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Abstract

We study the existence of automatic presentations for various algebraic structures. An automatic presentation of
a structure is a description of the universe of the structure by a regular set of words, and the interpretation of the
relations by synchronised automata. Our first topic concerns characterising classes of automatic structures. To this
end, we supply a characterisation of the automatic Boolean algebras, and it is proven that the free Abelian group
of infinite rank as well as many Fräıssé limits do not have automatic presentations. In particular, the countably
infinite random graph and the random partial order do not have automatic presentations. Furthermore, no infinite
integral domain is automatic. Our second topic is the isomorphism problem. We prove that the complexity of the
isomorphism problem for the class of all automatic structures is Σ1

1-complete.

1 Introduction

Classes of infinite structures with nice algorithmic properties (such as decidable model checking) are of increasing
interest in a variety of fields of computer science. For instance the theory of infinite state transition systems
concerns questions of symbolic representations, model checking, specification and verification. Also, string query
languages in databases may be captured by (decidable) infinite string structures. In these and other areas there
has been an effort to extend the framework of finite model theory to infinite models that have finite presentations.
Automatic structures are (usually) infinite relational structures whose domain and atomic relations can be recog-
nised by finite automata operating synchronously on their input. Consequently, automatic structures have finite
presentations and are closed under first order interpretability (as well as some of extensions of first order). More-
over, the model checking problem for automatic structures is decidable. Hence automatic structures and tools
developed for their study are well suited to these fields of computer science, see for instance [1].

From a computability and logical point of view, automatic structures are used to provide generic examples of struc-
tures with decidable theories, to investigate the relationship between automata and definability, and to refine the
ideas and approaches in the theory of computable structures. This paper investigates the problem of characterising
automatic structures in algebraic, model theoretic or logical terms.

Specifically this paper addresses two foundational problems in the theory of automatic structures. The first is
that of providing structure theorems for classes of automatic structures. Fix a class C of structures (over a given
signature), closed under isomorphism. For instance, C may be the class of groups (G, ·) or the class of linear
orders (L,≤). A structure theorem should be able to distinguish whether a given member of C has an automatic
presentation or not; a special case of this is telling whether a given structure is automatically presentable. This



usually concerns the interactions between the combinatorics of the finite automata presenting the structures and
properties of the structures themselves. The second problem, which is related to the first, is the complexity of
the isomorphism problem for classes of automatic structures. Namely fix a class of automatic structures C. The
isomorphism problem asks, given automatic presentations of two structures from C, are the structures isomorphic?

With regard to the first problem, we provide new techniques for proving that some foundational structures in
computer science and mathematics do not have automatic presentations. For example, we show that the Fräıssé
limits of many classes of finite structures such as finite partial orders or finite graphs do not have automatic
presentations. This shows that the infinite random graph and random partial order do not have automatic presen-
tations. The idea is that the finite amount of memory intrinsic to finite automata presenting the structure can be
used to extract algebraic and model theoretic properties (invariants) of the structure, and so used to classify such
structures up to isomorphism. This line of research has indeed been successful in investigating automatic ordinals,
linear orders, trees and Boolean algebras. For example there is a full structure theorem for the automatically
presentable ordinals; namely, they are those strictly less than ωω [6]. There are also partial structure theorems
saying that automatic linear orders and automatic trees have finite Cantor-Bendixson rank [13]. In this paper we
provide a structure theorem for the (infinite) automatic Boolean algebras; namely, they are those isomorphic to
finite products of the Boolean algebra of finite and co-finite subsets of N.

With regard to the second problem, it is not surprising that the isomorphism problem for the class of all auto-
matic structures in undecidable [4]. The reason for the undecidability is that the configuration space of a Turing
machine considered as a graph is an automatic structure, and the reachability problem in the configuration space
is undecidable. Thus with some extra work as in [3] or [11] one can reduce the reachability problem to the iso-
morphism problem for automatic structures. In addition, the isomorphism problem for automatic ordinals [13]
and Boolean algebras (Corollary 3.5) is decidable, for equivalence structures is Π0

1, and for configuration spaces of
Turing machines is Π0

3-complete [15].

Hence it is somewhat unexpected that the complexity of the isomorphism problem for the class of automatic
structures is Σ1

1-complete. The Σ1
1-completeness is proved by reducing the isomorphism problem for computable

trees, known to be Σ1
1-complete [9], to the isomorphism problem for automatic structures.

The two problems are related in the following way. If one has a ‘nice’ structure theorem for a class C of automatic
structures, then one expects that the isomorphism problem for C be computationally ‘reasonable’. For instance, as
corollaries of the structure theorems for automatic ordinals and for automatic Boolean algebras, one obtains that
their corresponding isomorphism problems are decidable. In contrast, the Σ1

1-completeness of the isomorphism
problem of the class of all automatic structures tells us that the language of first order arithmetic is not powerful
enough to give a structure theorem for the class of all automatic structures. In other words we should not expect
a ‘nice’ structure theorem for the class of all automatic structures.

Here is an outline of the rest of the paper. The next section is a brief introduction to the basic definitions. Section
3 provides some counting techniques sufficient to prove non-automaticity of many classical structures such as fields,
integral domains and Boolean algebras. Section 4 provides a technique that is used to show non-automaticity of
several structures such as the infinite random graph and the random partial order. The last section is devoted to
proving that the isomorphism problem for automatic structures is Σ1

1-complete.

Finally, we note that this paper does not deal with the tree automatic structures, a natural generalisation of
structures presented by finite automata. Some of the techniques and results of this paper can be applied or
extended to tree automatic structures in a natural way. In addition, techniques developed and results obtained in
the study of structures presented by finite automata give rise to better understanding and deeper development of
tree automatic structures.

2 Preliminaries

A thorough introduction to automatic structures can be found in [3] and [12]. We assume familiarity with the
basics of finite automata theory though to fix notation the necessary definitions are included. A finite automaton
A over an alphabet Σ is a tuple (S, ι,∆, F ), where S is a finite set of states, ι ∈ S is the initial state, ∆ ⊂ S×Σ×S
is the transition table and F ⊂ S is the set of final states. A computation of A on a word σ1σ2 . . . σn (σi ∈ Σ)



is a sequence of states, say q0, q1, . . . , qn, such that q0 = ι and (qi, σi+1, qi+1) ∈ ∆ for all i ∈ {0, 1, . . . , n − 1}. If
qn ∈ F , then the computation is successful and we say that automaton A accepts the word. The language accepted
by the automaton A is the set of all words accepted by A. In general, D ⊂ Σ? is finite automaton recognisable, or
regular, if D is the language accepted by a finite automaton A.

