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1 Introduction

A lowness property of a set A says that A is computational weak when used
as an oracle and hence A is close to being computable. In this article we
study and compare some “combinatorial” lowness properties in the direction
of characterizing K-trivial sets.

A set is K-trivial when it is highly compressible in terms of Kolmogorov
complexity (see Section 2 for the formal definition). In [19], Nies proved that
a set is K-trivial if and only if A is low for Martin-Löf-random (that is, each
Martin-Löf-random set is already random relative to A).

Terwijn and Zambella [24] defined a set A to be recursively traceable if there
is a recursive bound p such that for every f ≤T A, there is a recursive r such
that for all x, |Dr(x)| ≤ p(x), and (Dr(x))x∈N is a set of possible values of f :
for all x, we have f(x) ∈ Dr(x). They showed that this combinatorial notion
characterizes the sets that are low for Schnorr tests.

This property was modified in [20] to jump-traceability. A set A is jump trace-
able if its jump at argument e, written JA(e) = {e}A(e), has few possible
values.

Definition 1 A uniformly r.e. family T = {T0, T1, . . .} of sets of natural num-
bers is a trace if there is a recursive function h such that ∀n |Tn| ≤ h(n). We
say that h is a bound for T . The set A is jump-traceable if there is a trace T
such that

∀e [JA(e) ↓ ⇒ JA(e) ∈ Te].

We say that A is jump traceable via a function h if, additionally, T has bound
h.

Another notion studied in [20] is super-lowness, first introduced in [4,18].

Definition 2 A set A is ω-r.e. iff there exists a recursive function b such that
A(x) = lims→∞ g(x, s) for a recursive {0, 1}-valued g such that g(x, s) changes
at most b(x) times, that is, |{s : g(x, s) 6= g(x, s + 1)}| ≤ b(x). In this case,
we say that A is ω-r.e. via the function g and bound b. A is super-low iff A′

is an ω-r.e. set.

Recall that a set A is low if A′ ≤T ∅′. The above definition of A being super-low
is equivalent to A′ ≤tt ∅′. Hence super-lowness implies lowness.

Both the classes of jump-traceable and of super-low sets are closed downward
under Turing reducibility and contained in the class of generalized low sets
{A : A′ ≤ A⊕∅′}. In [20] it was proven that these two lowness notions coincide
within the r.e. sets but that none of them implies the other within the ω-r.e.
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sets.

In this article, we define the notions of strong jump-traceability and well-
approximability of the jump, strengthening super-lowness. In the strong variant
of these notions we consider all order functions as the bound instead of just
some recursive bound. Here, an order function is a recursive, non-decreasing
and unbounded function (intuitively, think of a slowly growing but unbounded
recursive function). Our first two results are:

• There is a non-computable strongly jump-traceable set;
• If A′ is well-approximable then A is strongly jump-traceable; the converse

also holds, if A is an r.e. set.

Our approach is used to study interesting lowness properties related to plain
and prefix-free Kolmogorov complexity. We investigate the properties of sets
A such that Kolmogorov complexity relative to A is only a bit smaller than
the unrelativized one. We prove some characterizations of jump-traceability
and strong jump-traceability in terms of prefix-free (denoted by K) and plain
(denoted by C) Kolmogorov complexity, respectively:

• A is jump-traceable if and only if there is a recursive p, growing faster than
linearly such that K(y) is bounded by p(KA(y)+c0)+c1, for some constants
c0 and c1;

• A is strongly jump-traceable if and only if C(x) − CA(x) is bounded by
h(CA(x)), for every order function h and almost all x.

Recall that A is low for K iff K(x) ≤ KA(x) + O(1) for each x. Nies [19]
has shown that this property is equivalent to being K-trivial. In particular,
non-computable low for K sets exist. The corresponding property involving
C is only satisfied by the computable sets (because it implies being C-trivial
by [7], which is the same as computable). The characterization of strongly
jump-traceable is via a property that states that CA is very close to C, while
not implying computability.

By [19], K-triviality implies jump-traceability. Recently, Cholak, Downey and
Greenberg [9] have shown that for r.e. sets A, strong jump-traceability implies
K-triviality. They also prove that there is a K-trivial r.e. set that is not
strongly jump-traceable.

2 Basic definitions

If A is a set of natural numbers then A(x) = 1 if x ∈ A; otherwise A(x) =
0. We denote by A � n the string of length n which consists of the bits
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A(0) . . . A(n− 1).

If A is given by an effective approximation and Ψ is a functional, we write
ΨA(e)[s] for ΨAs

s (e). From a partial recursive functional Ψ, one can effectively
obtain a primitive recursive and strictly increasing function α, called a reduc-
tion function for Ψ, such that

∀X ∀e ΨX(e) = JX(α(e)).

For each set A, we want to define KA(y) as the length of a shortest prefix-
free description of y using oracle A. An oracle machine is a partial recursive
functional M : {0, 1}∞ × {0, 1}∗ 7→ {0, 1}∗. We write MA(x) for M(A, x). M
is an oracle prefix-free machine if the domain of MA is an antichain under
inclusion of strings, for each A. Let (Md)d∈N be an effective listing of all oracle
prefix-free machines. The universal oracle prefix-free machine U is given by

UA(0d1σ) = MA
d (σ)

and the prefix-free Kolmogorov complexity relative to A is defined as

KA(y) = min{|σ| : UA(σ) = y},

where |σ| denotes the length of σ. If A = ∅, we simply write U(σ) and K(y).
As usual, U(σ)[s] ↓= y indicates that U(σ) = y and the computation takes
at most s steps. Schnorr’s Theorem states that A ∈ {0, 1}∞ is Martin-Löf
random iff the initial segments of A have high K-complexity, that is,

∃c ∀n K(A � n) > n− c.

A set A is K-trivial iff the initial segments of A have low K-complexity, that
is,

∃c ∀n K(A � n) ≤ K(n) + c.

We say that A ≤K B iff

∃c ∀n K(A � n) ≤ K(B � n) + c.

The Kraft-Chaitin Theorem states that from a recursive sequence of pairs
(〈ni, σi〉)i∈N (known as requests) such that

∑
i∈N 2−ni ≤ 1, we can effectively

obtain a prefix-free machine M such that for each i there is a τi of length ni

with M(τi) ↓= σi, and M(ρ) ↑ unless ρ = τi for some i.

If we drop the condition of the domain of MA being an antichain, we obtain
a similar notion, called plain Kolmogorov complexity denoted by C. Hence,
CA(y) will denote the length of the shortest description of y using oracle A,
when we do not have the restriction on the domain.

A binary machine is a partial recursive function M̃ : {0, 1}∗×{0, 1}∗ 7→ {0, 1}∗.
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Let Ũ be a binary universal function given by

Ũ(0d1σ, x) = M̃d(σ, x),

where (M̃d)d∈N is an enumeration of all partial recursive functions of two ar-
guments. We define the plain conditional Kolmogorov complexity C(y|x) as
the length of the shortest description of y using Ũ with string x as the second
argument, that is,

C(y|x) = min{|σ| : Ũ(σ, x) = y}.

