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As a natural example of a 1-random real, Chaitin proposed the halting probability Ω of a
universal prefix-free machine. We can relativize this example by considering a universal
prefix-free oracle machine U . Let ΩA

U be the halting probability of UA; this gives a natural
uniform way of producing an A-random real for every A ∈ 2ω . It is this operator which
is our primary object of study. We can draw an analogy between the jump operator from
computability theory and this Omega operator. But unlike the jump, which is invariant
(up to computable permutation) under the choice of an effective enumeration of the
partial computable functions, ΩA

U can be vastly different for different choices of U . Even
for a fixed U , there are oracles A =∗ B such that ΩA

U and ΩB
U are 1-random relative to

each other. We prove this and many other interesting properties of Omega operators.
We investigate these operators from the perspective of analysis, computability theory,
and of course, algorithmic randomness.
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1. Introduction

We begin with a brief review of algorithmic randomness, focusing on Chaitin’s
halting probability Ω. For a more complete introduction, see Li and Vitanyi [16] or
the upcoming monograph of Downey and Hirschfeldt [4].

A partial computable function M : 2<ω → 2<ω is called a prefix-free machine if
whenever σ, τ ∈ domain(M), then σ is not a proper prefix of τ . There is a univer-
sal prefix-free machine, i.e. a prefix-free machine U such that for each prefix-free
machine M there is a string τ ∈ 2<ω for which (∀σ) U(τσ) = M(σ) or both U(τσ)
and M(σ) diverge. We say that U simulates M by the prefix τ . The importance of
prefix-free machines to algorithmic information theory is well established, originat-
ing independently in the seminal work of Levin [15] and Chaitin [2]. They modified
Kolmogorov complexity to capture effective randomness for real numbers (an ear-
lier approach is described in Levin [14]). For any prefix-free machine M , define
KM (σ) = min{|τ | | M(τ) = σ}. If U is universal, then for each partial computable
prefix-free M , there is a constant c ∈ ω such that (∀σ) KU (σ) ≤ KM (σ) + c. We
write K for KU and call this prefix-free Kolmogorov complexity. Note that, up to
an additive constant, K is independent of the choice of U . We say that A ∈ 2ω

is 1-random if and only if (∀n) K(A �n) > n − O(1). Schnorr observed that this
definition of randomness is equivalent to an earlier definition given by Martin-Löf
[17] (see the next section).

If M : 2<ω → 2<ω is a prefix-free machine, the halting probability of M is the
probability ΩM that M halts on (a prefix of) an infinite input string. Formally,
ΩM =

∑
M(σ)↓ 2−|σ|. Note that ΩM is the limit of a monotonically increasing com-

putable sequence of rationals; such reals are called c.e. (or left computable) reals.
Conversely, every c.e. real is the halting probability of some prefix-free machine.

Chaitin [2] proposed the halting probability Ω = ΩU as a natural example of a
1-random real, where U is any universal prefix-free machine. It is not hard to prove
that Ω is 1-random; a straightforward generalization is proved in Proposition 3.1
below. Note that we call Ω the halting probability, even though the definition is
machine dependent. This is akin to the situation in computability theory where the
halting problem ∅′ also depends on the choice of universal machine. In that case,
the machine dependence of ∅′ is entirely superficial; Myhill’s theorem [18] states
that it is always the same up to a computable permutation of the natural numbers.
Here a similar situation occurs: any two versions of Ω are Solovay equivalent [28].

For X, Y ∈ 2ω, which we can think of as reals in [0, 1], we write Y ≤S X (Y
is Solovay reducible to X) to mean that there is a c ∈ ω and a partial computable
ϕ : Q → Q such that if q < X , then ϕ(q)↓ < Y and Y −ϕ(q) < c(X−q). The idea is
that given any sequence of rationals approximating X from below, we can generate
a sequence of rationals approximating Y from below that, up to a multiplicative
constant, converges no slower. We say that a c.e. real X is Solovay complete if
Y ≤S X for every c.e. real Y . It is not difficult to prove that ΩU is Solovay complete
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for every universal prefix-free machine U [28], which implies that Ω is well-defined
up to Solovay equivalence.a Two further theorems should be mentioned.

Theorem 1.1 (Calude, Hertling, Khoussainov, Wang [1]). If A ∈ 2ω is a
Solovay complete c.e. real, then A = ΩU for some universal prefix-free machine U .

Theorem 1.2 (Kučera and Slaman [11]). Suppose that X ∈ 2ω is a 1-random
c.e. real. Then X is Solovay complete.

Together, these results imply that the 1-random c.e. reals, the Solovay complete
c.e. reals, and the possible values of Ω all coincide. We will relativize these theorems
in Sec. 4.

Relativizing Ω. As we have already indicated, one can draw an analogy between
the (measures of) domains of prefix-free machines in algorithmic randomness and
the domains of partial computable functions in classical computability theory. Let
us consider this analogy in detail.

(i) The domains of partial computable functions are exactly the c.e. sets, while
the measures of the domains of prefix-free machines are exactly the c.e. reals.

(ii) The canonical example of a non-computable set is the halting problem ∅′, i.e.
the domain of a universal partial computable function. The canonical exam-
ple of a 1-random real is Ω, the halting probability of a universal prefix-free
machine.

(iii) ∅′ is well-defined up to computable permutation, while Ω is well-defined up to
Solovay equivalence.

How much further can this analogy be taken? Relativizing the definition of
∅′ gives the jump operator. If A ∈ 2ω, then A′ is the domain of a universal
A-computable machine. Myhill’s theorem relativizes, so A′ is well-defined up to
computable permutation. Furthermore, if A ≡T B, then A′ and B′ differ by a com-
putable permutation. A fortiori, the jump is well-defined on the Turing degrees.
The jump operator plays an important role in computability theory; it gives a nat-
ural, uniform and degree invariant way to produce, for each A ∈ 2ω, a set A′ with
Turing degree strictly above A.

What happens, on the other hand, when the definition of Ω is relativized? In
some ways, the situation is as nice as one would expect. First, note that for any
oracle A ∈ 2ω there is an A-computable prefix-free machine which is universal
with respect to all such machines. We will find it convenient to use a universal
prefix-free oracle machine UA : 2<ω → 2<ω, which essentially gives us a coherent
choice of universal machines over all oracles (see Sec. 3). Let ΩA

U =
∑

UA(σ)↓ 2−|σ|

aSolovay reducibility implies Turing reducibility on the c.e. reals, so the Turing degree of Ω is
well-defined. Indeed, it is well known that Ω ≡T ∅′.
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and KA(σ) = min{|τ | | UA(τ) = σ}. By relativizing Chaitin’s theorem, ΩA
U is

A-random; in other words, (∀n) KA(ΩA
U � n) > n−O(1). This much is well known.

It is also clear that ΩA
U is an A-c.e. real and well-defined up to A-Solovay equivalence.

Furthermore, Theorems 1.1 and 1.2 can both be relativized (the latter requires care
in the context of prefix-free oracle machines and is Theorem 4.3 below).

What goes wrong? One might hope for ΩA
U to be well-defined, not just up to A-

Solovay equivalence, but even up to Turing degree. Similarly, we might hope for ΩU

to be a degree invariant operator: in other words, if A ≡T B then ΩA
U ≡T ΩB

U . Were
this the case, ΩU would provide a counterexample to a long-standing conjecture
of Martin: it would induce an operator on the Turing degrees which is neither
increasing nor constant on any cone.b But as we show in Theorem 6.7, there are
oracles A =∗ B (i.e. A and B agree except on a finite set) such that ΩA

U and ΩB
U

are vastly different. In particular, we can ensure that ΩA
U is a c.e. real while making

ΩB
U as random as we like. It follows easily that the Turing degree of ΩA

U generally
depends on the choice of U , and in fact, that the degree of randomness of ΩA

U can
vary drastically with this choice.

