SUPERHIGHNESS
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ABSTRACT. We prove that superhigh sets can be jump traceable, an-
swering a question of Cole and Simpson. On the other hand, we show
that such sets cannot be weakly 2-random. We also study the class
superhigh®, and show that it contains some, but not all, of the noncom-
putable K-trivial sets.

1. INTRODUCTION

An important non-computable set of integers in computability theory is
(/, the halting problem for Turing machines. Over the last half century
many interesting results have been obtained about ways in which a problem
can be almost as hard as (/. The superhigh sets are the sets A such that

A > 0,

i.e., the halting problem relative to A computes ()" using a truth-table reduc-
tion. The name comes from comparison with the high sets, where instead
arbitrary Turing reductions are allowed (A’ >7 (""). Superhighness for com-
putably enumerable (c.e.) sets was introduced by Mohrherr [M]. She proved
that the superhigh c.e. degrees sit properly between the high and Turing
complete (A >7 (') ones.

Most questions one can ask on superhighness are currently open. For
instance, Martin [M] (1966) famously proved that a degree is high iff it
can compute a function dominating all computable functions, but it is not
known whether superhighness can be characterized in terms of domination.
Cooper [(] showed that there is a high minimal Turing degree, but we do
not know whether a superhigh set can be of minimal Turing degree. We
hope the present paper lays the groundwork for a future understanding of
these problems.

We prove that a superhigh set can be jump traceable. Let superhigh®
be the class of c.e. sets Turing below all Martin-Léf random (ML-random)
superhigh sets (see [N, Section 8.5]). We show that this class contains a
promptly simple set, and is a proper subclass of the c.e. K-trivial sets. This
class was recently shown to coincide with the strongly jump traceable c.e.
sets, improving our result [A].

Definition 1.1. Let {®:X},cn denote a standard list of all functions partial
computable in X, and let W;X denote the domain of ®.X. We write JX (n) for
®:X(n), and J°(n) for ®%(n) where o is a string. Thus X' = {e: JP(e) |}
represents the halting problem relative to X.
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X is jump-traceable by Y (written X < 7 Y) if there exist computable
functions f(n) and g(n) such that for all n, if JX(n) is defined (J*(n) |)

then JX(n) € W}/(n) and for all n, W}/(n) is finite of cardinality < g(n).

The relation <jr is transitive and indeed a weak reducibility [N, 8.4.14].
Further information on weak reducibilities, and jump traceability, may be
found in the recent book by Nies [I\N], especially in Sections 5.6 and 8.6, and
8.4, respectively.

Definition 1.2. A is JT-hard if (V' is jump traceable by A.
Let Shigh = {Y : Y’ >, ("'} be the class of superhigh sets.

Theorem 1.3. Consider the following five properties of a set A.
(1) A is Turing complete;
(2) A is almost everywhere dominating;
(8) A is JT-hard;
(4) A is superhigh;
(5) A is high.
We have (1)=(2)=(3)=(4)=(5), all implications being strict.

Proof. Implications: (1)=-(2): Dobrinen and Simpson [DS]. (2)=(3): Simp-
son [5] Lemma 8.4. (3)=-(4): Simpson [S] Lemma 8.6. (4)=-(5): Trivial,
since each truth-table reduction is a Turing reduction.

Non-implications: (2)7-(1) was proved by Cholak, Greenberg, and Miller
[ ]. (3)#(2): By Cole and Simpson [('S], (3) coincides with (4) on the
AJ sets. But there is a superhigh degree that does not satisfy (2): one can
use Jockusch-Shore Jump Inversion for a super-low but not K-trivial set,
which exists by the closure of the K-trivials under join and the existence of
a pair of super-low degrees joining to (/'. (4)#-(3): We prove in Theorem 2.1
below that there is a jump traceable superhigh degree. By transitivity of
<7 and the observation that ' £ ;7 0, no jump traceable degree is JT-hard.
(5)#(4): Binns, Kjos-Hanssen, Lerman, and Solomon | | proved this
using a syntactic analysis combined with a result of Schwartz [5]. U

Historically, the easiest separation (1)(5) is a corollary of Friedberg’s
Jump Inversion Theorem [I'] from 1957. The separation (1)(4) follows simi-
larly from Mohrherr’s Jump Inversion Theorem for the tt-degrees [\[] (1984),
and the separation (4)(5) is essentially due to Schwartz [5] (1982). The
classes (2) and (3) were introduced more recently, by Dobrinen and Simp-
son [DS] (2004) and Simpson [S] (2007).