Let str : N → {0, 1}∗ be the standard enumeration of the strings. The
string str(n) is that binary sequence b0b1 . . . bm for which the binary num-
ber 1b0b1 . . . bm has the value n + 1. Thus, str(0) = λ, str(1) = 0, str(2) = 1,
str(3) = 00, str(4) = 01 and so on.

3 Strong jump-traceability

Recall that an r.e. set A is promptly simple if A is co-infinite and there is a
recursive function p and an effective approximation (As)s∈N of A such that,
for each e,

|We| = ∞ ⇒ ∃s ∃x [x ∈ We,s+1 \We,s ∧ x ∈ Ap(s)]. (1)

In this section, we introduce a stronger version of jump-traceability and we
prove that there is a promptly simple (hence non-recursive) strongly jump-
traceable set. We also prove that there is no single maximal order function
that suffices as the bounding function for all instances of jump-traceability.

Definition 3 A computable function h : N → N+ is an order function if h is
non-decreasing and unbounded.

Notice that any reduction function is an order function.

Definition 4 A set A is strongly jump-traceable iff for each order function
h, A is jump traceable via h.

Clearly, strong jump-traceability implies jump-traceability. It is not difficult to
see that strong jump-traceability is closed downward under Turing reducibility.

Proposition 5 {A : A is strongly jump-traceable} is closed downward under
Turing reducibility.
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PROOF. Suppose A is strongly jump-traceable, B ≤T A. We prove that B
is jump-traceable via the given order function h. Let Ψ be the functional such
that ΨA(x) = JB(x) for all x and let α be the reduction function such that
JA(α(x)) = ΨA(x). We know that A is jump-traceable via a trace (Ti)i∈N with
bound h̃, where h̃(z) = h(min{y : y ∈ N∧α(y+ 1) ≥ z}). Observe that, since
α is an order function, h̃ also is. Clearly,

JB(e) = JA(α(e)) ↓ ⇒ JB(e) ∈ Tα(e).

Now, h̃(α(e)) = h(y) for some y such that α(y) < α(e) or y = 0. Then y ≤ e
and h̃(α(e)) = h(y) ≤ h(e). Hence (Tα(i))i∈N is a trace for the jump of B with
bound h.

Clearly each computable set A is strongly jump-traceable, because we can
trace the jump by

Te =

{JA(e)} if JA(e) ↓;
∅ otherwise.

In Theorem 7 below we show the existence of a non-computable strongly jump-
traceable set. We need the following result, proven in [17, Theorem 2.3.1]:

Lemma 6 The function m(x) = min{C(y) : y ≥ x} is unbounded, non-
decreasing and for every order function f there is an x0 such that m(x) < f(x)
for all x ≥ x0. Also, m(x) = lims→∞ms(x), where ms(x) = min{Cs(y) : s ≥
y ≥ x} is recursive and ms(x) ≥ ms+1(x), for all x and s.

Observe that here λx, s.Cs(x) is the standard recursive approximation from
above of C(x) (that is λs.Cs(x) → C(x) when s→∞ and Cs(x) ≥ Cs+1(x)).

Theorem 7 There exist a promptly simple strongly jump-traceable set.

PROOF. We construct a promptly simple set A in stages satisfying the re-
quirements

Pe : |We| = ∞ ⇒ ∃s∃x [x ∈ We,s+1 \We,s ∧ x ∈ As+1].

These requirements will ensure that A is promptly simple (indeed, take p(s) =
s + 1 in equation (1)). Each time we enumerate an element into A in order
to satisfy Pe, we may destroy JA(k) and then our trace for the jump of A
will grow. Hence, we must enumerate elements into A in a controlled way,
and sometimes we should refrain from putting elements into A. Since for any
order function h there has to be a trace for JA bounded by h, we will work
with the function m defined in Lemma 6, which grows slower than any order
function. The rule will be that during the construction, Pe may destroy JA(k)
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at stage s only if e < ms(k). (Observe that the restriction on Pe imposed rule
may strengthen as s grows, because we may have ms(k) > ms+1(k).) In this
way, we will guarantee that size of our trace for JA(e) will be bounded by
m(e), which will suffice because m ≤ h from some point on. As we will see,
the exact choice of the trace for JA with bound h depends on h, and is made
in a nonuniform way.

Construction of A. Let ms be the non-decreasing, unbounded function de-
fined in Lemma 6.

Stage 0: set A0 = ∅ and declare Pe unsatisfied for all e.

Stage s+ 1: choose the least e ≤ s such that

• Pe yet not satisfied;
• There exists x such that x ∈ We,s+1 \We,s, x > 2e and for all k such that
ms(k) ≤ e, if JA(k)[s] is defined then x is greater than the use of JA(k)[s].

If such e exists, put the least such x into A for each such e. We say that Pe

receives attention at stage s+1 and declare Pe satisfied. Otherwise, As+1 = As.
Finally, define A =

⋃
sAs.

Verification. Clearly, Pe receives attention at most once. So we can use below
the fact that every requirement influences the enumeration of A at most once.

To show that A is strongly jump-traceable, fix a recursive order function h.
We will prove that there exists an r.e. trace T for JA as in Definition 1. Let h
be any order function. By Lemma 6, there exists k0 such that for all k ≥ k0,
m(k) ≤ h(k). Define the recursive function

f(k) =

min{s : ms(k) ≤ h(k)} if k ≥ k0;

0 otherwise.

For k ≥ k0 and s ≥ f(k), ms(k) will be below h(k), so JA(k) may change
because Pe receives attention, for e < ms(k) ≤ h(k). Since each Pe receives
attention at most once, JA(k) can change at most h(k) times after stage f(k).
So

Tk =


{JA(k)[s] : JA(k)[s] ↓ ∧ s ≥ f(k)} if k ≥ k0;

{JA(k)} if JA(k) ↓ ∧ k < k0;

∅ otherwise.

is as required.
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Fix e such that We is infinite and let us see that Pe is met. Let s such that

∀k [m(k) ≤ e ⇒ ms(k) = m(k)]

and s′ > s such that no Pi receives attention after stage s′ for any i < e.
Then, by the construction, no computation JA(k), m(k) ≤ e can be destroyed
after stage s′. So there is t > s′ such that for all k where mt(k) ≤ e, if JA(k)
converges then the computation is stable from stage t on. Choose t′ ≥ t such
that there is x ∈ We,t′+1 \ We,t′ , x > 2e and x is greater than the use of
all converging JA(k) for all k where mt′(k) ≤ e. Now either Pe was already
satisfied or Pe receives attention at stage t′ + 1. In either case Pe is met.

Next we study the size of the trace bound for jump-traceability. Given an
order function h, it is always possible to find a jump-traceable set A for which
h is too small to be a bound for any trace for the jump of A.

