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Abstract. We prove that superhigh sets can be jump traceable, an-
swering a question of Cole and Simpson. On the other hand, we show
that such sets cannot be weakly 2-random. We also study the class
superhigh3, and show that it contains some, but not all, of the noncom-
putable K-trivial sets.

1. Introduction

An important non-computable set of integers in computability theory is
∅′, the halting problem for Turing machines. Over the last half century
many interesting results have been obtained about ways in which a problem
can be almost as hard as ∅′. The superhigh sets are the sets A such that

A′ ≥tt ∅′′,

i.e., the halting problem relative to A computes ∅′′ using a truth-table reduc-
tion. The name comes from comparison with the high sets, where instead
arbitrary Turing reductions are allowed (A′ ≥T ∅′′). Superhighness for com-
putably enumerable (c.e.) sets was introduced by Mohrherr [M]. She proved
that the superhigh c.e. degrees sit properly between the high and Turing
complete (A ≥T ∅′) ones.

Most questions one can ask on superhighness are currently open. For
instance, Martin [M] (1966) famously proved that a degree is high iff it
can compute a function dominating all computable functions, but it is not
known whether superhighness can be characterized in terms of domination.
Cooper [C] showed that there is a high minimal Turing degree, but we do
not know whether a superhigh set can be of minimal Turing degree. We
hope the present paper lays the groundwork for a future understanding of
these problems.

We prove that a superhigh set can be jump traceable. Let superhigh3

be the class of c.e. sets Turing below all Martin-Löf random (ML-random)
superhigh sets (see [N, Section 8.5]). We show that this class contains a
promptly simple set, and is a proper subclass of the c.e. K-trivial sets. This
class was recently shown to coincide with the strongly jump traceable c.e.
sets, improving our result [A].

Definition 1.1. Let {ΦX
n }n∈N denote a standard list of all functions partial

computable in X, and let WX
n denote the domain of ΦX

n . We write JX(n) for
ΦX

n (n), and Jσ(n) for Φσ
n(n) where σ is a string. Thus X ′ = {e : JB(e) ↓}

represents the halting problem relative to X.

Kjos-Hanssen is partially supported under NSF grant DMS-0652669. Nies is supported
under Marsden fund UOA-08-187.

1



2 BJØRN KJOS-HANSSEN AND ANDRÉ NIES

X is jump-traceable by Y (written X ≤JT Y ) if there exist computable
functions f(n) and g(n) such that for all n, if JX(n) is defined (JX(n) ↓)
then JX(n) ∈W Y

f(n) and for all n, W Y
f(n) is finite of cardinality ≤ g(n).

The relation ≤JT is transitive and indeed a weak reducibility [N, 8.4.14].
Further information on weak reducibilities, and jump traceability, may be
found in the recent book by Nies [N], especially in Sections 5.6 and 8.6, and
8.4, respectively.

Definition 1.2. A is JT-hard if ∅′ is jump traceable by A.
Let Shigh = {Y : Y ′ ≥tt ∅′′} be the class of superhigh sets.

Theorem 1.3. Consider the following five properties of a set A.
(1) A is Turing complete;
(2) A is almost everywhere dominating;
(3) A is JT-hard;
(4) A is superhigh;
(5) A is high.

We have (1)⇒(2)⇒(3)⇒(4)⇒(5), all implications being strict.

Proof. Implications: (1)⇒(2): Dobrinen and Simpson [DS]. (2)⇒(3): Simp-
son [S] Lemma 8.4. (3)⇒(4): Simpson [S] Lemma 8.6. (4)⇒(5): Trivial,
since each truth-table reduction is a Turing reduction.

