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Abstract
An infinite binary sequence X is Kolmogorov-Loveland (or KL)

random if there is no computable non-monotonic betting strategy that
succeeds on X in the sense of having an unbounded gain in the limit
while betting successively on bits of X. A sequence X is KL-stochastic
if there is no computable non-monotonic selection rule that selects
from X an infinite, biased sequence.

One of the major open problems in the field of effective randomness
is whether Martin-Löf randomness is the same as KL-randomness.
Our first main result states that KL-random sequences are close to
Martin-Löf random sequences in so far as every KL-random sequence
has arbitrarily dense subsequences that are Martin-Löf random. A
key lemma in the proof of this result is that for every effective split
of a KL-random sequence at least one of the halves is Martin-Löf
random. However, this splitting property does not characterize KL-
randomness; we construct a sequence that is not even computably
random such that every effective split yields two subsequences that
are 2-random. Furthermore, we show for any KL-random sequence A
that is computable in the halting problem that, first, for any effective
split of A both halves are Martin-Löf random and, second, for any
computable, nondecreasing, and unbounded function g and almost
all n, the prefix of A of length n has prefix-free Kolmogorov complexity
at least n−g(n). Again, the latter property does not characterize KL-
randomness, even when restricted to left-r.e. sequences; we construct
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a left-r.e. sequence that has this property but is not KL-stochastic, in
fact, is not even Mises-Wald-Church stochastic.

Turning our attention to KL-stochasticity, we construct a non-
empty Π0

1 class of KL-stochastic sequences that are not weakly 1-
random; by the usual basis theorems we obtain such sequences that
in addition are left-r.e., are low, or are of hyperimmune-free degree.

Our second main result asserts that every KL-stochastic sequence
has effective dimension 1, or equivalently, a sequence cannot be KL-
stochastic if it has infinitely many prefixes that can be compressed by
a factor of α < 1. This improves on a result by Muchnik, who has
shown that were they to exist, such compressible prefixes could not
be found effectively.

1 Introduction

The major criticism brought forward against the notion of Martin-Löf ran-
domness is that, while it captures almost all important probabilistic laws, it
is not completely intuitive, since it is not characterized by computable mar-
tingales but by recursively enumerable ones (or by an equivalent r.e. test
notion).

This point was issued first by Schnorr [26, 27], who asserted that Martin-
Löf randomness was too strong to be regarded as an effective notion of ran-
domness. He proposed two alternatives, one defined via coverings with mea-
sures which are computable real numbers (not merely left-r.e.), leading to
the concept today known as Schnorr randomness [27]. The other concept
is based on the unpredictability paradigm; it demands that no computable
betting strategy should win against a random sequence. This notion is com-
monly referred to as computable randomness [27].

If one is interested in obtaining stronger notions of randomness, closer to
Martin-Löf randomness, without abandoning Schnorr’s paradigm, one might
stay with computable betting strategies and think of more general ways those
strategies could be allowed to bet. One possibility is to remove the require-
ment that the betting strategy must bet on a given sequence in an order that
is monotonic on the prefixes of that sequence, that is, the strategy itself deter-
mines which place of the sequence it wants to bet against next. The resulting
concept of non-monotonic betting strategies is a generalization of the concept
of monotonic betting strategies. An infinite binary sequence against which no
computable non-monotonic betting strategy succeeds is called Kolmogorov-
Loveland random, or KL-random, for short. The concept is named after Kol-
mogorov [9] and Loveland [14], who studied non-monotonic selection rules to
define accordant stochasticity concepts, which we will describe later.
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The concept of KL-randomness is robust in so far as it remains the same
no matter whether one defines it in terms of computable or partial com-
putable non-monotonic betting strategies [18]; in terms of the latter, the
concept has been introduced by Muchnik, Semenov, and Uspensky [20] in
1998. They showed that Martin-Löf randomness implies KL-randomness,
but it is not known whether the two concepts are different. This question
was raised by Muchnik, Semenov, and Uspensky [20] and by Ambos-Spies
and Kučera [1]. It is still a major open problem in the area. A proof that
both concepts are the same would give a striking argument against Schnorr’s
criticism of Martin-Löf randomness.

Most researchers conjecture that the notions are different. However, a re-
sult of Muchnik [20] indicates that KL-randomness is rather close to Martin-
Löf randomness.

Recall that it is possible to characterize Martin-Löf randomness as incom-
pressibility with respect to prefix-free Kolmogorov complexity K: A sequence
A is Martin-Löf random if and only if there is a constant c such that for all n
the prefix-free Kolmogorov complexity of the length n prefix A �n of A is at
least n − c. It follows that a sequence A cannot be Martin-Löf random if
there is a function h such that

K(A�h(c)) ≤ h(c)− c for every c. (1)

On the other hand, by the result of Muchnik [20] a sequence A cannot be
KL-random if (1) holds for a computable function h. So, the difference be-
tween Martin-Löf randomness and KL-randomness appears, from this view-
point, rather small. Not being Martin-Löf random means that for any given
constant bound there are infinitely many initial segments for which the com-
pressibility exceeds this bound. If, moreover, we are able to detect such initial
segments efficiently (by means of a computable function), then the sequence
cannot even be KL-random.

In this paper we continue the investigations by Muchnik, Semenov, and
Uspensky, and give additional evidence that KL-randomness is very close to
Martin-Löf randomness.

In Section 4 we refine a splitting technique that Muchnik used in order
to obtain the result mentioned above. We show the following: if A is KL-
random and Z is a computable, infinite and co-infinite set of natural numbers,
either the bits of A whose positions are in Z or the remaining bits form a
Martin-Löf random sequence. In fact, both do if A is ∆0

2. Moreover, in that
case, for each computable, nondecreasing and unbounded function g it holds
that K(A�n) ≥ n− g(n) for all but finitely many n.

In Section 5 we construct counterexamples that show that two of the
implications mentioned in the preceding paragraph cannot be extended to
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equivalences, i.e. they are not sufficient conditions for KL-randomness (let
alone Martin-Löf randomness). First, there is a sequence that is not com-
putably random but all whose “parts” in the sense above (i.e., which can be
obtained through a computable splitting) are Martin-Löf random. Second,
there is a sequence A that is not even MWC-stochastic such that for all g as
above and almost all n, K(A �n) ≥ n − g(n); moreover, the sequence A can
be chosen to be left-r.e. if viewed as the binary expansion of a real.

In the last two sections we consider KL-stochasticity. A sequence is KL-
stochastic if there is no computable non-monotonic selection rule that selects
from the given sequence a sequence that is biased in the sense that the
frequencies of 0’s and 1’s do not converge to 1/2. First we describe a method
for the construction of KL-stochastic sequences, which yields KL-stochastic
sequences that are not weakly 1-random with additional properties such as
being left-r.e., being low, or being of hyperimmume-free degree. Next we
consider effective dimension. Muchnik [20, 31] demonstrates, by an argument
similar to the proof that a sequence A cannot be KL-random if there is a
computable function that satisfies (1), that a sequence A cannot be KL-
stochastic if there is a computable, unbounded function h and a rational
α < 1 such that

K(A�h(i)) ≤ αh(i) for every i, (2)

i.e., if we can effectively find arbitrarily long prefixes of A that can be com-
pressed by a factor of α. Theorem 41 below states that KL-stochastic se-
quences have effective dimension 1. This is equivalent to the fact that in the
second mentioned result of Muchnik it is not necessary to require that the
function h be computable, i.e., it suffices to require the mere existence of
arbitrarily long prefixes of A that can be compressed by a factor of α.

In the remainder of the introduction we gather some notation that will
be used throughout the text. Unless explicitly stated otherwise, the term
sequence refers to an infinite binary sequence and a class is a set of sequences.
A sequence S can be viewed as mapping i 7→ S(i) from ω to {0, 1}, and
accordingly we have S = S(0)S(1) . . .. The term bit i of S refers to S(i), the
(i + 1)st bit of the sequence S. Occasionally we identify a sequence S with
the subset {i : S(i) = 1} of the natural numbers ω.

The initial segment of length n, S �n, of a sequence S is the string of
length n corresponding to the first n bits of S. Given two binary strings
v, w, v is called a prefix of w, v v w for short, if there exists a string x such
that v∧x = w. If v v w and v 6= w, we will write v @ w. The same relation
can be defined between strings and infinite sequences in an obvious way.
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The plain and the prefix-free Kolmogorov complexity of a word w are
denoted by C(w) and by K(w), respectively. For definitions and properties
of Kolmogorov complexity we refer to the book by Li and Vitányi [11].

For a word u let [u] denote the class of all sequences that have u as a
prefix, and for a set of words U write [U ] for the union of the classes [u] over
all u ∈ U .

We will often deal with generalized joins and splittings. Assume that Z
is an infinite and co-infinite set of natural numbers. The Z-join A0 ⊕Z A1

of sequences A0 and A1 is the result of merging the sequences using Z as a
guide. Formally,

A0 ⊕Z A1(n) =

{
A0(|Z ∩ {0, . . . , n− 1}|) if Z(n) = 0,

A1(|Z ∩ {0, . . . , n− 1}|) if Z(n) = 1.