If U is a universal prefix-free oracle machine, then we call ΩU : 2ω → [0, 1] an
Omega operator. Basic properties of Omega operators are discussed in Secs. 3 and 4.
In Sec. 5, it is proved that the range of an Omega operator has positive measure and
that every 2-random real is in the range of some Omega operator. This is not true
for every 1-random real. Section 6 turns to the question of degree non-invariance.
We prove that every Omega operator maps a set of positive measure to a c.e. real.
The preimage of any non-c.e. real has measure zero, so even for relativized halting
probability the c.e. reals play a special role. We also prove that for any Z ∈ 2ω,
every Omega operator maps a set of positive measure to the Z-random reals. It is
now a simple consequence of Kolmogorov’s 0–1 law (see next section) that there are
reals A =∗ B such that ΩA

U is a c.e. real and ΩB
U is Z-random. Degree non-invariance

is immediate.
In Sec. 7, we prove that A ∈ 2ω is mapped to a c.e. real by some Omega operator

if and only if Ω is A-random. Such an A is called low for Ω. (This property does not
depend on the particular choice of Ω.) More interesting is the characterization in
Sec. 8 of the reals A ∈ 2ω which are mapped to c.e. reals by every Omega operator.
These are proved to be the K-trivial reals : reals which have minimum prefix-free
initial segment complexity. This class has been studied thoroughly in recent work
[5, 20]. We prove that the K-trivial reals are the only reals for which the Turing
degree of ΩA

U does not depend on the choice of U .
In the final section, we consider the analytic behavior of Omega operators. We

prove that Omega operators are lower semicontinuous but not continuous, and
moreover, that they are continuous exactly at the 1-generic reals. We also produce
an Omega operator which does not have a closed range. On the other hand, we prove

bMartin’s conjecture is over ZF with dependent choice and the axiom of determinacy. See Slaman
and Steel [27] and Downey and Shore [7] for discusion of the conjecture and partial results.
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that every non-2-random in the closure of the range of an Omega operator is actually
in the range. As a consequence, there is an A ∈ 2ω such that ΩA

U = sup(range ΩU ).

2. Preliminaries

We use “real” to denote a member of the Cantor space 2ω. When convenient, we
also think of reals as elements of [0, 1]. We take the standard product topology on
2ω; the basic clopen sets of Cantor space are of the form [σ] = {σA | A ∈ 2ω}, where
σ ∈ 2<ω. Every open set is of the form [V ] =

⋃
x∈V [x], for some V ⊆ 2<ω. Let µ

denote the Lebesgue measure on 2ω; in particular, µ[σ] = 2−|σ|. For σ, τ ∈ 2<ω, we
write σ 	 τ to indicate that σ is a prefix of τ and σ ≺ τ if it is a proper prefix. We
write σ ≺ A to mean that σ ∈ 2<ω is an initial segment of the real A ∈ 2ω. It is
natural to associate a finite string σ ∈ 2<ω with the dyadic rational having binary
expansion σ0ω.

Before prefix-free Kolmogorov complexity was used to characterize randomness,
Martin-Löf [17] defined the random reals as those that pass all “effectively presented
statistical tests”. Each test is given as a presentation of the measure zero set of reals
that fail the test. Formally, a Martin-Löf test is a computable sequence {Vi}i∈ω

of computably enumerable subsets of 2<ω such that µ([Vi]) ≤ 2−i. A real X ∈ 2ω

passes the Martin-Löf test {Vi}i∈ω if X /∈ ⋂
i∈ω[Vi]. A real which passes all Martin

Löf tests is called Martin-Löf random, which Schnorr proved equivalent to being
1-random.

To capture stronger notions of randomness, take the sets Vi ⊆ 2<ω to be uni-
formly c.e. relative to an oracle A ∈ 2ω. Then {Vi}i∈ω is called an A-Martin-Löf
test and, relativizing Schnorr’s result, the A-random reals are exactly the reals
which pass every such test. Of special interest are the ∅(n−1)-random reals, which
are called n-random.

Next we recall some of the results which are needed below. We repeatedly use
the following elegant theorem of van Lambalgen [29] (see [6] for a short proof).

van Lambalgen’s theorem. For every A, B ∈ 2ω:

(i) A ⊕ B is 1-random if and only if A is 1-random and B is A-random.
(ii) If A is 1-random and B is A-random, then A is B-random.

We also require a few important theorems from classical measure theory.

The Lebesgue density theorem. If S ⊆ 2ω is measurable, then for almost every
A ∈ S,

lim
n→∞ 2nµ([A � n] ∩ S) = 1.

A proof of Lebesgue density can be found in [23]. We do not need the full
strength of Lebesgue’s theorem. Instead, we use the following corollary which says
that if a class has positive measure then there is a neighborhood in which the local
measure is arbitrarily close to one.
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Corollary 2.1. Let S ⊆ 2ω have positive measure. For every ε > 0, there is a
σ ∈ 2<ω such that 2|σ|µ([σ] ∩ S) ≥ 1 − ε.

This corollary easily implies another result which we use below. Recall that for
X, Y ∈ 2ω, we write X =∗ Y if X and Y agree on a cofinite set.

Kolmogorov’s 0–1 law. If S ⊆ 2ω is a measurable class closed under =∗, then
µ(S) is either zero or one.

Proof. Assume that µS > 0. Take an ε > 0. By the Lebesgue density theorem,
there is a σ ∈ 2<ω such that µ([σ] ∩ S) ≥ 2−|σ|(1 − ε). But S is closed under =∗.
So, for each τ with |τ | = |σ| we have µ([τ ]∩S) = µ([σ]∩S). Therefore, µS ≥ 1− ε.
But ε > 0 was arbitrary, hence µS = 1.

Additionally, in Sec. 5 we use the theorem of Lusin that analytic sets (i.e. pro-
jections of Borel sets) are measurable. See Sacks [26] for details.c

K-trivial reals. We finish this section by reviewing an important class of reals:
A ∈ 2ω is called K-trivial if

(∀n) K(A � n) ≤ K(n) + O(1).

The K-trivial reals are the central topic of Sec. 8 and are also useful elsewhere.
Nies [20] proved that A is K-trivial if and only if A is low for 1-randomness, that
is, each 1-random set is also 1-random relative to A. Another notion which turns
out to be equivalent is due to Kučera [10]: A is a base for 1-randomness if A ≤T Z

for some Z which is 1-random relative to A. By the Kučera–Gács theorem [8, 13],
each set that is low for 1-randomness is a base for 1-randomness. Hirschfeldt, Nies
and Stephan [9] showed that in fact each base for 1-randomness is K-trivial.

3. Omega Operators

In this section, we introduce universal prefix-free oracle machines and the primary
objects of study in this paper: the Omega operators. These are a natural class of
functions from 2ω to [0, 1], each of which maps every oracle A ∈ 2ω to an A-random
A-c.e. real.

A partial computable oracle function MA : 2<ω → 2<ω is a prefix-free oracle
machine if MA is prefix-free for every A ∈ 2ω. A prefix-free oracle machine U

is universal if for every prefix-free oracle machine M there is a prefix ρM ∈ 2<ω

such that

(∀A ∈ 2ω)(∀σ ∈ 2<ω) UA(ρMσ) = MA(σ).

cSacks actually proves that Π1
1 classes are measurable. But every analytic subset of 2ω is a Σ1

1

class relative to an appropriate oracle, so Lusin’s theorem follows by relativization.
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In other words, U can simulate any prefix-free oracle machine by prepending an
appropriate string to the input. Note that this condition is much stronger than
the requirement that UA is a universal A-computable prefix-free machine for all
A ∈ 2ω. The existence of universal prefix-free oracle machines can be verified by a
standard construction. It is not difficult to see that there is an effective enumeration
{Mi}i∈ω of prefix-free oracle machines. Given such an enumeration, we can define
a universal prefix-free oracle machine U by UA(0i1σ) = MA

i (σ).
For a prefix-free oracle machine M , let ΩA

M be the halting probability of MA.
Formally, ΩA

M =
∑

MA(σ)↓ 2−|σ|. This defines an operator ΩM : 2ω → [0, 1]. If U is
universal, then we call ΩU an Omega operator. We will make frequent use of stage
notation. In particular, we write MA(σ)[s]↓ to indicate that the prefix-free oracle
machine M with oracle A ∈ 2ω converges on σ ∈ 2<ω by stage s ∈ ω. Similarly,
ΩA

M [s] =
∑

MA(σ)[s]↓ 2−|σ|.
Now that we have defined Omega operators, we make a few simple but important

observations. Fix a universal prefix-free oracle machine U . The following proposition
is a straightforward relativization of the 1-randomness of Ω.