Non-implications: (2)6⇒(1) was proved by Cholak, Greenberg, and Miller
[CGM]. (3)6⇒(2): By Cole and Simpson [CS], (3) coincides with (4) on the
∆0

2 sets. But there is a superhigh degree that does not satisfy (2): one can
use Jockusch-Shore Jump Inversion for a super-low but not K-trivial set,
which exists by the closure of the K-trivials under join and the existence of
a pair of super-low degrees joining to ∅′. (4)6⇒(3): We prove in Theorem 2.1
below that there is a jump traceable superhigh degree. By transitivity of
≤JT and the observation that ∅′ 6≤JT ∅, no jump traceable degree is JT-hard.
(5)6⇒(4): Binns, Kjos-Hanssen, Lerman, and Solomon [BKHLS] proved this
using a syntactic analysis combined with a result of Schwartz [S]. �

Historically, the easiest separation (1)(5) is a corollary of Friedberg’s
Jump Inversion Theorem [F] from 1957. The separation (1)(4) follows simi-
larly from Mohrherr’s Jump Inversion Theorem for the tt-degrees [M] (1984),
and the separation (4)(5) is essentially due to Schwartz [S] (1982). The
classes (2) and (3) were introduced more recently, by Dobrinen and Simp-
son [DS] (2004) and Simpson [S] (2007).

Notion (3), JT-hardness, may not appear to be very natural. However,
Cole and Simpson [CS] gave an embedding of the hyperarithmetic hierarchy
{0(α)}α<ωCK

1
into the lattice of Π0

1 classes under Muchnik reducibility making
use of the notion of bounded limit recursive (BLR) functions. We will see
that JT-hardness coincides with BLR-hardness.

Notation. We write
∀n f(n) = limcomp

s f̃(n, s)

if for all n, f(n) = lims f̃(n, s), and moreover there is a computable function
g : ω → ω such that for all n, {s | f̃(n, s) 6= f̃(n, s+ 1)} has cardinality less
than g(n).
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2. Superhighness and jump traceability

In this section we show that superhighness is compatible with the lowness
property of being jump traceable, and deduce an answer to a question of
Cole and Simpson.

Theorem 2.1. There is a superhigh jump-traceable set.

Proof. Mohrherr [M] proves a jump inversion theorem in the tt-degrees:
For each set A, if ∅′ ≤tt A, then there exists a set B such that B′ ≡tt

A. To produce B, Mohrherr uses the same construction as in the proof of
Friedberg’s Jump Inversion Theorem for the Turing degrees. Namely, B is
constructed by finite extensions B[s] � B[s + 1] � · · · Here B[s] is a finite
binary string and σ � τ denotes that σ is an initial substring of τ . At stages
of the form s = 2e (even stages), one searches for an extension B[s + 1] of
B[s] such that JB[s+1](e) ↓. If none is found one lets B[s + 1] = B[s]. At
stages of the form s = 2e+1 (odd stages) one appends the bit A(e), i.e. one
lets B[s + 1] = B[s]_〈A(e)〉. Thus two types of oracle questions are asked
alternately for varying numbers e:

(1) Does a string σ � B[s] exist so that Jσ(e) ↓, i.e. B � σ implies
e ∈ B′? (If so, let B[s+ 1] be the first such string that is found.)

(2) Is A(e) = 1?
This allows for a jump trace Ve of size at most 4e. First, V0 consists of at
most one value, namely the first value Jσ(e) found for any σ extending the
empty string. Next, V1 consists of the first value for Φτ

1(1) found for any
τ extending 〈0〉, 〈1〉, σ_〈0〉, σ_〈1〉, respectively, in the cases: 0 6∈ A, and
0 6∈ B′; 0 ∈ A and 0 6∈ B′; 0 6∈ A and 0 ∈ B′; and 0 ∈ A and 0 ∈ B′.
Generally, for each e there are four possibilities: either e is in A or not, and
either the extension σ of B[s] is found or not. Ve consists of all the possible
values of JB(e) depending on the answers to these questions.

Hence B is jump traceable, no matter what oracle A is used. Thus, letting
A = ∅′′ results in a superhigh jump-traceable set B. �

Question 2.2. Is there a superhigh set of minimal Turing degree?