The following definitions extends recognisability to relations of arity n, called synchronous n–tape automata. A
synchronous n–tape automaton can be thought of as a one-way Turing machine with n input tapes [8]. Each tape
is regarded as semi-infinite having written on it a word in the alphabet Σ followed by an infinite succession of
blanks, � symbols. The automaton starts in the initial state, reads simultaneously the first symbol of each tape,
changes state, reads simultaneously the second symbol of each tape, changes state, etc., until it reads a blank on
each tape. The automaton then stops and accepts the n–tuple of words if it is in a final state. The set of all
n–tuples accepted by the automaton is the relation recognised by the automaton. Here is a definition.

Definition 2.1 Write Σ� for Σ∪{3} where 3 is a symbol not in Σ. The convolution of a tuple (w1, · · · , wn) ∈ Σ?n

is the string ⊗(w1, · · · , wn) of length maxi |wi| over alphabet (Σ�)n defined as follows. Its k’th symbol is (σ1, . . . , σn)
where σi is the k’th symbol of wi if k ≤ |wi| and � otherwise.

The convolution of a relation R ⊂ Σ?n is the relation ⊗R ⊂ (Σ�)n? formed as the set of convolutions of all the
tuples in R. That is ⊗R = {⊗w | w ∈ R}.

Definition 2.2 An n–tape automaton on Σ is a finite automaton over the alphabet (Σ�)n. An n–ary relation
R ⊂ Σ?n is finite automaton recognisable (in short FA recognisable) or regular if its convolution ⊗R is recognisable
by an n–tape automaton.

We now relate n–tape automata to structures. A structure A consists of a countable set A called the domain and
some relations and operations on A. We may assume that A only contains relational predicates as the operations
can be replaced with their graphs. We write A = (A,RA

1 , . . . , R
A
k , . . .) where RA

i is an ni–ary relation on A.
The relation Ri are sometimes called basic or atomic relations. We assume that the function i → ni is always a
computable one.

Definition 2.3 A structure A is automatic over Σ if its domain A ⊂ Σ? is finite automata recognisable, and there
is an algorithm that for each i produces a finite automaton recognising the relation RA

i ⊂ (Σ?)ni . A structure is
called automatic if it is automatic over some alphabet. If B is isomorphic to an automatic structure A, then call
A an automatic presentation of B and say that B is called automatically presentable (over Σ).

An example of an automatic structure is the word structure ({0, 1}?, L,R,E,�), where for all x, y ∈ {0, 1}?,
L(x) = x0, R(x) = x1, E(x, y) iff |x| = |y|, and � is the lexicographical order. The configuration graph of any
Turing machine is another example of an automatic structure. Examples of automatically presentable structures
are (N,+), (N,≤), (N, S), the group (Z,+), the order on the rationals (Q,≤), and the Boolean algebra of finite or
co-finite subsets of N. Note that every finite structure is automatically presentable. We use the following important
theorem without reference.

Theorem 2.4 [12] Let A be an automatic structure. There exists an algorithm that from a first order definition
(with possible use of the additional quantifier ‘there exists infinitely many’) in A of a relation R produces an
automaton recognising R.

3 Proving Non-Automaticity via Counting

The first technique for proving non-automaticity was presented in [12] and later generalised in [3]. The technique
is based on a pumping argument and exhibits the interplay between finitely generated (sub) algebras and finite
automata. We briefly recall the technique for completeness.

A relation R ⊂ (Σ?)n is called locally finite if there exists k, l with k + l = n so that for every ā (of size k) there
are at most a finite number of b̄ (of size l) such that (ā, b̄) ∈ R. We write R ⊂ (Σ?)k+l. For b = (b1, · · · , bm), write
b ∈ b to mean b = bi for some i.

We start with the following elementary but important proposition.



Proposition 3.1 Suppose that R ⊂ (Σ?)k+l is a locally finite FA recognisable relation and the automaton for ⊗(R)
has p states. Then

max{|y| | y ∈ y} −max{|x| | x ∈ x} ≤ p

for every (x, y) ∈ R where x has k elements and y has l elements.

Proof Fix (x, y) ∈ R and say x′ ∈ x has length max{|x| | x ∈ x} and say y′ ∈ y has length max{|y| | y ∈ y}.
So |y′| − |x′| > p implies that we can pump the string ⊗(x, y) between positions |x′| and |y′|. Then either the
automaton for ⊗(R) accepts a string that is not in ⊗((Σ?)n) (because one of the components contains a subword
of the form �Σ) or otherwise it accepts strings of the form ⊗(x, z) for infinitely many z, contradicting that R is
locally finite. 2

The typical application of this proposition is to prove that certain structures do not have automatic presentations.
Assume A is an automatic structure in which each atomic relation Ri is a graph of a function fi, i = 1, . . . , n.
Let a1, a2, . . . be a sequence of some elements of A such that the relation {(ai, aj) | i ≤ j} is regular. Consider
the sequence G1 = {a1}, Gn+1 = Gn ∪ {an+1} ∪ {fi(ā) | ā ∈ Gn, i = 1, . . . , n}. By the proposition there is a
constant p such that the length of all elements in Gn is bounded by p · n. Therefore the number of elements in Gn

is bounded by 2O(n). Some combinatorial reasoning combined with this observation can now be applied to provide
examples of structures with no automatic presentations, see [3] and [12]. For example, the following structures
have no automatic presentation:

1. The free group on k > 1 generators;

2. The structure (N, |);

3. The structure (N, p), where p : N2 → N is a bijection;

4. The term algebra generated by finitely many constants with at least one non-unary atomic operation1.

Note that each of these structures has a decidable first order theory.

In the next sections we provide other more intricate techniques for showing that particular structures do not have
automatic presentations. We then apply those techniques to give a characterisation of Boolean algebras that have
automatic presentations. We also prove that (Q+,×) has no automatic presentation and show that no infinite
integral domain (in particular no infinite field) has an automatic presentation. We also study automaticity of some
Fräıssé limits.

First we introduce a very useful property true of every automatic monoid (M,×).

