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Abstract. One of the major open problems in the field of effective ran-
domness is whether Martin-Löf randomness is the same as Kolmogorov-
Loveland (or KL) randomness, where an infinite binary sequence is KL-
random if there is no computable non-monotonic betting strategy that
succeeds on the sequence in the sense of having an unbounded gain in the
limit while betting successively on bits of the sequence. Our first main
result states that every KL-random sequence has arbitrarily dense, easily
extractable subsequences that are Martin-Löf random. A key lemma in
the proof of this result is that for every effective split of a KL-random se-
quence at least one of the halves is Martin-Löf random. We show that this
splitting property does not characterize KL-randomness by constructing
a sequence that is not even computably random such that every effec-
tive split yields subsequences that are 2-random, hence are in particular
Martin-Löf random.
A sequence X is KL-stochastic if there is no computable non-monotonic
selection rule that selects from X an infinite, biased sequence. Our second
main result asserts that every KL-stochastic sequence has constructive
dimension 1, or equivalently, a sequence cannot be KL-random if it has
infinitely many prefixes that can be compressed by a factor of α < 1 with
respect to prefix-free Kolmogorov complexity. This improves on a result
by Muchnik, who has shown a similar implication where the premise
requires that such compressible prefixes can be found effectively.

1 Introduction

In 1998, Muchnik, Semenov, and Uspensky [11] combined non-monotonic se-
lection rules in the sense of Kolmogorov and Loveland with the concept of
computable betting strategies. The resulting concept of non-monotonic betting
strategies is a generalization of the concept of monotonic betting strategies,
used by Schnorr to define a randomness notion nowadays known as computable
randomness. Schnorr’s motivation behind this randomness concept was his crit-
icism of Martin-Löf randomness [7] as not being a completely effective notion of
randomness, since the sets used in Martin-Löf tests only have to be uniformly
enumerable.



An infinite binary sequence against which no computable non-monotonic bet-
ting strategy succeeds is called Kolmogorov-Loveland random, or KL-random,
for short. Muchnik, Semenov, and Uspensky [11] showed that Martin-Löf ran-
domness implies KL-randomness. Muchnik et al. [11] and others [1] raised the
question whether the two concepts are different. This is now a major open prob-
lem in the area. A proof that both concepts are the same would give a striking
argument against Schnorr’s criticism of Martin-Löf randomness.

Most researchers conjecture the notions are different. However, a result of
Muchnik [11] indicates that KL-randomness is rather close to Martin-Löf ran-
domness.

Recall that it is possible to characterize Martin-Löf randomness as incom-
pressibility with respect to prefix-free Kolmogorov complexity K: A sequence A
is random if and only if there is a constant c such that the K-complexity of the
length n prefix A � n of A is at least n− c. It follows that a sequence A cannot
be Martin-Löf random if there is a function h such that

K(A � h(c)) ≤ h(c)− c for every c. (1)

On the other hand, by the result of Muchnik [11] a sequence A cannot be KL-
random if (1) holds for a computable function h. So, the difference between
Martin-Löf randomness and KL-randomness appears, from this viewpoint, rather
small. Not being Martin-Löf random means that for any given constant bound
there are infinitely many initial segments for which the compressibility exceeds
this bound. If, moreover, we are able to detect such initial segments effectively
(by means of a computable function), then the sequence cannot even be KL-
random.

In this paper we continue the investigations by Muchnik, Semenov, and Us-
pensky, and give additional evidence that KL-randomness behaves similar to
Martin-Löf randomness.

In Section 3 we refine the splitting technique that Muchnik used in order
to obtain the result mentioned above. We show that if A is KL-random and Z
is a computable, infinite and co-infinite set of natural numbers, either the bits
of A whose positions are in Z or the remaining bits form a Martin-Löf random
sequence. In fact both do if A is ∆0

2. Moreover, in that case, for each computable,
nondecreasing, and unbounded function g and almost all n, K(A � n) ≥ n−g(n).