Theorem 8 For any order function h there is an r.e. set A and an order
function h̃ such that A is jump-traceable via h̃ but not via h.

PROOF. We will define an auxiliary functional Ψ and we use α, the reduction
function for Ψ (that is, ΨX(e) = JX(α(e)) for all X and e), in advance by the
Recursion Theorem. At the same time, we will define an r.e. set A and a trace
T̃ for JA. Finally, we will verify that there is an order function h̃ as stated.

Let T (0), T (1), . . . be an enumeration of all the traces with bound h, so that

T (e) = {T (e)0, T (e)1, . . . },

the e-th such trace, is as in Definition 1. Requirement Pe tries to show that
JA is not traceable via the trace T (e) with bound h, that is,

Pe :∃x ΨA(x) /∈ T (e)α(x)

and requirement Ne tries to stabilize the jump when it becomes defined, that
is,

Ne : [∃∞s JA(e)[s] ↓] ⇒ JA(e) ↓ .

The strategy for a single procedure Pe consists of an initial action and a
possible later action.

Initial action at stage s + 1:
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• Choose a new candidate xe = 〈e, n〉, where n is the number of times that
Pe has been initialized. Define ΨA(xe)[s+ 1] = 0 with large use.

Action at stage s + 1:

• Let xe = 〈e, n〉 be the current candidate. Put y into As+1, where y is the
use of the defined ΨA(xe)[s]. Notice that in the construction this action will
not affect JA(i)[s] for i < e because of the choice of y;

• Define ΨA(xe)[s + 1] = ΨA(xe)[s] + 1 with use y′ > y and greater than the
use of all defined computations of JA(i)[s+ 1] for i < e.

We say that Pe requires attention at stage s+1 if ΨA(xe)[s] ∈ T (e)α(xe)[s] and
we say that Ne requires attention at stage s + 1 if JA(e)[s] becomes defined
for the first time.

Construction of A. We define T̃ = {T̃0, T̃1, . . . } by stages. The s-th stage
of T̃i will be denoted by T̃i[s]. We start with A0 = ∅ and T̃i[0] = ∅ for all i.
At stage s + 1 we consider the procedures Nj for j ≤ s and Pj for j < s. We
also initialize the new Ps. We look at the least procedure requiring attention
in the order

P0, N0, . . . , Ps, Ns.

If there is none, do nothing. Otherwise, suppose Pe is the first one. We let Pe

take action at s + 1, changing A below the use of ΨA(xe)[s] and redefining
ΨA(xe)[s+ 1] without affecting Ni for i < e. We keep the other computations
of Pj with the new definition of A, for j 6= i and large use. If Ne is the least
procedure requiring attention, there is y such that JA(e)[s] ↓= y. We put y
into T̃e[s+ 1] and initialize Pj for e < j ≤ s. In this case, we say that Ne acts.

Verification. Let us prove that Pe is met. Take s such that all JA(i) are
stable for i < e. Suppose xe is the actual candidate of Pe. Since Pe is not
going to be initialized again, xe is the last candidate it picks. Each time
ΨA(xe)[t] ∈ T (e)α(xe)[t] for t > s, Pe acts and changes the definition of ΨA(xe)
to escape from T (e)α(xe). Since |T (e)α(xe)| ≤ h(α(xe)), there is s′ > s such
that T (e)α(xe)[s

′] = T (e)α(xe). By construction, ΨA(xe)[s
′ + 1] /∈ T (e)α(xe) and

ΨA(xe)[s
′ + 1] is stable.

We say that Ne is injured at stage s+ 1 if we put y into As+1 and y is less or
equal than the use of JA(e)[s]. We define cP (k) as a bound for the number of
initializations of Pr, for r ≤ k; and define cN(k) as a bound for the number of
injuries to Nr, for r ≤ k. Since P0 is initialized just once and makes at most
h(〈0, 0〉) changes in A, cP (0) = 1 and cN(0) = h(〈0, 0〉). The number of times
that Pk+1 is initialized is bounded by the number of times that Nr acts, for
r ≤ k, so

cP (k + 1) = cP (k) + cN(k).
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Each time Nr is injured, for r ≤ k then Nk+1 may also be injured; additionally,
Nk+1 may be injured each time Pk+1 changes A. The latter occurs at most
h(〈k + 1, i〉) for the i-th initialization of Pk+1. Hence

cN(k + 1) = 2cN(k) +
∑

i≤cP (k+1)

h(〈k + 1, i〉).

Once Ne is not injured anymore, if JA(e) ↓ then JA(e) ∈ T̃e. Since the number
of changes of JA(k) is at most the number of injuries to Ne, we define the
function h̃(e) = cN(e) which is clearly an order function and it constitutes a
bound for the trace (T̃i)i∈N.

It is open whether there is minimal bound for jump-traceability. That is, given
an order function h, is there a set A and an order function h̃ such that A is
jump-traceable via h but not via a smaller function h̃? If the answer is negative
for some order function h, then strong jump traceability is equivalent jump
traceability for that single function h.

4 Well-approximability of the jump

We strengthen the notion of super-lowness and study the relationship to
strongly jump-traceability.

Definition 9 A set D is well-approximable iff for each order function b, D
is ω-r.e. via b.

Clearly, if A′ is well-approximable, then A is super low. It is not difficult to
see that well-approximability of the jump is closed downward under Turing
reducibility.

Proposition 10 {A : A′ is well approximable} is closed downward under Tur-
ing reducibility.

PROOF. Suppose A is such that A′ is well-approximable and let B ≤T A.
We prove that B′ is well-approximable via the given order function b. Define
Ψ and α as in Proposition 5. We know that there is a recursive {0, 1}-valued
g such that A′(x) = lims→∞ g(x, s) and g(x, s) changes at most b̃(x) times,
where b̃(z) = b(min{y : y ∈ N ∧ α(y + 1) ≥ z}). Then

lim
s→∞

g(α(x), s) = A′(α(x)) = B′(x)
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and g(α(x), s) changes at most b̃(α(x)) times. As in Proposition 5, b̃(α(x)) ≤
b(x).

We next prove that if A is r.e., then A is strongly jump-traceable iff A′ is
well-approximable. We will need the following two lemmas.

Lemma 11 Let f and f̂ be order functions such that f(x) ≤ f̂(x) for almost
all x.

(i) If A is jump-traceable via f then A is jump traceable via f̂ ;
(ii) If A is well-approximable via f then A is well-approximable via f̂ .

PROOF. Assume that ∃x0 ∀x [x ≥ x0 ⇒ f(x) ≤ f̂(x)]. For (i), suppose T
is a trace for JA with bound f . We can define the trace T̂ :

T̂x =

Tx if x ≥ x0;

{JA(x)} otherwise.

Hence, if x ≥ x0 then |T̂x| = |Tx| ≤ f(x) ≤ f̂(x), and if x < x0 then 1 =
|T̂x| ≤ f̂(x).

