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ABSTRACT. We develop methods for coding with first-order formulas into the par-
tial order £ of enumerable sets under inclusion. First we use them to reprove and
generalize the (unpublished) result of the first author that the elementary theory
of £ has the same computational complexity as the theory of the natural numbers.
Relativized versions of the coding methods show that the p.o. of X3 and X9 sets
are not elementarily equivalent for natural numbers p # g. As a further application,
definability of the class of quasimaximal sets in £ is obtained. On the other side, we
prove theorems limiting coding and definability in &, thereby establishing a sharp
contrast between £ and other structures occurring in computability theory.

1. Introduction.

The notion of recursively enumerable (in the following called enumerable) set is
fundamental for logic and mathematics. For example, enumerable sets arise as
word problems of finitely generated subgroups of finitely presented groups and as
solution sets for Diophantine equations, as well as in the study of elementary the-
ories. In the following, we restrict ourselves to enumerable sets of natural numbers
(while any domain of countably many effectively given objects, like formulas in a
first-order language or reduced words in a finitely generated free group, would be
acceptable as well). Relating enumerable sets in the most elementary way, namely
via the inclusion relation, one obtains the partial order £. Despite of the concep-
tually simple way £ was introduced, it is a distributive lattice of great algebraic
complexity. Several interrelated directions in the study of £ have been followed:
one is the investigation of automorphisms (initiated in [So 74]), a further one is
the relationship between the behavior of an enumerable set as an element of £ and
its computational complexity (see e.g. [Ma 66] and [Ha,So 91]). Here we follow
another approach, the approach of studying definability and coding.

Definability and coding are principal concerns in the study of all structures
arising from computability theory, for instance also for degree structures like the p.o.
of r.e. Turing degrees. In an analysis of a structure by coding methods, typically,
first the uniform coding in a structure A of a sufficiently complex class of structures

Key words and phrases. Enumerable sets, coding, definability.
The first author was supported by DMS-grant 9214048. The second author was supported by
DMS-grant 9500983

Typeset by ApS-TEX



2 LEO HARRINGTON, ANDRE NIES

(say the class of finite partial orders) is investigated to obtain undecidability of the
elementary theory of A. After that, coding of a standard model of arithmetic is
used to determine the complexity of the theory. In many cases, the result was
obtained that the theory has the highest possible complexity, namely the same as
true arithmetic. For instance, in [N 94] the second author proves the result for the
structure of enumerable many—one degrees. To do so, a method is introduced to
obtain definability with parameters in the given structure of sets which have a Eg
index set, by using induction over k. The first author combined the method with
E-specific techniques to obtain the “Ideal definability lemma” (see below), which is
of central importance for the coding results obtained here.

In computability theory, first-order definability without parameters is studied es-
pecially to investigate the relationship between external concepts (like a reducibility
in the context of the p.o. of enumerable sets) and subclasses of the structure which
can be expressed from within the structure, without reference to external concepts.
A definability result shows that the external concept is in fact unnecessary to de-
termine the property of enumerable sets in question. Examples of such results are
the definability of the class of m-complete sets in £, proved by L. Harrington (see
[So 87]) and a recent result of Nies, Shore and Slaman which implies that that
the class Lows and many similar classes are definable in the p.o. of enumerable
Turing-degrees ([N,S,S! ta]).

We now describe the coding methods used to some detail. Uniform coding of
a class C of structures for a finite relational language in a structure A relies on a
scheme (decoding key) of formulas with parameters: a formula ¢ (z;p) to define the
universe of a structure in C, and formulas pg(x1,. .. ,z,;D) for each n-ary relation
symbol R of L (including equality) such that for each structure in C, an isomorphic
copy is defined on {z : A | ¢py(z;¢)} within A for an appropriate parameter list
¢. The standard indirect method to prove undecidability of Th(.4) proceeds by
uniformly coding a class C such that Th(C) is hereditarily undecidable. For degree
structures, both the class C used and the coding scheme was fairly simple (in terms
of the complexity of the formulas used). For instance, to show that the theory of the
structure of r.e. m-degrees is undecidable one can use the class of finite distributive
lattices (viewed as p.o.): each such lattice is isomorphic to an initial interval [0, a]
of the r.e. m-degrees. However, in both known proofs of undecidability for Th(E),
C was the same complicated class containing infinite structures, namely the class
of recursive Boolean pairs. (Since a standard model of arithmetic can be coded in
an appropriate recursive Boolean pair by extending methods in [Bu,McK 81], this
already gives a rather indirect way to code a standard model of arithmetic in £.)
Here we introduce a more direct coding of a standard model of arithmetic. We
make use of a main technical result due to the first author. For an r.e. set A, let
B(A) be the Boolean algebra of components of r.e. splittings of A, and let R(A)
be the ideal of B(A) consisting of the recursive subsets of A. An ideal I of B(A)
is called k-acceptable if R(A) C I and {e : W, € I} is 9. Harrington’s Ideal
Definability Lemma states that, for given odd k& > 3, each k-acceptable ideal of
B(A) can be defined with parameters in a uniform way. As in [N94], the result
is proved by induction, here over odd & > 3. Our direct coding of a standard
model of arithmetic allows a substantial simplification of the first author’s proof
that true arithmetic can be interpreted in Th(€). As in many proofs of the similar
result for other structures, one obtains a class of uniformly coded standard models
of arithmetic which can be recognized by a first-order condition on their codes, the
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parameters.

Beyond determining the complexity of the elementary theory of £, the methods
can be used for definability results and for obtaining elementary differences between
relativized versions of £. E. Herrmann (personal communication) asked if, for
0 < p < g, the relativization of £ to §*~1) (i.e. the ¥9-sets) and to Pl—1) are
elementarily equivalent. Evidence for an affirmative answer came from the fact that
constructions of r.e. sets which show that £ possesses certain first-order properties
(like the construction of a maximal set in [Fr 58]) relativize and therefore show that
£7 has the same property for each Z C w.

However, we answer Herrmann’s question negatively. An elementary difference
between the p.o. of XJ- and X0-sets (0 < p < ¢) is obtained by considering the
“coding power” of a certain scheme of formula in the structure, which increases
with the complexity of the oracle £ is relativized to. We use two facts:

a) the proof that there is an interpretation of true arithmetic relativizes to £%;
in particular, also in £7 there is a first-order recognizable class of coded
standard models of arithmetic.

b) the proof of the Ideal Definability Lemma is strict, namely for odd k£ > 3
one obtains a formula defining precisely the k-acceptable ideals of B(A) as
the parameters vary. With the obvious relativization of the notion of k-
acceptability to Z C w (requiring that {e : WZ € I} is £9(Z)) the similar
result holds for £7.

Fix a 22 1c-set S which is not Eg 1, for some sufficiently large c. We obtain the
elementary difference by expressing that some formula obtained from the Ideal De-
finability Lemma codes S, viewed as a subset of a member of our class of coded
standard models of arithmetic. This holds in the Eg—sets but not in the Eg—sets
since, by strictness of the Ideal Definability Lemma, in this case S would be 224»(:'
In [N 95], the second author develops the method applied above for separating
relativizations in more generality. In that paper, the result is re-obtained as an
application of the ”Separation Theorem”. It can also be read as a survey—form in-
troduction into coding in various structures arising from recursion theory, including
E. Moreover, in [N ta2], the second author proves an Ideal Definability Lemma for
certain ideal lattices of enumerable Boolean algebras, and uses this to prove that
the theory of arbitrary intervals of £ which are not Boolean algebras interprets true
arithmetic.

Recall that £*(A) is the lattice of r.e. supersets of A modulo finite differences
and that A is called quasimazimal if £*(A) is finite or, equivalently, if A is the
intersection of finitely many maximal sets. In [So 87] it is asked if the class of
quasimaximal sets is definable in £. We answer this question affirmatively. One
way is to analyze our coding of standard models of arithmetic. Alternatively, the
definability of quasimaximality and further classes of hh-simple sets can be obtained
from the Ideal Definability Lemma and certain isomorphism properties of Boolean
algebras which are coded in £ with parameters (Theorem 4.3).