Notion (3), JT-hardness, may not appear to be very natural. However,
Cole and Simpson [('S] gave an embedding of the hyperarithmetic hierarchy
{0y <wox into the lattice of I19 classes under Muchnik reducibility making

use of the notion of bounded limit recursive (BLR) functions. We will see
that JT-hardness coincides with BLR-hardness.
Notation. We write
Vn f(n) = km™ F(n, s)

if for all n, f(n) = lim, f(n, s), and moreover there is a computable function

g : w — w such that for all n, {s| f(n,s) # f(n,s+ 1)} has cardinality less
than g(n).
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2. SUPERHIGHNESS AND JUMP TRACEABILITY

In this section we show that superhighness is compatible with the lowness
property of being jump traceable, and deduce an answer to a question of
Cole and Simpson.

Theorem 2.1. There is a superhigh jump-traceable set.

Proof. Mohrherr [M] proves a jump inversion theorem in the tt-degrees:
For each set A, if O <; A, then there exists a set B such that B’ =4
A. To produce B, Mohrherr uses the same construction as in the proof of
Friedberg’s Jump Inversion Theorem for the Turing degrees. Namely, B is
constructed by finite extensions B[s] < B[s+ 1] < --- Here Bl[s] is a finite
binary string and o < 7 denotes that o is an initial substring of 7. At stages
of the form s = 2e (even stages), one searches for an extension B[s 4 1] of
Bls] such that JBs+1(e) |. If none is found one lets B[s + 1] = B[s]. At
stages of the form s = 2e+ 1 (odd stages) one appends the bit A(e), i.e. one
lets B[s + 1] = B[s]"(A(e)). Thus two types of oracle questions are asked
alternately for varying numbers e:
(1) Does a string o > Bis] exist so that J7(e) |, i.e. B > o implies
e € B'? (If so, let B[s + 1] be the first such string that is found.)
(2) Is A(e) = 17
This allows for a jump trace V. of size at most 4¢. First, Vj consists of at
most one value, namely the first value J?(e) found for any o extending the
empty string. Next, V; consists of the first value for ®](1) found for any
7 extending (0), (1), 07 (0), o~ (1), respectively, in the cases: 0 ¢ A, and
0gB;0c Aand 0 ¢ B'; 0 ¢ Aand 0 € B'; and 0 € A and 0 € B'.
Generally, for each e there are four possibilities: either e is in A or not, and
either the extension o of Bls| is found or not. V. consists of all the possible
values of JZ(e) depending on the answers to these questions.
Hence B is jump traceable, no matter what oracle A is used. Thus, letting
A = (" results in a superhigh jump-traceable set B. O

Question 2.2. Is there a superhigh set of minimal Turing degree?

This question is sharp in terms of the notions (1)-(5) of Theorem 1.3:
minimal Turing degrees can be high (Cooper [C]) but not JT-hard (Barm-
palias [B]).

Cole and Simpson [('S] introduced the following notion. Let A be a Turing
oracle. A function f: w — wis boundedly limit computable by A if there exist
an A-computable function f : w X w — w such that Hm®™ f(n,s) = f(n).

We write

BLR(A) = {f € w*| f is boundedly limit computable by A}.
We say that X <prr Y if BLR(X) C BLR(Y). In particular, A is BLR-hard
if BLR((') C BLR(A).
It is easy to see that <pppr implies < ;7 (Lemma 6.8 of Cole and Simpson

[(C'S]). The following partial converse is implicit in some recent papers as
pointed out to the authors by Simpson.

Theorem 2.3. Suppose that A <jr B where A is a c.e. set and B is any
set. Then BLR(A) CBLR(B).
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Proof. Since A <;r B, by Remark 8.7 of Simpson [5], the function h given
by

h(e) = JA(e) + 1 if JA(e) |, h(e) = 0 otherwise,

is B’-computable, with computably bounded use of B’ and unbounded use
of B. This implies that h is BLR(B). Let 1% be any function partial
computable in A. Let g be defined by

g(n) = A(n) + 1if YA(n) |, g(n) = 0 otherwise.

Letting f be a computable function with ¢ (n) ~ J(f(n)) for all n, we
can use the B-computable approximation to h with a computably bounded

number of changes to get such an approximation to g. So g is BLR(B). By
Lemma 2.5 of Cole and Simpson [('S], it follows that BLR(A) CBLR(B). O

Corollary 2.4. For c.e. sets A, B we have A <;pr B — A <pgrr B.