Lemma 3.2 For each s1, . . . , sm ∈ M , |
∏

i si| ≤ maxi |si| + kdlogme, where k is the number of states in the
automaton recognising the graph of ×.

Proof Here logarithm is to base 2 and dlog ne is the least i such that 2i ≥ n. We use induction on m. For
m = 1, the inequality becomes |s1| ≤ |s1|. If m > 1 let m = u + v where u = bm/2c. Apply Proposition 3.1
to the graph of the monoid operation × and elements x =

∏u
i=1 si and y =

∏m
i=u+1 si. Then, by induction,

|
∏

i si| ≤ k + max(|x|, |y|) which is equal to

k + max( max
1≤i≤u

|si|+ kdlog ue, max
u+1≤i≤m

|si|+ kdlog ve),

which is at most maxi |si|+ kdlogme, since 1 + max(dlog ue, dlog ve) ≤ dlogme. 2

1Thus, elements of the term algebra are all the ground terms, and the operations are defined in a natural way: the value of a
function f of arity n from the language on ground terms g1, . . . , gn is f(g1, . . . , gn).



3.1 Automatic Boolean algebras

All finite Boolean algebras are automatic. Thus, in this section we deal with infinite countable Boolean algebras
only. Our goal in this section is to give a full characterisation of infinite automatic Boolean algebras. Our
characterisation can then be applied to show that the isomorphism problem for automatic Boolean algebras is
decidable. Compare this with the result from computable algebra that the isomorphism problem for computable
Boolean algebras is Σ1

1-complete [9].

Recall that a Boolean algebra B = (B,∪,∩, \,0,1) is a structure, where ∩ and ∪ and \ operations satisfy all
the basic properties of the set-theoretic intersection, union, and complementation operations; In B the relation
a ⊆ b ⇐⇒ a ∩ b = a is a partial order in which 0 is the smallest element, and 1 is the greatest element. The
complement of an element b ∈ B is 1 \ b and is denoted by b̄.

A linearly ordered set determines a Boolean algebra in a natural way described as follows. Let L = (L,≤) be a
linearly ordered set. An interval is a subset of L of the form [a, b) = {x | a ≤ x < b}, where a, b ∈ L ∪ {∞}. The
interval algebra denoted by BL is the collection of all finite unions of intervals of L, with the usual set-theoretic
operations of intersection, union and complementation. Every interval algebra is a Boolean algebra. Moreover for
every countable Boolean algebra A there exists an interval algebra BL isomorphic to A. We write L1 ×L2 for the
ordered sum

∑
l∈L1

L2.

Lemma 3.3 The interval Boolean algebras Bi×ω, where i is positive integer, all have automatic presentations.

Proof The Boolean algebra Bω has an automatic presentation. Indeed, every element X of Bω can be represented
by a string that codes the characteristic function of X. For example, the element [1, 3)∪ [6, 10) can be represented
by the string 0#0110001111 while N \ [3, 4) can be represented by the string 1#0001. The boolean operations
under this representation FA recognisable, hence this is an automatic presentation of Bω. Now, Bi×ω is isomorphic
to the Cartesian product of i copies of Bω. Automatic structures are closed under the Cartesian product, and this
completes the proof. 2

An atom in a Boolean algebra is a non-zero element a such that for every b ≤ a we have a = b or b = 0. Assume
that B is an automatic Boolean algebra not isomorphic to any of the algebras Bi×ω. Call two elements a, b ∈ B
F -equivalent if the element (a ∩ b̄) ∪ (b ∩ ā) is a union of finitely many atoms. Factorise B with respect to the
equivalence relation. Denote the factor algebra by B/F . Due to the assumption on B the algebra B/F is not finite.
Call x in B large if its image in B/F is not a finite union of atoms or 0. For example the element 1 is large in B
because B is not isomorphic to Bi×ω. Call an element x in B infinite if there are infinitely many elements below
it. Say that x splits y, for x, y ∈ B, if x ∩ y 6= 0 and x̄ ∩ y 6= 0. For every large element l ∈ B there exists an
element x ∈ B that splits l such that x ∩ l is large and x̄ ∩ l is infinite. Also for every infinite element i ∈ B there
exists an element x ∈ B that splits i such that either x ∩ i or x̄ ∩ i is infinite.

We are now ready to prove the following theorem characterising infinite automatic Boolean algebras.

Theorem 3.4 An infinite Boolean algebra has an automatic presentation if and only if it is isomorphic to Bi×ω

for some positive i ∈ N.

Proof We first construct a sequence Tn of trees and elements aσ ∈ B corresponding to elements σ ∈ Tn as follows.
The tree Tn will be a set of binary strings closed under prefixes. Therefore it suffices to define leaves of Tn. Initially,
we set T0 = {λ} and aλ = 1. Assume that Tn has been constructed. By induction hypothesis we may assume that
the leaves of Tn satisfy the following properties: (1) There exists at least one leaf σ such that aσ is large in B. Call
the element aσ leading in Tn. (2) There exist n leaves σ1, . . ., σn such that each aσi

is an infinite element in B.
Call these elements sub-leading elements. (3) The number of leaves in Tn is greater than or equal to n · (n+ 1)/2.
(4) For every pair of leaves x, y of Tn it holds that x ∩ y = 0.

For each leaf σ ∈ Tn proceed as follows:

1. If σ is leading then find the first length lexicographical b that splits aσ such that both aσ ∩ b and aσ ∩ b̄ are
infinite and one of them is large. Put σ0 and σ1 into Tn+1. Set aσ0 = aσ ∩ b and aσ1 = aσ ∩ b̄.



2. If σ is a sub-leading then find the first length lexicographical b that splits aσ such that one of aσ ∩ b or aσ ∩ b̄
is infinite. Put σ0 and σ1 into Tn+1. Set aσ0 = aσ ∩ b and aσ1 = aσ ∩ b̄.

Thus, we have constructed the tree Tn+1 and elements aσ corresponding to the leaves of the tree. Note that the
inductive hypothesis holds for Tn+1. This completes the definition of the trees.