On the other hand, given a sequence A and a set Z ⊆ ω one can obtain a
new sequence (word) A �Z by picking the positions that are in Z. Let pZ

denote the principal function of Z, i.e. pZ(n) is the (n + 1)st element of Z
(where this is undefined if no such element exists). Formally,

A�Z (n) = A(pZ(n)), where pZ(n) = µx[|Z ∩ {0, . . . , x}| ≥ n + 1].

If Z is infinite, A �Z will yield a new infinite sequence, otherwise we define
A �Z to be the word of length |Z| extracted from A via Z. Note that this
notation is consistent with the usual notation of initial segments in the sense
that A�n= A�{0,...,n−1}. Observe that A = A0 ⊕Z A1 if and only if A�Z= A1

and A�Z= A0.
For functions f, g, the notation f(n) ≤+ g(n) means that there exists a

constant c such that for all n, f(n) ≤ g(n) + c.

2 Non-monotonic Betting Strategies

Intuitively speaking, a non-monotonic betting strategy defines a process that
places bets on bits of a given sequence X ∈ 2ω. More precisely, the betting
strategy determines a sequence of mutually distinct places n0, n1, . . . at which
it bets a certain portion of the current capital on the value of the respective
bit of X being 0 or 1. (Note that, by betting none of the capital, the betting
strategy may always choose to “inspect” the next bit only.) The place ni+1

and the bet which is to be placed depends solely on the previously scanned
bits X(n0) through X(ni).

As a formal definition is somewhat tedious, we present it in a sequence
of definitions.
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1 Definition. A finite assignment (f.a.) is a sequence

x = (r0, a0) . . . (rn−1, an−1) ∈ (ω × {0, 1})∗

of pairs of natural numbers and bits. The set of all finite assignments is
denoted by FA.

Finite assignments can be thought of as specifying partial values of an
infinite binary sequence X = X(0) X(1) X(2) . . . , in the sense that X(ri) =
ai for i < n. If this is the case for some f.a. x, we write x @ X. Given
an f.a. x = (r0, a0) . . . (rn−1, an−1), the domain of x, dom(x) for short, is the
set {r0, . . . , rn−1}; note that a f.a. induces a partial function from ω to {0, 1}
with domain dom(x).

When betting, the player will successively gain more and more informa-
tion on the sequence he bets against. Depending on his current knowledge
of the sequence, he will determine the next place to bet on. We call the
function which does this a scan rule.

2 Definition. A scan rule is a partial function s : FA → ω such that

(∀w ∈ FA) [s(w) 6∈ dom(w)]. (3)

Condition (3) ensures that no place is scanned (and bet on) twice. A non-
monotonic betting strategy consists of a scan rule and in addition endows
each place selected with a bet.

3 Definition. A stake function is a partial function from FA to [0, 2]. A
non-monotonic betting strategy is a pair b = (s, q) which consists of a scan
rule s and a stake function q.

Intuitively, given a f.a. x @ X, the strategy picks s(x) to be the next
place to bet on. If q(x) < 1 it bets that X(s(x)) = 1, if q(x) > 1, it bets
that X(s(x)) = 0, and if q(x) = 1, the strategy refrains from making a bet.

Note at this point that it is not really necessary to define a non-monotonic
betting strategy on finite assignments. It is sufficient to give a binary word
w ∈ 2<ω representing the values a0, . . . , an−1 of an f.a. If the sequence was
obtained by a scan rule s, the places selected can be recovered completely
from this information. Therefore, it suffices to consider betting strategies
b : 2<ω → ω × [0, 2] which satisfy condition (3) for the scan rule that is
induced by keeping track of the first component of the given betting strategy.
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2.1 Running a betting strategy on a sequence

We now describe the game that takes place when a non-monotonic betting
strategy is applied to an infinite binary sequence. Formally, this induces a
functional which maps sequences (or even assignments) to assignments (finite
or infinite). So, in the following, assume X is a sequence and b = (s, q) is a
non-monotonic betting strategy.

The most important partial function oX
b yields the f.a. obtained so far.

This only depends on the scan rule s, and, of course, the bits of the sequence
X, and is defined as follows: Let oX

b (0) = ε, and, if xn = oX
b (n) is defined,

let
oX

b (n + 1) = xn
∧ (s(xn), X(s(xn))),

if s(xn) is defined, while oX
b (n + 1) is undefined otherwise.

Formally, the payoff described above is then given by a partial function cX
b

where

cX
b (n + 1) =

{
q(oX

b (n)), if X(s(oX
b (n))) = 0,

2− q(oX
b (n)), if X(s(oX

b (n))) = 1.

For given initial capital db(ε), the partial capital function dX
b is now easily

described:

dX
b (n) = db(ε)

n∏
i=1

cX
b (i). (4)

Finally, we can define the randomness notion induced by non-monotonic
betting strategies.

4 Definition. (1) A non-monotonic betting strategy b succeeds on a se-
quence A if

lim sup
n→∞

dA
b (n) = ∞ .

(2) A subclass C of 2ω is a KL-nullset if there is a partial computable non-
monotonic betting strategy that succeeds on all A ∈ C.

(3) A sequence A is KL-random if there is no computable non-monotonic
betting strategy that succeeds on A.

The concept of KL-randomness remains the same if one uses in its defini-
tion partial computable instead of computable non-monotonic betting strate-
gies [18].
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2.2 Further notions of randomness

In a setting of monotonic betting strategies it does matter whether random-
ness is defined with respect to computable or partial computable betting
strategies [18]; accordingly a sequence is called computably random and par-
tial computably random if there is no computable or partial computable,
respectively, monotonic betting strategy that succeeds on the sequence. For
monotonic betting strategies, the f.a. obtained so far is always a prefix of the
given sequence and often we write for example db(X �n) instead of dX

b (n).
For a monotonic betting strategy b, the function db satisfies for all words w
the following fairness condition

db(w) =
db(w0) + db(w1)

2
. (5)

A function d from words to reals such that (5) with d in place of db holds
for all words w will be called a martingale. A pair of a monotonic betting
strategy and an initial capital determines a martingale and, conversely, any
martingale determines an initial capital and a monotonic betting strategy.
Accordingly, we will extend concepts defined for betting strategies to the
corresponding martingales and vice versa and occasionally we will specify
betting strategies by giving the corresponding martingale.

Furthermore, we consider Martin-Löf random sequences [15]. Let W0, W1,
. . . be a standard enumeration of the recursively enumerable sets. Recall that
a sequence (An : n ≥ 1) of sets is called uniformly recursively enumerable if
there is a computable function g such that for all n ≥ 1 we have An = Wg(n).
Recall further that the Lebesgue measure λ on Cantor space is obtained by
determining the bits of a sequence by independent tosses of a fair coin, i.e. it
is equivalent to the (1/2, 1/2)-Bernoulli measure, i.e., the uniform measure
on Cantor space.

5 Definition. A Martin-Löf test is a uniformly recursively enumerable se-
quence (An : n ∈ ω) of sets of words such that for every n,

λ ([An]) ≤ 1

2n+1
. (6)

A sequence X is covered by a sequence (An : n ∈ ω) of sets of words if for
every n the class [An] contains X. A sequence is Martin-Löf random if it
cannot be covered by any Martin-Löf test.

A Martin-Löf test is called a Schnorr test if the measure on the left-hand
side of (6) is computable in n (in the usual sense that the measure can
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be approximated effectively to any given precision strictly larger than 0); a
sequence is called Schnorr-random if it cannot be covered by a Schnorr test.

A non-monotonic selection rule is a pair (s, c) of a scan rule s and a partial
function c : FA → {0, 1}. A selection rule is applied to a given sequence X
in the same way as a betting strategy, except that instead of specifying
a bet on every next bit to be scanned, the function c simply determines
whether the next bit should be selected (c(x) = 1) or not (c(x) = 0). The
sequence selected from X by (s, c) is then the sequence of all bits that are
selected, in the order of selection. A sequence X is called stochastic with
respect to a given class of admissible selection rules if no selection rule in the
class selects from X an infinite sequence that is biased in the sense that the
frequencies of 0’s and 1’s do not converge to 1/2. A sequence is Kolmogorov-
Loveland stochastic or KL-stochastic, for short, if the sequence is stochastic
with respect to the class of computable non-monotonic selection rules. Like
for KL-randomness, it can be shown that the notion of KL-stochasticity
remains the same if we allow partial computable non-monotonic selection
rules [18]. A sequence is Mises-Wald-Church stochastic or MWC-stochastic,
for short, if the sequence is stochastic with respect to the class of partial
computable monotonic selection rules.

3 Basic results on non-monotonic random-

ness

This section gives some basic results that illustrate how non-monotonic bet-
ting strategies work.

Non-monotonic betting strategies exhibit a behavior quite different from
other randomness concepts when studying the combined capabilities of two
or more strategies. More precisely, the classes that can be covered by com-
putable or partial computable non-monotonic betting strategies are not closed
under union; the latter can be seen by considering the class of all r.e. sets.