This question is sharp in terms of the notions (1)–(5) of Theorem 1.3:
minimal Turing degrees can be high (Cooper [C]) but not JT-hard (Barm-
palias [B]).

Cole and Simpson [CS] introduced the following notion. Let A be a Turing
oracle. A function f : ω → ω is boundedly limit computable by A if there exist
an A-computable function f̃ : ω × ω → ω such that limcomp

s f̃(n, s) = f(n).
We write

BLR(A) = {f ∈ ωω | f is boundedly limit computable by A}.
We say that X ≤BLR Y if BLR(X) ⊆ BLR(Y ). In particular, A is BLR-hard
if BLR(∅′) ⊆ BLR(A).

It is easy to see that ≤BLR implies ≤JT (Lemma 6.8 of Cole and Simpson
[CS]). The following partial converse is implicit in some recent papers as
pointed out to the authors by Simpson.

Theorem 2.3. Suppose that A ≤JT B where A is a c.e. set and B is any
set. Then BLR(A) ⊆BLR(B).
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Proof. Since A ≤JT B, by Remark 8.7 of Simpson [S], the function h given
by

h(e) = JA(e) + 1 if JA(e) ↓, h(e) = 0 otherwise,

is B′-computable, with computably bounded use of B′ and unbounded use
of B. This implies that h is BLR(B). Let ψA be any function partial
computable in A. Let g be defined by

g(n) = ψA(n) + 1 if ψA(n) ↓, g(n) = 0 otherwise.

Letting f be a computable function with ψA(n) ' J(f(n)) for all n, we
can use the B-computable approximation to h with a computably bounded
number of changes to get such an approximation to g. So g is BLR(B). By
Lemma 2.5 of Cole and Simpson [CS], it follows that BLR(A) ⊆BLR(B). �

Corollary 2.4. For c.e. sets A,B we have A ≤JT B ↔ A ≤BLR B.

Corollary 2.5. JT-hardness coincides with BLR-hardness: for all B,
∅′ ≤JT B ↔ ∅′ ≤BLR B.

By Corollary 2.5 and Theorem 1.3((3)⇒(4)), BLR-hardness implies super-
highness. Cole and Simpson asked [CS, Remark 6.21] whether conversely su-
perhighness implies BLR-hardness. Our negative answer is immediate from
Corollary 2.5 and Theorem 1.3((4)6⇒(3)).

3. Superhighness, randomness, and K-triviality

We study the class Shigh3 of c.e. sets that are Turing below all ML-
random superhigh sets. First we show that this class contains a promptly
simple set.

For background on diagonally non-computable functions and sets of PA
degree see [N, Ch 4]. Let λ denote the usual fair-coin Lebesgue measure on
2N; a null class is a set S ⊆ 2N with λ(S) = 0.

Fact 3.1 (Jockusch and Soare [JS]). The sets of PA degree form a null class.

Proof. Otherwise by the zero-one law the class is conull. So by the Lebesgue
Density Theorem there is a Turing functional Φ such that ΦX(w) ∈ {0, 1}
if defined, and

{Z : ΦZ is total and diagonally non-computable }

has measure at least 3/4.
Let the partial computable function f be defined by: f(n) is the value

i ∈ {0, 1} such that for the smallest possible stage s, we observe by stage
s that ΦZ(n) = i for a set of Zs of measure strictly more than 1/4. For
each n, such an i and stage s must exist. Indeed, if for some n and both
i ∈ {0, 1} there is no such s, then ΦZ(n) is defined for a set of Zs of measure
at most 1

4 + 1
4 = 1

2 6≥
3
4 , which is a contradiction. Moreover, we cannot have

f(n) = J(n) for any n, because this would imply that there is a set of Zs of
measure strictly more than 1/4 for which ΦZ is not a total d.n.c. function.
Thus f is a computable d.n.c. function, which is a contradiction.