Lemma 3.2 is now used a number of times to justify the following steps. There exists a constant c1 such that
|aσε| ≤ |aσ| + c1 for all defined elements aσ . Now for every n consider the set Xn = {aσ | σ is a leaf of Tn}.
There exists a constant c2 such that for all x ∈ Xn we have |x| ≤ c2 · n. Therefore Xn ⊂ Σc2·n and the number of
leaves in Tn is greater than or equal to n · (n+ 1)/2. Now for every pair of elements a, b in Xn we have a ∩ b = 0.
Therefore the number of elements of the Boolean algebra generated by the elements in Xn is 2|Xn|. Now let
Y = {b1, . . . , bk} ⊂ Xn. Consider the element ∪Y = b1 ∪ . . . ∪ bk. By Lemma 3.2 applied to the binary operation
∪ there exists a constant c3 such that | ∪Y | ≤ c3 ·n. This gives us a contradiction because the number of elements
generated by elements of Xn clearly exceeds the cardinality of ΣO(n). 2

Corollary 3.5 It is decidable whether two automatic Boolean algebras are isomorphic.

Proof Every automatic Boolean algebra is isomorphic to the Cartesian product of i copies of Bω, the Boolean
algebra of finite and co-finite subsets of N. This i can be obtained effectively: Given an FA-presentation of a
structure A in the signature of Boolean algebras, one can decide if A is a Boolean algebra, and if so compute the
largest i such that A models

“there are i disjoint elements each with infinitely many atoms below.”

Thus the isomorphism problem is decidable. 2

3.2 Commutative monoids and Abelian groups

Note that for groups and monoids the term ‘automatic’ is used in a different way [5]. So to avoid confusion we
say such a structure is ‘FA presented’ instead of saying it is ‘automatic’, and it is ‘FA presentable’ instead of
‘automatically presentable’.
We prove that (Q+,×), or equivalently, the free Abelian group of rank ω, is not FA presentable.

Theorem 3.6 Let (M,×) be a monoid containing (N,×) as a submonoid. Then (M,×) is not FA presentable.

Proof Assume for a contradiction that an FA presentation of M is given. Let a0, a1, . . . be the prime numbers,
viewed as elements of M , and listed in length-lexicographical order (with respect to this presentation of M). Let
rn be such that a0, . . . , arn−1 are the primes of length at most n. Let

Fn = {
∏

i : 0≤i<rn
aβi

i : 0 ≤ βi < 2n}.

By Lemma 3.2, each term aβi

i has length at most n+ k log βi ≤ n(1 + k). Again by the lemma, each product has
length at most n(1 + k) + k log rn. Since all the products are distinct,

2nrn ≤ |Fn| ≤ |Σ|(1+k)n+k log rn .

Thus nrn ≤ log |Σ|[(1 + k)n+ k log rn] and rn ∈ O(log rn)/n, a contradiction because rn goes to infinity. 2

In [14] a stronger form is proved: if (N,+)r is a submonoid of M , then r ≤ log |Σ|(k+ 1), where Σ is the alphabet
and k the number of states needed to recognize the graph of the operation of M .

Corollary 3.7 (Q+,×) is not FA presentable.

For a prime p, let Z[1/p] be the additive group of rationals of the form z/pm, z an integer, m ∈ N, and let Zp∞

be the Prüfer group Z[1/p]/Z. Using representations to base p, it is easy to give FA presentations of these groups.
Hence finite direct sums of those groups are also FA presentable. The proof of the following uses similar methods
to the ones of Theorem 3.6.



Theorem 3.8 Let A(ω) denote the direct sum of infinitely many copies of the group A. The infinite direct sums
Z[1/p](ω) and Z(ω)

p∞ are not FA presentable.

Proof The proof is similar to the proof of Theorem 3.6. Suppose there is an FA presentation, and the i-th copy
of the group in question is generated by all elements of the form ai/p

m, i,m ∈ N, where the elements a0, a1, . . . are
listed in length-lexicographical order. Define rn as before, and consider sums

∑
i<rn

βiai/p
n, where 0 ≤ βi < pn.

By Proposition 3.1, the definable operation x 7→ x/p increases the length by at most a constant. So, using
Lemma 3.2 each term βiai/p

n has length at most n + cn + kn log p for appropriate c ∈ N. Thus each sum has
length at most c′n+ k log rn. As there are pnrn distinct sums, this yields a contradiction as before. 2

3.3 Integral domains

In our next result we prove that no infinite integral domain is FA presentable. The following definition and lemma
will be used in the next section as well.

Definition 3.9 Suppose D is a structure over alphabet Σ. Write D≤n for D ∩ Σ≤n; that is the elements of D of
length at most n. Write Pn(D) for {x ∈ Σn | ∃z ∈ Σ? ∧ xz ∈ D}, namely all prefixes of length n of all words in
the domain.

Lemma 3.10 If D ⊂ Σ? is a regular language then

1. |Pn(D)| ∈ O(|D≤n|) and

2. |D≤n+k| ∈ Θ(|D≤n|) for every constant k ∈ N.

Proof Suppose the automaton recognising D has c states. Then for x ∈ Pn(D) there exists z ∈ Σ? with |z| ≤ c
such that xz ∈ D (†). If n ≥ c then |Pn(D)| ≤ |Σ|c × |Sn−c| since the map associating x ∈ Pn(D) with the
word consisting of the first n − c letters of x, is |Σ|c-to-one. But by using (†) we see that |Sn−c| ≤ |D≤n|. So
|Pn(D)| ≤ |Σ|c × |D≤n| as required for the first part.

Fix k ∈ N. The mapping associating x ∈ D≤n+k to the prefix of x of length n is |Σ|k-to-one. Hence

|D≤n+k| ≤ |Σ|k × |Pn(D)| ≤ |Σ|k × |Σ|c × |D≤n|.

Since D≤n ⊂ D≤n+k one has that |D≤n| ≤ |D≤n+k| and |D≤n+k| ∈ O(|D≤n|). This completes the proof of the
lemma. 2

Recall that an integral domain (D,+, ·, 0, 1) is a commutative ring with identity such that x · y = 0 only if x = 0
or y = 0. For example every field is an integral domain.

Theorem 3.11 No infinite integral domain is FA presentable.