In the last section we investigate the limits of definability and coding. We show
that no infinite linear order can be coded (without parameters) even in the most
general way, namely on equivalence classes of n-tuples. An example of a coding of
that kind is the coding of Q in Z, where a rational is represented by an equivalence
class of ordered pairs (fractions). The proof makes use of the fact that for each par-
tition of w into three infinite recursive sets R, S, T there is a canonical isomorphism
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£ — & givenby X - (XNR,XNS,XNT), combined with a model theoretic
result due to Feferman and Vaught [FV 59| that a first-order property of a tuple
in a model of the form A"™ can be expressed as a certain Boolean combination
of first-order properties of the components. First we prove a noncoding theorem
in the context of uniform first—order definability with parameters, which can be
considered as a weak form of the model-theoretic notion of stability for £: there
is no uniform way to define, even with parameters, a linear order on arbitrarily
large classes {Ry,..., Ry} of pairwise disjoint recursive sets. This implies that no
linear order can be defined in a first-order way on the atoms of £*(A), if L*(A) is
a Boolean algebra with infinitely many atoms.

Hodges and the second author ([Ho,N ta]) have recently shown that the non-
codability of infinite linear orders holds in fact for any structure of the form
A x A. However, the proof given here contains interesting insights into further
self-similarity properties of £ and also gives an effective upper bound on the cardi-
nality of a l.o. which can be coded by a given formula.

Recall that £* is the p.o. of r.e. sets modulo finite differences. Both £ and £*
are distributive lattices (however, for definability and coding concerns, it does not
matter which language is used, unless one is interested in low-level fragments of the
theory). We state our results for £ instead of £* mostly for notational convenience:
from the methods in [La 68] one can derive that, if C' C £" is closed under finite
variants, then

C definable in £ < C/ =" definable in £,

and similarly for definability with parameters. Now our coding and definability
results do not refer to membership of particular elements. So one can easily transfer
all the results to £*, e.g. to prove that {A* : £*(A) finite} is definable in £* or that
the ¥9-sets modulo finite variants are not elementarily equivalent to £*.

Note that a structure A can be coded in (w,+, x) iff there is an onto map e :
w — A such that the preimages of the relations and functions of A are arithmetical.
For instance, if A is £*, let e(i) = W;*. Each relation on A which is definable must
be invariant under automorphisms of A and have an arithmetical preimage under
e. The questions arises if a “maximum definability property” holds, namely if these
two properties actually characterize the definable relations. The question has been
answered affirmatively for the structure of A T-degrees [SI,W ta]. For £, S.
Lempp [Lem 87] shows that some natural property of elements of £* is invariant
but not definable, but this property does not correspond to an arithmetical index
set. Selivanov [Se 89] gives a counterexample for & which however is not invariant
under finite differences.

Let n(A) = k if £*(A) is a Boolean algebra with & atoms and n(A) = —1 else.
From the noncoding result for linear orders it follows that {(4*, B*) : n(A) <
n(B)} is a counterexample to the maximum definability property. In ([N tal])
the second author gives a counterexample which is a subclass of £*. As further
nondefinability results, we show that “X* automorphic to Y*” and “L*(X) =
L*(Y)” cannot be defined in £*. There are natural recursion theoretic structures
where “z automorphic to y”can be defined , for instance by a result of Slaman and
Woodin, the p.o. of AJ Turing degrees.

We now review the notation used: capital letters A, B,C, X,Y range over r.e.
sets, letters R, S, T over recursive sets. Let X C A & (FY)[XNY = AXUY = 4],
B(A)={X:XC A}and R(A) ={R: RC A}. Anideal I of B(A) is k-acceptable
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if R(A) C I and {e: W, € I} is Y. If we say “I is acceptable” we mean that
I is k-acceptable, where k is a fixed number which depends only on the context
in which I is defined (e.g. on formulas in some coding scheme or on arithmetical
constructions).

Given an r.e. set A define a AY-enumeration (Ue)ce., of B(A) as follows:
if e = (i,7), W;NnW; = and W; UW; = A let U, = W; and write U, for W;. Else
let U, =0 and U, = A.

An interpretation of a theory T} in a theory T5 is a many—one reduction of T} to
T> via a map which is defined on sentences in the language of 77 in some natural
way.

2. Tools for Coding in £.

2.1 Ideal Definability Lemma [Harrington].

For eachn > 1 there is a formula with parameters p,(X; A,C) (|C| = n) such that,
if A is non-recursive, for varying C, {X : £ &= ¢,(X;A,C)} ranges precisely over
the class of ideals I of B(A) which contain R(A) and have a X3, index set (i.e.
the 2n + 1-acceptable ideals).

Proof. The formulas ¢, are defined by induction over n, thereby reducing the
problem of defining an 2n + 3-acceptable ideal to the problem to define an 2n + 1-
acceptable one. Here we verify that each class {X : € | ¢, (X;4,0)} is an ideal
of the described sort. In the appendix, we complete Harrington’s proof by showing
that, conversely, each ideal of B(A) of the described kind can be defined with
appropriate parameters.

For n =1, let

1 (X;A4,C)=XCAANBRCA[XCCUR].

Clearly, for each C, an ideal of B(A) containing R(A) is defined via 1. Moreover,
because “X C A” and “R recursive” is £J on indices of r.e. sets and “X CCUR”
is I3, such an ideal must have ¥ index set.

For the inductive step, if C = (Cy,... ,Cpn_1), let

ont1(X;A,0,Cp) = X T AN

(1) (3R C A)(¥S C A )
(X NSNC,;Cp, C).
(Recall that the variables R,S range over recursive sets.) Firstly, if X T A is
recursive, then (1) holds via R = X. Secondly, the class of X satisfying ¢, is
downward closed, and if X,Y satisfy ¢, 1 via Rx and Ry respectively, then X UY
satisfies p,4+1 via Rx U Ry, by inductive hypothesis on ¢,. Finally, to see that
¢n+1 defines only X9 | ;-ideals, we write (1) more explicitly (for the moment, R, S
range over arbitrary sets):
(3R C A)AR)RNR=0 ARUR=w A
(VS C AN R)[S nonrecursive (IT3)V
en(XNSNCy,Cr, C) (5,11

Because n > 1, this shows that the corresponding index set is X9, 5. O
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Harrington’s result, as well as this argument, relativize to any oracle Z. Hence,
in €%, p,, defines precisely those ideals I <1 B(A) containing R(A) such that {i :
W7 el}yis X3, ,(2).

Our goal for the rest of this Section is to introduce a coding configuration, i.e.
a framework for coding all arithmetical relational structures in £. The coding
configuration will consists of an r.e. set A and an acceptable ideal I of B(A) such
that B(A)/I possesses infinitely many atoms P/l (k € w). The atom Py/I is
thought to represent the number k . We show that for any A such that £*(A) is a
Boolean algebra with infinitely many atoms, and for an appropriate choice of I, the
atoms of £*(A) can be used to represent pairs of atoms of B(A)/I. Note that an
atom of £*(A) has the form M U A for some recursive M which is unique modulo
R(A). It is possible to code an edge relation on the atoms of B(A)/I by considering
intersections M N Py,. More precisely, it is shown that for fixed p, each Eg—relation
on {Py/I : k € w} can be uniformly defined with parameters. The relations are
encoded by further acceptable ideals of B(A).

From now on, fix an (otherwise arbitrary) r.e. set A such that £*(A) is a Boolean
algebra with infinitely many atoms. Let My be the class of recursive sets M such
that (AUM)* is an atom of L*(A). For M, N € Mg write M ~ N if AUM =* AUN.

We will show that for each such A a coding configuration of the desired kind
exists. For better understanding, first we consider a simplified version of the coding
configuration, at the cost of obtaining coding of a given arithmetical structure only
in the structure in £ with an additional unary predicate. Obtain a u.r.e. partition
(Pr)rew of A by modifying the proof of the Friedberg Splitting Theorem in [So 87]
so that a splitting of A into infinitely many sets is produced. In this simplified
version, the number k € w is represented by Py. By the argument in [So 87], for
each r.e. W and each k,

W —Anonr.e.= W — P, non r.e.

In particular, M — Py is non-r.e. for each M € My, and hence M N Py is not
recursive. In our approximation, we use a unary predicate symbol for the subclass
{Py : k € w} in the coding. This subclass coincides with the universe of the
structure to be coded.

In an arithmetical way, for each pair P;, P; fix M;; € My (representing this
pair) in a way that different pairs are represented by sets in My which are different
modulo ~. Given an arithmetical binary relation E, we define a copy of FE on
{Py, : k € w} using two acceptable ideals Jy, J1. Let Jy [J1] be the ideal generated
by R(A), all sets M N Py, such that M is not equivalent to some M; ; modulo ~,
and the sets M; ; N Py, such that either ~FEij, or Eij but k # ¢ [k # j]. Then one
can recover F from .Jy,.J; because

This can be verified using the facts that M N P, ¢ R(A) for each m,k, and, for
M, N € My, either M N Py, N N Py, are disjoint on the complement of set in R(A)
or they are equal.