We construct counterexamples that show that two of the implications men-
tioned in the preceding paragraph cannot be extended to equivalences. First,
there is a sequence that is not computably random all whose “parts” in the
sense above (i.e., which can be obtained through a computable splitting) are
Martin-Löf random. Second, there is a sequence A that is not even stochastic
such that for all g as above and almost all n, K(A � n) ≥ n − g(n); moreover,
the sequence A can be chosen to be left-c.e. if viewed as the binary expansion of
a real.

In the last two sections we consider KL-stochasticity. A sequence is KL-
stochastic if there is no computable non-monotonic selection rule that selects
from the given sequence a sequence that is biased in the sense that the frequencies



of 0’s and 1’s do not converge to 1/2. First we give a more direct construction of
a KL-stochastic sequence that is not even weakly 1-random. Next we consider
constructive dimension. Muchnik [11] demonstrates, by an argument similar to
his proof that a sequence A cannot be KL-random if there is a computable
function that satisfies (1), that a sequence A cannot be KL-stochastic if there is
a computable, unbounded function h and a rational α < 1 such that

K(A � h(i)) ≤ αh(i) for every i, (2)

i.e., if we can effectively find arbitrarily long prefixes of A that can be compressed
by a factor of α in the sense that the prefix-free Kolmogorov complexity of the
prefix is at most α times the length of the prefix. Theorem 22 below states that
KL-stochastic sequences have constructive dimension 1. This is equivalent to the
assertion that in the second mentioned result of Muchnik it is not necessary to
require that the function h be computable, i.e., it suffices to require the mere
existence of arbitrarily long prefixes of A that can be compressed by a factor
of α.

In the remainder of the introduction we gather some notation that will be
used throughout the text. Unless explicitly stated otherwise, the term sequence
refers to an infinite binary sequence and a class is a set of sequences. Sequences
are denoted by capital letters like A,B, . . . , R, S, . . . .

We will often deal with generalized joins and splittings. Assume that Z is an
infinite and co-infinite set of natural numbers. The Z-join A0⊕Z A1 of sequences
A0 and A1 is the result of merging the sequences using Z as a guide. Formally,

A0 ⊕Z A1(n) =

{
A0(|Z ∩ {0, . . . , n− 1}|) if Z(n) = 0,

A1(|Z ∩ {0, . . . , n− 1}|) if Z(n) = 1.

On the other hand, given a sequence A and a set Z ⊆ ω one can obtain a new
sequence (string) A�Z by picking the positions that are in Z. Let pZ denote the
principal function of Z, i.e. pZ(n) is the (n + 1)st element of Z (where this is
undefined if no such element exists). Formally,

A�Z (n) = A(pZ(n)), where pZ(n) = µx[|Z ∩ {0, . . . , x}| ≥ n + 1].

If Z is infinite, A �Z will yield a new infinite sequence, otherwise we define
A �Z to be the string of length |Z| extracted from A via Z. Note that this
notation is consistent with the usual notation of initial segments in the sense
that A �n= A �{0,...,n−1}. Observe that A = A0 ⊕Z A1 if and only if A �Z= A1

and A�Z= A0.

Due to space considerations, several proofs are omitted. These proofs can be
found in the full version of this paper [10].

2 Random and stochastic sequences

In this section, we give a brief and informal review of the concepts of effective
randomness and stochasticity that are used in the following, for further details



and formal definitions we refer to the surveys and monographs cited in the
bibliography [11, 1, 5, 9, 19].

Intuitively speaking, a non-monotonic betting strategy defines a process that
place bets on bits of a given sequence X. More precisely, the betting strategy
determines a sequence of mutually distinct places n0, n1, . . . at which it bets
a certain portion of the current capital on the value of the respective bit of X
being 0 or 1. (Note that, by betting none of the capital, the betting strategy may
always choose to “inspect” the next bit only.) The place ni+1 and the bet which
is to be placed depends solely on the previously scanned bits X(n0) through
X(ni). Payoff is fair in the sense that the stake is double in case the guess on
the next bit was correct and is lost otherwise. For a betting strategy b that is
applied with a certain initial capital c, we write dA

b (n) for the capital that has
been accumulated after the first n bets on the bits of a sequence A while betting
according to b; the function db is called the corresponding payoff function or
martingale.