Proof Suppose that (D,+, ·, 0, 1) is an infinite automatic integral domain. For each n ∈ N recall that D≤n = {u ∈
D | |u| ≤ n}. We claim that there exists an x in D such that for all a, b, a′, b′ ∈ D≤n the condition a·x+b = a′ ·x+b′

implies that a = a′ and b = b′. We say such x separates D≤n. Indeed, assume that such an x does not exist.
Then for each x ∈ D there exist a, b, a′, b′ ∈ D≤n such that a · x+ b = a′ · x+ b′ but (a, b) 6= (a′, b′). Hence, since
D≤n is finite, there exist a, b, a′, b′ ∈ D≤n such that a · x + b = a′ · x + b′ but (a, b) 6= (a′, b′) for infinitely many
x. Thus, for infinitely many x we have (a − a′) · x = b′ − b. But a 6= a′ for otherwise also b = b′, contrary to
assumption. Also there exist distinct x1 and x2 such that (a−a′) ·x1 = (a−a′) ·x2. Since D is an integral domain
we conclude that x1 = x2 which is a contradiction.

For each D≤n we can select the length-lexicographically first xn separating D≤n. Now the set En = {y | ∃a, b ∈
D≤n [y = axn + b]} has at least |D≤n|2 many elements. However by Proposition 3.1 there exists a constant C
such that En ⊂ D≤n+C , and by Lemma 3.10 the number of elements in D≤n+C is in O(|D≤n|). Thus, we have a
contradiction. The theorem is proved. 2

Corollary 3.12 No infinite field is FA presentable.



4 Non-automaticity of some Fräıssé Limits

We briefly recall the definition of Fräıssé limit, see for instance [10]. In this section restrict consideration to
relational structures of finite signature. Let K be a class of finite structures closed under isomorphism. We say
that K has the hereditary property (HP) if for A ∈ K every substructure of A is also in K. We say that
K has the joint embedding property (JEP) if for all A,B ∈ K there exists C ∈ K such that A and B are
both embeddable into C. We say that K is the age of a structure D if K coincides with the class of all finite
substructures of D. It clear that the age of a structure has HP and JEP. In fact, it is not hard to prove that a
class K has HP and JEP if and only if K coincides with the class of all finite substructure of some structure.
However, note that non-isomorphic structures may have the same age. The following property guarantees that a
class K with HP and JEP defines a unique structure up to isomorphism:

Definition 4.1 A class K of finite structures has amalgamation property (AP) if for A,B, C ∈ K with
embeddings e : A → B and f : A → C there are D ∈ K and embeddings g : B → D and h : C → D such that
ge = hf .

Below we cite a classical result in model theory due to Fräıssé . For this we mention that a structure A is called
ultra-homogeneous if every isomorphism between finite substructures of A can be extended to an automorphism
of A. For the proof the reader may consult [10, Theorem 7.1.2].

Theorem 4.2 Let K be a nonempty class of finite structures which has HP, JEP, and AP. Then there exists a
up to isomorphism unique countable structure A, called the Fräıssé limit of K, such that A is ultra-homogeneous
and K is the age of A.

Now we can apply the theorem to obtain several examples of structures. In each of these examples the classes K
have HP, JEP, and AP.

Example 4.3 Let K be the class of all finite linear orders. The Fräıssé limit of K is isomorphic to the ordering
of rationals.

Example 4.4 Let K be the class of all finite linear orders with one unary predicate. The Fräıssé limit of K is
isomorphic (Q;≤, U), where ≤ is the linear order of rationals Q, and U is a dense and co-dense subset of Q.

Example 4.5 Let K be the class of all finite graphs. The Fräıssé limit of K is known as the random graph.
The following is an algebraic property that gives a characterisation (of the isomorphism type) of the random graph
R = (V,E) (see [10]). For every disjoint partition X1, X2 of every finite set Y of vertices there exists a vertex y
such that for all x1 ∈ X1 and x2 ∈ X2 we have (y, x1) ∈ E and (y, x2) 6∈ E. An explicit description of a random
graph is the following. The set V of vertices is N and (n,m) ∈ E if in the binary representation of n, the term 2m

has coefficient 1.

Example 4.6 Let K be the class of all finite structures of a given signature L. The Fräıssé limit of K is known
as the random L-structure.

Example 4.7 Denote by Kp the complete graph (every pair of vertices are connected by an edge) on p vertices.
For p ≥ 3, consider the class of all finite graphs which do not contain Kp as a subgraph. The Fräıssé limit of K
is known as the random Kp-free graph. It has the following property. For every finite Kp−1-free subgraph, say
with domain Y , and every disjoint partition X1, X2 of Y , there exists a vertex x that is edge connected to every
vertex in X1 and no vertex in X2.

Recall that an anti-chain in a partial order is a set of pairwise incomparable elements. A chain in a partial order
is a set in which every pair of elements are comparable.

Example 4.8 Let K be the class of all finite partially ordered set. The Fräıssé limit U of K, is known as the
random partial order. The following is an algebraic characterisation (of the isomorphism type) of the random
partial order U = (U,≤) (see [10]).



1. If Z is a finite anti-chain of U and X and Y partition Z then there exists an element z ∈ U such that for
every x ∈ X, z > x and for every y ∈ Y , element z is not comparable with y.

2. If Z is a finite chain of U with least element x and largest element y then there exists an element z ∈ U such
that z > x and z < y and z is not comparable with every v ∈ X \ {x, y}.

Example 4.9 Let K be the class of all finite Boolean algebras. The Fräıssé limit of K is isomorphic to the atomless
Boolean algebra. This is the Boolean algebra that satisfies the following property. For every non-zero element x
there exists a nonzero y strictly below x (that is y < x). By Theorem 3.4 this Fräıssé limit has no automatic
presentation.

Example 4.10 Let K be the class of all finite Abelian p-groups. The Fräıssé limit of K is isomorphic to G =
Zp∞)ω.

Note that G has no FA-presentation by Theorem 3.8.
Proof The class K has HP, JEP and AP, so the Fräıssé limit exists. To show this Fräıssé limit is isomorphic to
G, by [10, Lemma 7.1.4] it suffices to show that the age of G is K (clear) and that G is weakly homogeneous. To
do so, suppose A ⊆ B are in K. We have to show that each embedding of A into G extends to an embedding of B.
We may assume that |B : A| = p. Since B is a direct product of cyclic groups whose order is a power of p, either
B = A× Zp or there is x ∈ A such that x is not divisible by p in A, and py = x for some y ∈ B. In either case we
can extend the embedding. 2

Below are examples of Fräıssé limits that have automatic presentations.

Example 4.11 The linear order of rational numbers has an automatic presentation. In fact it is straightforward
to check that ({0, 1}? · 1,�lex) is an automatic presentation of (Q,≤).

