 (2004), no. 3, 914–922. MR 2078930 (2005d:03079)
[F]	Richard Friedberg, A criterion for completeness of degrees of unsolvability, J.
	Symb. Logic 22 (1957), 159–160. MR 0098025 (20 #4488)
[JS]	Carl G. Jockusch Jr. and Robert I. Soare, Π_1^0 classes and degrees of theories,
	Trans. Amer. Math. Soc. 173 (1972), 33–56. MR 0316227 (47 #4775)
[M]	Donald A. Martin, Classes of computablely enumerable sets and degrees of un-
	solvability, Z. Math. Logik Grundlagen Math. 12 (1966), 295–310. MR 0224469
	$(37 \ \# 68)$
[S]	Stephen G. Simpson, Almost everywhere domination and superhighness, MLQ
	Math. Log. Q. 53 (2007), no. 4-5, 462–482. MR 2351944
[CGM]	Peter Cholak, Noam Greenberg, and Joseph S. Miller, Uniform almost every-
	where domination, J. Symbolic Logic 71 (2006), no. 3, 1057–1072. MR 2251556
	(2007e:03071)
[M]	Jeanleah Mohrherr, Density of a final segment of the truth-table degrees, Pacific
	J. Math. 115 (1984), no. 2, 409–419. MR 765197 (86a:03043)
[N]	André Nies, Computability and Randomness, Oxford University Press. To ap-
	pear January 2009.
[A]	A. Nies, Superhighness and strong jump traceability. To appear.
[S]	S. Schwarz, Index sets of computablely enumerable sets, quotient lattices, and
	computable linear orderings, doctoral dissertation, University of Chicago, 1982.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII AT MANOA, 2565 MC-CARTHY MALL, HONOLULU, HI 96822, USA *E-mail address*: bjoern@math.hawaii.edu

Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand

E-mail address: andrenies@gmail.com