A non-monotonic betting strategy b succeeds on a sequence A if

lim sup
n→∞

dA
b (n) = ∞ .

A sequence A is KL-random if there is no partial computable non-monotonic
betting strategy that succeeds on A. The concept of KL-randomness remains
the same if one uses in its definition computable instead of partial computable
non-monotonic betting strategies [9].

One can modify the concept of a betting strategy in that, instead of specifying
a bet on every next bit to be scanned, the strategy simply determines whether
the next bit should be selected or not. Such a strategy is called a selection rule.
The sequence selected from X is then the sequence of all bits that are selected,
in the order of selection. A sequence X is called stochastic with respect to a
given class of admissible selection rules if no selection rule in the class selects
from X an infinite sequence that is biased in the sense that the frequencies of 0’s
and 1’s do not converge to 1/2. A sequence is Kolmogorov-Loveland stochastic
or KL-stochastic, for short, if the sequence is stochastic with respect to the class
of partial computable non-monotonic selection rules; again, this concept remains
the same if one replaces “partial computable” by “computable”. A sequence is
Mises-Wald-Church stochastic or MWC-stochastic, for short, if the sequence is
stochastic with respect to the class of partial computable monotonic selection
rules.

Furthermore, we consider Martin-Löf random sequences [7]. Let W0,W1, ...
be a standard enumeration of the computably enumerable sets.

Definition 1. A Martin-Löf test is a uniformly computably enumerable sequence
(An : n ∈ ω) of sets of strings such that for every n,

λ ({Y : Y has a prefix in An}) ≤ 2−(n+1),

where λ denotes Lebesgue measure on Cantor space.



A sequence X is covered by a Martin-Löf test (An : n ∈ ω) if for every n the
set An contains a prefix of X. A sequence is Martin-Löf random if it cannot be
covered by any Martin-Löf test.

A Martin-Löf test is called a Schnorr test if the Lebesgue measure of the set
{Y : Y has a prefix in An} is computable in n (in the usual sense that the mea-
sure can be approximated effectively to any given precision strictly larger than 0);
a sequence is called Schnorr-random if it cannot be covered by a Schnorr test.

Remark 2. Let b be a computable non-monotonic betting strategy that on every
sequence scans all places of the sequence. Then there is a monotonic betting
strategy that succeeds on every sequence on which b succeeds. This follows from
results of Buhrman, Melkebeek, Regan, Sivakumar and Strauss [2].

One can use this fact to infer the following proposition.

Proposition 3. The class of computably random sequences is closed under com-
putable permutations of the natural numbers.

3 Splitting properties of KL-random sequences

KL-random sequences bear some properties which make them appear quite
“close” to Martin-Löf random sequences. One of them is a splitting property,
which stresses the importance of non-monotonicity in betting strategies.

Proposition 4. Let Z be a computable, infinite and co-infinite set of natural
numbers, and let A = A0 ⊕Z A1. Then A is KL-random if and only if

A0 is KLA1-random and A1 is KLA0-random. (3)

Theorem 5. Let Z be a computable, infinite and co-infinite set of natural num-
bers. If the sequence A = A0⊕Z A1 is KL-random, then at least one of A0 and A1

is Martin-Löf random.