Example 4.12 Let U = {u | u ∈ {0, 1}? · 1, |u| is even}. The structure ({0, 1}? · 1;�lex, U) is the Fräıssé limit
for the class K of all finite linear orders with one unary predicate.

We now provide some methods for proving non-automaticity of structures. These methods are then applied to
prove that some Fräıssé limits do not have automatic presentation.
Let A be an automatic structure over the alphabet Σ. Recall A≤n = {v ∈ A | |v| ≤ n}. Let Φ(x, y) be a two variable
formula in the language of this structure. We do not exclude that Φ(x, y) has a finite number of parameters from
the domain of the structure. Now for each y ∈ A and n ∈ N we define the following function cΦn,y : A≤n → {0, 1}:

cΦn,y(x) =
{

1 if A |= Φ(x, y);
0 if A |= ¬Φ(x, y).

We may drop the superscript Φ if there is no danger of ambiguity. In the next theorem we count the number of
functions cΦn,y using the fact that A is an automatic structure. We will use this as a criterion for proving that a
given structure is not automatically presentable.

Theorem 4.13 Let A be an automatic structure and Φ(x, y) a first order formula (possibly with parameters) over
the language of A. Then the number of functions cΦn,y is in O(|A≤n|).

Proof Let (Q, ι, ρ, F ) be a deterministic automaton recognising the relation ⊗Φ = {⊗(x, y) | A |= Φ(x, y)}. Fix
n ∈ N. We need to find a constant k such that for all y ∈ A, the number of functions cn,y is at most k|A≤n|. For
y ∈ A define the function Ty : A≤n → Q and the subset Qy of Q as follows. Let ⊗(x, y) be σ1 . . . σk. Then:

Ty(x) =
{

ρ(ι,⊗(x, y)) if k ≤ n;
ρ(ι, σ1 · · ·σn) if k > n.

Thus, Ty(x) is the state resulted by reading the whole input (x, y) if |y| ≤ n, and otherwise Ty(x) is the state
obtained by reading the first n symbols of the input ⊗(x, y). The set Qy is defined in a similar manner as follows.
If k ≤ n then Qy = {ρ(ι,⊗(x, y)) | x ∈ A≤n & ρ(ι,⊗(x, y)) ∈ F}; If k > n then Qy = {s | ρ(s, σn+1 · · ·σk) ∈ F}.



Note that σn+1 · · ·σk = ⊗(ε, z) for some z ∈ Σ∗ in case k > n. We claim that if (Ty1 , Qy1) = (Ty2 , Qy2) then
cn,y1 = cn,y2 . Assume that cn,y1(x) 6= cn,y2(x) for some x ∈ A≤n. So without loss of generality we may assume
that A |= Φ(x, y1) and A |= ¬Φ(x, y2). If Ty1(x) 6= Ty2(x) then we are done. Otherwise there exists a state q
which is in Qy1 but not in Qy2 . This contradicts the assumption that (Ty1 , Qy1) = (Ty2 , Qy2). Thus, the number
of functions of type cn,y is bounded by the number of pairs of type (Ty, Qy).

Recall the set Pn(A) = {v ∈ Σn | ∃z(z ∈ Σ∗ ∧ xz ∈ A)}. If y ∈ A and |y| > n then there exist v and z such that
v is a prefix of y, v ∈ Pn(A) and y = vz. Moreover, Ty = Tv. Therefore, the number of pairs of type (Ty, Qy) is
bounded by (|A≤n| + |Pn(A)|) × 2|Q|. However by Lemma 3.10, |Pn(A)| ∈ O(|A≤n|). So, finally we get that for
n ≥ m, the number of functions of type cn,y is bounded by the number of pairs of type (Ty, Qy) which is bounded
by

(|A≤n|+ |Pn(A)|)× 2|Q| ∈ O(|A≤n|)× 2|Q|.

2

We give several applications of this theorem. First we apply the theorem to random graphs.

Corollary 4.14 (independently [7]) The random graph has no automatic presentation.

Proof Let (A,E) be an automatic presentation of the random graph and let Φ(x, y) be E(x, y). For every
partition X1, X2 of the set A≤n of vertices there exists a vertex y such that for all x1 ∈ X1 and x2 ∈ X2 it holds
that (x1, y) ∈ E and (x2, y) 6∈ E. Hence, for every n, we have 2|A

≤n| number of functions of type cn,y, contradicting
Theorem 4.13. Hence the random graph has no automatic presentation. 2

Corollary 4.15 Let A be a random structure of a signature L, where L contains at least one non-unary symbol.
Then A does not have an automatic presentation.

Proof LetR be a non-unary predicate of L of arity k. Consider the following formula E(x, y) = R(x, y, a1, . . . , ak−2),
where a1, . . . , ak−2 are fixed constants from the domain of A. It is not hard to prove that (A,E) is isomorphic to
the random graph. But if A is automatically presentable then so is the random graph (A,E), hence contradicting
the previous corollary. 2

The next goal is to show that the random Kp-free graph has no automatic presentation. For this one needs to
have a finer analysis than the one for the random graph. Let F = (V,E) be a finite graph. For a vertex v, write
E(v) for the set of vertices adjacent to v. The degree of a vertex is the cardinality of E(v). Write ∆(F) for the
maximum degree over all the vertices of F . Call a subgraph G with no edges an independent graph. Let α(F) be
the number of vertices of a largest independent subgraph of F .
Kp denotes the complete graph on p vertices; that is, there is an edge between every pair of vertices. A graph is
called Kp-free if it has no subgraph isomorphic to Kp.

Lemma 4.16 For every p ≥ 3, there is a polynomial Qp(x) of degree p − 1 so that if F is a finite Kp-free graph
then Qp(α(F)) ≥ |F |.