�
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Theorem 3.2 (Simpson). The class Shigh of superhigh sets is contained in
a Σ0

3 null class.

Proof. A function f is called diagonally non-computable (d.n.c.) relative to
∅′ if ∀x¬f(x) = J∅

′
(x). Let P be the Π0

1(∅′) class of {0, 1}-valued functions
that are d.n.c. relative to ∅′. By Fact 3.1 relative to ∅′, the class {Z : ∃f ≤T

Z ⊕ ∅′ [f ∈ P ]} is null. Then, since GL1 is conull, the class

K = {Z : ∃f ≤tt Z
′ [f ∈ P ]}

is also null. This class clearly contains Shigh. To show that K is Σ0
3, fix a

Π0
2 relation R ⊆ N3 such that a string σ is extended by a member of P iff

∀u ∃v R(σ, u, v). Let (Ψe)e∈N be an effective listing of truth-table reduction
procedures. It suffices to show that {Z : Ψe(Z ′) ∈ P} is a Π0

2 class. To this
end, note that

Ψe(Z ′) ∈ P ↔ ∀x∀t∀u ∃s > t∃v R(ΨZ′
e �x [s], u, v). �

Corollary 3.3. There is no superhigh weakly 2-random set.

Proof. Let R be a weakly 2-random set. By definition, R belongs to no Π0
2

null class. Since a Σ0
3 class is a union of Π0

2 classes of no greater measure,
R belongs to no Σ0

3 null class. By Theorem 3.2, R is not superhigh. �

To put Corollary 3.3 into context, recall that the 2-random set Ω∅′
is high,

whereas no weakly 3-random set is high (see [N, 8.5.21]).

Corollary 3.4. There is a promptly simple set Turing below all superhigh
ML-random sets.

Proof. By a result of Hirschfeldt and Miller (see [N, Thm. 5.3.15]), for each
null Σ0

3 class S there is a promptly simple set Turing below all ML-random
sets in S. Apply this to the class K from the proof of Theorem 3.2. �

Next we show that Shigh3 is a proper subclass of the c.e. K-trivial sets.
Since some superhigh ML-random set is not above ∅′, each set in Shigh3

is a base for ML-randomness, and therefore K-trivial (for details of this
argument, see [N, Section 5.1]). It remains to show strictness. In fact in
place of the superhigh sets we can consider the possibly smaller class of
sets Z such that G ≤tt Z

′, for some fixed set G ≥tt ∅′′. Let MLR = {R :
R is ML-random}.

Theorem 3.5. Let S be a Π0
1 class such that ∅ ⊂ S ⊆ MLR. Then there is

a K-trivial c.e. set B such that
∀G ∃Z ∈ S [B 6≤T Z & G ≤tt Z

′].

Corollary 3.6. There is a K-trivial c.e. set B and a superhigh ML-random
set Z such that B 6≤T Z. Thus the class of c.e. sets Turing below all ML-
random superhigh sets is a proper subclass of the c.e. K-trivials.

Proof of Theorem 3.5. We assume fixed an indexing of all the Π0
1 classes.

Given an index for a Π0
1 class P we have an effective approximation P =⋂

t Pt where Pt is a clopen set ([N, Section 1.8]).
To achieve G ≤tt Z

′ we use a variant of Kučera coding. Given (an index
of) a Π0

1 class P such that ∅ ⊂ P ⊆ MLR, we can effectively determine k ∈ N
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such that 2−k < λP . In fact k ≤ K(i) +O(1) ≤ 2 log i+O(1) where i is the
index for P (see [N, 3.3.3]). At stage t let

(1) y0,t, y1,t,

respectively be the leftmost and rightmost strings y of length k such that
[y]∩Pt 6= ∅. Then y0 is left of y1 where ya = limt ya,t. Note that the number
of changes in these approximations is bounded by 2k.