Proof. Suppose neither A0 nor A1 is Martin-Löf random. Then there are Martin-
Löf tests (U0

n : n ∈ ω) and (U1
n : n ∈ ω) with U i

n = {σi
n,0, σ

i
n,1, . . . }, that cover

A0 and A1, respectively.
Define functions f0, f1 by fi(n) = µk σi

n,k @ Ai. Obviously there must be an
i ∈ {0, 1} such that there are infinitely many m for which fi(m) ≥ f1−i(m). We
define a new Martin-Löf test {Vn} by Vn =

⋃
m>n

⋃fi(m)
k=0 [σ1−i

n,k ]. Then {Vn} is a
Schnorr test relative to the oracle Ai (a SchnorrAi-test) and covers A1−i, so A1−i

is not SchnorrAi-random. Since KL-randomness implies Schnorr-randomness (for
relativized versions, too), it follows that A1−i is not KLAi-random, contradicting
Theorem 4. ut

An interesting consequence of (the relativized form of) Theorem 5 is stated
in Theorem 8; in the proof of this theorem we will use Remark 6, due to van



Lambalgen [20] (also see [4] for a proof). For KL-randomness, the closest one
can presently come to van Lambalgen’s result is Proposition 4. Note the subtle
difference: in the case of Martin-Löf randomness, one merely needs A0 to be
random, not random relative to A1.

Remark 6. Let Z be a computable, infinite and co-infinite set of natural num-
bers. The sequence A = A0 ⊕Z A1 is Martin-Löf random if and only if A0 is
Martin-Löf random and A1 is Martin-Löf random relative to A0. (Furthermore,
this equivalence remains true if we replace Martin-Löf randomness by Martin-Löf
randomness relative to some oracle.)

Definition 7. A set Z has density α if limm→∞
|Z∩{0,...,m−1}|

m = α .

Theorem 8. Let R be a KL-random sequence and let α < 1 be a rational. Then
there is a computable set Z of density at least α such that R �Z is Martin-Löf
random.

Proof. For a start, we fix some notation for successive splits of the natural num-
bers. Let {Nw}w∈{0,1}∗ be a uniformly computable family of sets of natural
numbers such that for all w,

(i) Nε = ω , (ii) Nw = Nw0∪̇Nw1 , (iii) Nw has density
1

2|w|
,

where ∪̇ denotes disjoint union.
By (iii), for any word w the complement Nw of Nw has density 1 − 1/2|w|,

thus it suffices to show that there are words w1 v w2 v . . . such that for all i,

(iv) |wi| = i and (v) Ri = R�Nwi
is Martin-Löf random .

The wi are defined inductively. For a start, observe that by Theorem 5 for r1 = 0
or for r1 = 1 the sequence R �Nr1

is Martin-Löf random; pick r1 such that the
latter is true and let w1 = 1 − r1. For i > 1, let wi be defined as follows.
By Proposition 4 the sequence R �Nwi

is KL-random relative to Ri−1, hence
by (ii) and by a relativized version of Theorem 5, for ri = 0 or for ri = 1 the
sequence R �Nwri

is Martin-Löf random relative to Ri; pick ri such the latter is
true and let wi = w(1− ri).

Now (iv) follows for all i by an easy induction argument, using van Lambal-
gen’s result from Remark 6. ut

The functions fi in the proof of Theorem 5 can be viewed as a modulus for a cer-
tain type of approximation to the sequences under consideration. The technique
of comparing two given moduli can also be applied to other types of moduli,
e.g., to a modulus of convergence of an effectively approximable sequence.

Theorem 9. Let Z be a computable, infinite and co-infinite set of natural num-
bers and let A = A0 ⊕Z A1 be KL-random where A1 is in ∆0

2. Then A0 is
Martin-Löf random.



By applying Theorem 9 to the set Z and its complement, the following Corollary
is immediate.

Corollary 10. Let Z be a computable, infinite and co-infinite set of natural
numbers and let A = A0 ⊕Z A1 be KL-random and ∆0

2. Then A0 and A1 are
both Martin-Löf random.

The next example shows that splitting properties like the one considered in
Corollary 10 do not necessarily imply Martin-Löf randomness.

Theorem 11. There is a sequence A which is not computably random such
that for each computable infinite and co-infinite set V , A�V is 2-random, i.e. is
Martin-Löf random relative to ∅′.

A function g is an order if g is computable, nondecreasing, and unbounded.

Corollary 12. Suppose A is in ∆0
2 and is KL-random. Then for each order g

and almost all n, K(A � n) ≥ n− g(n).