Now, with an additional unary predicate for {Py : k € w}, a copy of FE on this
set can be defined with parameters by (2), since My, Jo and J; are definable with
parameters.
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As already mentioned, in the full coding configuration, a number & is not repre-
sented by Py but by an equivalence class Py /I in some quotient algebra B(A)/I, I
an acceptable ideal. To ensure that the set of objects representing numbers is a de-
finable set modulo the definable equivalence relation on elements of B(A) given by
I, we construct I in a way that (Py/I)ke, enumerates the atoms of B(A)/I (without
repetition). By imposing further conditions on I, the ability to code arithmetical
relations on the objects representing numbers can be maintained.

To ensure that the atoms of B(A)/I are precisely the elements Py, /I, we build
a sequence of uniformly p-acceptable maximal ideals I}, of B(Py) (p some fixed
number) and let

(3) I={UCA:(VK[UNP, € L]}

Note that I is arithmetical and contains the ideal of B(A) generated by all the
ideals Iy.

To encode an arithmetical binary (say) relation E on {P./I : k € w}, we
must turn the right hand side in (2) into a coding formula ¢(P,Q;D) on {P :
P/I atom in B(A)/I}, which only depends on equivalence classes modulo I, so
that the corresponding relation on equivalence classes Py /I is a copy of E. Sup-
pose that, instead of the sets M; ;, there is a sequence of sets M = M; ; x v € My
(i,j € w,X,Y € I) which are pairwise distinct modulo ~ so that M N P; — X and
M N P; — Y are non-recursive. Define Jp, Ji as before with M; ; x y instead of
M; ;. Let the desired coding formula (¢)(P, Q; D) be obtained by expressing in the
language of £ with a list of parameters D that

VX, Y €e)(AM e Mg)[MNP-X & JoAMNQ -Y & .J1].

Then it can be shown (using particular properties of I) that, for any ¢,j and any
P, such that P/I = P;/I and Q/I = F;/I,

Bij & £ | ¢(P,Q; D).

We now formally introduce and prove the existence of coding configurations.

2.2 Lemma. Suppose A is an r.e. set such that L*(A) is a Boolean Algebra with
infinitely many atoms. Let My be the class of recursive sets M such that (AU M)*
is an atom in L*(A). Then there exist
a) a p-acceptable (for some fized p) ideal I of B(A) and a r.e. sequence (Py)pew
of pairwise disjoint sets in B(A) such that all Py /I are atoms in B(A)/I
and each atom in B(A)/I is represented by precisely one Py.
b) sets M;jxy € Mg (i,j € w,X,Y € I) which can be obtained recursively
in some oracle 0'¢) from i,j and indices for X,Y and are pairwise distinct
modulo ~ such that

Mi,j,X,Y NP, —X and Mi,j,X,Y n Pj -Y

are mon-recursive.
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We call A, (Pi)kew, I,(Mij x,v)ijew,x,yer o coding configuration (based on
A).

Proof. The sequence (P.) can be chosen to be any u.r.e. partition of A obtained by
proving a version of the Friedberg Splitting Theorem for a splitting into infinitely
many sets. We modify the proof in [So 87] of that theorem in the desired way. By
the argument in [So87] for each r.e. W and each k, W — A non r.e. == W — P}, non
r.e. In particular, M — P is not r.e. for each M € M.

The ideal I is determined from a sequence (I, ) of uniformly p-acceptable maximal
ideals of B(Py) by (3). In general, if P is r.e. non-recursive, an acceptable maximal
ideal J of B(P) can be constructed as follows. Let (U,)cc, be a A-listing of B(P)
as described at the end of section 1. One builds an ascending sequence (X )rew of
elements of B(P) which generate J, ensuring that

(Ve)[U. € IV U, € J]
(to make J maximal) and
(VE)[P — X}, nonrecursive]

(to ensure J # B(P)). The process of defining the (X}) must be recursive in some

0(). Let Xy = (. Inductively, for k& > 0, one has to make a decision, recursively in
gl if

(4) Xp=X,1UUyor X, =X, 1 UU,.

If one of these sets has a recursive complement R in P, one has to take the other
(i.e. R is added to X,,—1). If both are non-recursive, one can decide either way.
In particular, if U,, is recursive, then the first set has the recursive complement
X, 1NUp,so U, € .J. This shows R(P) C .J, so .J is acceptable.

To meet (b), simultaneously with the ideals I, one builds a descending sequence
(M,),>1 of uniformly arithmetical subclasses of Mg such that M, /. is infinite for
each r and

(5) (Vk)(VX € I)(Ir)(VM € M,)[M N P, — X nonrecursive].

The decision (4) is made in a way to ensure that M,/ ~ is infinite (see below). If (5)
holds, then, to define the sequence M; ; x v in (b), we work by induction on codes
for quadruples consisting of 4, and (indices for) X,Y. Given such a quadruple, in
an arithmetical way determine r such that M, satisfies (5) for both ¢, X and 7,V
(this is possible since the classes M, form a descending chain). Since M,/ ~ is
infinite, one can determine a set M; ; x,y € M, which is distinct under ~ from the
previously chosen sets.

Let (UF) be a AY double sequence such that for each k, (U¥),¢c,, is a listing of
B(Py). We define generating sequences (X¥),,¢., for I and the descending sequence
(M,.) in a way that, if r = (k,n), then

(6) (VM € M) [(M — Py) UX) non reel].

This will suffice to meet (5). Let X§ = 0 and M = My. Then (6) holds for
M(o,0y by the definition of My. In step r = (k,n) > 0 of the construction, we do
the following.

- Ifn =0, welet X¥ =0 and M, = M,,_;. Then (6) holds for k,n.
- If n > 0, we have to decide if X¥ = X* |, UU* or Xk = XF_, UU’;.
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By (6) for k,n — 1, for each M € M,_1 (C Mg ,—1y), (M — P)UX} | UUF or
(M —Py)U(XE_, UUZ) is non r.e. The question which set is non r.e. only depends on
M/~. Welet Xk = Xk | UUF if the first case applies for infinitely many M € M,,_;

(modulo ~), and X} = XF_, U U’; else. Moreover, we let M, be the class of sets
M in M,._; such that (M — P;) U X?* is non r.e. Note that, if (say) X*_, UU¥ has
a recursive complement R in Py, then (M — P,)U(XF_, UUF) = MN(w—R) isre.
for each M € My, so we automatically define X*¥ = Xk_, U U’;, as required in the
general procedure described above. Thus I}, is a maximal ideal of B(Py) containing
R(Py). Moreover the index set of I}, is arithmetical, as the decision above can be
carried out recursively in some (9, ¢ € w.

Now let I ={U = A: (Vk)(UN Py, € I]}. We verify (a). Since the ideals I}, are
uniformly p-acceptable in B(P) for some fixed p and R(A) C I, I is an acceptable
ideal in B(A). Moreover I N B(Py) = I}, N B(Py) for each k. Since |B(Py)/Ix| = 2,
this implies that Py, /I is an atom in B(A)/I. If U € B(A) — I, then, for some
k,P,NU & Ii.. So P, — U € I by the maximality of I}, in B(P,), i.e. P,/I <U/I.
This implies that each atom in B(A)/I is of the form P /1.

Finally we verify that the property (6) we ensured in the construction implies (5).
Let X € I and k € w be arbitrary, and let n be a number such that X N P, C X*.
Let r = (k,n), and assume for a contradiction that, for M € M,, M NP, — X is
recursive. Then R = M NP, — Xk as an element of B(P;) contained in a recursive
set, is also recursive. Since (M — P,) U X¥ = (M N R) U XF this contradicts (6).0

2.3 Coding Lemma. Fiz a coding configuration and let p > 0 and n > 1. Then,
for each Eg-relation E C w", the canonical copy of E on the set {P/I : k € w}
can be defined from parameters in a uniform way.