Proposition 3.1. There is a constant b ∈ ω (which depends on U) such that, for
each A ∈ 2ω, ΩA

U is A-random with constant b, in other words, (∀n) KA(ΩA
U �n) ≥

n − b.

Proof. We define a prefix-free oracle machine M as follows. For any A ∈ 2ω and
σ ∈ 2<ω, first calculate τ = UA(σ). Then wait for a stage s such that ΩA

U [s] ≥
τ − 2−|τ |. If such an s is found, then let MA(σ) converge to a string longer than
any in domain(UA[s]). Note that the convergence of MA(σ) cannot already be
taken into account in the calculation of ΩA

U [s]. Now assume that U simulates M

by the prefix ρ ∈ 2<ω. So, either ΩA
U < τ − 2−|τ | or ΩA

U ≥ ΩA
U [s] + 2−|ρσ| ≥

τ − 2−|τ | + 2−|ρσ|. Assume, for a contradiction, that there is an n ∈ ω such that
KA(ΩA

U � n) < n − |ρ| − 1. Letting σ be a minimal program for ΩA
U � n, so that

τ = ΩA
U �n, we have proved that either ΩA

U − (ΩA
U �n) < −2−n, which is absurd, or

ΩA
U − (ΩA

U �n) ≥ −2−n + 2−|ρσ| > −2−n + 2−n+1 = 2−n, which is also impossible.
This is a contradiction, so (∀n) KA(ΩA

U � n) ≥ n − |ρ| − 1.

It is clear that (∀A ∈ 2ω)(∀σ ∈ 2<ω) K(σ) ≥ KA(σ) − c, for some c ∈ ω

not depending on A. This proves that all reals in the range of ΩU are 1-random
with constant b + c. In other words, the range of ΩU is contained in the closed set
{X | (∀n) K(X �n) ≥ n − b − c}. In particular, every real in (range ΩU )c, the
closure of the range of ΩU , is 1-random. We will discuss the range of ΩU and its
closure in more depth in Sec. 9.

Next we consider the complexity of ΩA
U . Call A ∈ 2ω an A-c.e. real if it is the limit

of an increasing, A-computable sequence of rationals. The following observation is
immediate.

Proposition 3.2. ΩA
U is an A-c.e. real.
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Every A-c.e. real is computable from A′, hence ΩA
U ≤T A′. Note that it is not

usually the case that ΩA
U ≡T A′. To see this, let A be 1-random. By van Lambalgen’s

theorem, A is ΩA
U -random. Hence A �T ΩA

U . Therefore, ΩA
U ≡T A′ only on a set of

measure zero. (We strengthen this in Theorem 8.3 below: ΩA
U ≡T A′ if and only if

A is K-trivial, thus only for countably many choices of A ∈ 2ω.) On the other hand,
the fact that Ω ≡T ∅′ has a natural relativization in the following simple result.

Proposition 3.3. ΩA
U ⊕ A ≡T A′, for every A ∈ 2ω.

Proof. It is clear that ΩA
U ⊕ A ≤T A′. For the other direction, define a prefix-

free oracle machine M such that MA(0n1) ↓ if and only if n ∈ A′, for all A ∈ 2ω

and n ∈ ω. Assume that U simulates M by the prefix τ ∈ 2<ω. To determine if
n ∈ A′, search for a stage s such that ΩA

U − ΩA
U [s] < 2−(|τ |+n+1). This can be

done computably in ΩA
U ⊕ A. Note that UA cannot converge on a string of length

|τ | + n + 1 after stage s, so

n ∈ A′ ⇔ MA(0n1)↓ ⇔UA(τ0n1)↓ ⇔UA(τ0n1)[s]↓ .

Therefore, A′ ≤T ΩA
U ⊕ A.

Recall that B ∈ 2ω is called generalized low (GL1) if B′ ≤T B ⊕ ∅′.
Theorem 3.4 (Nies and Stephan). If a ∆0

2 set A ∈ 2ω is B-random, then B

is GL1.

Proof. Let f(n) = (µs)[(∀ t ≥ s) At � n = As � n], so that f ≤T ∅′. Let R̂e be the
basic clopen set [As � e + 1] when ΦB

e (e) converges at s, where Φe is the eth Turing
functional. Clearly, if Ri =

⋃
e≥i R̂e, then {Ri}i∈ω is a Martin-Löf test relative to

B. Since A /∈ ⋂
i Ri, A is only in finitely many R̂e’s. So, for almost all e such that

ΦB
e (e) converges, f(e) ≥ (µs) ΦB

e (e)[s]↓. Hence B′ ≤T B ⊕ ∅′.

Nies, Stephan and Terwijn [21, Definition 3.1] introduced the following notion:
B ∈ 2ω is low for Ω if Ω is B-random. It is shown that this property does not
depend on the particular version of Ω used. We will see in Sec. 7 that the low for Ω
reals are exactly those which can be mapped to a c.e. real by some Omega operator.

Applying Theorem 3.4 with A = Ω, one obtains the following corollary.

Corollary 3.5 (Nies, Stephan, Terwijn [21]). If B ∈ 2ω is low for Ω, then B

is generalized low.

Finally, Theorem 3.4 implies that the class of low 1-random reals is closed under
the action of every Omega operator.

Corollary 3.6. If A ∈ 2ω is ∆0
2 and 1-random, then ΩA

U is generalized low. If
A ∈ 2ω is a low 1-random, then ΩA

U is low.
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Proof. Let B = ΩA
U . Clearly B is A-random, so by van Lambalgen’s theorem,

A is B-random and Theorem 3.4 applies. If in addition A is low, then ΩA
U is ∆0

2,
hence low.

4. On A-Random A-c.e. Reals

We can relativize Solovay reducibility as follows. For A, X, Y ∈ 2ω, we write
Y ≤A

S X to mean that there is a c ∈ ω and a partial A-computable ϕ : Q → Q
such that if q < X , then ϕ(q)↓< Y and Y − ϕ(q) < c(X − q). We say that X ∈ 2ω

is A-Solovay complete if Y ≤A
S X for every A-c.e. real Y ∈ 2ω.

Some basic facts about Solovay reducibility relativize easily. For example:

Proposition 4.1. A-randomness is closed upward under ≤A
S . In other words,

if Y is A-random and Y ≤A
S X, then X is also A-random.

The proof is a straightforward relativization of results in Solovay [28]. Similarly,
Kučera and Slaman’s [11] proof of Theorem 1.2 relativizes without alteration.

Theorem 4.2. If X is an A-random A-c.e. real, then X is A-Solovay complete.

On the other hand, a satisfactory relativization of Theorem 1.1 presents some
difficulty. The direct relativization states that if X ∈ 2ω is an A-c.e. real and
A-Solovay complete, then there is an oracle machine M such that MA is universal
for A-computable prefix-free machines and X = ΩA

M . It is not hard to add the
requirement that M be prefix-free for all oracles, but there is no reason that M

should be universal for oracles other than A, let alone be a universal prefix-free
oracle machine. However, with extra work we can satisfy this stronger requirement.

Theorem 4.3. Suppose that X is an A-c.e. real and A-Solovay complete. Then
there is a universal prefix-free oracle machine U such that X = ΩA

U .