Remark 13. In the full version of this article it will be shown that there is a
left-c.e. real A which is not MWC-stochastic, but satisfies K(A � n) ≥+ n−g(n)
for each order g and almost all n. Thus even for left-c.e. reals, the conclusion of
Corollary 12 is not equivalent to Martin-Löf randomness.

4 Kolmogorov-Loveland Stochasticity

There are two standard techniques for constructing KL-random sequences. The
first one is a probabilistic construction due to van Lambalgen [20]. The second
one is to construct directly a Martin-Löf random sequence, e.g., by diagonalizing
against a universal left-computable martingale. Theorem 14 is demonstrated by a
further technique that allows to construct KL-stochastic sequences with certain
additional properties that could not be achieved by the mentioned standard
methods.

A sequence X is weakly 1-random (also called Kurtz-random) if X is con-
tained in every c.e. open class of uniform measure 1. Note that Schnorr random-
ness implies weak 1-randomness, but not conversely.

Theorem 14. There is a non-empty Π0
1 class P of KL-stochastic sequences

such that no X ∈ P is weakly 1-random.

The proof of Theorem 14 is omitted due to space considerations. By the usual
basis theorems [12], the following corollary is immediate.

Corollary 15. There is a left-c.e., not weakly 1-random KL-stochastic sequence.
There is a low, not weakly 1-random, KL-stochastic sequence. There is a not
weakly 1-random KL-stochastic sequence that is of hyperimmune-free degree.



5 The dimension of KL-stochastic sequences

There exists an interesting connection between the asymptotic complexity of
sequences and Hausdorff dimension. Hausdorff dimension is defined via Hausdorff
measures, and similar to Lebesgue measure, one can define effective versions
of them. This leads to the concept of constructive dimension, first introduced
by Lutz [6], which can equivalently defined in terms of prefix-free Kolmogorov
complexity K.

Theorem 16. The constructive dimension dim1A of a sequence A is given by

dim1 A = lim inf
n→∞

K(A�n)
n

. (4)

Note that C, plain Kolmogorov complexity, and K differ by at most log(|x|),
so in Theorem 16 one can replace K by C. Theorem 16 was proven in the
presented form by Mayordomo [8], but much of it was already implicit in earlier
work by Ryabko [14, 15], Staiger [17, 18], and Cai and Hartmanis [3]. For more
on constructive dimension see Reimann [13].

Muchnik [11] refuted a conjecture by Kolmogorov (who asserted that there
exists a KL-stochastic sequence A such that K(A �n) = O(log n)) by showing
that, if A is KL-stochastic, then lim supn→∞ K(A �n)/n = 1. In the following,
we are going to strengthen this result by showing that dim1 A = 1 for any
KL-stochastic sequence A.

This relates to a result of Ryabko [16], who observed that the probabilistic ar-
gument for the construction of KL-stochastic sequences yields with probability 1
a sequence that has constructive dimension 1.

The proof of Theorem 22 bears some similarities to the proof of Theorem 8,
where it has been shown that any KL-random sequence has arbitrarily dense
subsequences that are Martin-Löf random. We will need the following Proposi-
tion, which is a slightly generalized version of a corresponding result by Muchnik
et al. [11]. The proof of the proposition is omitted.

Proposition 17. For any rational α < 1 there is a natural numbers kα and a
rational εα > 0 such that the following holds. Given an index for a computable
martingale d with initial capital 1, we can effectively find indices for computable
monotonic selection rules s1, . . . , s2kα

such that for all words w where

d(w) ≥ 2(1−α)|w| (5)

there is an index i such that the selection rule si selects from w a finite sequence
of length at least εα|w| such that the ratio of 0’s and the ratio of 1’s in this finite
sequence differ by at least εα.

Definition 18. Let α be a rational. A word w is called α-compressible if K(w) ≤
α|w|.