Proof. For notational convenience, assume that n = 2. As explained above, we
need to give a formula with parameters (P, Q; D) such that, for any binary 9

relation E a list of parameters D exists with the property that, for atoms P/I, Q/I
of B(A)/I,

(7) & EY(P,Q;D) & (3i,j)[Eij A P;/T=P[IAP;/T=Q/I].
Let Jo be the ideal of B(A) generated by R(A), the classes
{MNP,:MeMyA (Vi,j, X,Y)(-M ~ M, ; xv]}

and
{Mi,j,X,Y NP :-FEijV (Eij ANk # Z)}

Define an ideal J; of B(A) in a similar way, but replacing the third generating
class by
{Mi,j,X,Y NP, :-FEijVv (EZ] Nk # j)}

We claim that the first order formula v (P, Q; D) expressing the following satisfies
(7):
(VX,Y € IN(IM)[M € MyA

(8) MAP-X¢JAMNQ-Y ¢ Ji).
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(Note that the matrix of (8) only depends on M modulo ~.) To show (7), suppose
that P/I and Q/I are atoms. Choose 4, j such that P/I = P;/I and Q/I = P;/I.
First suppose that Fij holds. We show & = (P, Q; D). Given X,Y € I, let

X=XU(P—P), Y=YU(P;—Q),

and let

M=M,;xy-
We claim that ¢(P,Q; D) holds via M. Assume for a contradiction that, say,
(MNP)—X € Jy. Since( MNP)-X=Mn({P,NnP)-—XC(MNP)-X,
(M N P;)—X € Jy. Because Fij holds, this means that (M N P;) — X is contained
in the union of a recursive subset of A and a finite union of sets of the form
M'NPy, M'" e My, i" #i or M’ £ M. Because the (P) are pairwise disjoint and
M'NM € R(A) for M' £ M, (M N P;) — X is contained in a recursive subset of A
and hence, as an element of B(A), is recursive itself. This contradicts the choice of
M by (5).

Now suppose that —Fij. We claim that X = P — P; and Y = @ — P; form a
counterexample to (P, Q; D). As =FEij, a given M € M, satisfies M N P; € Jy
or M N P; € Jy, say the first. Then, since MNP C (M N(P—-PF))U(MnF),
MNP—-XCMNP; €.Jy. O

Since the Ideal Definability Lemma relativizes to any p.o. &£%, the previous
coding results also relativize. In the relativized versions, the notions “u.r.e.”, “re-
cursive”, “B(9” and “¥9” have to be replaced by “u.r.e. in Z”, “recursive in Z”,

«7(c)” and “¥9(Z)”, respectively.

3. The theories of relativized versions of £.

We use the results in Section 2 to reprove Harrington’s result that true arith-
metic can be interpreted in Th(&) (assuming the Ideal Definability Lemma). More
general, we prove that, if Z is implicitly definable in arithmetic, then Th(w, +, X, Z)
can be interpreted in Th(£Z). Since an interpretation in the other direction exists
as well, the two theories have the same m-degree. Here Z is called implicitly defin-
able in arithmetic if there is a formula 1 in the language L(+, x) extended by a
unary predicate R such that, for each X C w,

(9) (W, +, %) Fyz(X) & X =Z.

Note a set which is implicitly definable in arithmetic is hyperarithmetical and
that implicit definability of Z only depends on the arithmetical degree of Z. Hence
each Z which is in the same arithmetical degree as some §(®), « a recursive ordinal,
is implicitly definable in arithmetic. However, "most” hyperarithmetical sets are
not implicitly definable in arithmetic, since both arithmetically generic sets and
arithmetically random sets Z cannot be implicitly definable (see [N 95]).

We exploit the coding power of a specific collection of formulas in £7 to show
that for some fixed ¢ € w, if Z is implicitly definable in arithmetic and Z(¢) # W),
then £7 is not elementarily equivalent to £Y. (In [S 81], similar questions were
considered for relativizations of the structure of A Turing-degrees.) In particular,
if Z =0, W =0P B < « recursive ordinals, then £% % V. For finite «, f3,
this gives a negative answer to the question of E. Herrmann mentioned in Section
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1. As a further application, if Z is sufficiently complex, namely Z € Low.., then £%
is not elementarily equivalent to £. This includes the case that Z is arithmetically
generic. We note that, for all arithmetically generic Z, the relativization £7 has
the same theory. Similar remarks apply to arithmetically random sets.

We begin with the relevant framework, describing how the coding results in the
previous section determine a scheme of formulas such that, with appropriate pa-
rameters, a standard model of arithmetic is coded. Note that some of the conditions
required for a coding configuration cannot be expressed in first order logic, so we
have to be more general in our framework. Let A be an r.e. non-recursive set and
I be a p-acceptable ideal, where p is as in (a) of Lemma 2.2. We think of I as
defined by the appropriate formula determined in the Ideal Definability Lemma
from parameters in a list P including A. Then the formula ¢y (X; P) defining the
universe of the structure to be coded is a formula expressing

“X/I is an atom in B(A)/I”,
and equality of the structure is defined in £ by a formula ¢ (X,Y’; P) expressing
“X/I=Y/I” (X,Y € B(A)). Finally, from the Coding Lemma for ternary recursive
relations, we obtain formulas ¢ (X,Y, Z; P) and ¢« (X,Y, Z; P) intended to code
the arithmetical operations on atoms P/I. We assume that P includes all the
parameters needed. Lemma 2.2 and the Coding Lemma 2.3 show that, for some
special list P, a standard model of arithmetic is coded.

To give an interpretation of true arithmetic in Th(E), it now suffices to give
a first-order condition on P which is shared by such a special list and always
implies that the model coded is standard. As an aid, we first require the following
“correctness conditions” (which can be formulated as first-order conditions on the
parameters):

~ ¢4 and @« determine binary total functions on {X/I : oy (X; P)}.

— The structure for L(+, x) coded by P satisfies a sufficiently large fragment
PA~ of Peano arithmetic which implies that the structure has an initial
segment isomorphic to w.

We use variables M, My,... to denote structures for L(+, x) coded in £ which
satisfy the correctness conditions. If we need to refer to the list of parameters P
involved explicitly, we write M (P). Moreover, if i € w, we write i for the standard
number i in M. The variables P, @ range over {X : X/I atom in B(A)/I}. By the
relativizability of the results in Section 2, the same scheme works in £7. We make
some observations which will enable us to interpret true arithmetic in Th(£%) for

each Z and Th(w,+, x, Z) in Th(E%) if Z is implicitly definable in arithmetic.
(10) If (X; P) is a X9 formula with parameters in the language of £, then for
each Z, the index set with respect to the indexing of £4, (WZ).c., of the
relation defined by ¢ with a fixed parameter list is recursive in Z#+2).
(11) For some fixed number i (which does not depend on Z), for each M, there

is g <7 ZM such that

(YO)[(Wyiay)/T = i™M].

Proof. (10) is immediate since "W;7 C W#” is recursive in Z(?). For (11), suppose
that M = M(P). Let ¢s(X,Y; P) be a formula defining the successor function in

(any) M(P). By (10), the corresponding binary relation on indices is recursive in
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Z™ for some fixed number h, so there is a partial ”choice” map f which can be
computed with the oracle Z(" such that, in £7,

@s(W7,W7;P) for some j = tps(WiZ,WfZ(i)Q?)-

Fix ig such that W7 /I = 0. Then, by iterating f with io as an initial value,
obtain g as desired. The fact (11) immediately implies
(12) Foreach M, {e: WZ/I is a standard number of M} is £3(Z) for some fixed
p.
g

3.1 Theorem. If Z is implicitly definable in arithmetic, then there are interpre-
tations of theories which show Th(E?) =, Th(w,+, X, Z).

Proof. Clearly, Th(£4) can be interpreted in Th(w, +, X, Z). For the other direc-
tion, we first give another proof of Harrington’s result that the theorem holds with
Z = (. Suppose M is given and S C M. Since atoms of a Boolean algebra (here:
B(A)/I) are independent (i.e. no atom is below a finite sup of other atoms), if Is
is the ideal of B(A) generated by {P : P/I € S} UI, then “IgN M = S”, i.e. for
each P,

(13) P/Ie€S & Pels.

(Forming the “intersection” J N M above makes sense for any ideal J which
contains I.) Moreover, if {e : W./I € S} is ¥9, then for sufficiently large k, Is
has ¥? index set and hence is k-acceptable. Thus we can use the Ideal Definability
Lemma to quantify over a class of subsets of M which contains the % subsets. By
(12), the standard part of M is such a set for appropriate k. Therefore the following
holds iff M is standard, and can be expressed as a first-order condition on the list
of parameters coding M:

“each subset S of M such that Ig is k-acceptable which is closed under
successor and contains 0M equals M”.