Proof. Let V be a universal prefix-free oracle machine. Because ΩA
V is an A-c.e.

real, we have ΩA
V ≤A

S X . Choose n ∈ ω and a partial oracle-computable function
ϕB : Q → Q such that 2n and ϕA witness this Solovay reduction. In other words, if
q < X is a rational, then ϕA(q)↓< ΩA

V and

ΩA
V − ϕA(q) < 2n(X − q). (4.1)

We also require n to be large enough that 2−n ≤ X ≤ 1 − 2−n (clearly, no com-
putable real can be A-Solovay complete, so X �= 0, 1).

We now define another universal prefix-free oracle machine U . To make U uni-
versal, let UB(0nσ) = V B(σ), for all σ ∈ 2<ω and oracles B ∈ 2ω. For convenience,
we preserve the stage of convergence; i.e. UB(0nσ)[t]↓ if and only if V B(σ)[t]↓. The
other strings in the domain of U are used to ensure that ΩA

U = X . Let ψB : ω → Q
be a partial oracle-computable function such that {ψA(s)}s∈ω is a nondecreasing
sequence with limit X . Fix an oracle B. We add strings not extending 0n to the
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domain of U in stages. For each s,

(i) Compute qs = ψB(s).
(ii) Compute rs = ϕB(qs).
(iii) Search for a ts such that ΩB

V [ts] ≥ rs.
(iv) If qs ≤ 1 − 2−n, add strings not extending 0n to the domain of U at stage ts

to make ΩB
U [ts] = qs.

Note that (if B �= A) this procedure may get stuck in any of the first three steps.
In this case, UB will converge on only finitely many strings not extending 0n.
This completes the construction of U , which is clearly a universal prefix-free oracle
machine.

It remains to verify that ΩA
U = X . By the definition of ψ, we have qs = ψA(s)↓<

X , for each s. Therefore, rs = ϕA(qs) ↓< ΩA
V . So, there is a stage ts such that

ΩA
V [ts] ≥ rs. Because qs < X ≤ 1 − 2−n, there are enough strings available in

step (iv) to ensure that ΩA
U [ts] ≥ qs. But lims qs = X , so ΩA

U ≥ X . Now assume,
for a contradiction, that ΩA

U > X . Because the strings extending 0n add at most
2−n ≤ X to ΩA

U , there must be some s that causes too many strings to be added to
the domain of U in step (iv). In other words, there is an s such that ΩA

U [ts] = qs and

ΩA
U [ts] + 2−n(ΩA

V − ΩA
V [ts]) > X.

So, ΩA
V − ΩA

V [ts] > 2n(X − qs). But in step (iii), we ensured that ΩA
V [ts] ≥ rs =

ϕA(qs). Therefore, ΩA
V −ϕA(qs) > 2n(X − qs), contradicting (4.1). This proves that

ΩA
U = X , which completes the theorem.

Combining Propositions 3.1 and 3.2 with Theorems 4.2 and 4.3, we get the
following corollary.

Corollary 4.4. For A, X ∈ 2ω, the following are equivalent:

(i) X is an A-c.e. real and A-random.
(ii) X is an A-c.e. real and A-Solovay complete.
(iii) X = ΩA

U for some universal prefix-free oracle machine U .

5. Reals in the Range of Some Omega Operator

We proved in the last section that X ∈ 2ω is in the range of some Omega operator
if and only if there is an A ∈ 2ω such that X is both A-random and an A-c.e. real.
What restriction does this place on X? In this section, we show that every 2-random
real is an A-random A-c.e. real for some A ∈ 2ω, but that not every 1-random real
has this property. Furthermore, we prove that the range of every Omega operator
has positive measure.

Theorem 5.1. If X ∈ 2ω is 2-random, then X is an A-random A-c.e. real for
some A ∈ 2ω.
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Proof. Let A = (1−X + Ω)/2. Then X = 1−2A + Ω is an A-c.e. real. In particular,
take a nondecreasing computable sequence {Ωs}s∈ω of rationals limiting to Ω. Then
X is the limit of {1 − 2(A � s) + Ωs}s∈ω, a nondecreasing A-computable sequence
of rationals. It remains to prove that X is A-random. Because X is 2-random
it is Ω-random. Hence, by van Lambalgen’s theorem, Ω is X-random. But then
A = (1−X +Ω)/2 is X-random (because clearly, Ω ≡X

S (1−X +Ω)/2). Therefore,
applying van Lambalgen’s theorem again, X is A-random.

As was mentioned above, the previous theorem cannot be proved if X is only
assumed to be 1-random.

Example 5.2. X = 1 − Ω is not in the range of any Omega operator.

Proof. The 1-random real X = 1 − Ω is a co-c.e. real, i.e. the limit of a decreas-
ing computable sequence of rationals. Assume that X is an A-c.e. real for some
A ∈ 2ω. Then A computes sequences limiting to X from both sides; hence X ≤T A.
Therefore, X is not an A-random A-c.e. real for any A ∈ 2ω.

It would not be difficult to prove that 1 − Ω cannot even be in the closure of
the range of an Omega operator. In fact, a direct proof is unnecessary because this
follows from Theorem 9.4 below.

There is more to be said about which reals can be in the range of an Omega
operator. For example:

Question 1. If X ≥T ∅′ is an A-random A-c.e. real for some A ∈ 2ω, then is X

necessarily a c.e. real?

Note that Theorem 5.1 cannot help provide a counterexample because no
2-random real computes ∅′.

Next we consider a specific Omega operator. Let U be an arbitrary universal
prefix-free oracle machine. Recall that analytic sets are measurable and that the
image of an analytic set under any Borel operator — for example, ΩU — is also
analytic.

Theorem 5.3. The range of ΩU has positive measure. In fact, if S ⊆ 2ω is any
analytic set whose downward closure under ≤T is 2ω, then µ(ΩU [S]) > 0.

Proof. Let R = ΩU [S]. Note that R is an analytic subset of 2ω. Hence µ(R)
is defined. Assume, for a contradiction, that µ(R) = 0. In particular, the outer
measure of R is zero. This means that there is a nested sequence U0 ⊇ U1 ⊇ U2 ⊇ · · ·
of open subsets of 2ω such that R ⊆ Un and µ(Un) ≤ 2−n, for each n ∈ ω. Take a set
B ∈ S which codes {Un}n∈ω in some effective way. Then {Un}n∈ω is a B-Martin-Löf
test, which implies that ΩB

U /∈ ⋂
n Un. But R ⊆ ⋂

n Un, so ΩB
U /∈ R = ΩU [S]. This

is a contradiction, so µ(R) > 0.
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The theorem implies that many null classes have ΩU -images with positive mea-
sure, for example, S = {A | (∀n) 2n /∈ A}.

We finish with a simple consequence of Theorem 5.3.

Corollary 5.4. For almost every X ∈ 2ω, there is an A ∈ 2ω such that X =∗ ΩA
U .

Proof. Let S = {X | (∃A ∈ 2ω) X =∗ ΩA
U}. Then S is Σ1

1 — hence measurable by
Lusin’s theorem — and closed under =∗. But µ(S) ≥ µ(range ΩU ) > 0. It follows
from Kolmogorov’s 0–1 law that µ(S) = 1.

6. When ΩA is a c.e. Real

In this key section, we consider reals A ∈ 2ω for which ΩA
U is a c.e. real. Far from

being a rare property, we will show that µ{A | ΩA
U is a c.e. real} > 0 for any fixed

universal prefix-free oracle machine U . On the other hand, only a c.e. real can have
an ΩU -preimage with positive measure. So c.e. reals clearly play an important role
in understanding ΩU . Their main application here is in our proof that no Omega
operator is degree invariant. Recall that we want to obtain reals A =∗ B such that
ΩA

U is a c.e. real while ΩB
U is random relative to a given (arbitrarily complex) Z.

In Proposition 6.4, we show that the class of oracles for which ΩA
U is a c.e. real

has positive measure. The same is proved in Proposition 6.5 of the class of oracles
for which ΩB

U is random relative to a given Z. Although the latter result has no
obvious connection to the c.e. reals, Proposition 6.4 — applied to a modification of
the universal machine U — is used to prove it.