6 Proposition. No partial computable non-monotonic betting strategy can
succeed on all r.e. sets.

Proof. Let b = (s, q) be a partial computable non-monotonic betting strat-
egy. We show that there exists a r.e. set W such that b does not succeed
on W . For this purpose, we compute a sequence (xn) of finite assignments,
xn = (r0, a0) . . . (rn−1, an−1). Start with x0 = ε, and set rn+1 = s(xn) and

an+1 =

{
1, if q(xn) ≥ 1,

0, if q(xn) < 1.
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Enumerate rn+1 into W if an+1 = 1. (If b(xn) is undefined at some stage,
the enumeration process will get stuck here as well and the resulting set W
will be finite.) Obviously, W is defined in a way such that b does not win a
single bet against it, hence, in particular, does not succeed on W . �

The following proposition contrasts Proposition 6.

7 Proposition. There exist computable non-monotonic betting strategies
b0 and b1 such that for every r.e. set W , at least one of b0 and b1 will succeed
on W .

Proof. Define b0 = (s0, q0) to be the following simple betting strategy which
is meant to be applied with initial capital 1. Let the stake function q0 be
constant with value 5/3, i.e., always exactly 2/3 of the current capital are
bet on the next bit being 0. Let s0(ε) = 0 and for all xn 6= ε let s0(xn) =
1 + max dom xn, i.e, in particular, for xn = (0, a0) . . . (n − 1, an−1) we have
s0(xn) = n. Hence, b0 is a monotonic betting strategy that always bets 2/3
of its current capital on the next bit being 0. An easy calculation shows
that this betting strategy succeeds in particular on all sequences A such that
there are infinitely many prefixes of A where less than 1/4 of the bits in the
prefix are equal to 1.

To define b1, fix a partition I0, I1, . . . of the natural numbers into con-
secutive, pairwise disjoint intervals Ik such that |Ik+1| ≥ 5|Ik| and for every
natural number e let

De =
⋃
j∈ω

I<e,j> ,

where < ., . > is the usual effective pairing function. By the discussion in
the preceding paragraph, b0 succeeds on any set that has a finite intersec-
tion with any of the sets De, hence it suffices to construct a non-monotonic
betting strategy b1 = (s1, q1) that succeeds on all sets We that have an in-
finite intersection with De. Fix an effective enumeration (e1, z1), (e2, z2), . . .
without repetitions of all pairs (e, z) where z ∈ We ∩ De. Divide the cap-
ital function dX

b1
into infinitely many parts dX

e , where it will always hold
that the dX

e (n) sum up to dX
b1

(n). Start with dX
e (0) = 2−e−1, i.e., for every

number e reserve a share of 2−e−1 of the initial capital 1; then, given a f.a.
xn = (r0, a0) . . . (rn−1, an−1), let

s1(xn) = zn and q1(xn) = 1−
dX

en
(n)

dX
b1

(n)
,

hence betting all the capital obtained by dX
en

so far on the outcome that the
znth position in the infinite sequence revealed during the application of the
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strategy is 1. Then b1 succeeds on all sets We where We ∩ De is infinite
because for any number in the latter set the capital dWe

e is doubled. �

We can immediately deduce that KL-nullsets are not closed under finite
union.

8 Proposition. The KL-nullsets are not closed under finite union, that is,
if there are partial computable non-monotonic betting strategies b and b′

that succeed on classes X ⊆ 2ω and Y ⊆ 2ω, respectively, then there is
not necessarily a partial computable non-monotonic betting strategy that
succeeds on X ∪ Y .

Proposition 7 also is immediate from the proof of the first mentioned re-
sult by Muchnik [20]. This result goes beyond the fact that for any given
computable, unbounded function h the sequences A that satisfy (1) cannot be
KL-random. Indeed, two partial computable non-monotonic betting strate-
gies are given such that any such sequence is covered by one of them. These
non-monotonic betting strategies can be transformed into equivalent total
ones by an argument similar to the proof that the concepts of KL-randomness
with respect to partial and total computable non-monotonic betting strate-
gies are the same. But for any r.e. set W , the length n prefix of W can
be coded by at most log n bits, hence there is a function h as required that
works for all r.e. sets.

9 Remark. Let b be a computable non-monotonic betting strategy that on
every sequence scans all places of the sequence. Then there is a monotonic
betting strategy that succeeds on every sequence on which b succeeds.

For a proof, observe that by compactness of Cantor space there is a com-
putable function t such that for every sequence X and all n the betting
strategy b, when applied to X, uses at most t(n) computation steps be-
fore scanning the bit X(n). The assertion then is immediate by a result of
Buhrman, van Melkebeek, Regan, Sivakumar and Strauss [4], who show that
for any non-monotonic betting strategy b where there is such a computable
function t, there is an equivalent computable monotonic betting strategy that
succeeds on all the sequences on which b succeeds.

10 Proposition. The class of computably random sequences is closed under
computable permutations of the natural numbers.

Proof. Assume that there were a computably random sequence X that loses
this property after permuting its bits according to a computable permuta-
tion, i.e., there is a computable monotonic betting strategy b that succeeds
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on the permuted sequence. By composing the computable inverse of the
given permutation with b we obtain a computable non-monotonic betting
strategy b′ that succeeds on X, where b′ scans all places of every sequence.
Hence by Remark 9 there is a computable monotonic strategy that succeeds
on X, thus contradicting our assumption on X. �

4 Splitting properties of KL-random sequences

Proposition 8 suggests that KL-nullsets behave very differently from Martin-
Löf nullsets, which are all covered by a universal Martin-Löf test (and hence
are closed under finite unions). On the other hand, KL-random sequences
exhibit some properties which makes them appear quite “close” to Martin-
Löf random sequences.

For the splitting property of KL-random sequences stated in Proposi-
tion 11 it is essential that the considered martingales are non-monotonic; in
Proposition 13 it is shown that a corresponding assertion for computably
random sequences is false.

11 Proposition. Let Z be a computable, infinite and co-infinite set of nat-
ural numbers, and let A = A0 ⊕Z A1. Then A is KL-random if and only if

A0 is KLA1-random and A1 is KLA0-random. (7)

Proof. First assume that A is not KL-random and let b be a computable
nonmonotonic betting strategy that succeeds on A. According to (4) the
values of the gained capital dA

b (n) are given by multiplying the factors cA
b (i),

and when splitting each of these products into two subproducts corresponding
to the bets on places in Z and Z, respectively, then in case dA

b is unbounded
at least one of these two subproducts must be unbounded. So the bets of
places in Z or in the complement of Z alone must result in an unbounded
gain. Accordingly there is a computable nonmonotonic betting strategy that
succeeds on A by scanning exactly the same bits in the same order as b, while
betting only on the bits in either the Z part or Z part of A, which implies
that (7) is false.

Next suppose that a non-monotonic betting strategy bA1 computable in
A1 succeeds on A0. We devise a new computable non-monotonic betting
strategy which succeeds on A. Of course, the idea is as follows: Scan the
Z-positions of A (corresponding to A1) until we find an initial segment of
A1 which allows to compute a new value of bA1 . Consequently, bet on A0

according to bA1 .
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Formally, given an f.a. xn, split it into two sub-f.a. x0
n and x1

n, where
(rk, ak) is a part of xi

n if and only if Z(rk) = i. Now define

b(xn) =

{
bx1

n(x0
n) if bx1

n(x0
n) ↓ in |x1

n| steps,

(min dom x1
n ∩ Z, 1) otherwise.

This completes the proof. �

This rather simple observation stated in Proposition 11 has some in-
teresting consequences. One is that splitting a KL-random sequence by a
computable set yields at least one part that is Martin-Löf random.

12 Theorem. Let Z be a computable, infinite and co-infinite set of natural
numbers. If the sequence A = A0 ⊕Z A1 is KL-random, then at least one of
A0 and A1 is Martin-Löf random.

Proof. Suppose neither A0 nor A1 is Martin-Löf random. Then there are
Martin-Löf tests (U0

n : n ∈ ω) and (U1
n : n ∈ ω) with U i

n = {ui
n,0, u

i
n,1, . . . },

such that for i = 0, 1,

Ai ∈
⋂
n∈ω

⋃
k∈ω

[ui
n,k].

Define functions f0, f1 by fi(n) = min{k ∈ ω : ui
n,k @ Ai}. Obviously the

following must hold:

(∃i) (
∞
∃m) [fi(m) ≥ f1−i(m)].

We define a new Martin-Löf test (Vn) by

Vn =
⋃

m>n

fi(m)⋃
k=0

[u1−i
n,k ].

Then {Vn} is a Schnorr test relative to the oracle Ai (a SchnorrAi-test) and
covers A1−i, so A1−i is not SchnorrAi-random. Since KL-randomness implies
Schnorr-randomness (for relativized versions, too), it follows that A1−i is not
KLAi-random, contradicting Theorem 11. �

We use the same method to give an example of a computably random
sequence where relative randomness of parts, in the sense of Proposition 11,
fails. Here Z is the set of even numbers, and we write A ⊕ B instead of
A⊕Z B. The same example works for Schnorr randomness.
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13 Proposition. There is a computably random (and hence Schnorr random)
sequence A = A0⊕A1 such that for some i ∈ {0, 1}, Ai is not Schnorr random
relative to A1−i.