This gives an interpretation of true arithmetic in Th(£). By relativization, for
each Z, we can express if M coded in £ is standard, so we also obtain an inter-
pretation in Th(E%).

Now suppose Z is implicitly definable in arithmetic. To interpret Th(N,+, X, Z)
in Th(£7) we need an extended scheme which enables us to encode structures
(M, Z), where M is a standard model of arithmetic and Z is Z, viewed as a subset
of M. Let 1z be a formula describing Z as in (9). Given M as above, let I, be
the ideal of B(A) generated by I and {P : P/I € Z}. Then, using the map g from
(11), I, equals the ideal generated by {WgZ(n) :n € Z}UI. Since g <7 Z" for
some h, I, is p-acceptable (in £7) for some p.

In the extended scheme, expand the list of parameters by parameters defining

a p-acceptable ideal J of B(A). Require as a correctness condition on the scheme
that I C J. From J, define a subset S of M by

Plle X Peld

(the intended meaning is S = Z) Suppose M is standard. By the independence
argument in (13), P/I € Z & P € I,. The interpretation of Th(w, +, x, Z) is now
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given by (w,+, %X, Z) = ¢ < for some (M, X) defined by the extended scheme, M
is standard,X (as a subset of M) satisfies the description of S and (M,X) E ¢
(this can be expressed in first-order logic). O

3.2 Theorem. There exists a number ¢ € w such that, if Z\©) #r W and Z or
W is implicitly definable in arithmetic, then £% # EW.

3.3 Corollary. If a is a recursive ordinal and § < «, then go’ Z g0, O

Proof of the Theorem. Let ¢ be a number such that for each M coded in £X the
associated ideal I is g-acceptable and, by (11), there exists a map g < X (@ guch
that

(Y)W, /T = n™].

Fix M coded in £X. We first make the following observation. Let p > ¢, S C w,
and let Is be the ideal of B(A) generated by {W,) :n € S} UI. Then

(14) Sis £9(X) & {e: W) € Is}is TH(X).
For the direction from left to right, note that

WX € Is < (3F C w finite )(Jep)
[FCSAWS el
X X X
wXc Jwiyuwll
i€F
It is easy to check that this can be expressed as a Eg(X) property of e. For the
other direction, if I's has a Eg(X) index set, then, because

nesSe Wy, els
& (Fe)[g(n) = e AWS € Is]

and ¢ < p, S is L9(X).

Now let ¢ > ¢ be even and let p = ¢+ 1. Assume Z(©) £r W), Then, if
S =2",8Sex)(Z)-L9W) . Let p(Y;A,C) be the formula obtained from the
Ideal Definability Lemma to define uniformly in £X for a set A which is r.e., but
not recursive in X all p-acceptable ideals of B(A).

First suppose that Z is implicitly definable in arithmetic via the description 5.
Then the following is true in £, but not in EW.

There is a structure (M,Y"), coded by the extended scheme, such that M is
standard, (M,Y") = ¢z(Y) and, for some list C, the intersection of M and
the ideal coded by A, C equals V() i.e.

(15) (VP)[(M,Y) | P/T € YP) & o(P;0)].

The statement holds in £Z via any standard M and ¥ = Z (i.e. Z viewed as a
subset of M), for in this case I, is p-acceptable. In W either in no structure
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(M,Y) defined by the extended scheme does 9z (Y') hold, or, if (M,Y) is such
a structure, then (15) fails. For, in EW, {P € B(A) : ¢(P,C)} is an ideal with
ES(W) index set by the strictness of the Ideal Definability Lemma. So, by (14),
VANE E9(W), a contradiction.

Now suppose W is implicitly definable. The case that W (¢) £r Z(©) is already

covered above. Otherwise there is an index e such that {e}Z(C) = W. Then the
following is true in £, but not in £V

There is a coded standard model M and a list C' coding an ideal of B(A)
which contains I such that if U is the intersection of M and the ideal coded,
then for some index e € M, {e}V satisfies the description of W and U is
not in 9 ({e}).

This statement holds in £Z via the ideal I, but fails in £V, again by the strict-
ness of the Ideal Definability Lemma. O

4. Definability of classes of hyperhypersimple sets in £.

We give two different ways to define quasimaximality. In the first, the first-order
definition is obtained as follows: A is quasimaximal iff £*(A) is an atomic Boolean
algebra, but it is not possible to code a successor model using the formulas arising
from the above coding configuration. To verify this, it is shown that a coding of
a successor model would require the existence of infinitely many atoms in £*(A).
Here a successor model is a structure with a binary relation F which is a 1 — 1 but
not onto map from the universe of the structure into itself. Clearly the universe of
such a structure must be infinite. Let p be a number such that in Lemma 2.2, [ is
p-acceptable and, if Jy, J; code a recursive binary relation as in the Coding Lemma
2.3, the ideals Jy, J; are p-acceptable. Since A is quasimaximal iff £*(A) is a finite
Boolean algebra, it suffices to prove the following.

4.1 Lemma. Suppose L*(A) is an atomic Boolean algebra. Then A is not quasi-
mazximal iff

(16) there is a p-acceptable ideal I of B(A) and there are p-acceptable ideals Jy, Jy
of B(A) such that Jy, J1 code a successor model on the atoms of B(A)/I via

(8).
4.2 Theorem. The class of quasimazimal sets is definable in £ .

Proof. Clearly we can express in first-order logic that £*(A) is an atomic Boolean
algebra. Furthermore, we can express (16) by the Ideal Definability Lemma. O

Proof of Lemma 4.1. If A is not quasimaximal then £*(A) possesses infinitely many
atoms, so by Lemma 2.2 there is a coding configuration based on A. Then the
successor model where Py 1/ is the successor of Py /I can be coded by p-acceptable
ideals of B(A).

Now suppose for a contradiction A is quasimaximal, but (16) is satisfied via I, Jy
and J;. Choose recursive sets My, ..., M,_; such that each atom in £*(A) is of the
form (AU M;)* for some i. Moreover, choose a sequence of representatives Qy = A
such that for each k € w, Q/I is the standard element in the coded successor
model corresponding to k (here first we fix some “zero” element (Qo/I which is not
in the range of the map coded by Jy, J1 on the atoms of B(A)/I). By (8) for each
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u,v € w,u+1=wviff

(17) VX, YeDH@@i<r)
[Mir\lQu—ngo/\MiﬂQv—ngl].

We claim that one can exchange the quantifiers in the expression above in case
u+ 1 = v. Fix a generating sequence (X}) for I such that X C Xy for each
k. Since (17) is closed downwards in X and Y, it suffices to require (17) for each
kand X =Y = X;. For each u there is i(u) < r such that for infinitely many
k, Mz(u) NP, — Xy & Jy and Mz(u) NPyr1— X & J1. Soif u+1 = v, for each
X,Y € I(17) holds viai = i(u). Now choose u,u',u+1 < ', such that i(u) = i(u).
Then (17) shows that the successor relation holds between P,/I and P, 41/1, i.e.
u+1=1u'+1, a contradiction. d

We now consider definability of classes of hh-simple sets based on the Ideal Defin-
ability Lemma alone, thereby giving an alternative way to define quasimaximality.
We need two facts.

Fact 1. If £L*(A) is a boolean algebra, then there is a ("' — isomorphism © : L*(A) —
B, where B} = {(RN A) : R recursive}.

(Proof: Let ©(B*) = (RN A)*, where B = AU R. Note that it takes an oracle ()’
to find R, from e such that B = W,.) Observe that 5% is a subalgebra of 5*(A)
containing R*(A). Thus we also obtain an isomorphism of the lattice of X9-ideals
I of £*(A) (k > 3) onto the lattice of %0-ideals T of B which contain R*(A4). The
Ideal Definability Lemma now implies that the £9-ideals of £*(A4) (k > 3 odd) are
uniformly definable, because I = [I];q N BY, where [[]iq is the (k-acceptable) ideal
of B*(A) generated by I.

Fix a hh-simple A as a parameter. We consider definability of ideals of £*(A)
with parameter A* in £*. If T is an ideal of £*(A), let A(I) be the ideal of L£L*(A)
generated by the atoms of £*(A4)/I (i.e., L*(A)/A(I) is the derivative of L*(A)/I).

Fact 2. If I is an ideal of L*(A) which is definable in (E*, A*), then so is A(I).
The formula defining A(I) only depends on the formula defining I, not on A.