For (ii), suppose A is well-approximable via the {0, 1}-valued g(x, s) which
changes at most f(x) times. Define

ĝ(x, s) =

g(x, s) if x ≥ x0;

A(x) otherwise.

If x ≥ x0 then ĝ(x, s) changes at most f(x) ≤ f̂(x) times, and if x < x0 then
ĝ does not change at all.

Lemma 12 There exists a recursive γ such that for all r.e. A:

(i) If A is jump-traceable via an order function h then A is super-low via the
order function b(x) = 2h(γ(x)) + 2;

(ii) If A is super-low via an order function b then A is jump-traceable via the
order function h(x) = b1

2
b(γ(x))c.

PROOF. We follow the proof of [20, Theorem 4.1], together with Lemma 11.

(i)⇒(ii). Suppose A is jump-traceable via h. By [20] A is super-low via a {0, 1}-
valued recursive g such that g(x, s) changes at most 2h(α(x))+2 times. Here,
α is a reduction function (hence primitive recursive) which depends on A. The
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diagonal γ of the Ackermann-function satisfies γ(x) ≥ α(x) for almost all x
[21, Volume 2, Theorem VIII.8.10]. Since h is an order function, 2(h ◦ γ) + 2
also is, and 2h(γ(x)) + 2 ≥ 2h(α(x)) + 2 for almost all x. By Lemma 11, A is
super-low via b(x) = 2h(γ(x)) + 2.

(ii)⇒(i). Suppose A is super-low via an order function b and the {0, 1}-valued
function g. Again following [20], there is a trace for JA via b1

2
(b ◦ γ)c, for a

primitive recursive α which depends on g. As we did in the previous implica-
tion, b1

2
b(γ(x))c ≥ b1

2
b(α(x))c for almost all x. Thus A is jump-traceable via

h(x) = b1
2
b(γ(x))c.

Theorem 13 Let A be an r.e. set. Then the following are equivalent:

(i) A is strongly jump-traceable;
(ii) A′ is well-approximable.

PROOF. (i)⇒(ii). Given an order function b, let us prove that A is super-
low via b. By part (i) of Lemma 12, it suffices to define an order function
h such that 2h(γ(x)) + 2 ≤ b(x) for almost all x. If b(x) ≥ 4 then define

h(γ(x)) = b b(x)−2
2

c and if b(x) < 4, define h(γ(x)) = 1. Since γ can be taken
strictly monotone, the above definition is correct and we can complete it to
make h an order function.

(ii)⇒(i). Given an order function h, we will prove that A is jump-traceable via
h. By part (ii) of Lemma 12, it suffices to define an order function b such that
b1

2
b(γ(x))c ≤ h(x) for almost all x. The argument is similar to the previous

case.

Later, in Corollary 18, we will improve this result and we will see that, in fact,
the implication (ii)⇒(i) holds for any A.

We finish this section by proving that the prefixes D � n of a well-approx-
imable set D have low Kolmogorov complexity, of order logarithmic in n.
Hence D is not Martin-Löf random and furthermore, its effective Hausdorff
dimension is 0. The latter is equivalent to saying that there is no c > 0 such
that cn is a linear lower bound for the prefix-free Kolmogorov complexity of
D � n for almost all n. in the following |n| denotes the length of the binary
representation of n.

Theorem 14 If D is well-approximable then for almost all n, K(D � n) ≤
4|n|.
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PROOF. Suppose D(n) = lims→∞ g(n, s), where g is recursive and changes
at most n times. Given n, there is a unique s and some m < n such that
g(m, s) 6= g(m, s+ 1) but g(q, t) = g(q, t+ 1) for all t > s and q < n. That is,
s is the first stage where g(0, s+1) = D(0), . . . , g(n−1, s+1) = D(n−1) and
m is the place where the last change takes place. The stage s can be computed
from m and the number k of stages with g(m, t) 6= g(m, t + 1). So one can
compute D � n from m,n, k. Since k,m ≤ n, one can, for almost all n, code
m,n, k in a prefix-free way in 4|n| many bits. This is done by using a prefix
of the form 1q0 followed by 2q bits representing n, 2q bits representing m and
2q bits representing k as binary numbers; here q is just the smallest number
such that 2q bits are enough. Since k,m ≤ n and since 2q ≤ |n| + c for some
constant c and since the additionally necessary coding needed to transform
the above representation into a program for U is bounded by a constant, we
have that there is a constant d such that

∀n K(D � n) ≤ 3|n|+ |n|/2 + d

and then the relation K(D � n) ≤ 4|n| holds for almost all n. In fact, using
binary notation to store q instead of 1q0, it would even give

K(D � n) ≤ 3(|n|+ log(|n|))

for almost all n.

5 Traceability and plain Kolmogorov complexity

We give a characterization of strong jump-traceability in terms of (relativized)
plain Kolmogorov complexity. First we show that if A′ is well-approximable
then A satisfies the condition involving Kolmogorov complexity and hence
that any set A such that A′ is well-approximable is strongly jump-traceable.

Theorem 15 If A′ is well-approximable then for every order function h and
almost all x, C(x) ≤ CA(x) + h(CA(x)).

PROOF. The idea of the proof is the following. Let h be any order func-
tion. Suppose qx is a minimal A-program for x. We know that there is a c
such that C(x) ≤ |qx| + 2C(x|qx) + c. Since |qx| = CA(x), we only need to
show that 2C(x|qx) + c ≤ h(|qx|) for almost all x. Given qx and the value of
C(x|qx), we can find a program px of length C(x|qx) which describes x with
the help of qx, that is Ũ(px, qx) = x. It can be shown that there is a recur-
sive {0, 1}-valued approximation of the bits of px which changes few times (in
the proof, this is done with the help of the functional Ψ). Hence, x can be
described by the values of C(x|qx), qx and px. We can represent px with the
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number of changes of the mentioned {0, 1}-valued approximation. This will
show C(x|qx) ≤ 2|h(|qx|)| + O(1), which is sufficient to get the desired upper
bound on 2C(x|qx) + c.

Here are the details. Let ΨA(m,n, q) be a functional which does the following:

(i) Compute x = UA(q). If UA(q) ↑ then ΨA(m,n, q) ↑;
(ii) Find the first program p such that |p| = n and Ũ(p, q) = x. If there is no

such p then ΨA(m,n, q) ↑;
(iii) In case m /∈ [1, n] then ΨA(m,n, q) ↑. Otherwise, if the m-th bit of p is 1

then ΨA(m,n, q) ↓, else ΨA(m,n, q) ↑.

Let α be a reduction function such that JA(α(m,n, q)) = ΨA(m,n, q). Choose
an order function b such that b(α(n, n, q)) ≤ nh(|q|) for all n, q. We can ap-
proximate A′(x) with a {0, 1}-valued recursive function which changes at most
b(x) times.