Proof. One can construct a computably random sequence A = A0⊕A1 such
that, for each n, K(A �n) ≤+ n/3 [10, 17]. Then, for i = 0 and for i = 1,
K(Ai �n) ≤+ 2n/3, hence by Schnorr’s characterization of Martin-Löf ran-
domness [11], neither A0 nor A1 are Martin-Löf random. Now the construc-
tion in the proof above shows that for some i ∈ {0, 1}, Ai is not Schnorr
random relative to A1−i. �

14 Remark. Let Z be a computable, infinite and co-infinite set of natural
numbers. If the sequence A = A0 ⊕Z A1 is KL-random relative to some
oracle X, then at least one of A0 and A1 is Martin-Löf random relative to X.

For a proof it suffices to observe that the proof of Theorem 12 relativizes.

An interesting consequence of (the relativized form of) Theorem 12 is
stated in Theorem 17; in the proof of this theorem we will use Remark 15,
due to van Lambalgen [32] (also see Downey et al. [7] for a proof).

15 Remark. Let Z be a computable, infinite and co-infinite set of natural
numbers. The sequence A = A0 ⊕Z A1 is Martin-Löf random if and only
if A0 is Martin-Löf random and A1 is Martin-Löf random relative to A0.
(Furthermore, this equivalence remains true if we replace Martin-Löf ran-
domness by Martin-Löf randomness relative to some oracle.)

The closest one can presently come to van Lambalgen’s theorem for KL-
randomness is Proposition 11. Note the subtle difference: in the case of
Martin-Löf randomness, one merely needs A0 to be random, not random
relative to A1.

16 Definition. A set Z has density α if

lim
m→∞

|Z ∩ {0, . . . ,m− 1}|
m

= α . (8)

17 Theorem. Let R be a KL-random sequence and let α < 1 be a rational.
Then there is a computable set Z of density at least α such that R �Z is
Martin-Löf random.

Proof. For a start, we fix some notation for successive splits of the natu-
ral numbers. Let {Nw}w∈{0,1}∗ be a uniformly computable family of sets of
natural numbers such that for all w,

(i) Nε = ω , (ii) Nw = Nw0∪̇Nw1 , (iii) Nw has density
1

2|w|
,
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where ∪̇ denotes disjoint union. For example, we may define

Na0a1...am−1 = {a0 + a1 · 2 + . . . + am−1 · 2m−1 + n · 2m : n ∈ ω} ,

which obviously satisfies (i), (ii) and (iii). By (iii), for any word w the
complement Nw of Nw has density 1 − 1/2|w|, thus it suffices to show that
there are words w1 v w2 v . . . such that for all i,

(iv) |wi| = i and (v) Ri = R�Nwi
is Martin-Löf random .

The wi are defined inductively. For a start, observe that by Theorem 12
for r1 = 0 or for r1 = 1 the sequence R �Nr1

is Martin-Löf random; pick r1

such that the latter is true and let w1 = 1− r1. For i > 1, let wi be defined
as follows. By Proposition 11 the sequence R �Nwi−1

is KL-random relative

to Ri−1, hence by (ii) and by the relativized version of Theorem 12 stated
in Remark 14, for ri = 0 or for ri = 1 the sequence R �Nwi−1ri

is Martin-
Löf random relative to Ri−1; pick ri such the latter is true and let wi =
wi−1(1− ri).

Now (iv) follows for all i by an easy induction argument. We already
have that R1 is Martin-Löf random. Assuming that Ri is Martin-Löf ran-
dom and using van Lambalgen’s result from Remark 15, we obtain that the
sequence Ri+1 is Martin-Löf random since ri+1 is chosen such that R�Nwiri+1

is Martin-Löf random relative to Ri and because for some appropriate com-
putable set Z we have

Ri+1 = R�Nwi+1
= R�Nwi

⊕ZR�Nwiri+1
.

This completes the proof. �

The functions fi in the proof of Theorem 12 can be viewed as a modulus for
a certain type of approximation to the sequences under consideration. The
technique of comparing two given moduli can also be applied to other types
of moduli, e.g., to a modulus of convergence of an effectively approximable
sequence. Recall that a function g majorizes a function m if g(n) ≥ m(n)
for all n.

18 Remark. Let A be a sequence in ∆0
2, i.e., A is the pointwise limit of

uniformly computable sequences A0, A1, . . ., and let

m(n) = min{s : s > n and As �n= A�n} .

Then A is computable relative to any function g that majorizes m.
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For a sketch of proof, let T be the set of all words w such that for all
prefixes u of w there is some s where |u| ≤ s ≤ g(|u|) and u is a prefix of As.
Then T is a tree that is computable in g and the sequence A is an infinite
path of T because g majorizes m. Furthermore, A is the only infinite path
on T because any word u that is not a prefix of A has only finitely many
extensions on T , hence A is computable in g. For details of this standard
argument see for example Odifreddi [21, I, V.5.3 d].

19 Theorem. Let Z be a computable, infinite and co-infinite set of natural
numbers and let A = A0 ⊕Z A1 be KL-random where A1 is in ∆0

2. Then A0

is Martin-Löf random.

Proof. We modify the proof of Theorem 12. For a proof by contradiction,
assume that A0 is not Martin-Löf random and define f0 as in the proof of
Theorem 12. Let f1 be defined similar to the definition of the modulus m
in Remark 18, i.e., f1(n) is the least s > n such that some fixed effective
approximation to A agrees after s steps with A on the first n places. In case f0

majorized f1 at all but finitely many places, the sequence A1 were computable
in a finite variant of f0, hence in f0, and hence in A0, contradicting the
assumption that A is KL-random. Otherwise we argue as before that A0

is not Schnorr-random relative to A1, again contradicting the assumed KL-
randomness of A. �

By applying Theorem 19 to the set Z and its complement, the following
Corollary is immediate.

20 Corollary. Let Z be a computable, infinite and co-infinite set of natural
numbers and let A = A0⊕Z A1 be KL-random and ∆0

2. Then A0 and A1 are
both Martin-Löf random.

A function g is an order if g is computable, nondecreasing, and unbounded.

21 Corollary. Suppose A is in ∆0
2 and is KL-random. Then for each order

g and almost all n, K(A�n) ≥ n− g(n).

Proof. Let Z be a computable co-infinite set that for all n contains at
least n − g(n)/2 of the first n natural numbers. Let A0 and A1 be the
sequences such that A = A0 ⊕Z A1. Then

K(A1 �(n−g(n)/2)) ≤+ K(A�n) ,

because the first n− g(n)/2 bits of A1 can be effectively recovered from the
first n bits of A. So if K(A �n) ≤ n − g(n) for infinitely many n, for each
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such n the prefix of length n− g(n)/2 of A1 would be compressible, up to an
additive constant, by at least g(n)/2 bits, hence A1 would not be Martin-Löf
random. Since A and hence also A0 is in ∆0

2, this contradicts Theorem 19.
�

5 Counterexamples

5.1 Splicing zeroes into Ω

A sequence X can be identified with the real that has the binary expan-
sion 0.X(0)X(1) . . .. A real is called left-r.e. if it the limit of a nondecreas-
ing computable sequence of rationals. First we give an example of a left-r.e.
real A which is not MWC-stochastic, but satisfies K(A �n) ≥+ n − g(n) for
each order g and almost all n. Thus even for left-r.e. reals, the conclusion of
Corollary 21 is not equivalent to KL-randomness.

The idea is to “splice” into Ω a very sparse Π0
1 set of zeros. Recall that Ω

is the halting probability of some fixed universal prefix-free Turing machine
and that the real Ω is left-r.e. and (its binary expansion) is Martin-Löf
random [6].

22 Definition. For sequences X and S, let Splice(X,S) be equal to X ⊕S ∅
(where ∅ is the sequence consisting of zeroes only).

23 Lemma. If X is left-r.e. and B is r.e. then Splice(X,B) is also left-r.e.

This is easy to verify for an r.e. set B, as n entering B means that in
Splice(X, B) one bit 0 is cancelled and certain bits shift to the left.

24 Proposition. If the r.e. set B is co-infinite, then A = Splice(Ω, B) is not
MWC-stochastic.

Proof. We may assume pB(n) ≥ 2n for almost all n, else A violates the
law of large numbers. When n enters B, then a prefix code of n (of length
≤+ 2 log n) enters the domain of the universal machine. So, for some constant
d, if Ω �2 log n+d has settled by stage s, then Bs �n= B �n. Fix n0 such that
2 log n0 + d ≤ n0/2, and pick s0 so that τ = A �n0 has settled by s0. Let
m = n0 − |B ∩ {0, . . . , n0 − 1}|. Note that σ0 = Ω�m has settled by s0.