Proof We first prove that for every finite graph F ,

α(F) ≥ |F |/(∆(F) + 1). (1)

Let G be an independent subgraph of F with a maximal number of vertices. That is, α(F) = |G|. For every d ∈ G
let N(d) = E(d) ∪ {d}, where E(d) is the set of vertices in F adjacent to d. Then since G is maximal, for every
x ∈ F there is some (not necessarily unique) d ∈ G such that x ∈ N(d). Hence F = ∪d∈GN(d). But |N(d)| equals
the degree (in F) of d plus one, and so the largest cardinality amongst the N(d)’s is at most ∆(F) + 1. Hence
|F | ≤ |G| × (∆(F) + 1) as required.
The lemma is proved by induction on p. We will show that Qp(x) = Σp−1

i=1 x
i. For the case p = 3 note that for

every vertex v, the subgraph on domain E(v) is independent. For otherwise if x, y ∈ E(v) were joined by an edge
then the subgraph of F on {x, y, v} is K3. In particular then α(F) ≥ ∆(F). Combining this with Inequality (1),
we get α(F)[α(F) + 1] ≥ |F | as required.
For the inductive step, let F be a Kp-free graph with p > 3. For every vertex v, the set E(v) is Kp−1-free for
otherwise the subgraph of F on E(v) ∪ {v} has a copy of Kp. Applying the induction hypothesis to E(v) we



get that E(v) must have an independent set X so that Qp−1(|X|) ≥ |E(v)|. But X is also independent in F
so Qp−1(α(F)) ≥ ∆(F). Combining this with Inequality 1, we get that α(F)[Qp−1(α(F)) + 1] ≥ |F |. Hence
Qp(α(F)) ≥ |F | as required. 2

Corollary 4.17 For p ≥ 3, the random Kp-free graph is not automatically presentable.

Proof Fix p ≥ 3 and let (D,E) be a copy of the random Kp-free graph. Then for every Kp−1-free subset K ⊂ D≤n

there exists an x ∈ D that is connected to every vertex in K and none in D≤n \K. So let Gn be an independent
subgraph of D≤n so that Qp(|Gn|) ≥ |D≤n| as in the lemma. So letting Φ(x, y) be E(x, y), for a fixed n the
number of functions cn,y as y varies over D is at least 2|Gn| which is not linear in |D≤n|. Hence by Theorem 4.13
the random Kp graph D is not automatically presentable. 2

As the fourth application we prove that the random partial order U does not have an automatic presentation. For
the proof we need the following combinatorial result that connects the size of a finite partial order (B,≤) with the
cardinalities of its chains and anti-chains.

Lemma 4.18 (Dilworth) Let (B,≤) be a finite partial order of cardinality n. Let a be the size of largest anti-
chain in (B,≤) and let c be the size of the largest chain in (B,≤). Then n ≤ ac.

Proof For 1 ≤ i ≤ c define Xi as the set of all elements x such that the size of the largest chain in the subpartial
order (↑ x) = {y ∈ B | x � y} is i. Then the Xi’s partition B. Moreover if a ≺ b and b ∈ Xi then the size of
the largest chain in (↑ a) is > i. Hence each Xi is an anti-chain. Thus B can be partitioned into exactly c many
anti-chains. If a is the size of the largest anti-chain in B then n ≤ ac as required. 2

Corollary 4.19 The random partial order U = (U,≤) has no automatic presentation.

Proof Recall that the random partial order has the following property

1. If Z is a finite anti-chain of U and X and Y partition Z then there exists an element z ∈ U such that for
every x ∈ X, z > x and for every y ∈ Y , element z is not comparable with y.

2. If Z is a finite chain of U with least element x and largest element y then there exists an element z ∈ U such
that z > x and z < y and z is not comparable with every v ∈ X \ {x, y}.

Assume that U has an automatic presentation (A,≤). The formula Φ(x, y) is x ≤ y ∨ y ≤ x. Now let us take A≤n.

Let Z be an anti-chain of A≤n. Consider a subset X of Z. There exists an element y ∈ U such that for every
x ∈ X, y > x and for every x′ 6∈ A≤n \X, element y is not comparable with x′. From this we conclude that

(?) #(functions of type cn,y) ≥ 2|Z|.

Let Z is a finite chain of P with least element v and largest element w then there exists an element y ∈ U such
that y > v and v < w and y is not comparable with x for every x ∈ X. From this we conclude that

(??) #(functions of type cn,y) ≥ |Z|2.

Let X be the largest anti-chain and Y be the largest chain of A≤n with cardinalities a and c, respectively. By
Dilworth Lemma above, (?) and (??) we derive that |A≤n|2 < c2 · a2 which in turn is less than

#(functions of type cn,y) × log2[#(functions of type cn,y)].

This bound clearly contradicts the statement of Theorem 4.13. The corollary is proved. 2



5 The Isomorphism Problem

The results in the previous sections give us hope that one can characterise automatic structures for certain classes of
structures, e.g. Boolean algebras. However, in this section we prove that the isomorphism problem is Σ1

1-complete,
thus showing that the problem is as hard as possible when considering the class of all automatic structures. Then
complexity of the isomorphism problem for automatic structures consists in establishing the complexity of
the set {(A,B) | A and B are automatic structures and A is isomorphic to B}.

Let M be a Turing machine over input alphabet Σ. Its configuration graph C(M) is the set of all configurations
of M, with an edge from c to d if T can move from c to d in a single transition. The following is an easy lemma:

Lemma 5.1 For every Turing machine T the configuration graph C(T ) is automatic. Further, the set of all vertices
with outdegree (indegree) 0 is FA-recognisable.

Definition 5.2 A Turing machine R is reversible if every vertex in C(R) has both indegree and outdegree at
most one.

Now let R be a reversible Turing machine. Consider its configuration space C(R). The machine R can be modified
so that it only halts in an accepting state; so, instead of halting in a rejecting state, it loops forever. Let x be
a configuration of R. Consider the sequence: x = x0, x1, x2, . . . such that (xi, xi+1) ∈ E, where E is the edge
relation of the configuration space. Call this sequence the chain defined by x. We say that x is the base of
chain X. If x does not have a predecessor then the chain defined by x is maximal. Since R is reversible, the
configuration space C(R) is a disjoint union of maximal chains such that each chain is either finite, or isomorphic
to (N, S), or isomorphic to (Z, S), where (x, y) ∈ S iff y = x + 1. It is known that every Turing machine can be
converted into an equivalent reversible Turing machine (see for example [2]). Our next lemma states this fact and
provides some additional structural information about the configuration space of reversible Turing machines:

Lemma 5.3 A deterministic Turing machine can be converted into an equivalent reversible Turing machine R
such that every maximal chain in C(R) is either finite or isomorphic to (N, S).