Corollary 2.5. JT-hardness coincides with BLR-hardness: for all B,
0 <,r B~V <pLr B.

By Corollary 2.5 and Theorem 1.3((3)=(4)), BLR-hardness implies super-
highness. Cole and Simpson asked [C'S, Remark 6.21] whether conversely su-

perhighness implies BLR-hardness. Our negative answer is immediate from
Corollary 2.5 and Theorem 1.3((4)#(3)).

3. SUPERHIGHNESS, RANDOMNESS, AND K-TRIVIALITY

We study the class Shigh® of c.e. sets that are Turing below all ML-
random superhigh sets. First we show that this class contains a promptly
simple set.

For background on diagonally non-computable functions and sets of PA
degree see [N, Ch 4]. Let A denote the usual fair-coin Lebesgue measure on
2N: a null class is a set § C 2V with A(S) = 0.

Fact 3.1 (Jockusch and Soare [JS]). The sets of PA degree form a null class.

Proof. Otherwise by the zero-one law the class is conull. So by the Lebesgue
Density Theorem there is a Turing functional ® such that ®* (w) € {0, 1}
if defined, and

{Z: ®Z is total and diagonally non-computable }

has measure at least 3/4.
Let the partial computable function f be defined by: f(n) is the value
i € {0,1} such that for the smallest possible stage s, we observe by stage
s that ®%(n) = i for a set of Zs of measure strictly more than 1/4. For
each n, such an 7 and stage s must exist. Indeed, if for some n and both
i € {0,1} there is no such s, then ®Z(n) is defined for a set of Zs of measure
at most % + % = % 7 %, which is a contradiction. Moreover, we cannot have
f(n) = J(n) for any n, because this would imply that there is a set of Zs of
measure strictly more than 1/4 for which ®Z is not a total d.n.c. function.
Thus f is a computable d.n.c. function, which is a contradiction.
O
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Theorem 3.2 (Simpson). The class Shigh of superhigh sets is contained in
a X9 null class.

Proof. A function f is called diagonally non-computable (d.n.c.) relative to
0 if Vo - f(x) = J¥(x). Let P be the TI{(() class of {0, 1}-valued functions
that are d.n.c. relative to (/. By Fact 3.1 relative to (', the class {Z: 3f <rp
Z @ W [f € P]} is null. Then, since GL; is conull, the class

K={Z: 3f < Z'[f € P]}

is also null. This class clearly contains Shigh. To show that X is X9, fix a
119 relation R C N? such that a string o is extended by a member of P iff
VuJv R(o,u,v). Let (VUe)een be an effective listing of truth-table reduction
procedures. It suffices to show that {Z : ¥.(Z’) € P} is a I class. To this
end, note that

U, (Z') € P o VYo VtYuIs >t R(VZ |, [s],u,v). O

Corollary 3.3. There is no superhigh weakly 2-random set.

Proof. Let R be a weakly 2-random set. By definition, R belongs to no II9
null class. Since a X class is a union of IT3 classes of no greater measure,
R belongs to no X null class. By Theorem 3.2, R is not superhigh. O

To put Corollary 3.3 into context, recall that the 2-random set QY is high,
whereas no weakly 3-random set is high (see [N, 8.5.21]).

Corollary 3.4. There is a promptly simple set Turing below all superhigh
ML-random sets.

Proof. By a result of Hirschfeldt and Miller (see [N, Thm. 5.3.15]), for each
null Zg class § there is a promptly simple set Turing below all ML-random
sets in 8. Apply this to the class K from the proof of Theorem 3.2. (]

Next we show that Shigh® is a proper subclass of the c.e. K-trivial sets.
Since some superhigh ML-random set is not above )/, each set in Shigh®
is a base for ML-randomness, and therefore K-trivial (for details of this
argument, see [N, Section 5.1]). It remains to show strictness. In fact in
place of the superhigh sets we can consider the possibly smaller class of
sets Z such that G <y Z’, for some fixed set G >4 (0”. Let MLR = {R :
R is ML-random}.

Theorem 3.5. Let S be a 1Y class such that ) C S C MLR. Then there is
a K-triwial c.e. set B such that

VG3Z e S[B %1 Z & G <y Z'].