We define a monotonic partial computable selection rule l which succeeds
on A. We also define a sequence σ0 @ σ1 @ . . . and a sequence of stages
s0 ≤ s1 ≤ . . . such that σi @ Ωsi

. The selection rule l behaves as follows on
reals R extending σ0. Suppose we have defined σi, si and so far have scanned
ρ @ R, |ρ| = k. If k 6∈ Bsi

, then select k (note that, if R = A, then by
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the choice of n0, in fact k 6∈ B). Otherwise, interpret the position k as a
further bit of Ω. Thus, scan this bit h = R(k) without selecting, and let
σi+1 = σih. Let si+1 be the first stage s ≥ si (if any) such that σi+1 @ Ωs.
(If s is not found then L is undefined.) Note that l has the desired effect
on A; in particular, it selects an infinite sequence of positions on which
A is 0. �

25 Proposition. Let R be Martin-Löf random, let B be dense simple, and
let A = Splice(R,B). Then for each order g and almost all n, we have that

K(A�n) ≥+ n− g(n) .

Proof. As we may modify g, it suffices to show (∀n) K(A�n) ≥+ n− g(n)−
2 log g(n) for each order g. Let h(u) = max{n : g(n) ≤ u}. Let S = B. Since
B is dense simple, pS(u) ≥ h(u) for almost all u. Hence there is n0 such
that, for n ≥ n0, pS(g(n)) ≥ n.

Given n ≥ n0, let v = |S ∩ {0, . . . , n− 1}|. So v ≤ g(n). Given A�n and
v, we may enumerate B till v elements < n are left, and then recover R�n−v.
Since R is random and v ≤ g(n),

n− g(n) ≤ n− v ≤+ K(R�n−v) ≤+ K(A�n) + 2 log g(n).

This completes the proof. �

26 Theorem. There is a left-r.e. sequence A that is not MWC-stochastic
such that for each order g and almost all n,

K(A�n) ≥+ n− g(n) .

Proof. By the results of this section, it is immediate that it suffices to
let A = Splice(Ω, B) for some dense simple (and hence r.e.) set B. �

27 Remark. Miller and Yu [19] have shown that A is Martin-Löf random
iff (∀n) C(A �n) ≥+ n − K(n). A similar argument to the previous two
proposition shows that this bound is quite sharp. It is not hard to construct
an r.e. co-infinite set B such that |B ∩ {0, . . . , n − 1}| ≥ n − K(n). (This
can be done, for example, by using a standard movable markers construction
from computability theory.) Now it can be proved that if A = Splice(Ω, B),
then A is a non-stochastic left-r.e. real such that (∀n) C(A�n) ≥+ n−2K(n).
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5.2 A non-random sequence all of whose parts are ran-
dom

Our next example shows that splitting properties like the one considered in
Corollary 20 do not necessarily imply Martin-Löf randomness. Recall from
the introduction that pG(i) is the (i + 1)st element of G and that A �G is
defined by A�G (i) = A(pG(i)).

28 Theorem. There is a sequence A which is not computably random such
that for each computable infinite and co-infinite set V , A�V is 2-random.

Proof. We build an r.e. equivalence relation on ω where the equivalence
classes are finite intervals. The idea underlying the construction of A is to
make the last bit of each such interval a parity bit, while A is 2-random on the
other bits. The approximations to the equivalence classes are not changed too
often, and accordingly a computable martingale can succeed on A by betting
on all the places that are the maximum element of some approximation of
an equivalence class. Furthermore, during the construction it is ensured
that for any computable infinite and co-infinite set V , the complement of V
meets almost every equivalence class, hence the sequence A �V is 2-random
because, intuitively speaking, the parity bits do not help a martingale that
is left-computable relative to ∅′ when betting on A�V .

The equivalence class [x] of each place x will be a finite interval. Then,
in order to define A, fix any 2-random sequence Z and let

A�S= Z where S = {x : x 6= max[x]},

while for x that are maximum in the interval [x], let A(x) be equal to the
parity bit of the restriction of A to the remainder of the interval, i.e., for x
not in S, let

A(x) = ux where ux =

{
0 if |A ∩ ([x]− {x})| is even;

1 otherwise.

During the construction, it will be ensured that each infinite r.e. set intersects
almost all equivalence classes and, furthermore, that with oracle access to the
halting problem ∅′, a canonical index for [x] can be computed from x. The
properties of the equivalence relation stated so far already suffice to verify
the condition on 2-randomness.

Claim 1 Let G be a set that is computable in ∅′ and contains for each x the
whole interval [x] except for exactly one place. Then the sequence A �G is
2-random.
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Proof. Schnorr’s characterization [27] of Martin-Löf randomness in terms of
incompressibility can be relativized to ∅′, i.e., for any sequence R we have

R is 2-random ⇔ (∃c ∈ ω)(∀n ∈ ω)[K∅′(R�n) ≥ n− c],

where K∅′(.) denotes prefix-free Kolmogorov complexity relativized to the
halting problem. By this characterization it suffices to show that with re-
spect to the latter type of Kolmogorov complexity and up to an additive
constant cG, the complexity of the prefixes of A�G is as least as large as the
complexity of the prefixes of the 2-random sequence Z, i.e., we have for all n,

K∅′(Z �n) ≤+ K∅′((A�G)�n). (9)

In order to demonstrate (9), we show that

K∅′(Z �n) ≤+ K∅′(A�pS(n)) ≤+ K∅′(A�pG(n)) ≤+ K∅′((A�G)�n). (10)

Every equivalence class contains exactly one place that is not in S and exactly
one place that is not in G, hence the functions pS and pG differ at most by
one and the middle inequality in (9) follows. Concerning the first inequality
observe that by definition of A, with access to the halting problem it is
possible to compute Z �n from A � pS(n) by simply cancelling all bits of the
latter word that correspond to places not in S. Concerning the last inequality,
observe that with access to the halting problem one can compute A �pG(n)

from (A�G)�n because for any y, due to the parity bit A(max[y]), the bit A(y)
is determined by the restriction of A to [y] \ {y}, hence for any place y not
in G, which is then the only place in [y] that is not in G, the bit A(y) is
determined by A�G �

Claim 2 For any computable infinite and co-infinite set V , the sequence A�V

is 2-random.

Proof. Given V as in the claim, let We = V . Then by construction, almost
all equivalence classes have a nonempty intersection with We. Let H contain
the least element of each such intersection plus the least elements of the
finitely many equivalence classes that do not intersect We and let G be the
complement of H. The set H intersects each equivalence class in exactly
one place and is computable in ∅′, hence by Claim 1 the sequence A �G is
2-random. Recalling the characterization of Martin-Löf randomness in terms
of left-computable martingales, also A �V is 2-random because if there were
a ∅′-left-computable martingale dV that succeeded on A�V , there would be a
∅′-left-computable martingale dG that succeeds on A�G by simply simulating
the bets of dV on all the bits of A�G that correspond to bits of A�V . Observe
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in this connection that V is a subset of G up to finitely many places, hence
for almost all the bets of dV on A �V there are corresponding bets of dG

on A�G. �

The equivalence classes [x] are constructed in stages s = 0, 1, . . ., where [x]s
denotes the approximation of [x] at the beginning of stage s. Let g(x) denote
the number of equivalence classes [y] where y ≤ x, and let gs(x) be defined
likewise with [y] replaced by [y]s. Note that g is a nondecreasing unbounded
function and that the gs(x) converge nonincreasingly to g(x).

In order to ensure that every infinite r.e. set intersects almost all equiva-
lence classes, the requirement

Pe : e < log(g(x))− 1 ⇒ We ∩ [x] 6= ∅

is met for every e such that We is infinite. For all x, let [x]0 = {x}. During
stage s ≥ 0, the finite intervals [x]s+1 are defined as follows. Requirement
Pe requires attention at stage s via x if x ≤ s, x = min([x]s), and there is
some e < log(gs(x))− 1 where

[x]s ∩We,s = ∅ and {x, x + 1, . . . , s} ∩We,s 6= ∅.

If some Pe needs attention at stage s, take the least such e and choose the
least x such that Pe needs attention via x, and let

[y]s+1 =

{
{x, x + 1, . . . , s} in case y ∈ {x, x + 1, . . . , s},
[y]s otherwise.

Otherwise, in case no Pe requires attention, let [y]s+1 = [y]s for all y. By a
standard finite injury argument, which is left to the reader, all equivalence
classes are finite intervals and requirement Pe is met for all e such that We is
infinite. Since the construction is effective, a canonical index for [x] can be
computed from x with oracle access to the halting problem.

It remains to show that A is not computably random, i.e., that there is
a computable martingale d that succeeds on A. The martingale d exploits
the redundancy given by the parity bits A(max[x]), and the idea underlying
the construction of d is to work with a small number of candidates for the
maximum place of the current equivalence class, where d plays on these
candidates a doubling strategy until the first win occurs. In order to define
the candidates, observe that for every x the maximum number z in [x] enters
this equivalence class during stage z, hence z is in the set

Dx = {y : y = max[x]y+1} .