Theorem 6.1. Let M be a prefix-free oracle machine. If P ⊆ 2ω is a nonempty Π0
1

class, then there is a ∅′-c.e. real A ∈ P such that ΩA
M = inf{ΩC

M | C ∈ P}, which is
a c.e. real.

Proof. Let P ⊆ 2ω be a nonempty Π0
1 class and let X = inf{ΩC

M | C ∈ P}.
Note that X is a c.e. real because it is the limit of the nondecreasing computable
sequence Xs = inf{ΩC

M [s] | C ∈ Ps}. We will prove that there is an A ∈ P such
that ΩA

M = X . Choose a sequence {Bn}n∈ω such that Bn ∈ P and ΩBn

M −X ≤ 2−n

for each n ∈ ω. By compactness, {Bn}n∈ω has a convergent subsequence {An}n∈ω.
Note that ΩAn

M −X ≤ 2−n. Let A = limAn. Because P is closed, A ∈ P . Therefore,
ΩA

M ≥ X . Assume, for a contradiction, that ΩA
M is strictly greater than X . Take

m ∈ ω such that ΩA
M −X > 2−m. Then ΩA

M [s]−X > 2−m for some s ∈ ω. Let k be
the use of ΩA

M [s] (under the usual assumptions on the use of computations, we can
take k = s). In particular, if B � k = A � k, then ΩA

M [s] = ΩB
M [s]. Now take n > m

large enough that An � k = A � k. Then

2−n ≥ ΩAn

M − X ≥ ΩAn

M [s] − X = ΩA
M [s] − X > 2−m ≥ 2−n.

This is a contradiction, proving that ΩA
M = X .

Finally, we must prove that A can be a ∅′-c.e. real. Let S = {C ∈ P | ΩC
M = X}.

Note that S = {C ∈ 2ω | (∀ s) (C ∈ Ps and ΩC
M [s] ≤ X)}. The fact that X ≤T ∅′
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makes S a Π0
1[∅′] class. We proved above that S is nonempty, so A = min(S) is a

∅′-c.e. real satisfying the theorem.

We now consider reals X ∈ 2ω such that Ω−1
U [X ] has positive measure.

Lemma 6.2. Let M be a prefix-free oracle machine. If X ∈ 2ω is such that µ{A |
ΩA

M = X} > 0, then X is a c.e. real.

Proof. By the Lebesgue density theorem, there is an σ ∈ 2<ω such that µ{A � σ |
ΩA

M = X} > 2−|σ|−1. In other words, ΩM maps more than half of the extensions
of σ to X . So, X is the limit of the nondecreasing computable sequence {Xs}s∈ω,
where for each s ∈ ω, we let Xs be the largest rational such that

µ{A � σ | ΩA
M [s] ≥ Xs} > 2−|σ|−1.

For X ∈ 2ω, let mU (X) = µ{A | ΩA
U = X}. Define the spectrum of ΩU to be

Spec(ΩU ) = {X | mU (X) > 0}. By the lemma, the spectrum is a set of 1-random
c.e. reals. We prove that it is nonempty.

Kurtz [12] defined Z ∈ 2ω to be weakly n-random if it is not contained in a Π0
n

class which has measure zero. He proved that this randomness notion lies strictly
between n-randomness and (n − 1)-randomness. In particular, an n-random real
cannot be contained in a null Π0

n class. We use this fact below.

Lemma 6.3. Let X ∈ 2ω be a c.e. real. Then mU (X) > 0 if and only if there is a
1-random A ∈ 2ω such that ΩA

U = X.

Proof. If mU (X) > 0, then there is clearly a 1-random A ∈ 2ω such that ΩA
U = X ,

as the 1-random reals form a class of measure one. For the other direction, assume
that A ∈ 2ω is a 1-random real such that ΩA

U = X . By van Lambalgen’s theorem,
the fact that X is A-random implies that A is X-random. But X ≡T ∅′, because
X is a 1-random c.e. real, so A is 2-random. Note that {B | ΩB

U = X} is a Π0
2 class

containing this 2-random. Hence mU (X) > 0.

Proposition 6.4. Spec(ΩU ) �= ∅.

Proof. Apply Theorem 6.1 to a nonempty Π0
1 class containing only 1-random reals.

This gives a 1-random A ∈ 2ω such that X = ΩA
U is a c.e. real. Hence by Lemma 6.3,

X ∈ Spec(ΩU ).

We have proved that ΩU maps a set of positive measure to the c.e. reals. One
might speculate that almost every real is mapped to a c.e. real. We now prove that
this is not the case. (However, in the next section we will see that almost every real
can be mapped to a c.e. real by some Omega operator.)

Proposition 6.5. There is an ε > 0 such that

(∀Z ∈ 2ω) µ{B | ΩB
U is Z-random} ≥ ε.
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Proof. Let M be a prefix-free oracle machine such that ΩB
M = B for every

B ∈ ω. Define a universal prefix-free oracle machine V by V B(0σ) = UB(σ) and
V B(1σ) = MB(σ), for all σ ∈ 2<ω. Then ΩB

V = (ΩB
U + B)/2. Apply Proposition 6.4

to V to get a c.e. real X ∈ 2ω such that S = {B | ΩB
V = X} has positive measure.

Let ε = µS.
Now take Z ∈ 2ω. We can assume, without loss of generality, that Z ≥T ∅′. Let

B ∈ S be Z-random. Then ΩB
U = 2ΩB

V − B = 2X − B must also be Z-random,
because X ≤T Z. Therefore,

µ{B ∈ S | ΩB
U is Z-random} ≥ µ{B ∈ S | B is Z-random} = µS = ε,

since the Z-random reals have measure 1.d

These results tell us that the Σ0
3 class of reals A such that ΩA

U is c.e. has inter-
mediate measure.

Corollary 6.6. 0 < µ{A | ΩA
U is a c.e. real } < 1.

The most important consequence of the work in this section is the following
resoundingly negative answer to the question of whether ΩU is degree invariant.

Theorem 6.7.

(i) For all Z ∈ 2ω, there are A, B ∈ 2ω such that A =∗ B, ΩA
U is a c.e. real and

ΩB
U is Z-random.

(ii) There are A, B ∈ 2ω such that A =∗ B and ΩA
U |T ΩB

U (and in fact, ΩA
U and

ΩB
U are 1-random relative to each other).

Proof. (i) Let S = {A | ΩA
U is a c.e. real} and R = {B |ΩB

U is Z-random}.
By Propositions 6.4 and 6.5, respectively, both classes have positive measure. Let
R̂ = {A | (∃B ∈ R) A =∗ B}. By Kolmogorov’s 0–1 law, µR̂ = 1. Hence, there is
an A ∈ S ∩ R̂, completing the proof.

(ii) By Part (i), there are A, B ∈ 2ω such that A =∗ B, ΩA
U is a c.e. real and

ΩB
U is 2-random. Hence ΩB

U is ΩA
U -random and, by van Lambalgen’s theorem, ΩA

U

is ΩB
U -random. This implies that ΩA

U |T ΩB
U .

We close the section with two further observations on the spectrum.

Proposition 6.8. sup(range ΩU ) = sup{ΩA
U | A is 1-random} = supSpec(ΩU ).

Proof. Let X = sup(range ΩU ). Given a rational q < X , choose σ such that
Ωσ

U ≥ q. By the same proof as Proposition 6.4, there is a 1-random A � σ such
that ΩA

U is a c.e. real.

dThis simple construction shows more. Because ΩB
U = 2X − B for B ∈ S, we know that µ{ΩB

U |
B ∈ S} = µ{2X − B | B ∈ S} = µS > 0. Therefore, the range of ΩU has a subset with positive
measure. While this follows from the most basic case of Theorem 5.3, the new proof does not
resort to Lusin’s theorem on the measurability of analytic sets.
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Proposition 6.9. If p < q are rationals and C = {A ∈ 2ω |ΩA
U ∈ [p, q]} has positive

measure, then Spec(ΩU ) ∩ [p, q] �= ∅.