Proof. If I in a X ideal (k > 3), then A(I) must be X9 ,. So we can define A(I)
as the least X9, ideal of £*(A) which contains all elements of I and all B* > A*
such that B*/I is an atom in £*(A)/I. This proves Fact 2.

Note that we can also express if A(I) contains infinitely many atoms of £*(A)/I:
this is the case iff A(I) describes a nonprincipal ideal in £*(A)/I, i.e. if there is no
B* > A* such that, for each C* D A*, C* € A(I) & (C - B)* e 1.

In the following Theorem, (i) for n = 1 gives an alternative first—order definition
of quasimaximality. In (ii), we refer to Ershov’s classification of the completions of
the theory of Boolean algebras, as presented in [CK 90], Section 5.5.

4.3 Theorem. The following classes of hh-simple sets are definable.
(i) {A : the n-th derivative of L*(A) is {0}}
(ii) {A: L*(A) =T}, where T is any completion of the theory of BA’s except
the one with the characteristic m(T) = oo in the notation of [CK90].
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Proof.

(i) Let I§' be the least ideal of £*(A), and for each n let I2,; = A(I7'). Then,
by Fact 2, there is a formula ¢,, which uniformly for each A* defines I in
L*(A). So we can express that I = £*(A).

(ii) is left to the reader.

5. Noncoding Theorems.
Let the variable R range over finite classes of pairwise disjoint infinite recursive
sets. We use the variable X for tuples of recursive sets (Xo, ..., Xn—1)-

5.1 Theorem. For each formula cp(X,Y;]B) a number k can be found effectively
such that for each R such that |[R| > k and for each list of parameters A, the
relation R

{(X,Y): X,Y € RAE | o(X,Y; A))
is not a linear ordering of R.

5.2 Corollary. If £*(A) is a Boolean algebra with infinitely many atoms, then it
is not possible to define, even with parameters, a linear ordering on the atoms of
L*(A).

Proof of the Corollary. If F is a set of atoms and |F| = k, then for some R,
|R| =k, F = {AUR*: R € R}. Hence, if ¢)(X,Y; P) defines a linear order on the
atoms, then ¢(X,Y; P, A) = (X UAY U A4 f’) defines a linear order on sets R
of arbitrarily large cardinality.

Proof of the Theorem. Note that, if R,S and T = RU S are infinite, then £ = £3
via the map
X—=XNR,XNS, XNT).

By a result of Feferman and Vaught [FV59], if A is a structure and ¢(X°,..., X" 1)
is a formula in the language of A, then

al ap~!
3 0 n—1
AE=pla) ..., af &
0 n—1
as as

\/ /\ A E ¥ (a?,...,a?fl)

a=1,...,r¢=0,1,2

for some formulas ¢ which only depend on ¢ and can be found effectively (this
can be proved by induction on ¢). Now suppose p(X,Y’; P) defines a linear order
<1, on a set R. By the isomorphisms £ < £ above, an element A € £ corresponds

to the vector
ANR

ANS
ANT

Hence, if R,S € R, R # S, then

a=1,...,r
E(S) = 1 (0,5, PN S)A
E(T) @5 0,0,PNT)),
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where T = RUS and PN X = (BN X,...,P.; N X). Note that “(T) |=
©$ (0,0, PNT)” does not depend on the order of R, S. We say that R <7, S via a if
the disjunct corresponding to a holds. Now, we can compute a number M such that,
for |R| > M, there exist « and A, B,C,D € R such that A <; B <1 C <1, D and
the ordering relations hold all via . This is verified by using Ramsey’s Theorem:
assign one of 7 possible colors to {X,Y} C R, X # Y, according to the minimum
a < rsuch that X <z Y or Y <y X holds via a. For k = |R| large enough, there
exists a homogeneous set F' for this coloring of cardinality 4. Since either X < Y
or Y <y X foreach XY € R, X #Y, there must be «a such that, for XY € F|

X<t YeX<pY via a.

Nowlet F = {A,B,C,D}, A <y, B <1, C <1, D. Weshow C <y, B, a contradiction.
E(0) [ ¢§(C,0,P N C) holds since C <y, D via a, and £(B) k= ¢$(, B, PN B)
because A <; B via a. Finally E(BUC) k= 50,0, PN (BUC)) is true since
B <y, C. This shows C <, B via a. O

5.3 Theorem [Harrington]. (see also [Ho,N ta]) It is not possible to code an
infinite linear ordering in £ without parameters.

Proof. Suppose for a contradiction that there is an £-definable 2n—ary relation <p,
which is a linear preordering on £™ such that the equivalence relation X=Ye
X <1, Y < X has infinitely many equivalence classes. We say that a recursive set
R supports A if A C Ror R C A. R supports (Ay,...,A, 1) if R supports each
set A;. Let C={R:|R| = |R| = xo}.

5.3 Lemma. For each tuple A = (Ao, ..., An_1) of sets there exists R € C such
that R supports A.

Proof. We say that S co-supports A if S supports A4, i.e. S C Aor A C S. This
notion is closed downwards in S. We define inductively sets S € C co— supporting
Ao, ..., Ap. Then R =S, _ is as required.

Let Sy be a set in C which is a subset of A if Ay is infinite and of Aq else. If
k <n—1and SpNAgyq is infinite let S € C be a recursive subset of Sy N Ag41.
Else let Sk+1 = Sk - Ak+1. O

We now derive an effective bound on |€"/ = | (depending on the defining
formula for <j). First we show that each equivalence class of =, is large in the
following sense: for each A € £™,

(18) (VS € C)(3B =1, A)[S supports B]

Fix R € C supporting A, and let S € C be arbitrary. First suppose that RNS = 0,
and let 7 be a recursive permutation of order 2 which exchanges R and S and is
the identity on RU S. Let B; = = m(4;)(i <n). Then S supports B. Now A<y B
is equivalent to B = m(A) <y n(B) = A, since < is definable. So A = B.
If RN S is finite, proceed as above, replacing S by S — R. Then B is supported by
S — R and hence by S. If RN S is infinite, obtain first By =7, A supported by R
and then B =1, By supported by RN S. Then B =; A and B is supported by S.

Suppose |E"/ =1, | > p. We derive a bound on p. By (18), let Sp,---,Sp—1 € C
be pairwise disjoint sets and let B?, i < p, be n-tuples of recursive set supported
by S; such that

B <y - <y BPL
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If a tuple X = (Xo,...,X, 1) is supported by S, we assign a signature 5 € {0,1}"
to (X,S) by B(k) =0 X}, CS (k <n). Fix an arbitrary number ¢. If p > 27¢,
then there is a subsequence (A7, R;)j, of (B, S;)i<, such that all (4%, R;) have
the same signature (. Let

Ae=JA{nR)  (k<n).

J<q
We show that the parameters Ag,...,A,_1 can be used to define in a first-order
way a linear order on {Ry, ..., Rg—1}. Clearly one can decode each A’ in a uniform

first-order way from R; and this list of parameters, because A7 = AxNR; if B(k) = 0
and A = (Ar N Rj) U R; if B(k) = 1. Thus for the formula (R, S; Ao, -, Ap_1)
expressing C' <p, D, where Cy, is Ay N R if f(k) = 0 and (Ax N R) U R else, and Dy,
is Ay NS if B(k) =0 and (A NS)US else,

dJ(Ri)Rj;AO) . '7An71) ~ ANZ <r ANj:

so ¢ defines a linear order on {Ry, -+ , Ry—1} with the parameters Ay, -+, Ap_1.
By Theorem 5.1, this gives an effective bound on ¢ depending on ¢ (where ¢ was
obtained in an effective way from ¢ and §, but did not depend on q). Hence
|E™/ =L | cannot exceed 2™ times this bound. Since we can take the maximum
over all possible 3, we effectively obtain a bound which only depends on ¢. a

5.5 Corollary. The following relations are not definable in &
() {(4,B): n(4) < n(B)}
(ii) {(4,B):]A4| < |B|}
Proof. Definability would enable us to code (w, <) on equivalence classes. a

Let A ~ B denote that A is automorphic to B in £. R. Soare [So 74] proves
that, for quasimaximal A, B,

A=~ B < n(A) =n(B).

Therefore,
n(A) <n(B) & (3B')[B C B'AB' =~ A].

In fact the automorphism involved can be represented by a £ map on indices.