Remark 19. Given a rational α < 1 and a finite set D of α-compressible words,
we can effectively find an index for a computable martingale d with initial capi-
tal 1 such that for all w ∈ D we have d(w) ≥ 2(1−α)|w|.

For a proof, let dw be the martingale that starts with initial capital 2−α|w| and
plays a doubling strategy along w, i.e., always bets all its capital on the next bit
being the same as the corresponding bit of w; then we have in particular dw(w) =
2(1−α)|w|.

Let d be the sum of the martingales dw over all words w ∈ D, i.e., betting
according to d amounts to playing in parallel all martingales dw where w ∈ D.
Obviously d(v) ≥ dw(v) for all words v and all w ∈ D, so it remains to show that
the initial capital of d does not exceed 1. The latter follows because every w ∈ D
is α-compressible, i.e., can be coded by a prefix-free code of length at most α|w|,
hence the sum of 2−α|w| over all w ∈ D is at most 1.

Lemma 20. Let A = A1 ⊕A2 be KL-stochastic. Then one of the sequences A1

and A2 has constructive dimension 1.

Proof. For a proof by contradiction, assume that the consequence of the lemma
is false, i.e., that there is some rational number α0 < 1 such that A1 and A2

both have constructive dimension of at most α0. Pick rational numbers α1 and α
such that α0 < α1 < α < 1. By Theorem 16, for r = 1, 2, there are arbitrarily
large prefixes w of Ar that are α1-compressible, i.e., K(w) ≤ α1|w|. We argue
next that for any m there are arbitrarily large intervals I with min I = m such
that the restriction w of Ar to I is α-compressible.

Let w0, w1, . . . be an effective enumeration of all α-compressible words w. For
the scope of this proof, say a word w is a subword of X at m if

w = X(m)X(m + 1) . . . X(m + |w| − 1) .

Let εα be the constant from Proposition 17.

Claim 1. For r = 1, 2, the function gr defined by

gr(m) = min{i : wi is a subword of Ar at m and |wi| >
2
ε2

α

m}

is total.

Proof. There are infinitely many α1-compressible prefixes v of Ar. Given any
such prefix of length at least m, let u and w be the words such that v = uw
and |u| = m. Then we have

K(v) ≤+ K(w) + 2 log m ≤ α1|v|+ 2 log m = α|w|
(

α1

α

|v|
|w|

+
2 log m

α|w|

)
,

where the expression in brackets goes to α1/α < 1 when the length of w goes to
infinity. As a consequence, we have K(w) ≤ α|w| for all such words w that are
long enough, hence by assumption on A for any m and t there is a word wi and
an index i as required in the definition of gr(m). ut



Let m0 = 0 and for all t > 0, let

mt+1 = mt + max{|wi| : i ≤ max{g1(mt), g2(mt)}} .

In the following, we assume that there are infinitely many t where

g1(mt) ≤ g2(mt) ; (6)

we omit the essentially identical considerations for the symmetric case where
there are infinitely many t such that g1(mt) ≥ g2(mt). Let

Dt = {w0, w1, . . . , wg2(mt)}

Claim 2. There are infinitely many t such that some word in Dt is a subword
of A1 at mt.

Proof. By definition of g1(mt), the word wg1(mt) is a subword of A1 at mt, where
this word is in Dt for each of the infinitely many t such that g1(mt) is less than
or equal to g2(mt). ut

Claim 3. Given Dt and mt, we can compute an index for a monotonic com-
putable selection rules s(t) that scans only bits of the form

A1(mt), A1(mt + 1), . . . , A1(mt+1 − 1)

of A such that for infinitely many t the selection rule s(t) selects from these bits
a finite sequence of length at least 2mt/εα where the ratios of 0’s and of 1’s in
this finite sequence differ by at least εα.