Proof. Note that C is the countable union of [σ] ∩ C for every σ ∈ 2<ω such
that Ωσ ≥ p. Because µC > 0, for some such σ we have µ([σ] ∩ C) > 0. But
[σ] ∩ C = {A � σ | ΩA ≤ q} is a Π0

1 class. Let R ⊂ 2ω be a Π0
1 class containing

only 1-randoms with µR > 1 − µ([σ] ∩ C). Then R ∩ [σ] ∩ C is a nonempty Π0
1

class containing only 1-randoms. Applying Theorem 6.1 to this class, there is a
1-random real A ∈ C such that X = ΩA

U is a c.e. real. Then X ∈ Spec(ΩU ) ∩ [p, q],
by Lemma 6.3 and the definition of C.

7. On the Low for Ω Reals

We turn the question of the last section around: for which oracles A ∈ 2ω is there
a universal prefix-free oracle machine U such that ΩA

U is a c.e. real? We show that
this is true for almost every A. Recall from Sec. 3 that if Ω is A-random for some —
or equivalently any — version of Ω, then A ∈ 2ω is said to be low for Ω.

Proposition 7.1. A ∈ 2ω is low for Ω if and only if there is a universal prefix-free
oracle machine U such that ΩA

U is a c.e. real.

Proof. First assume that there is a universal prefix-free oracle machine U such
that X = ΩA

U is a c.e. real. Then X ≤S Ω, which means that X ≤A
S Ω. Both X and

Ω are c.e. reals, hence they are A-c.e. reals. Applying Proposition 4.1, because X

is A-random, Ω is also A-random. Therefore, A is low for Ω.
For the other direction, assume that A ∈ 2ω is low for Ω. Then Ω is A-random

and an A-c.e. real. By Corollary 4.4, Ω = ΩA
U for some universal prefix-free oracle

machine U .

It follows from the proof and Proposition 3.3 that if A is low for Ω, then
Ω ⊕ A ≡T A′. Therefore A′ ≡T ∅′ ⊕ A, giving a second proof of Corollary 3.5: low
for Ω reals are GL1.

Almost every real is low for Ω; in particular, every 2-random real is.

Proposition 7.2 (Nies, Stephan, Terwijn [21]). A 1-random real A ∈ 2ω is
low for Ω if and only if A is 2-random.

Proof. Assume that A ∈ 2ω is 1-random. Recall that Ω ≡T ∅′. So A is 2-random if
and only if A is Ω-random if and only if Ω is A-random, where the last equivalence
follows from van Lambalgen’s theorem.

More evidence for the ubiquity of low for Ω reals is the following basis theorem.
It is an immediate corollary of Theorem 6.1 and Proposition 7.1.

Corollary 7.3 (The low for Ω basis theorem). Every nonempty Π0
1 class con-

tains a ∅′-c.e. real that is low for Ω.
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Every K-trivial real is low for 1-randomness, hence low for Ω. To see that there
is a low for Ω real that is neither 2-random nor K-trivial, apply the previous result
to the Π0

1 class of completions of Peano arithmetic. The completions of Peano arith-
metic form a null Π0

1 class, so none are 1-random by Kurtz [12]. Every completion of
Peano arithmetic computes a 1-random real, but the class of K-trivial reals is closed
downward under Turing reduction [20], hence no completion of Peano arithmetic is
K-trivial.

Although it is a digression from our primary topic, we finish this section with a
generalization of Corollary 7.3. The following result is a “low for X” basis theorem
for every 1-random real X ∈ 2ω; it reduces to the corollary when we take X = Ω.
This result was found independently by Reimann and Slaman [25], for whom it is
not a digression but a useful lemma.

Proposition 7.4. For every 1-random X ∈ 2ω and every nonempty Π0
1 class P ⊆

2ω, there is an X-c.e. real A ∈ P such that X is A-random.

Proof. Let P ⊆ 2ω be a nonempty Π0
1 class. Our goal is to construct a Martin-Löf

test {Vi}i∈ω such that if X ∈ 2ω is not A-random for any A ∈ P , then X ∈ ⋂
i∈ω Vi.

Fix a universal prefix-free oracle machine U . Whenever an s ∈ ω and σ ∈ 2<ω are
found such that

(∀A ∈ Ps)(∃τ 	 σ) KA
U (τ) ≤ |τ | − i,

then put [σ] into Vi. Clearly, each Vi is a Σ0
1 class. Fix an A ∈ P and note that

Vi ⊆ {X | (∃n) KA
U (X�n) ≤ n − i}. Therefore µ(Vi) ≤ 2−i, so {Vi}i∈ω is a

Martin-Löf test. Finally, assume that X ∈ 2ω is not A-random for every A ∈ P .
By compactness, for every i ∈ ω, there is a σ ≺ X such that [σ] ⊆ Vi. Hence,
X ∈ ⋂

i∈ω Vi.
This proves that if X ∈ 2ω is 1-random, then there is an A ∈ P such that X is

A-random. We must still prove that A can be taken to be an X-c.e. real. For every
i ∈ ω, let Si = {A ∈ P | (∀n) KA

U (X�n) > n − i}. Note that each Si is a Π0
1[X ]

class. We proved above that Si is nonempty, for large enough i ∈ ω. So A = min(Si)
is an X-c.e. real satisfying the theorem.

8. ΩA for K-Trivial A

In the previous section, we considered the reals that can be mapped to c.e. reals
by some Omega operator. Now we look at A ∈ 2ω such that ΩA

U is a c.e. real for
every universal prefix-free oracle machine U . We will see that these are exactly the
K-trivial reals.

The lemma below is a spinoff of the golden run construction from [20, Theorem
6.2]. It actually holds for any prefix free oracle machine M in place of U . That is,
we do not use universality to prove the lemma.

Lemma 8.1. Let U be a universal prefix-free oracle machine, and let A ∈ 2ω be
K-trivial. Then there is a computable sequence of stages q(0) < q(1) < · · · such
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that
Ŝ =

∑
{ĉ(x, r) | x is minimal s.t. Aq(r+1)(x) �= Aq(r+2)(x)} < ∞, (8.1)

where

ĉ(x, r) =
∑{

2−|σ|
∣∣∣∣ UA(σ)[q(r + 1)]↓ ∧
x < use(UA(σ)[q(r + 1)]) ≤ q(r)

}
.

Informally, ĉ(x, r) is the maximum amount that ΩA
U [q(r + 1)] can decrease by

because of an A(x) change after stage q(r + 1), provided we only count the UA(σ)
computations with use ≤ q(r).

Proof. We refer to the proof of [20, Theorem 6.2] and use its notation. (For more
details, see [19].) By [20, Lemma 6.6], choose a golden run Pi(p, α).

Claim 8.2. For each stage s, there is a stage t > s such that, for all σ < s, if
UA(σ)[t] = y with use w ≤ s, then a run Qi−1,σ,y,w has returned by t and is not
released yet, that is, Pi waits at (P2σ).

To see this, let r ≥ s be the least stage by which Ar � s has settled. A run
Qi−1,σ,y,w such that w ≤ r is never canceled after stage r, therefore it returns by
the definiton of golden runs in [20, Lemma 6.6]. This proves the claim.

The least t > s as in the claim can be determined effectively. Let q(0) = 0. If
s = q(r) has been defined, let q(r + 1) be the least t such that the condition of the
claim holds. Let g ∈ N be the number such that p/α = 2g. We show that Ŝ < 2g.
Suppose x is minimal such that Aq(r+1)(x) �= Aq(r+2)(x). Then As−1(x) �= As(x)
for some stage s with q(r+1) < s ≤ q(r+2). No later than s, the runs of procedures
Qi−1,σ,y,y+1 with x ≤ y < q(r) which are still waiting at (P2σ) are released. This
adds a weight of at least ĉU (x, r) to Ci. Thus Ŝ < 2g, since otherwise the run of Pi

reaches its goal.