Corollary 3.6. There is a K-trivial c.e. set B and a superhigh ML-random
set Z such that B L1 Z. Thus the class of c.e. sets Turing below all ML-
random superhigh sets is a proper subclass of the c.e. K-trivials.

Proof of Theorem 5.5. We assume fixed an indexing of all the II{ classes.
Given an index for a II{ class P we have an effective approximation P =
(; P: where P; is a clopen set ([N, Section 1.8]).

To achieve G <y Z' we use a variant of Kucera coding. Given (an index
of) a IIY class P such that ) C P C MLR, we can effectively determine k € N
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such that 27% < AP. In fact k < K (i) + O(1) < 2logi 4+ O(1) where i is the
index for P (see [N, 3.3.3]). At stage ¢ let

(1) Yo,ts Y1t

respectively be the leftmost and rightmost strings y of length k£ such that
[y NP, # (0. Then yq is left of y; where y, = lim; yo ;. Note that the number
of changes in these approximations is bounded by 2*.

Recall that (®¢)een is an effective listing of the Turing functionals. The
following will be used in a “dynamic forcing” construction to ensure that
B # ®Z, and to make B K-trivial. Let cg be the standard cost func-

e

tion for building a K-trivial set, as defined in [N, 5.3.2]. Thus cx(z,s) =
Zx<w§s 2_KS (w)

Lemma 3.7. Let Q be a IIY class such that ) C Q C MLR. Let e,m > 0.
Then there is a nonempty I1Y class P C Q and x € N such that either

(a) VZ € P=®Z(2) =0, or

(b) Fscx(w,s) <27 & VZ € PE®Z (x) =0,

where (P!)ien is an effective sequence of (indices for) T\ classes such that
P = lim{°™ P! with at most 2™*! changes.

The plan is to put x into B in case (b). The change in the approximations
Pt is due to changing the candidate  when its cost becomes too large.

To prove the lemma, we give a procedure constructing the required ob-
jects.
Procedure C(Q,e,m). Stage s.

(a) Choose = € NIl 2 > s.

(b) If cxc(z,s) > 27™, GOTO (a).

(c) If {Z € Qs: =®Z,(x) =0} # 0 let P* ={Z € Q: =®Z(2) =0} and
GOTO (b). (In this case we keep z out of B and win.) Otherwise let
P?# =@ and GoTo (d). (We will put = into B and win.)

(d) END.

Clearly we choose a new x at most 2™ times, so the number of changes of
P! is bounded by 2™+,

To prove the theorem, we build at each stage t a tree of H(l) classes P®t,
where o € 2<%, The number of changes of P*! is bounded computably in a.
Stage t. Let P2t = S.

(i) If P = P*! has been defined let, for b € {0,1},

Qab,t — Pa,t N [yb,tL
where the strings y,; are as in (1).

(ii) If Q@ = Q%! is newly defined let e = ||, let m equal ng (the code
number for 3) plus the number of times the index for @? has changed
so far. From now on define P%* by the procedure C(Q,e,m) in
Lemma 3.7. If it reaches (d), put = into B.

Claim 1. (i) For each « the index P®! reaches a limit P*. The number of
changes is computably bounded in a.

(ii) For each (3 the index QP reaches a limit QP. The number of changes
is computably bounded in (3.
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The claim is verified by induction, in the form P® — Q% — P<. This
yields a computable definition of the bound on the number of changes.

Clearly (i) holds when a = ().

Case Q*°: we can compute by inductive hypothesis an upper bound on the
index for P®, and hence an upper bound kg on k such that 27% < AP If
N bounds the number of changes for P® then Q® changes at most N2k
times.

Case PP, 3 # (: Let M be the bound on the number of changes for QP.
Then we always have m < M + ng in (i), so the number of changes for P”
is at most M2M+ns+l,

Claim 2. (i) Let e = |3| > 0. Then B # ®.(Z) for each Z € PP,

This is clear, since eventually the procedure in Lemma 3.7 has a stable x to
diagonalize with.

Given G define Z <7 (' ® G as follows. For e > 0 let 8 = G |.. Use (Y
to find the final P?, and to determine yg,, (b € {0,1}) for P = P” as the
strings in (1). Let ygp = limygp+.

Note that y, < ys whenever v < 4. Define Z so that yg) < Z.

For G <y Z' define a function f <p Z such that G(e) = Um{"™P f(e, s)
(i.e., a computable bounded number of changes). Given e, to define f [, [s]
search for ¢ > s such that y,; < Z for some « of length e, and output «.

O
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