It is instructive to observe that the set Dx contains exactly the y ≥ x such
that y = max[x]s for some s and that min Dx = x and max Dx = max[x].
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Claim 3 For any x, the set Dx has at most log(gx(x)) elements.

Proof. The maxima of the equivalence classes [x]s and [x]s+1 can only differ
for stages s ≥ x where the minimal pair (e, x′) such that e requires attention
via x satisfies x′ ≤ x. In this situation the index e satisfies

e < log(gs(x
′))− 1 ≤ log(gs(x))− 1 ≤ log(gx(x))− 1

by definition of requiring attention and by the monotonicity properties of the
functions g and log. Furthermore, for all x′ ≤ x, the set We intersects [x′]s
and thus intersects [x′]s′ for all s′ ≥ s, hence e will not require attention
via some x′ ≤ x at any later stage. In summary, the approximation to the
maximum of [x] will be changed at most log(gx(x)) − 1 times and Claim 3
follows. �

Claim 4 The sequence A is not computably random.

Proof. For given x, consider the monotonic martingale dx that bets only
on places in Dx, starting with a bet of stake qx = 1/gx(x) at place x, then
doubling the stake at each consecutive bet; the martingale stops betting after
the first win occurred (or if there are no more places in Dx left or the current
capital is too small). For each place y ∈ Dx, the strategy dx bets in favor of
the assumption that the parity of the bits in

[y]y+1 = [x] ∩ {x, . . . , y}

is 0, which corresponds to the assumption that y is indeed maximum in [x].
The martingale dx doubles its initial stake qx at most |Dx| − 1 times, hence
by Claim 3 at most | log(qx)| − 1 times, and consequently dx does not run
out of capital in case its initial capital is at least 1. When dx bets against
the sequence A, at the latest the bet on y = max[x] will be a win, hence
by betting on the places in |Dx| the martingale dx eventually wins, thereby
realizing an overall win of qx according to the doubling strategy.

Now let d be the martingale that bets successively according to martin-
gales dx1 , dx2 , . . . where x1 is 0 and in case the first win of dxi

is on z, the
starting location xi+1 of the subsequent submartingale is set to z + 1. By
the discussion in the preceding paragraph, an easy inductive argument shows
that when betting on the sequence A, all submartingales dxi

of d start with
capital of at least 1 and increase this capital by their initial stake qx.

It remains to show that the capital of d is unbounded when betting on A.
Fix any place z where z = min[z]. Then [y]z = [y] for all y < z, and
accordingly we have

gz(z) = g(z) , hence qz =
1

g(z)
.
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In particular, in case the minimum z of the kth equivalence class appears
among the xi, the corresponding martingale dz will add an amount of qz =
1/k to the gain of d. As a consequence, the gain of d on A will be at least 1+
1/2 + 1/3 + . . ., i.e., d will succeed on A, in case for all equivalence classes
the minimum of the class is equal to some xi. The latter holds because a
straightforward inductive argument shows that for every equivalence class [x]
some dxi

wins when betting on the last bit of [x] and that accordingly xi+1

is set equal to the minimum of the subsequent equivalence class. �

This ends the proof of Theorem 28. �

6 Kolmogorov-Loveland Stochasticity

There are two standard techniques for constructing KL-random sequences.
The first one is a probabilistic construction due to van Lambalgen [13, 18,
28, 32] and is based on the observation that if one chooses a sequence at ran-
dom according to a quasi-uniform Bernoulli-distribution, i.e., determines the
bits of the sequence by independent flips of biased coins where the probabil-
ities for 0 and 1 converge to 1/2, then the sequence will be KL-random with
probability 1. The second one is to construct directly a Martin-Löf random
sequence, e.g., by diagonalizing against a universal left-computable martin-
gale. In the proof of Theorem 30, we present another technique that allows
us to construct KL-stochastic sequences with certain additional properties
that could not be achieved by the standard methods mentioned above. For
example, we obtain a KL-stochastic sequence that is not weakly 1-random
and left-r.e. whereas the probabilistic construction of van Lambalgen cannot
be used to obtain a KL-stochastic sequence in the countable class of left-r.e.
sequences, and by constructing a Martin-Löf random sequence the sequence
obtained will in particular be weakly 1-random.

The Bernoulli measure specified by a sequence (βi) of rational numbers
with 0 ≤ βi ≤ 1 is the distribution on Cantor space that is obtained by
determining the bits of a sequence according to independent tosses of biased
coins where βi is the probability that the outcome of toss i is 1. Such a
Bernoulli measure is called computable if the function i 7→ βi is computable,
and is called quasi-uniform if limi βi = 1/2.

29 Remark. If a sequence R is Martin-Löf random with respect to a quasi-
uniform Bernoulli measure, then R is KL-stochastic.

The assertion is immediate from results of Muchnik, Semenov, and Uspen-
sky [20], who introduce a notion of KL-stochasticity with respect to a given
Bernoulli measure and then show that, first, with respect to any Bernoulli
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measure Martin-Löf randomness implies KL-stochasticity and, second, KL-
stochasticity with respect to any quasi-uniform measure is the same as KL-
stochasticity.

A sequence X is weakly 1-random (also called Kurtz-random) if X is con-
tained in every r.e. open class of uniform measure 1. Note that Schnorr ran-
domness implies weak 1-randomness, but not conversely, as one can construct
a weakly 1-random sequence that does not satisfy the law of large numbers
by a non-effective finite extension construction where one alternates between
appending long runs of 0’s and hitting the next r.e. open class of uniform
measure 1.

30 Theorem. There is a non-empty Π0
1 class P of KL-stochastic sequences

such that no X ∈ P is weakly 1-random.

Proof. We use some standard techniques for the construction of stochastic
sequences [18, 20]. We will define an appropriate quasi-uniform computable
Bernoulli measure β. Then, for a universal Martin-Löf test (Rn : n ∈ ω) with
respect to β, we let P be the complement of R1. Since β is computable,
the set R1 is recursively enumerable, hence P is a Π0

1 class. Furthermore,
every sequence in P is Martin-Löf random with respect to β and hence is
KL-stochastic according to Remark 29.

It remains to choose a quasi-uniform computable Bernoulli measure β
such that no X ∈ P is weakly 1-random. By elementary probability theory,
given a rational ε > 0 and k ∈ N, one can compute m = m(k, ε) such that
in m independent tosses of a 0/1 “coin” with bias toward 1 of at least ε, with
probability at least 1− 2−k the majority of the outcomes reflect the bias—in
other words, there are more 1’s than 0’s [18, Remark 8]. (It turns out that
m(k, ε) = d6kε−2e is sufficient.) Now let εr = 1/r and partition the natural
numbers into consecutive intervals I0, I1, . . . where Ir has length m(r, εr). For
all i ∈ Ir, let βi = 1/2 + εr and let β be the Bernoulli measure determined
by the βi. By construction, for the closed-open class

Dr = {Z : Z has at least as many 0’s as 1’s on positions in Ir} ,

we have β[Dr] ≤ 2−r and thus the classes D̂n =
⋃

r≥nDr form a Martin-Löf
test with respect to β. The sequences in P are Martin-Löf random with
respect to β, hence any sequence in P is not contained in some class D̂n.
But each class D̂n is an r.e. open set of uniform measure 1 and consequently
no sequence in P is weakly 1-random. Observe that the Lebesgue measure
of D̂n is 1 because the complement of each class Dr has uniform measure of
at most 1/2 and since the Dr are stochastically independent. �
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In Theorem 30, it can be arranged for any given ε > 0 that the class P
satisfies in addition β[P ] ≥ 1 − ε; here it suffices to replace in the proof
the first component of a universal Martin-Löf test with respect to β by a
component that has measure less than ε.

By the usual basis theorems [21], the following corollary is immediate
from Theorem 30.

31 Corollary. There is a left-c.e., not weakly 1-random, KL-stochastic se-
quence. There is a low, not weakly 1-random, KL-stochastic sequence. There
is a not weakly 1-random, KL-stochastic sequence that is of hyperimmune-
free degree.

7 The dimension of KL-stochastic sequences

There exists an interesting connection between the asymptotic complexity
of sequences and Hausdorff dimension. Hausdorff dimension can be seen
as a generalization of Lebesgue measure, in the sense that it allows us to
distinguish the size of Lebesgue nullsets. It is defined via Hausdorff measures,
and similar to Lebesgue measure, one can define effective versions of them.
This leads to the concept of effective dimension, first introduced by Lutz [12].

32 Definition. Let 0 ≤ s ≤ 1 be a rational number. A class C ⊆ 2ω has
effective s-dimensional Hausdorff measure 0 if there is a sequence {Cn}n∈ω

of uniformly r.e. sets of words such that for every n ∈ ω,

C ⊆ [Cn] and
∑

w∈Cn

2−s|w| ≤ 2−n. (11)

Note that for a sequence A to have effective 1-dimensional Hausdorff measure
zero (as a singleton class) is equivalent to it not being Martin-Löf random. So
being a effective s-dimensional Hausdorff null sequence for smaller s means
being “less” random. The effective Hausdorff dimension captures this “de-
gree” of randomness.