The following proof uses an alternative characterization of 1-randomness due
to Solovay [28]. A Solovay test is a computable sequence {Ir}r∈ω of intervals with
(dyadic) rational endpoints such that

∑
r∈ω |Ir| is finite. A real passes a Solovay

test if it is in only finitely many of the intervals. It is not difficult to see that X ∈ 2ω

is 1-random if and only if it passes every Solovay test.

Theorem 8.3. Let U be a universal prefix-free oracle machine. The following are
equivalent for A ∈ 2ω :

(i) A is K-trivial.
(ii) A is ∆0

2 and ΩA
U is a c.e. real.

(iii) A ≤T ΩA
U .

(iv) A′ ≡T ΩA
U .

Proof. (ii)⇒ (iii) follows from the fact that each 1-random c.e. real is Turing
complete. (iii)⇒ (i) because A is a base for 1-randomness; see the end of Sec. 2.
(iii) is equivalent to (iv) by Proposition 3.3.
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(i)⇒ (ii). Assume that A is K-trivial. As shown by Chaitin [3], A is ∆0
2. We

show that there is an r0 ∈ ω and an effective sequence {µr}r∈ω of rationals such
that ΩA

U = supr≥r0
µr, and hence ΩA

U is a c.e. real. Applying Lemma 8.1 to U , we
obtain a computable sequence of stages q(0) < q(1) < · · · such that (8.1) holds.
The desired sequence of rationals is

µr =
∑

{2−|σ| | UA(σ)[q(r + 1)]↓ ∧use(UA(σ)[q(r + 1)]) ≤ q(r)}.
Thus µr measures the computations existing at stage q(r + 1) whose use is at most
q(r). We define r0 below; first we verify that ΩA

U ≤ supr≥r0
µr for any r0 ∈ ω.

Given σ1, . . . , σm ∈ domain(UA), choose r1 ∈ ω so that each computation UA(σ)
has settled by stage q(r1), with use ≤ q(r1). If r ≥ r1, then µr ≥ ∑

1≤i≤m 2−|σi|.
Therefore, ΩA

U ≤ lim supr∈ω µr ≤ supr≥r0
µr.

Now define a Solovay test {Ir}r∈ω as follows: if x is minimal such that
Aq(r+1)(x) �= Aq(r+2)(x), then let

Ir = [µr − ĉ(x, r), µr ].

Then
∑

r∈ω |Ir| is finite by (2), so {Ir}r∈ω is indeed a Solovay test. Also note that,
by the comment after the lemma, min Ir ≤ max Ir+1 for each r ∈ ω.

Since ΩA
U is 1-random, there is an r0 ∈ ω such that ΩA

U /∈ Ir for all r ≥ r0.
We show that µr ≤ ΩA

U for each r ≥ r0. Fix r ≥ r0. Let t ≥ r be the first non-
deficiency stage for the enumeration t �→ Aq(t+1). That is, if x is minimal such that
Aq(t+1)(x) �= Aq(t+2)(x), then

(∀ t′ ≥ t)(∀ y < x) Aq(t′+1)(y) = Aq(t+1)(y).

The quantity µt − ĉ(x, t) measures the computations UA(σ)[q(t + 1)] with use ≤ x.
These are stable from q(t + 1) on, so ΩA

U ≥ min It, and hence ΩA
U > max It. Now

ΩA
U /∈ Iu for u ≥ r0 and min Iu ≤ max Iu+1 for any u ∈ ω. Applying this to

u = t−1, . . . , u = r, we obtain that ΩA
U ≥ max Ir = µr. Therefore, ΩA

U ≥ supr≥r0
µr.

One consequence of this theorem is the fact that Omega operators are degree
invariant at least on the K-trivial reals. The next example shows that they need
not be degree invariant anywhere else.

Example 8.4. There is an Omega operator that is degree invariant only on
K-trivial reals.

Proof. Let M be a prefix-free oracle machine such that

ΩA
M =

{
A, if A(0) = 0,

0, if A(0) = 1.

For any A ∈ 2ω, define a real Â by Â(n) = A(n) if and only if n �= 0. Let U be a
universal prefix-free oracle machine. Define a universal prefix-free oracle machine V

by V A(00σ) = UA(σ), V A(01σ) = U Â(σ) and V A(1σ) = MA(σ), for all σ ∈ 2<ω.
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Then |ΩA
V − ΩÂ

V | = A/2, for all A ∈ 2ω. Assume that ΩÂ
V ≤T ΩA

V for some A ∈ 2ω.
Then A ≤T ΩA

V , so A is a base for 1-randomness and hence K-trivial by [9]. If
ΩA

V ≤T ΩÂ
V , then again A is K-trivial. Therefore, if A ∈ 2ω is not K-trivial, then

ΩA
V |T ΩÂ

V .

The following corollary summarizes Theorem 8.3 and Example 8.4.

Corollary 8.5. The following are equivalent for A ∈ 2ω:

(i) A is K-trivial.
(ii) Every Omega operator takes A to a c.e. real.
(iii) Every Omega operator is degree invariant on degT (A).

We have seen in Theorem 6.7 that no Omega operator is degree invariant. We
have also seen that if A ∈ 2ω is not K-trivial, then there are Omega operators that
are not invariant on degT (A). Can these two results be combined?

Question 2. For a universal prefix-free oracle machine U and a real A ∈ 2ω that
is not K-trivial, is there a B ≡T A such that ΩB

U �≡T ΩA
U?

Finally, a simple but interesting consequence of Example 8.4 is the following.

Corollary 8.6. Every K-trivial is a d.c.e. real (i.e. the difference of two c.e. reals).

Proof. Let V be the machine from Example 8.4. Assume that A ∈ 2ω is K-trivial.
Then ΩA

V and ΩÂ
V are both c.e. reals by Theorem 8.3. Therefore, A = 2 |ΩA

V − ΩÂ
V |

is a d.c.e. real.

It is known that the d.c.e. reals form a real closed field [22, 24]. The corollary
gives us a nontrivial real closed subfield: the K-trivial reals. To see this, note that
the K-trivial reals form an ideal in the Turing degrees ([5] for closure under ⊕ and
[20] for downward closure). Because a zero of an odd degree polynomial can be
computed relative to the coefficients, the K-trivial reals are also a real closed field.

9. Analytic Behavior of Omega Operators

In this section, we examine Omega operators from the perspective of analysis. Given
a universal prefix-free oracle machine U : 2<ω → 2<ω, we consider two questions:

(i) To what extent is ΩU continuous?
(ii) How complex is the range of ΩU?

To answer the first question, we observe that ΩU is lower semicontinuous but not
continuous. Furthermore, we prove that it is continuous exactly at 1-generic reals.
Together with the semicontinuity, this implies that ΩU can only achieve its supre-
mum at a 1-generic. But must ΩU actually achieve its supremum? This relates to the
second question. Theorem 9.4 states that any real in (range ΩU )c�range(ΩU ) must
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be 2-random. Because X = sup(range ΩU ) is a c.e. real — hence not 2-random,
there is an A ∈ 2ω such that ΩA

U = X .
It is natural to ask whether range(ΩU ) is closed. In other words, is Theorem 9.4

vacuous? Example 9.6 demonstrates that for some choice of U , the range of ΩU is
not closed, and indeed, that µ(range ΩU ) < µ((range ΩU )c). Whether this is the
case for all universal prefix-free oracle machines is left open. Furthermore, we know
of no nontrivial upper-bound on the complexity of range(ΩU ), but we do observe
that (range ΩU )c is a Π0

3 class.
Recall that a function f : X → R is lower semicontinuous if {x ∈ X | f(x) > a}

is an open set for every a ∈ R. Here X is an arbitrary topological space. We claim
that for any prefix-free oracle machine M , the function ΩM is lower semicontinuous.
Note that for any A ∈ 2ω,

(∀ δ > 0)(∃m) ΩA
M − ΩA�m

M ≤ δ (9.1)

and hence (∀X � A�m) ΩA
M − ΩX

M ≤ δ.