*

5.6 Corollary. The following relations (which are =
inE:
(i) A
(ii) A
(iii) £*
Proof:. Definability of either one of the relations, together with Theorem 4.2, would
imply the definability of

invariant) are non—definable

~ B
~ B via a X3 automorphism

(4) = £*(B)

{(A4,B) : A,B quasimaximal A n(A) <n(B)},

50 (w, <) could be coded in £ without parameters. O
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6. Appendix: Proof of Harrington’s Ideal Definability Lemma.
Recall that, for n =1,

v (X;A,0)=XCAAN(BRCA) X CCUR]

and that, 1f€ = (Co, AN ,Cn_l),

oni1(X;A,C0,Cp) = X C AN
(3R C A rec)(VS C A— R rec)
(X NSNCy; Cy,C).

Lemma 1. If A is r.e. and I is a 3-acceptable ideal of B(A), then there is C C A
such that for X € B(A),

X el & X CCUR for some recursive R C A.
Hence ¢y defines precisely the 3-acceptable ideals.

Proof of Lemma 1.

Step 1.

Step 2.

Uniformly in an index of a subset Z of A we can obtain a pair of disjoint
sets S, T such that

e SCACSUT
e /=A=SUT =w
o 7 # A =T finite.

(So,if Z#£ A, S=*A.)
Proof: Let

S={a:(3s)la€ A; NA. € Z,]}
T={b:(3s)[Ay C Z,AD¢Z A, 1]}

(Intuitively speaking, S contains those elements which are enumerated late,
and T those which are enumerated early.) We verify the required properties
of S, T. For instance, to show SNT = (), suppose b € T via a witness s. If
b € A;, where t > s is minimal, then 4, C Z; C Z;, therefore b ¢ S. The
verifications of the other properties are left to the reader.

If a class H of splitting components of A is given s.t. “W; € H” is £9, then
clearly, one can obtain u.r.e. sequences (X;,Y;) of pairs of disjoint subsets
of A such that W, € H & 3i W, = X;, and X; UY; = A or X; UY; is finite.
Apply this to H = I to obtain the sequences (X;), (Y;), and also to
H = B(A) to obtain (U;), (V;). Now apply Step 1 to Z; = X; UY; to obtain
sequences (S;,T;), and to Z; = U; UV} to obtain (5'“ T,) Note that

A="(X;US)U(Y;NT))

and also

A="(V;uS)u(U;nTy)
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since S; =* A if X; UY; is finite and S; UT; = w else. Thus, at the cost of
changing X; and Y; on a recursive subset of A, we have achieved that that
their union always is almost equal to A.

Observe that, in the above, V; (not U;) plays the role similar to the role
Of Xz

Step 3. Let
P} = ((V;uS)uU;nTy)[s] N |(XiUS; U (YiNT;)s]
i<j
Note that PI =* A. A — P; can be viewed as a set of “exceptions”.

Let cd(a) ={k <j:a € Xis} and pl(a) = {k < j:a € Yp NTy} be the
j-states of A w.r.t. (X3) and (Yp NT}).

Step 4. Now let Co = 0, and let
Cst1 =CsU{a: (i < s)[a € X; A

(a) (Vj < i)la € PIA
(b) (a € VjsUS;sV
(c) (Fb<a)lbe P AbECsA

ol(a) = ol (b) A pi(a) = pA(D)A
b€ Ujs NT])]]

Condition (a) only keeps finitely many elements from X; out of C. The conditions
can be explained as follows: for each j < i, if (b) fails, then a € Ujs N Tj,s by
definition of PJ, in which case we allow a into C only if there is a b < a with
similar properties which is not in C'.

For fized i and each j < i, there are only finitely many such types of elements, so
almost all elements of X; will be enumerated into C'. This implies that I is included
in the ideal of elements X satisfying @1 (X, A, C), as we verify now.

Claim 1. For each i, X; C* C.

Proof of Claim 1.. For any i, 7, ﬂj<i PJ =* A, so0 (a) only holds back finitely many
elements from X;. Moreover, for a.e. a there is b < a which behaves the same
way with respect to membership in finitely many given sets, so o/(a) = o/ (b),
p'(a) = p’(b) and a € U; NTj < b € U; NTj. Thus, for all j < i and a.e. a, if (b)
fails, then a € U; N Tj and (c) must hold. Thus X; C* C.

Claim 2. Suppose UC A. If U CC, then U € 1.

Claim 1 and Claim 2 will establish the lemma: If p3(X, A, C) holds then U =
X — S C C for some recursive S C A, s0 X — S €I,s0 X € I since R(A) C I.

Proof of Claim 2. Let U = U;, where U;UV; = A. We show U C* XoU---UX;UR
for some recursive R C A: let

F={k<j:X,UY #A},
G={0,...,j}— F and

R= (U Sk>u5’j.

keG
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Then R C A. Assume for a contradiction that U; * Xo U ---U X; U R. We show
U; € C, contrary to our assumption.

If £k € F, then X}, is finite. Let ¢ be such that X;; = X, for k € F, and let
a =min(U; —(XoU---UX;URUC})). We show a ¢ C. Else, suppose a € Csy1 —Cs
(s > t). Then a € X; 5, where j < i and i < s. Since a € U; — 5‘]', the alternative
(c¢) must hold for j via some b < a.

We show that b could replace a, contrary to the minimality of a. Since b € U;NT},
b€ U; — S;. Because ol(a) = ol (b), for k € F, b ¢ Xy, Hence b ¢ X; for k € F.
Finally, we use pZ(a) = pl(b) to show b ¢ X}, for k € G. Since a ¢ Xy U S and
k € G, a € Y, N T,. Moreover, because j < i, a € PJ, so already a € Yy s N Tk, 5.
Now pl(a) = pZ(b) implies b € Yy s N Tk s, 50 b & Xi USk. Finally b € Cs, so b & C;.
All this implies that b € U/ — (Xo U+ U X; URU Cy). ad

Recall B is a small subset of A , denoted B C5 A, if B C A and
(VUNUN(A-B)C*V = (U—-A)UV rel.

For completeness’ sake we verify the following well-known facts.

Lemma 2.

(1) If B Cs A, then each Y T A such that Y C* B must be recursive.
(2) If BCs A, B Cy, A and the set X T A is non-recursive, then X — B is

non-r.e.

Proof.

() LetU=w,V=A-Y. Then UN(A-B)=* A—BC*V,s0 AUV =Y isre.
(2)If X —Bisre., thenY := XNB C A, because A—(XNB) = (A-X)U(X —B).
So by (i), X N B is recursive. Since X is non-recursive, X — B is non-recursive, so
we can choose an infinite recursive R C X — B. This contradicts B C,, A.

Lemma 3. Let A be non-recursive. Then there is C C A such that

(VX C A non-recursive) (3T C X recursive) [T NC  non-recursive].

A strictly increasing recursive sequence by < by C ... such that T = {b; : i € w}
can be obtained uniformly in (an index for) X. We write T = Tx .

Proof. Let B C4p, A. By an infinitary version of the proof of the Friedberg splitting
theorem, in [So87], obtain a u.r.e. partition (Py) of B such that

(1) (VW)(VEk)[W — B non-recursive = W — P, non-recursive].

Let C = J{P, : n € K}. We claim that C is the desired set. First we show that
for each k£ and each non-recursive X C— A, X N Py is infinite. By Lemma 2, X — B
is non-r.e. So, by (1), X — P, is non-r.e., so X N P, must be infinite.

Now define Tx = {bo, b1,...}, where (by) is an effective strictly increasing se-
quence and b € X N P. To do so, by induction over k, enumerate X N P until a
new element is found. If X is non-recursive, then T'x will be an infinite recursive
subset of X. Moreover, Tx N C =, K, so T'x N C' is non-recursive.

We now give a Lemma on how to appropximate XY sets.
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Lemma 4. If P is a £9 set, then there is a u.r.e. sequence (Z;) such that Z; C
{0,---,i} and

a) (Vb e P) (a.e.i ) [be Z;]

b) (3*1) [Zi C P]

Remark. Ifb & P, then b ¢ Z; infinitely many i, so b € P < (almost every i) b € Z;.
Note that the right hand side is in $3-form.

Proof. We first assume that P is a £J and show that there exist a sequence (V)
of strong indices for finite sets with the properties required in the lemma (this was
first proved by Jockusch). For the general case, we will relativize this to §'.