Let qx be a minimal A-program for x, that is, UA(qx) = x and |qx| = CA(x).
Let nx = C(x|qx). Then ΨA(m,nx, qx) ↓ iff the m-th bit of px is 1, where px is
the first program such that |px| = nx and Ũ(px, qx) = x.

Since A′ is ω-r.e. via b,

px = A′(α(1, nx, qx)) . . . A
′(α(nx, nx, qx))

changes at most

nx max{b(α(m,nx, qx)) : 1 ≤ m ≤ nx}≤nxb(α(nx, nx, qx))

≤n2
xh(|qx|)

many times. Since Ũ(px, qx) = x and we can describe px with nx, qx and the
number of changes of A′(α(1, nx, qx)) . . . A

′(α(nx, nx, qx)), we have

nx = C(x | qx)≤ 2|nx|+ |n2
xh(|qx|)|+O(1)

≤ 4|nx|+ |h(|qx|)|+O(1). (2)

To finish, let us prove that for almost all x, nx ≤ 2|h(|qx|)| + O(1). Since
C(x) ≤ |qx|+ 2nx +O(1), this upper bound of nx will imply that

C(x)≤ |qx|+ h(|qx|)
=CA(x) + h(CA(x))

for almost all x, as we wanted. Hence, let us see that nx ≤ 2|h(|qx|)| + O(1)
for almost all x. There is a constant N such that for all n ≥ N , 8|n| ≤ n.
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We know that for almost all x, qx satisfies |h(|qx|)| ≥ N . Suppose x has
this property. Then either nx ≤ |h(|qx|)| or 4|nx| ≤ nx/2. In the second case
nx − 4|nx| ≥ nx/2 and by (2), nx/2 ≤ |h(|qx|)| + O(1). So, in both cases, we
have nx ≤ 2|h(|qx|)|+O(1).

To characterize strong jump traceability, we need a Lemma.

Lemma 16 For all x ∈ {0, 1}∗ and d ∈ N,

|{y : C(x, y) ≤ C(x) + d}| = O(d42d).

PROOF. Chaitin [6] has proved that

∀d, n ∈ N |{σ : |σ| = n ∧ C(σ) ≤ C(n) + d}| = O(2d).

Let c be such that ∀x C(x) ≤ str−1(x) + c. Consider the partial recursive
function f(x, y, d) which enumerates all strings z such that C(z) ≤ str−1(x)+
d+c until it finds z = y. If z was the i-th string to appear in the enumeration,
then f(x, y, d) is the number i written in binary with initial zeroes such that
|f(x, y, d)| = str−1(x) + d + c + 1. Notice that it is always possible to write
f(x, y, d) in this way because there are at most 2str−1(x)+d+c+1 such strings z.
If no such z exists, then f(x, y, d) ↑. Let x and d be given. Consider y such
that C(x, y) ≤ C(x)+d. Since C(x, y) ≤ str−1(x)+d+ c then f(x, y, d) ↓ and

C(f(x, y, d))≤C(x, y) + 2|d|+O(1)

≤C(x) + d+ 2|d|+O(1)

≤C(str−1(x) + d+ c+ 1) + d+ 4|d|+O(1).

The last inequality holds because we can compute the string x from the num-
bers str−1(x)+d+c+1 and d. Let n = str−1(x)+d+c+1 and d′ = d+4|d|+O(1).
For fixed x and d, the mapping y 7→ f(x, y, d) is injective and thus

|{y : C(x, y) ≤ C(x) + d}|≤ |{σ : |σ| = n ∧ C(σ) ≤ C(n) + d′}|
=O(2d′) = O(d42d).

This completes the proof.

Theorem 17 The following are equivalent:

(i) A is strongly jump-traceable;
(ii) For every order function h and almost every x, C(x) ≤ CA(x)+h(CA(x)).
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PROOF. For any function f , let f̂(y) = y + f(y) for all y.

(i)⇒(ii). Let h0 be a given order function. It is sufficient to show that C(x) ≤
ĥ(CA(x)) + O(1) for almost all x, where h = bh0/2c. Let α be a reduction
function such that JA(α(x)) = UA(str(x)). Let T be a trace for JA with bound
g such that g(α(x)) ≤ h(|str(x)|). Let m ∈ N be such that UA(str(m)) = y
and |str(m)| = CA(y). Since y ∈ Tα(m), we can code y with m and a number
not greater than g(α(m)) (representing the place (≤ g(α(m))) within the
enumeration of Tα(m) at which y is enumerated), using at most

|str(m)|+ g(α(m)) ≤ CA(y) + h(CA(y))

many bits. Then ∀y C(y) ≤ ĥ(CA(y)) +O(1).

(ii)⇒(i). Since there are at most 2n − 1 programs of length < n, ∀n ∃x [|x| =
n ∧ n ≤ C(x)]. Let c be a constant such that

∀x [JA(|x|) ↓ ⇒ CA(x, JA(|x|)) ≤ |x|+ c].

This last inequality holds because, given x, we can compute JA(|x|) relative
to A.

Let h be any order function and let us prove that A is jump-traceable via
h. Define the order function g such that for almost all e, 3g(e+c) ≤ h(e). By
hypothesis, for almost all x, if JA(|x|) ↓ then

C(x, JA(|x|))≤ ĝ(CA(x, JA(|x|)))
≤ |x|+ g(|x|+ c) + c.

Define the trace

Te = {y : ∀x [|x| = e ⇒ C(x, y) ≤ e+ g(e+ c) + c]}.

It is clear that for almost all e, if JA(e) ↓ then JA(e) ∈ Te, because given x
such that |x| = e, we have C(x, JA(e)) ≤ e + g(e + c) + c. To verify that for
almost all e, |Te| ≤ h(e), suppose y ∈ Te. Take x, |x| = e and C(x) ≥ e. Then

C(x, y)≤ e+ g(e+ c) + c

≤C(x) + g(e+ c) + c.

By Lemma 16, for almost all e there are at most 3g(e+c) ≤ h(e) such y’s in Te.

In [20], it was proven that there is a super-low set which is not jump-traceable
(namely, a super-low Martin-Löf random set). In contrast, from Theorem 15
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and Theorem 17 we can conclude that the strong version of super-lowness
implies strong jump-traceability.

Corollary 18 If A′ is well-approximable then A is strongly jump-traceable.

6 Variations on K -triviality

Throughout this section, let p : N → N be strictly increasing such that in
addition limn p(n)− n = ∞. We call p an estimation function if, in addition,
p(n) = lims ps(n) where ps+1(n) ≤ ps(n), and the function λs, n.ps(n) is re-
cursive. An example of such a function is q(n) = n+ 5 ·min{K(m) : m ≥ n}
with the approximation qs(n) = n+ 5 ·min{Ks(m) : s ≥ m ≥ n}.

Recall that A is K-trivial iff

∃c ∀n K(A � n) ≤ K(n) + c.