Proof. By Proposition 17 and Remark 19, from the set Dt we can compute in-
dices for monotonic computable selection rules s1, . . . , s2kα

such that for each w ∈
Dt there is an index i such that the selection rule si selects from w a finite se-
quence of length at least εα|w| such that the ratio of 0’s and 1’s in this finite
sequence differ by at least εα. Any word w ∈ Dt has length of at least 2mt/ε2

t ,
hence the selected finite sequence has length of at least 2mt/εα. Furthermore,
by Claim 2, there are infinitely many t such that some w ∈ Dt is a subword
of A1 at mt, and among the corresponding indices i some index i0 between 1
and 2kα must appear infinitely often. So it suffices to let for any t the selection
rule s(t) be equal to the i0th selection rule from the list of selection rules com-
puted from Dt. ut

Now we construct an non-monotonic computable selection rule s that witnesses
that A is not KL-stochastic. The selection rule s works in stages t = 0, 1, . . . and
scans during stage t the bits of A that correspond to bits of the form

A1(y) and A2(y), where mt ≤ y < mt+1 .

At the beginning of stage t, the value of g2(mt) and the set Dt is computed as
follows. Successively for i = 0, 1, . . . , check whether wi is a subword of A2 at mt

by scanning all the bits

A2(mt), . . . , A2(mt + |wi| − 1)



of A that have not been scanned so far, until eventually the index i equal
to g2(mt) is found, i.e., until we find some minimum i such that wi is a subword
of A2 at mt. Observe that by definition of mt+1, the index i is found while scan-
ning only bits of the form A2(y) where y < mt+1. Next the selection rule s scans
and selects the bits A1(mt), A1(mt + 1), . . . according to the selection rule si0

as in Claim 3; recall that this selection rule can be computed from Dt. Finally,
stage t is concluded by computing mt+1 from g1(t) and g2(t), where g1(t) is
obtained like g2(t), i.e., in particular, the computation of mt+1 only requires to
scan bits of the form Ar(y) where y < mt+1.

By Claim 2 there are infinitely many t such that some w ∈ Dt is a subword
of A1 at mt. By choice of s(t) and definition of s, for each such t the selection
rule s selects during stage t a finite sequence of length at least 2mt/εα where the
ratios of 0’s and 1’s in this finite sequence differ by at least εα. Consequently,
the at most mt bits of A that might have been selected by s before stage t are at
most a fraction of εα/2 of the bits selected during stage t, hence with respect to
all the bits selected up to stage t the ratios of 0’s and 1’s differ by at least εα/2.
This contradicts the fact that A is KL-stochastic, hence our assumption that A1

and A2 both have constructive dimension strictly less than 1 is wrong. ut

Lemma 21. If Z ⊆ ω is computable, infinite, co-infinite, with density δ = δZ .
Then it holds for any sequences A,B,

dim1 B ⊕Z A ≥ δ dim1 A + (1− δ) dimA
1 B. (7)

The proof of Lemma 21 is omitted due to space considerations.

Theorem 22. If R is KL-stochastic, then dim1 R = 1.

Proof. The proof is rather similar to the proof of Theorem 8, in particular, we
use the notation Nw from there. It suffices to show that there are words w1 v
w2 v . . . such that for all i, we have |wi| = i and

dim1 Ri = 1 , where Ri = R�Nwi
;

the theorem then follows by Lemma 21 and because for any word w, the set Nw

has density 1− 1/2|w|.
The wi are defined inductively. For a start, observe that by Lemma 20 for r1 =

0 or for r1 = 1 the sequence R �Nr
has constructive dimension 1; pick r1 such

that the latter is true and let w1 = 1− r1. For i > 1, let wi be defined as follows.
By an argument similar to the proof of Proposition 4, the sequence R�Nw

is KL-
stochastic relative to Ri−1, hence by a relativized version of Lemma 20, for ri = 0
or for ri = 1 the sequence R �Nwr has constructive dimension 1 relative to Rw;
pick ri such the latter is true and let wi = w(1− ri).

It remains to show by induction on i that all the sequences Ri have construc-
tive dimension 1. For i = 1, this is true by construction, while the induction step
follows according to the choice of the wi and due to Lemma 21 by an argument
similar to the corresponding part of the proof of Theorem 8; details are left to
the reader. ut
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