If P is £9, then there is an r.e. set C' such that P = {(2)o : z € C'}. Choose a
recursive sequence of strong indices for sets C; C {0,---,i} such that C' = |JC;.
Let d(i) = min(Cir1 — C;) if Cipq — C; # 0 and d(i) = i + 1 else. Note that at
most two arguments for the map d can yield the same value. Let Z; be a strong
index for

{e < d(i) : c & C;}.

Then a € C = a € Z; for almost every i and, if j is a non-deficiency state, i.e.
d(j) = minf{d(i) : i > j},

then Z; C C. Now let
Y ={(z)o:z € Z;}.

Then Y; C {0,---i} (as this holds for Z;). For (a), if b € P, say b= (c)o for c € C,
then b € Y7 whenever d; > ¢, so for almost every i, b € Y;. For (b), note that
Y; C P whenever Z; C C.

Now suppose P is £9. By relativizing the ¥9 case to (', obtain a AJ-sequence
of strong indices for finite sets Y; C {0,---,i} such that (a) and (b) hold for (Y;)
in place of (Z;). By the Limit lemma [So87], there is a recursive array of strong
indices (Y; ) such that for each ¢ and for almost every k, Y; , = Y;. Let

Yiu =10,y n | Yo,
t>k

and let f be a 1-1 recursive function such that
rg(f) ={(i,k): k=0 V Yix #Yir_1}

Note that, for each 4, there are only finitely many j such that (f(j))o = i- We
claim that Z; = Yf*(j) N{0,---,j} is the desired u.r.e. sequence. For (a), if b € P,
then for almost every i, b € ¥;. Since Y; = Y} for almost every k, by the above
property of f, b € Z; for almost every j.

For (b), if i is such that ¥; C B and s is maximal such that s = 0 or Y¥; s_1 # Y s,
then, for j such that f(j) = (i,s), Z; = Y; C B (recall that ¥; C {0,...,i}).
Therefore Z; C B for infinitely many j.

We are now ready to carry out the inductive step in the proof of the Ideal
Definability Lemma. We actually show the following: if m > 2 and I is an m + 3-

acceptable ideal of B(A), then there is a non-recursive C C A and an m + 1-
acceptable ideal J of B(C) such that, for each U C A,

(2) Uels (3BRCANNSCA—R) [UNSNREJ].
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Let P = {e: U, € I} (recall (Ue) is an enumeration of the halfs of splittings of A).
By applying Lemma 4 relativized to ™), we obtain a sequence of sets (Z;) which
are uniformly X9 ., such that Z; C {0,---i} and

(a") Ue € I & (a.e. i)(e € Zj]

) (3%4) (Ve € Z;)[U. € I].

Let C' C A be the set obtained by Lemma 3. Moreover let B(A)<; be the Boolean
algebra generated by {U. : e < i} (assume B(A)<o = {0, A}).

Claim. There is a ("' -sequence (S;)ico of (indices for) recursive subsets of A such
that the S; are pairwise disjoint, (VR C A)(Fi)[R C SoU---US;] and

(Vi)(VV € B(A)<;i)[V non-recursive =V NS; N C non-recursive)].

Then we will define J essentially as the ideal on B(C') generated by the intersec-
tions U, N S; N C, where e € Z;. Let (R;) be a 0"-listing of (indices for) recursive
sets for R(A).

Proof of the Claim.A
Let S() :(Z)and, lfSZ :S()U"'Usi,

Siy1 = (Ri — Si)U
Ty s, - V € B(A)<irn}

Then R; C So U ---U Sjy1. Moreover, if V' € B(A)<;41 is non-recursive, then, by
Lemma 3, T, &, NC is non-recursive (where Ty & C V), so, since S;11 recursively
splits into TV—S'i and S;11 — TV,Si’ V' N S;+1 N C must be non-recursive.
Let .J be the ideal of B(C') generated by R(C) and {U,NS;NC : e € Z;}. Since
m > 2, the relation “e € Z;” is ¥ | and (S;) is a 0" sequence of (indices for)
recursive sets, J is an m + l-acceptable ideal. It remains to verify (2). Suppose
U=Us.
“=> If Uz € I, choose ig such that e € Z; for all i > i5. We claim that R =
SoU---US;, is a witness for the right hand side in (2). If S C A — R, then
S C Sig+1 U---US; for some j > ig. Now U; NS; N C € J for any i > ig
so, UsNnSNC e J.

“<” Suppose Uz € I. Given any R C A, choose k such that R C SoU---US. By
('), there is an ¢ > k such that Z; C {e : U, € I}, and also Uz € B(A)<;.
We show that S; is a counterexample to the right hand side in (2), i.e.
UsnS;NnC & J. Let V =Us; _UeeZl- U.. Since Us € I, V is a non-recursive
element of B(A)<;. So V N.S;NC is not recursive by the claim above. But,
if Us nS; N C € J, then, by the disjointness of the sets (S;),

U:NSinCCTU(|JU.NSiNC)

e€Z;

for some recursive subset T of C. So V' N .S; N C is recursive as a split of C'
which is contained in the recursive subset T of C'.
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This concludes the proof of the Ideal Definability Lemma.

Added 4/97. In [N tal] an alternative way is described to show uniform definability
of 3-acceptable ideals of B(A). Choose D Cgy, A. If I is a X3-ideal of B(A), then
thereis C, D C* C C* Asuch that ] ={X = A: X N C C* D}. The proof of this
is simpler than the proof of Lemma 1 above.

In a forthcoming paper [N ta3], the second author introduces a simplified coding
configuration and uses it to show that the Ilg-theory of £* as a lattice is undecidable.

[FV 59]
[Fr 58]
[Ha,S091]
[Ho,N ta]
[La68]
[Lem 87]
[Ma 66]
IN 94]

[N 95]

[N tal]
[N ta2]

[N ta3]
IN,S,Slta)]

Se 89]
S 81]
[S1,Wo0836]
[So 74]

[So 87]

REFERENCES

Feferman, Vaught, The first-order properties of algebraic systems, Fund.
Math. 47 (1959), 57-103.

M. Friedberg, Three theorems on recursive enumeration, Journ. Symb. Logic
23 (1958), 309-316.

L. Harrington and R. Soare, Post’s program and incomplete recursively enu-
merable sets, Proc. Natl. Acad. Sci. USA 88 (1992), 10242-10246.

W. Hodges, A. Nies, Interpreting infinite linear orders, Logic Colloquium
95 Proceedings, Springer Verlag..

A. H. Lachlan, The elementary theory of the lattice of recursively enumer-
able sets, Duke Math. Journal (1968), 123-146.

S. Lempp, Hyperarithmetical index sets in recursion theory, Trans. Amer.
Math. Soc. 303 (1991), no. (2), 559-583.

D.A. Martin, Classes of recursively enumerable sets and degrees of unsolv-
ability, Z. Math. Logik Grundl. Math 12, 295-310.

A. Nies, The last question on recursively enumerable many-one degrees,
Algebra i Logika 33 (5), transl. 7/1995 (1994), 550-563.

A. Nies, Relativizations of structures arising from computability theory, In:
S. B. Cooper e.a. (Eds.) Computability, enumerability, unsolvability, Lon-
don Math. Soc. Lecture Notes Series 224, Cambridge University Press,
219-232.

A. Nies, Intervals of the lattice of computably enumerable sets and effective
boolean algebras, to appear in the Bulletin of the Lond. Math. Soc..

A. Nies, Effectively dense Boolean algebras and their applications, in prepa-
ration.

A. Nies, Undecidable fragments of the theory of £*, in preparation.

A. Nies, R. Shore and T. Slaman, Interpretability and definability in the
recursively enumerable Turing -degrees (to appear).

V. Selivanov, Fine hierarchies of arithmetical sets and definable index sets,
Trudy Instituta Matematiki SO AN SSSR 12 (1989), 165-185.

R. Shore, The theory of the degrees below 0’°, J. London Math. Soc. 24
(1981), no. (2), 1-14.

T. A. Slaman and W. H. Woodin, Definability in the Turing degrees, Illinois
Journal of Math. 30 (1986), no. (2), 320-334.

R. I. Soare, Automorphisms of the lattice of r.e. sets, Ann. of Math. 100
(1974), no. (2), 60-120.

R. I. Soare, Recursively Enumerable Sets and Degrees: The Study of Com-
putable Functions and Computably Generated Sets, Perspectives in Mathe-
matical Logic, Q-Series, Springer-Verlag, Berlin, 1987.

Correspondence to: Andre Nies, Dept. of Mathematics, 5734 S. University Av,
Chicago IL 60637. e-mail: nies@math.uchicago.edu