Nies [19] has shown that A is K-trivial if and only if A is low for K, that is,
∃c ∀x K(x) ≤ KA(x) + c. In this section we weaken the notion of lowness for
K:

Definition 19 (i) A set A is weakly p-low iff ∀n K(A � n) ≤ p(K(n) +
c0) + c1 for some constants c0 and c1. Let K[p] denote the class of such
sets.

(ii) A set A is p-low iff ∀y K(y) ≤ p(KA(y) + c0) + c1 for some constants c0
and c1. Let M[p] denote the class of such sets.

Proposition 20 (i) If A ∈M[p] and B ≤T A, then B ∈M[p].
(ii) If A ∈ K[p] and either B ≤K A or B ≤wtt A, then B ∈ K[p].
(iii) Suppose p is an estimation function. Then no random set is in K[p].
(iv) If A,B ∈ K[p] and A,B are r.e., then

A⊕B = {2x : x ∈ A} ∪ {2x+ 1 : x ∈ B} ∈ K[p].

(v) M[p] ⊆ K[p].

PROOF. (i). Since B ≤T A, there exists a constant c2 such that for each
string y, KA(y) ≤ KB(y) + c2. Then

K(y)≤ p(KA(y) + c0) + c1

≤ p(KB(y) + c0 + c2) + c1.
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(ii). This is trivial for ≤K . Now suppose B = ΓA for a weak truth-table
reduction Γ with recursive bound f . Without loss of generality, we may assume
f strictly increasing. Given A � f(n) we can compute n and B � n, and then
there is a constant c2 such that for all n,

K(B � n)≤K(A � f(n)) + c2
≤ p(K(f(n)) + c0) + c1 + c2.

Since f is recursive, we have K(f(n)) ≤ K(n) +O(1) and hence B ∈ K[p].

(iii). Assume ∀n K(A � n) > n−c and A ∈ K[p] via constants c0 and c1. Since
p is an estimation function, p(n) = lims ps(n) where ps+1(n) ≤ ps(n), and
the function λs, n.ps(n) is recursive. Define the strictly increasing recursive
function p̃(0) = p0(0) and p̃(k+1) = p0(j), where j = min{i : i > k ∧ p0(i) >
p̃(k)}. Since p̃ ≥ p, A ∈ K[p̃]. Define the Kraft-Chaitin set {〈i, ni〉 : i ∈
N+ ∧ ni = p̃(i + d + c0) + c1 + c} for Md with d given in advance by the
Recursion Theorem. ThenK(ni) ≤ i+d and hence p̃(K(ni)+c0) ≤ p̃(i+d+c0).
Finally,

K(A � ni)≤ p̃(K(ni) + c0) + c1
≤ p̃(i+ d+ c0) + c1 = ni − c

and this is a contradiction.

(iv). Ignoring constants, for each n,

K(A⊕B � n)≤K(A⊕B � 2n)

≤max{K(A � n), K(B � n)}
≤ p(K(n)).

In the second inequality we used [13, Theorem 6.4].

(v). Again ignoring constants, for all n,

K(A � n)≤ p(KA(A � n))

≤ p(KA(n))

≤ p(K(n)).

This completes the proof.

The following proposition shows a connection between jump-traceability and
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p-lowness. In Theorem 17 we proved a similar result, relating strong jump-
traceability and plain Kolmogorov complexity.

Proposition 21 (i) Suppose p is a recursive function. There is a constant
c such that if A ∈M[p] via constants c0 and c1 then A is jump-traceable
via h(x) = 2p(2|x|+c0+c)+c1+1;

(ii) There is a reduction function α such that if A is jump-traceable via h
then A ∈M[p] for p(z) = 3z + 2|h(α(2z+1))|.

PROOF. For (i), we know that there is a constant c such that KA(JA(x)) ≤
2|x| + c because we can compute JA(x) from x and the oracle A. Define the
trace

Tx = {U(σ) : |σ| ≤ p(2|x|+ c0 + c) + c1}.
Clearly |Tx| ≤ 2p(2|x|+c0+c)+c1+1. Let y = JA(x). By hypothesisK(y) ≤ p(KA(y)+
c0) + c1 and then K(y) ≤ p(2|x|+ c+ c0) + c1. Hence y ∈ Tx.

For (ii), let α be a reduction function such that JA(α(x)) = UA(str(x)). Let
T be a trace for JA with bound h and let us define the trace

T̃n =
⋃

x:|str(x)|=n

Tα(x).

Notice that

|T̃n| ≤
∑

x:|str(x)|=n

h(α(x))

≤ 2nh(α(2n+1)),

since α is increasing. Let m ∈ N be such that UA(str(m)) = y and |str(m)| =
KA(y). Since y ∈ Tα(m), we know that y ∈ T̃|str(m)|, hence we describe y by

saying “y is the i-th element enumerated into T̃|str(m)|”. If we code |str(m)| in
unary and we code i with

2|i| ≤ 2|2|str(m)|h(α(2|str(m)|+1))|
≤ 2|str(m)|+ 2|h(α(2|str(m)|+1))|

many bits, we have K(y) ≤ p(KA(y)) +O(1), for p(z) = 3z + 2|h(α(2z+1))|.

Corollary 22 A is jump-traceable iff there exists a recursive function p (of
the type considered in this section) such that A ∈M[p].

Figueira, Stephan and Wu [15, Proposition 6] used a universal machine which
has the property that there is an approximation Ks of K from above with
Kx(x) = K(x) for all x ∈ X where X = {x : ∀y > x (K(y) > K(x))}. For the

19



following Theorem, such a universal machine is assumed. The example shows
that there is a set in M[q] where q is as defined at the beginning of Section 6
which is not K-trivial. Note that r differs from the function in Lemma 6 only
by using K instead of C and has the same properties as the function given
there. In particular, for each order function h we have r(n) ≤ n + h(n) for
almost each n, and thus the set constructed satisfies the analog for K of the
condition in Theorem 17 characterizing strong jump traceability. In contrast to
this result, Cholak, Downey and Greenberg [9] have shown that each strongly
jump-traceable set is in ∆0

2.

Theorem 23 Let r(n) = min{K(m) : m ≥ n} and q(n) = n+ 5 · r(n). Then
there is a set A ∈M[q] \∆0

2.

PROOF. Note that the set X = {x : ∀y > x ∀t (Kt(y) > Kx(x))} is co-
r.e. and that it has a co-r.e. subset Y of the form {y0, y1, . . .} such that,
for all n, yn = K(yn+1) = Kyn+1(yn+1). As K(0) > 0 one might have the
undesirable property that yn+1 < yn for some n. But as there are only finitely
many numbers x with K(x) > x, one simply adds to the construction of Y the
condition that y0 is taken to be the first element of X larger than these finitely
many exceptions and so one has the additional property that yn+1 > yn for
all n.