33 Definition. The effective (Hausdorff) dimension of a class C ⊆ 2ω is
defined as

dim1(C) = inf{s ≥ 0 : C has effective s-dimensional Hausdorff measure 0.}.

The effective dimension of a sequence is the effective dimension of the corre-
sponding singleton class.
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It turns out that, just as Martin-Löf randomness corresponds to incom-
pressibility with respect to prefix-free Kolmogorov complexity, effective di-
mension corresponds to linear lower bounds on compressibility.

34 Theorem. For any sequence A it holds that

dim1 A = lim inf
n→∞

K(A�n)

n
. (12)

Theorem 34 was proven in the presented form by Mayordomo [16], but
much of it was already implicit in earlier works by Ryabko [24, 25], Staiger
[29, 30], and Cai and Hartmanis [5]. Note that, since plain Kolmogorov
complexity C and prefix-free complexity K behave asymptotically equal, or,
more precisely, since for every string w it holds that

C(w) ≤ K(w) ≤ C(w) + 2 log |w| ,

one could replace K by C in Theorem 34. For more on effective dimension
see also Reimann [22].

Muchnik [20] refuted a conjecture by Kolmogorov — who asserted that
there exists a KL-stochastic sequence A such that K(A�n) = O(log n) — by
showing that, if A is KL-stochastic, then lim supn→∞ K(A �n)/n = 1. In the
following, we are going to strengthen this result by showing that dim1 A = 1
for any KL-stochastic sequence A.

Ryabko [23] observed that van Lambalgen’s probabilistic argument for
the construction of KL-stochastic sequences yields with probability 1 a se-
quence that has effective dimension 1. It is also not hard to see that also the
construction in Theorem 30 creates sequences of dimension 1. Theorem 41,
which is the main result of this section, states that in fact any KL-stochastic
sequence has effective dimension 1.

Reimann [22] has posed the question whether each sequence of effective
dimension 1 computes a Martin-Löf random. By our result, one could try
to find a counterexample using KL-stochasticity. However, the construction
in Theorem 30 will not do it: by a result of Levin [33], the Turing degree of
any sequence which is Martin-Löf random relative to some computable mea-
sure contains in fact a Martin-Löf random sequence relative to the uniform
measure.

The proof of Theorem 41 bears some similarities to the proof of Theo-
rem 17, where it has been shown that any KL-random sequence has arbi-
trarily dense subsequences that are Martin-Löf random. The proof of the
latter theorem worked by successively splitting the given sequence into sub-
sequences, where then the join of all the Martin-Löf random subsequences
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obtained this way was again Martin-Löf random. The proof used Theo-
rem 12 and a result of van Lambalgen stated in Remark 15; in the proof
of Theorem 41, the latter two results are replaced by Lemmas 38 and 40,
respectively. The proof of Lemma 38, in turn uses Proposition 35 and Re-
mark 37. Proposition 35 is a slightly generalized version of a corresponding
result by Muchnik et al. [20].

35 Proposition. For any rational α < 1 there is a natural number kα and
a rational εα > 0 such that the following holds. Given an index for a com-
putable monotonic martingale d with initial capital 1, we can effectively find
indices for computable monotonic selection rules s1, . . . , s2kα such that for all
words w which satisfy

d(w) ≥ 2(1−α)|w| (13)

there is an index i such that the selection rule si selects from w a finite
sequence of length at least εα|w| such that the ratio of 0’s and the ratio of 1’s
in this finite sequence differ by at least εα.

Proof. In a nutshell, the proof works as follows. First we use an observation
due to Schnorr [3, 27] in order to transform the monotonic martingale d into
a monotonic martingale d′ where the fraction of the current capital that is
bet is always in a fixed finite set of weights, while we have d′(w) ≥ 2

1
2
(1−α)|w|

for all w that satisfy (13); furthermore, an averaging argument shows that
for some rational β > 0 and and for all such w, for one of these finitely many
weights the bets with this weight alone yield a gain of size 2β|w|. Finally, we
argue along the lines of Ambos-Spies et al. [2] that if a monotonic martingale
wins that much on a word w while being restricted to a single weight, then
the martingale must bet on a nonzero constant fraction of all places of w,
the correct predictions must outnumber the incorrect ones by a constant
nonzero fraction of all predictions, and consequently these martingales can
be converted into selection rules si as required.

Let d′ be the variant of d where for some appropriate rational δ > 0,
the fraction γ of the capital d would have bet is rounded down to the next
multiple of δ less than or equal to γ, i.e., for any bet of d where d bets a
fraction γ of its current capital in the half-open interval [iδ, (i+1)δ), the new
martingale bets a fraction of iδ of its current capital.

In case a bet of d is lost, the new martingale d′ loses at most as much
as d, while in case the bet is won, the new martingale increases its capital by
a factor of 1 + iδ compared to an increase by a factor of at most 1 + (i + 1)δ
for d′. We have that

1 + iδ

1 + (i + 1)δ
= 1− δ

1 + (i + 1)δ
≥ 1− δ

1 + δ
=

1

1 + δ
. (14)
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Let δ = 1/kα where kα is chosen so large that

δ ≤ 2(1−α)/2 − 1 , hence
1

1 + δ
≥ 1

2(1−α)/2
.

With this choice of δ we have for all words w that satisfy (13) that

d′(w) ≥
(

1

1 + δ

)|w|

d(w) ≥
(

1

2(1−α)/2

)|w|

2(1−α)|w| = 2
(1−α)

2
|w| , (15)

where the two inequalities hold by the discussion preceding (14) and by choice
of δ and by (13), respectively.

Now fix any word w that satisfies (13) and hence satisfies (15). Consider
the bets of d′ on w, i.e., consider the first |w| bets of d′ while betting against
any sequence that has w as a prefix. For r ∈ {0, 1}, let ni,r be the number of
such bets where a fraction of iδ of the current capital is bet on the next bit
being equal to r; similarly, let n+

i,r and n−i,r be the number of bets of the latter
type that are won and lost, respectively, i.e., ni,r is the sum of n+

i,r and n−i,r.
Then we have

d′(w) = d′(ε)
∏

r∈{0,1}

∏
i=0,...,kα−1

[(1 + iδ)n+
i,r(1− iδ)n−i,r ] , (16)

where d′(ε) is 1. Then for some r ∈ {0, 1} and some i ≤ kα − 1 we have

d′(w)−2kα ≤ [(1 + iδ)n+
i,r(1− iδ)n−i,r ] ≤ (1 + iδ)n+

i,r−n−i,r ≤ 2n+
i,r−n−i,r . (17)

The first inequality in (17) follows because one of the factors of the prod-
uct on the right-hand side of (16) must be at least as large as the geomet-
ric mean d′(w)−2kα of this product. The second inequality holds because
of (1 + iδ)(1− iδ) < 1, while the latter, together with (17) and the assump-
tion d′(w) > 1, implies n+

i,r > n−i,r, from which the third inequality in (17) is
immediate. Putting together (15) and (17) and taking logarithms yields

εα|w| ≤ n+
i,r − n−i,r where εα =

(1− α)

2

1

2kα

=
(1− α)

4kα

> 0 . (18)

For j = 0, . . . , kα − 1, let s2j+1 and s2j+2 be the computable monotonic
selection rules that on input w selects the next bit if and only if d′ on input w
bets a fraction of jδ of its current capital on the next bit being equal to 0
and 1, respectively. Observe that an index for sj can be computed from α
and an index for d. By construction, selection rule s2i+r+1 selects from w
a sequence of length ni,r where n+

i,r of these bits are equal to r and the
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remaining n−i,r bits are equal to 1− r. So by (18), the selected sequence has
length at least εα|w| and the ratios of 0’s and of 1’s differ by at least εα.
Since w was chosen as an arbitrary word that satisfies (13), this finishes the
proof of Proposition 35. �

Remark 37 shows our intended application of Proposition 35

36 Definition. Let α be a rational. A word w is called α-compressible
if K(w) ≤ α|w|.

37 Remark. Given a rational α < 1 and a finite set D of α-compressible
words, we can effectively find an index for a computable monotonic martin-
gale d with initial capital 1 such that for all w ∈ D we have d(w) ≥ 2(1−α)|w|.

For a proof, let dw be the monotonic martingale that starts with initial
capital 2−α|w| and plays a doubling strategy along w, i.e., always bets all its
capital on the next bit being the same as the corresponding bit of w; then
we have in particular dw(w) = 2(1−α)|w|.

Let d be the sum of the martingales dw over all words w ∈ D, i.e., betting
according to d amounts to playing in parallel all martingales dw where w ∈ D.
Obviously d(v) ≥ dw(v) for all words v and all w ∈ D, so it remains to show
that the initial capital of d does not exceed 1. The latter follows because
every w ∈ D is α-compressible, i.e., can be coded by a prefix-free code of
length at most α|w|, hence the sum of 2−α|w| over all w ∈ D is at most 1.

38 Lemma. Let Z be a computable, infinite and co-infinite set of natu-
ral numbers and let A = A1 ⊕Z A2 be KL-stochastic. Then one of the
sequences A1 and A2 has effective dimension 1.