Recall that (Φe)e∈N is an effective listing of the Turing functionals. The
following will be used in a “dynamic forcing” construction to ensure that
B 6= ΦZ

e , and to make B K-trivial. Let cK be the standard cost func-
tion for building a K-trivial set, as defined in [N, 5.3.2]. Thus cK(x, s) =∑

x<w≤s 2−Ks(w).

Lemma 3.7. Let Q be a Π0
1 class such that ∅ ⊂ Q ⊂ MLR. Let e,m ≥ 0.

Then there is a nonempty Π0
1 class P ⊂ Q and x ∈ N such that either

(a) ∀Z ∈ P ¬ΦZ
e (x) = 0, or

(b) ∃s cK(x, s) ≤ 2−m & ∀Z ∈ P s
s ΦZ

e,s(x) = 0,

where (P t)t∈N is an effective sequence of (indices for) Π0
1 classes such that

P = limcomp
t P t with at most 2m+1 changes.

The plan is to put x into B in case (b). The change in the approximations
P t is due to changing the candidate x when its cost becomes too large.

To prove the lemma, we give a procedure constructing the required ob-
jects.
Procedure C(Q, e,m). Stage s.

(a) Choose x ∈ N[e], x ≥ s.
(b) If cK(x, s) ≥ 2−m, goto (a).
(c) If {Z ∈ Qs : ¬ΦZ

e,s(x) = 0} 6= ∅ let P s = {Z ∈ Q : ¬ΦZ
e (x) = 0} and

goto (b). (In this case we keep x out of B and win.) Otherwise let
P s = Q and goto (d). (We will put x into B and win.)

(d) End.
Clearly we choose a new x at most 2m times, so the number of changes of
P t is bounded by 2m+1.

To prove the theorem, we build at each stage t a tree of Π0
1 classes Pα,t,

where α ∈ 2<ω. The number of changes of Pα,t is bounded computably in α.
Stage t. Let P∅,t = S.

(i) If P = Pα,t has been defined let, for b ∈ {0, 1},
Qαb,t = Pα,t ∩ [yb,t],

where the strings yb,t are as in (1).
(ii) If Q = Qβ,t is newly defined let e = |β|, let m equal nβ (the code

number for β) plus the number of times the index for Qβ has changed
so far. From now on define P β,t by the procedure C(Q, e,m) in
Lemma 3.7. If it reaches (d), put x into B.

Claim 1. (i) For each α the index Pα,t reaches a limit Pα. The number of
changes is computably bounded in α.
(ii) For each β the index Qβ,t reaches a limit Qβ. The number of changes
is computably bounded in β.
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The claim is verified by induction, in the form Pα → Qαb → Pαb. This
yields a computable definition of the bound on the number of changes.

Clearly (i) holds when α = ∅.
Case Qαb: we can compute by inductive hypothesis an upper bound on the
index for Pα, and hence an upper bound k0 on k such that 2−k < λPα. If
N bounds the number of changes for Pα then Qαb changes at most N2k0

times.
Case P β, β 6= ∅: Let M be the bound on the number of changes for Qβ.
Then we always have m ≤M + nβ in (ii), so the number of changes for P β

is at most M2M+nβ+1.
Claim 2. (i) Let e = |β| > 0. Then B 6= Φe(Z) for each Z ∈ P β.
This is clear, since eventually the procedure in Lemma 3.7 has a stable x to
diagonalize with.

Given G define Z ≤T ∅′ ⊕ G as follows. For e > 0 let β = G �e. Use ∅′
to find the final P β , and to determine yβ,b,t (b ∈ {0, 1}) for P = P β as the
strings in (1). Let yβ,b = lim yβ,b,t.

Note that yγ ≺ yδ whenever γ ≺ δ. Define Z so that yG(e) ≺ Z.
For G ≤tt Z

′ define a function f ≤T Z such that G(e) = limcomp
s f(e, s)

(i.e., a computable bounded number of changes). Given e, to define f �e [s]
search for t > s such that yα,t ≺ Z for some α of length e, and output α.

�
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