Now one defines a partition I0, I1, . . . of the natural numbers into intervals
such that |Ix| = Kx(Kx(x)) and max(Ix) + 1 = min(Ix+1). Note that none of
these intervals is empty as Kx(Kx(x)) > 0 for all x which is due to the fact
that a prefix-free universal machine is undefined on the empty input.

Having the partition, one defines a partial-recursive function ψ in stages s
where one does the following algorithm where ψ is everywhere undefined before
stage 0. The set A will be chosen such that its characteristic function is a
suitable extension of ψ. Let ψs denote the approximation to ψ before stage s.

• Find the least x, y such that x ≤ s, y ∈ Ix, ψs(y) is undefined and either
(1) x /∈ Ys or (2) there is a string σ ∈ {0, 1}max(Ix)+1 such that Ks(σ) <
Ks(x) + 0.5 · log(|Ix|) and σ is consistent with ψs, that is, ψs(z) = σ(z) for
all z ∈ domain(ψs) ∩ {0, 1, . . .max(Ix)}.

• In the case that no x, y were found, let ψs+1 = ψs.
• In the case that x, y were found according to condition (1), let ψs+1(y) = 0

and let ψs+1(z) = ψs(z) for all z 6= y.
• In the case that x, y were found according to condition (2), let ψs+1(y) =

1− σ(y) and let ψs+1(z) = ψs(z) for all z 6= y.

Now let A be a set whose characteristic function extends ψ and which is low
for Ω. Such a set A exists since ψ defines a Π0

1 class and Downey, Hirschfeldt,
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Miller and Nies [12] showed every Π0
1 class (of sets) has a member which is

low for Ω.

Reviewing the construction of ψ, condition (1) enforces that ψ is defined on
the complete interval Ix if x /∈ Y and condition (2) enforces that if x = yn and
n is large enough then the Kolmogorov complexity of A � max(Iyn) is at least
K(yn) + log(|Iyn|)/2. To see this, one should have in mind that x→ max(Ix)
is a recursive injective function, that Kyn(yn) = K(yn) and that the number
of σ of length max(Iyn) + 1 with K(σ) ≤ K(yn) + log(|Iyn|)/2 is bounded

by a function proportional to
√
|Iyn|. So there will for all sufficiently large n

remain some elements in Iyn where ψ is undefined. As the intervals Iyn are
of unbounded length, this enforces that for sufficiently large n the value of
K(A � max(Iyn)) is at least K(yn) + log(|Iyn|)/2 while on the other hand
K(max(Iyn)) is only a constant above K(yn). So A is not K-trivial. Since
every low for Ω set is either K-trivial or not ∆0

2, A is also not ∆0
2, that is, not

limit-recursive.

Now it is shown that the set A constructed satisfies KA(x) ≤ q(K(x))+ c0 for
some constant c0 and all x. This needs some facts about the sequence y0, y1, . . .
and the complexities of these strings relative to A.

For ease of notation, UA denotes the universal prefix-free machine relative to
A and U = U∅ the unrelativized one. Let an be an input of shortest length such
that UA(an) = yn and let bn be an input of length yn−1 such that U(bn) = yn.

Now consider all the n such that |an| ≤ yn−1−2yn−2. Then one has a prefix-free
machine V A and a partial-recursive coding function θ such that

• V A(bn−1an) computes Ωyn � yn−1 − yn−2 − c1;
• U(θ(bn−1Ω � yn−1 − yn−2 − c1)) computes min{s : Ωs � (yn−1 − yn−2 − c1) =

Ω � (yn−1 − yn−2 − c1)}.

where the constant c1 is so large that θ can be chosen such that |θ(bn−1d)| ≤
yn−1 for all d ∈ {0, 1}yn−1−yn−2−c1 . As a consequence, the computation U(θ(bn−1Ω �
yn−1 − yn−2 − c1)) needs less than yn steps. Thus, V A(bn−1an) computes
Ω � yn−1 − yn−2 − c1 and |bn−1an| = yn−2 + |an| ≤ yn−1 − yn−2. Since Ω is
random relative to A, this can happen only for finitely many n and one has
that |an| > yn−1 − 2yn−2 for almost all n.

Now assume that n > 1 and |an| > yn−1 − 2yn−2. Let En = {e : UA(e) needs
at least min(Iyn) and at most min(Iyn+1) − 1 steps}. Note that for e ∈ En,
bn is that string of length yn−1 for which U(bn) terminates last within the
computation-time of UA(e) and yn = U(bn). So one has a constant c2 and for
each e a prefix-free input d of length |e|+K(yn−1) + c2 such that UA(d) = yn.
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This gives that there is a constant c3 with∑
e∈En

2−|e|−c2−K(yn−1) < 2c3−|an|

what using |an| > yn−1 − 2yn2 can be transformed to∑
e∈En

2yn−1−c2−c3−3yn−2−e < 1.

There is a partial-recursive function g such that g(bn) = |Iy0 ∪ Iy1 ∪ . . .∪ Iyn|.
Now one can construct a prefix-free machine which on input bd with U(b) being
defined and |d| = g(bn) enumerates requests of weight at most 2−b−d with the
additional constraint that, in the case that b = bn and d is the restriction of
A to Iy0 ∪ Iy1 ∪ . . . ∪ Iyn , the requests are just an enumeration of the set

{〈|bn|+ g(bn) + |e|+ c2 + c3 + 3yn−2 − yn−1, U
A(e)〉 : e ∈ En}.

Recall that the weight of a request 〈i, j〉 is 2−i. So the sum of the weights of all
requests is at most 1. Note from bn and d one can compute y0, y1, . . . , yn and
A on Iy0 ∪ Iy1 ∪ . . .∪ Iyn so that the enumeration is effective. By the inequality∑

e∈En

2yn−1−c2−c3−3yn−2−e < 1.

from above one has that the bound on the weight of the requests is kept.
Assume that |e| = KA(x) and UA(e) = x and x is so large that e ∈ En

for an n satisfying that g(bn) ≤ 2yn−2 and that n does not fall under the
finitely many exceptions considered above. Then there is a request of the form
〈|e| + g(bn) + c2 + c3 + 3yn−2, x〉. It follows from the Kraft-Chaitin Theorem
that there is a constant c4 with KA(x) ≤ |e|+5yn−2+c4 for the n with e ∈ En.

As for almost all n, |an| > yn−1− 2yn−2 and as one can compute yn relative to
A from yn−2 plus an upper bound on yn, one has that for almost all n and every
e with UA(e) needing more than yn steps that |e| > yn−1−3yn−2− c5 for some
constant c5. Since r grows slower than every unbounded and nondecreasing
recursive function and yn−1 − 3yn−2 − c5 > yn−1/2 for almost all n, there is a
constant c6 such that r(e) ≥ r(yn) − c6 = yn−2 − c6 where c6 is independent
of e, n as long as e ∈ En. So one has that K(UA(e)) ≤ |e|+ 5r(|e|) + c4 + 5c6.