Proof. For a proof by contradiction, assume that the consequence of the
lemma is false, i.e., that there is some rational number α0 < 1 such that A1

and A2 both have effective dimension of at most α0. Pick rational numbers α1

and α such that α0 < α1 < α < 1. By the characterization of effective
dimension in terms of the prefix-free variant K of Kolmogorov complexity
according to Theorem 34, for r = 1, 2 there are arbitrarily large prefixes w
of Ar that are α1-compressible, i.e., K(w) ≤ α1|w|. We argue next that for
any m there are arbitrarily large intervals I with min I = m such that the
restriction of Ar to I is α-compressible.

Let w0, w1, . . . be an effective enumeration of all α-compressible words w.
For the scope of this proof, say a word w is a subword of X at m if

w = X(m)X(m + 1) . . . X(m + |w| − 1) .

Let εα be the constant from Proposition 35.



7 THE DIMENSION OF KL-STOCHASTIC SEQUENCES 30

Claim 1 For r = 1, 2, the function gr defined by

gr(m) = min{i : wi is a subword of Ar at m and |wi| >
2

ε2
α

m}

is total.

Proof. There are infinitely many α1-compressible prefixes of Ar. Given any
such prefix v of length at least m, let u and w be the words such that v = uw
and |u| = m. Then we have

K(w) ≤+ K(v) + 2 log m ≤ α1|v|+ 2 log m = α|w|
(

α1

α

|v|
|w|

+
2 log m

α|w|

)
,

where the expression in brackets goes to α1/α < 1 when the length of w goes
to infinity. As a consequence, we have K(w) ≤ α|w| for all such words w
that are long enough, hence by assumption on A for any m and t there is a
word wi and an index i as required in the definition of gr(m). �

Let m0 = 0 and for all t > 0, let

mt+1 = mt + max{|wi| : i ≤ max{g1(mt), g2(mt)}} .

In the following, we assume that there are infinitely many t where

g1(mt) ≤ g2(mt) ; (19)

we omit the essentially identical considerations for the symmetric case where
there are infinitely many t such that g1(mt) ≥ g2(mt). Let

Dt = {w0, w1, . . . , wg2(mt)}

Claim 2 There are infinitely many t such that some word in Dt is a subword
of A1 at mt.

Proof. By definition of g1(mt), the word wg1(mt) is a subword of A1 at mt,
where this word is in Dt for each of the infinitely many t such that g1(mt) is
less than or equal to g2(mt). �

Claim 3 Given Dt and mt, we can compute an index for a monotonic com-
putable selection rules s(t) that scans only bits of the form

A1(mt), A1(mt + 1), . . . , A1(mt+1 − 1)

of A such that for infinitely many t the selection rule s(t) selects from these
bits a finite sequence of length at least 2mt/εα where the ratios of 0’s and
of 1’s in this finite sequence differ by at least εα.
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Proof. By Proposition 35 and Remark 37, from the set Dt we can compute
indices for monotonic computable selection rules s1, . . . , s2kα such that for
each w ∈ Dt there is an index i such that the selection rule si selects from w
a finite sequence of length at least εα|w| such that the ratio of 0’s and 1’s in
this finite sequence differ by at least εα. Any word w ∈ Dt has length of at
least 2mt/ε

2
α, hence the selected finite sequence has length of at least 2mt/εα.

Furthermore, by Claim 2, there are infinitely many t such that some w ∈ Dt is
a subword of A1 at mt, and among the corresponding indices i some index i0
between 1 and 2kα must appear infinitely often. So it suffices to let for any t
the selection rule s(t) be equal to the i0th selection rule from the list of
selection rules computed from Dt. �

Now we construct an non-monotonic computable selection rule s that wit-
nesses that A is not KL-stochastic. The selection rule s works in stages t =
0, 1, . . . and scans during stage t the bits of A that correspond to bits of the
form

A1(y) and A2(y) where mt ≤ y < mt+1 .

At the beginning of stage t, the value of g2(mt) and the set Dt is computed
as follows. Successively for i = 0, 1, . . . , check whether wi is a subword of A2

at mt by scanning all the bits

A2(mt), . . . , A2(mt + |wi| − 1)

of A that have not been scanned so far, until eventually the index i equal
to g2(mt) is found, i.e., until we find some minimum i such that wi is a
subword of A2 at mt. Observe that by definition of mt+1, the index i is found
while scanning only bits of the form A2(y) where y < mt+1. Next the selection
rule s scans and selects the bits A1(mt), A1(mt + 1), . . . according to the
selection rule si0 as in Claim 3; recall that this selection rule can be computed
from Dt. Finally, stage t is concluded by computing mt+1 from g1(t) and g2(t),
where g1(t) is obtained like g2(t), i.e., in particular, the computation of mt+1

only requires to scan bits of the form Ar(y) where y < mt+1.
By Claim 2 there are infinitely many t such that some w ∈ Dt is a subword

of A1 at mt. By choice of s(t) and definition of s, for each such t the selection
rule s selects during stage t a finite sequence of length at least 2mt/εα where
the ratios of 0’s and 1’s in this finite sequence differ by at least εα. Conse-
quently, the at most mt bits of A that might have been selected by s before
stage t are at most a fraction of εα/2 of the bits selected during stage t, hence
with respect to all the bits selected up to stage t the ratios of 0’s and 1’s
differ by at least εα/2. This contradicts the fact that A is KL-stochastic,
hence our assumption that A1 and A2 both have effective dimension strictly
less than 1 is wrong. �
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Lemma 38 can be relativized to any oracle Z by essentially the same proof,
we leave the necessary minor adjustments to the reader.

39 Lemma. Let Z be a computable, infinite and co-infinite set of natural
numbers, let X be any sequence, and let A = A1 ⊕Z A2 be KL-stochastic
relative to the oracle X. Then one of the sequences A1 and A2 has effective
dimension 1 relative to the oracle X.

40 Lemma. Let Z be a computable, infinite and co-infinite subset of the
natural numbers with density δ. Then it holds for any sequences U and V
that

dim1 U ⊕Z V ≥ (1− δ) dim1 U + δ dimU
1 V. (20)

Proof. For any n, let wn be the prefix of U⊕Z V of length n and let un and vn

be the prefixes of U and V of length |Z∩{0, . . . , n−1}| and |Z∩{0, . . . , n−1}|,
respectively; i.e., intuitively speaking, the word wn is the Z-join of un and vn.
Fix any ε > 0. Then for almost all n, by definition of density we have that

|un| ≥ (1− δ − ε)n and |vn| ≥ (δ − ε)n , (21)

and by the characterization of effective dimension of a sequence X as the
limit inferior of K(X �n)/n, we have that

K(un) ≥ |un|(dim1 U − ε) and KU(vn) ≥ |vn|(dimU
1 (V )− ε) . (22)

Furthermore, we have for all n

K(wn) ≥ K(un) + K(vn|un, K(un)) ≥ K(un) + KU(vn)− 4 log n , (23)

where the first inequality holds by a property of K-complexity related to
symmetry of information [11] and the second inequality holds because with
oracle U the prefix un of U can be recovered from its length, hence vn has a
prefix-free code that consists of a code witnessing the size of K(vn|un, K(un))
plus codes for n and K(un). Using (21) and (22) for substituting in (23) and
dividing by n yields

K(wn)

n
≥ (1− δ) dim1 U + δ dimU

1 V +
g(ε)− 4 log n

n
, (24)

for some function g such that for all ε ≤ 1 the value of g(ε) is bounded by a
constant that does not depend on ε. The lemma follows since ε > 0 has been
chosen arbitrarily and because the effective dimension of U ⊕Z V is equal to
the limit inferior of the left-hand side of (24). �
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41 Theorem. If R is KL-stochastic, then dim1 R = 1.

Proof. The proof is rather similar to the proof of Theorem 17, in partic-
ular, we use the notation Nw from there. It suffices to show that there are
words w1 v w2 v . . . such that for all i, we have |wi| = i and

dim1 Ri = 1 , where Ri = R�Nwi
;

the theorem then follows by Lemma 40 and because for any word w, the
set Nw has density 1− 1/2|w|.

The wi are defined inductively. For a start, observe that by Lemma 38
for r1 = 0 or for r1 = 1 the sequence R �Nr1

has effective dimension 1;
pick r1 such that the latter is true and let w1 = 1− r1. For i > 1, let wi be
defined as follows. By an argument similar to the proof of Proposition 11,
the sequence R�Nw is KL-stochastic relative to Ri−1, hence by the relativized
version of Lemma 38, for ri = 0 or for ri = 1 the sequence R �Nwri

has
effective dimension 1 relative to Rw; pick ri such the latter is true and let wi =
w(1− ri).

It remains to show by induction on i that all the sequences Ri have
effective dimension 1. For i = 1, this is true by construction, while the
induction step follows according to the choice of the wi and due to Lemma 40
by an argument similar to the corresponding part of the proof of Theorem 17;
details are left to the reader. �
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