Denote by N? the set of all finite strings from N. A set T ⊂ N? is a special tree if T is closed downward, namely
xy ∈ T implies x ∈ T , for x, y ∈ N?. We view these special trees as structures of the signature E, where E(x, y) if
and only if y = xz for some z ∈ N. Thus, for every x ∈ N? the set {y | E(x, y)} can be thought as the set of all
immediate successors of x.

A special tree T is recursively enumerable if the set T is the domain of the function computed by a Turing machine.
We will use the following fact from computable model theory [9, Thm 3.2].

Lemma 5.4 The isomorphism problem for recursively enumerable special trees is Σ1
1-complete. In fact, the trees

can be chosen to be subtrees of {2n : n ∈ N}∗.

It is clear from the proof in [9] that the trees obtained are special (namely, subtrees of N?). By a mere change of
notation one obtains subtrees of {2n : n ∈ N}∗.

Lemma 5.5 The special tree N? has an automatic presentation A1.

Proof. Consider the prefix relation ≤p on the set of all binary strings. The tree N? is isomorphic to the automatic
successor tree A1 = ({0, 1}?1 ∪ {λ};E1), where E1 is the set of all pairs (x, y) such that y is the immediate <p-
successor of x. The isomorphism is established via the computable mapping sending n1 . . . nk to 0n11 . . . 0nk1 and
the root to λ.

Define S = {0, 1}?1 ∪ {λ}. From now on we make the following conventions:

1. All special trees we consider will be viewed as subsets of (S,≤p).

2. The set of inputs for all Turing machines considered are strings from S. Each w ∈ S is identified with the
initial configuration starting from w.



3. All Turing machines considered are reversible.

4. The domains of all Turing machines considered are assumed to be downward closed. Thus, the domains of
all Turing machines form recursively enumerable special trees.

Our goal is to transform every recursively enumerable tree T ⊂ S into an automatic structure AR, where R is the
reversible machine with domain T . The idea is to attach computations of R to the initial configurations in S. For
all recursively enumerable trees T1 and T2, T1 and T2 are isomorphic if and only if the automatic structures AR1

and AR2 are isomorphic. To ensure this we also have to attach infinitely many chains of each finite length to the
initial configurations, for in that case the length of a halting computation does not make a difference.

Let R be a reversible Turing machine. A chain is an initial segment of (N, S). Let J be the graph consisting of
infinitely many finite chains of every finite length. We denote by J the set of vertices of J , and the bases of the
chains in J by b1, b2, . . .. The following is not hard to prove:

Lemma 5.6 The graph J has an automatic presentation.

To construct AR, with every w ∈ A1 associate a graph J w defined as follows. The vertex set of J w consists of all
{(w, j) | j ∈ J} and edges between (w, j) and (w, j′) if and only if (j, j′) is an edge in J . Put connecting edges
from w into each (w, bi). Let A2 be the graph consisting of A1 and every J w and the connecting edges. Clearly,
the graph A2 is automatic.

To the set A2 add all the configurations of the Turing machine R and all the edges of the configuration space of
R. Note that each w ∈ S, which is an initial configuration of R is by Convention 2 already in A2. In addition, add
a disjoint automatic copy of the graph J and an automatic copy of infinitely many infinite chains. Call all chains
added at this stage isolated chains. The resulting graph is denoted by AR.

The proof of the following is straightforward and is omitted.

Lemma 5.7 The graph AR is automatic.

We summarise the structure of the graph AR. Firstly, in AR there are infinitely many isolated chains of every
(finite and infinite) length. With each element w in A1 there is an associated structure J w, which consists of
infinitely many chains of every finite length, and no infinite chain. Finally with every initial configuration w
(which is an element of AR and belongs to the infinitely branching tree A1) there is a chain with base w that is
the computation path from the configuration space of Turing machine T . These observations prove the following.

Lemma 5.8 Let w be an initial configuration of AR. Then w is the base of infinitely many chains of every finite
length. Also the Turing machine T halts on w if and only if there is no infinite chain with base w. In case T does
not halt on w there is exactly one infinite chain with base w.

Lemma 5.9 Let T1 and T2 be computable trees which are domains of reversible Turing machines R1 and R2

respectively. Then the trees T1 and T2 are isomorphic if and only if the automatic graphs AR1 and AR2 are
isomorphic.

Proof First note that the domain T of R consists of all w in AR that are initial configurations and are not the
base of an infinite chain. Hence T may be thought of as a subgraph of AR. Now suppose AR1 is isomorphic to
AR2 via the map φ. Note that w is the base of an infinite chain if and only if φ(w) is the base of an infinite chain.
Hence φ is an isomorphism between the trees T1 and T2 viewed as subgraphs of AR1 and AR2 respectively.

Conversely assume T1 and T2 are isomorphic via ψ (as before we may assume that Ti is a subgraph of ARi
).

Consider the sets I1 and I2 of all isolated chains in AR1 and AR2 . There is an isomorphism between I1 and I2,
since both consist of infinitely many chains of every length (finite and infinite), independently of the chains of the
configuration graphs that are not defined by initial configurations. Therefore it suffices to establish an isomorphism
extending ψ on the rest of the structure.

If w ∈ T1 then there is an isomorphism between all the chains with base w and all the chains with base ψ(w).
Indeed each is the base of infinitely many chains of every finite length and no chain of infinite length, independently



of the (possibly different) lengths of the finite computations of R1 on w and R2 on ψ(w). Hence extend ψ from
the chains defined by elements of T1 to the chains defined by elements of T2.

Suppose w ∈ T1 and consider the set S1 of immediate successors of w that are initial configurations but not in T1.
Similarly write S2 for the set of immediate successors of ψ(w) that are initial configurations but not in T2. By the
extra condition in Lemma 5.4 that the trees be subtrees of {2n : n ∈ N}∗, both S1 and S2 are infinite. So we may
extend ψ to those immediate successors by adding a bijection between S1 and S2.

Finally, for any initial configurations v1 ∈ S −T1 and v2 ∈ S −T2, there is an isomorphism between the nodes in S
extending v1 and the ones extending v2. This isomorphism extends to the attached chains (as there is one infinite
chain and infinitely many of each finite length). So we may extend ψ to an isomorphism of AR1 and AR2 . 2

Hence we have reduced the isomorphism problem for recursively enumerable trees to the isomorphism problem for
automatic graphs. The main result now follows.

Theorem 5.10 The isomorphism problem for automatic structures is Σ1
1-complete.
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