One can now cover the case the x = UA(e) the finitely many x where UA(e)
needs at most min(Iyn+1)−1 steps for some of the finitely many exceptional n
in the case distinction above by taking c0 to be sufficiently much larger than
c4 + 5c6 and obtains that

∀x K(x) ≤ KA(x) + 5r(KA(x)) + c0 = q(KA(x)) + c0

what completes the proof.
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One should note that the real difficulty of this construction stems from the
fact that the constructed set has to be p-low and not only weakly p-low. For
estimation functions, the construction of weakly p-low sets is quite straight-
forward. Note that the resulting set is not K-trivial as it is Turing complete.

Proposition 24 Let p be an estimation function. Then there is a Turing
complete r.e. set A which is weakly p-low and also satisfies the corresponding
property for C: there are constants cK , cC such that K(A � x) ≤ p(K(x))+ cK
and C(A � x) ≤ p(C(x)) + cC for all x.

PROOF. For defining an enumeration ofA, fix a one-one enumeration b0, b1, . . .
of the halting problem and approximations Cs, Ks to C,K. Let A0 = ∅. At
stage s+ 1, let am be the m-th nonelement of As in ascending order. Now the
set As+1 is computed as follows.

• Let n be the minimum of all m such that one of the following conditions
holds:
· am > s;
· bs ≤ m;
· ps(Ks(k))−Ks(k) ≤ m for some k with am ≤ k ≤ s;
· ps(Cs(k))− Cs(k) ≤ m for some k with am ≤ k ≤ s.

• Let As+1 = As ∪ {x : an ≤ x ≤ s}.

This set A satisfies the following properties:

• A is coinfinite and r.e.;
• A is Turing complete;
• K(A � x) ≤ p(K(x)) + cK for some constant cK and all x;
• C(A � x) ≤ p(C(x)) + cC for some constant cC and all x.

The first property states the obvious fact that A is r.e. by construction. The
other fact that A is co-infinite needs some more thought. Assume by way of
contradiction that |A| = m for some finite number m. Let a0, a1, . . . , am−1

denote the nonelements of A in ascending order and assume that s is so large
that the following conditions hold:

• if bt ≤ m then t < s;
• for all x ∈ A−As there is no k ≥ x and no e ≥ min{C(k), K(k)} such that
p(e)− e ≤ m;

• if x ≤ am−1 + 1 then x ∈ A⇔ x ∈ As.

Then one can see that the parameters a0, a1, . . . , am−1 chosen in the defini-
tion of step s coincide with the m least nonelements of A and are just not
enumerated. Furthermore, am is also defined as the next nonelement of As.
Note that am ≤ s as s /∈ As. Now one can see that am is not enumerated into
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As+1 because the n selected is larger than m: for all m′ < m, n 6= m′ because
otherwise a0, a1, . . . , am−1 would not remain outside A; furthermore, n 6= m as
the first and second item in the conditions on s together with the facts that
ps approximates p from above and am ≤ s imply that m does not satisfy the
search-conditions. So am /∈ As+1 and one can show by induction that am /∈ At

for all t > s, this contradicts the assumption that |A| = m. Therefore, A is
coinfinite.

The second property follows from the construction. If a0, a1, . . . are the nonele-
ments of A in ascending order, then bs ≤ m implies s ≤ am. Thus m is in the
halting problem iff m ∈ {b0, b1, . . . , bam} and so the halting problem is Turing
reducible to A.

The third property can be seen as follows: Given x and the shortest description
σ for x with respect to a fixed prefix-free universal machine, let n be the
number of nonelements of A below x. Then one can construct a prefix-free
machine which from input 1n0σ first evaluates the universal machine on σ to
get the value x and then searches for a stage s such that As contains all but n
elements below x. Having this x and s, the machine outputs As � x. If σ and
n are chosen correctly, then the output is correct. Thus one has that K(A � x)
is at most K(x) + n + cK where the constant cK comes from translating the
given prefix-free coding of K(A � x) of length K(x) + n+ 1 for some machine
into inputs for the universal machine. Furthermore, for all sufficiently large s,
Ks(x) + n ≤ ps(Ks(x)) as otherwise the marker an−1 would move. Therefore
K(x) + n ≤ p(K(x)) and A is weakly p-low.

The fourth property can be proven analogously; here the constructed machine
is not prefix-free and σ is the shortest input producing x with respect to
some fixed universal plain machine, nevertheless σ and n can of course still
be recovered from 1n0σ. The rest of the proof follows the previous item but is
working with C in place of K. This completes the proof of the whole result.

For any estimation function p and the above constructed A ∈ K[p], Ω ≤T A
and thus A /∈ M[p] by Proposition 20 (i) and (iii). Thus the inclusion from
Proposition 20 (v) is strict.

Corollary 25 For all estimation functions p, M[p] ⊂ K[p].

Proposition 26 For every estimation function p there is a whole Turing de-
gree outside ∆0

2 contained in K[p].

PROOF. For any estimation function p one can consider the estimation func-
tion q given as q(n) = n+ log(p(n)− n)/2. Then one can construct a r.e. set
A as in Proposition 24 which is in K[q].
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The set A is not recursive. Thus, due to Yates’ version of the Friedberg-
Muchnik Splitting Theorem [21, Theorem IX.2.4 and Exercise IX.2.5], one
can construct a partial-recursive {0, 1}-valued function ψ with domain A such
that ψ−1(0), ψ−1(1) form a recursively inseparable pair, that is, ψ does not
have a total extension. Actually, given a one-one enumeration a0, a1, . . . of A,
this function ψ can be inductively defined on this domain by taking ψ(as) in
{0, 1} such that ψ(as) differs from ϕe,s(as) for the least e where either e = s
or ϕe,s(as) is defined and ψ(at) = ϕe,s(at) for all t < s with at ∈ domain(ϕe,s).

Every total extension B of ψ is in K[p] as given any n and any x, the number
m of places below x where ψ is undefined satisfies m < q(K(x)) − K(x).
Let x1, x2, . . . , xm be these places. Let σ be the shortest input such that
the universal machine for K computes x. Then one can code B � x by
1m0B(x1)B(x2) . . . B(xm)σ and thus has that K(B � x) is below p(K(x)).
As one can take B to have hyperimmune-free Turing degree [21, Theorem
V.5.34] and as K[p] is closed under wtt-reducibility, one has that a whole
Turing degree outside ∆0

2 is contained in K[p].

Note that the above result also holds with C in place of K, the proof is exactly
the same. So given an estimation function p, one can construct a hyperimmune-
free Turing degree only consisting of sets E satisfying C(E � x) ≤ p(E(x)) for
all x up to an additive constant. Unfortunately, it is not guaranteed that this
degree is also strongly jump-traceable, it is even a bit unlikely, as only the use
of total E-recursive functions but not of the jump is recursively bounded in
the case of a set E of hyperimmune-free degree.
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