Proposition 9.1. ΩM is lower semicontinuous for every prefix-free oracle
machine M .

Proof. Take a ∈ R and assume that ΩA
M > a. Choose a real δ > 0 such that

ΩA
M − δ > a. By the observation above, there is an m ∈ ω such that X � A�m

implies that ΩA
M − ΩX

M ≤ δ. Therefore, ΩX
M ≥ ΩA

M − δ > a. So [A�m] is an open
neighborhood of A contained in {X | ΩX

M > a}. But A was an arbitrary element of
{X | ΩX

M > a}, proving that this set is open.

Next we prove that Omega operators are not continuous and characterize their
points of continuity. Recall that an open set S ⊆ 2ω is dense along A ∈ 2ω if each
initial segment of A has an extension in S. We say that A is 1-generic if A is in
every Σ0

1 class S that is dense along A. We prove that ΩU is continuous exactly on
the 1-generics, for any universal prefix-free oracle machine U .

Theorem 9.2. The following are equivalent for a set A ∈ 2ω:

(i) A is 1-generic.
(ii) If M is a prefix-free oracle machine, then ΩM is continuous at A.
(iii) There is a universal prefix-free oracle machine U such that ΩU is continuous

at A.

Proof. (i)⇒ (ii). Let M be any prefix-free oracle machine. By (9.1), it suffices to
show that

(∀ ε)(∃n)(∀X � A�n) ΩX
M ≤ ΩA

M + ε.

Suppose this fails for a rational ε. Take a rational r < ΩA
M such that ΩA

M − r < ε.
The following Σ0

1 class is dense along A:

S = {B | (∃n) ΩB
M [n] ≥ r + ε}.
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Thus A ∈ S. But this implies that ΩA
M ≥ r + ε > ΩA

M , which is a contradiction.
(ii)⇒ (iii) is trivial.
(iii)⇒ (i). Fix a universal prefix-free oracle machine U . We assume that A is

not 1-generic and show that there is an ε > 0 such that

(∀n)(∃B � A�n) ΩB
U ≥ ΩA

U + ε. (9.2)

Take a Σ0
1 class S that is dense along A but A /∈ S. Define a prefix-free oracle

machine LX as follows. When (some initial segment of) X ∈ 2ω enters S, then LX

converges on the empty string. Thus LA is nowhere defined. Let c ∈ ω be the length
of the coding prefix for L in U . We prove that ε = 2−(c+1) satisfies (9.2).

Choose m as in (9.1) for the given universal machine, where δ = 2−(c+1). For
each n ≥ m, choose B � A�n such that B ∈ S. Since LB converges on the empty
string, ΩB

U ≥ ΩA
U − 2−(c+1) + 2−c = ΩA

U + ε.

Let U be a universal prefix-free oracle machine.

Corollary 9.3. If ΩA
U = sup(range ΩU ), then A is 1-generic.

Proof. By the previous theorem, it suffices to prove that ΩU is continuous at A.
But note that the lower semicontinuity of ΩU implies that

{X | |ΩA
U − ΩX

U | < ε} = {X | ΩX
U > ΩA

U − ε}
is open, for every ε > 0. Thus, A is 1-generic.

The corollary above does not guarantee that the supremum is achieved. Surpris-
ingly, it is. In fact, we can prove quite a bit more. One way to view the proof of the
following theorem is that we are trying to prevent any real which is not 2-random
from being in the closure of the range of ΩU . If we fail for some X ∈ 2ω, then it
will turn out that X ∈ range(ΩU ). Note that this is a consequence of universality;
it is easy to construct a prefix-free oracle machine M : 2<ω → 2<ω such that ΩM

does not achieve its supremum.

Theorem 9.4. If X ∈ (range ΩU )c � range(ΩU ), then X is 2-random.

Proof. Assume that X ∈ (range ΩU )c is not 2-random and let RX = Ω−1
U [X ] =

{A | ΩA
U = X}. For each rational p ∈ [0, 1], define Cp = {A | ΩA

U ≤ p}. Note that
every Cp is closed (in fact, a Π0

1 class). For every rational q ∈ [0, 1] such that q < X ,
we will define a closed set Bq ⊆ 2ω such that

RX =
⋂

q<X

Bq ∩
⋂

p>X

Cp, (9.3)

where q and p range over the rationals. Furthermore, we will prove that every
finite intersection of sets from {Bq | q < X} and {Cp | p > X} is nonempty. By
compactness, this ensures that RX is nonempty, and therefore, that X ∈ range(ΩU ).
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We would like to define Bq to be {A | ΩA
U ≥ q}, which would obviously satisfy

(9.3). The problem is that {A | ΩA
U ≥ q} is a Σ0

1 class; Bq must be closed if we are to
use compactness. The solution is to let Bq = {A | ΩA

U [k] ≥ q} for some k ∈ ω. Then
Bq is closed (in fact, clopen) and, by choosing k appropriately, we will guarantee
that ΩA

U is bounded away from X for every A /∈ Bq.
For each rational q ∈ [0, 1], we build a prefix-free oracle machine Mq. For A ∈ 2ω

and σ ∈ 2<ω, define MA
q (σ) as follows.

(i) Wait for a stage s ∈ ω such that ΩA
U [s] ≥ q.

(ii) Compute τ = U∅′
s(σ).

(iii) Wait for a stage t ≥ s such that ΩA
U [t] ≥ τ .

The computation may get stuck in any one of the three steps, in which case MA
q (σ)↑.

Otherwise, let MA
q (σ) converge to a string longer than any in domain(UA[t]). The

value to which MA
q (σ) converges is only relevant because it ensures that a U -

simulation of Mq cannot converge before stage t + 1.
We are ready to define Bq ⊆ 2ω for a rational q ∈ [0, 1] such that q < X . Assume

that U simulates Mq by the prefix ρ ∈ 2<ω. Choose σ, τ ∈ 2<ω such that U∅′
(σ) =

τ ≺ X and |τ | > |ρσ|. Such σ and τ exist because X is not 2-random. Choose
kq ∈ ω large enough that U∅′

s(σ) = τ for all s ≥ kq. Let Bq = {A | ΩA
U [kq] ≥ q}.

We claim that the definition of Bq ensures that ΩA
U is bounded away from X

for any A /∈ Bq. Let lq = max{q, τ} and rq = τ + 2−|ρσ|. Clearly lq < X . To see
that rq > X , note that X − τ ≤ 2−|τ | < 2−|ρσ|. Now assume that A /∈ Bq and that
ΩA

U ≥ lq. Thus ΩA
U ≥ q but ΩA

U [kq] < q. This implies that the s found in step (i)
of the definition of Mq is greater than kq. Therefore, U∅′

s(σ) = τ . But ΩA
U ≥ τ , so

step (iii) eventually produces a t ≥ s such that ΩA
U [t] ≥ τ . This means that MA

q (σ)
converges to a string longer than any in domain(UA[t]), so UA(ρσ)↓ sometime after
stage t, which implies that ΩA

U ≥ ΩA
U [t] + 2−|ρσ| ≥ τ + 2−|ρσ| = rq. We have proved

that

ΩA
U ∈ [lq, rq) ⇒ A ∈ Bq. (9.4)

Next we verify (9.3). Assume that A ∈ RX . We have just proved that A ∈ Bq

for all rationals q < X . Also, it is clear that A ∈ Cp for all rationals p > X .
Therefore, RX ⊆ ⋂

q<X Bq ∩ ⋂
p>X Cp. For the other direction, assume that A ∈⋂

q<X Bq ∩ ⋂
p>X Cp. Thus if q < X , then ΩA

U ≥ ΩA
U [kq] ≥ q. Hence ΩA

U ≥ X . On
the other hand, if p > X , then ΩA

U ≤ p. This implies that ΩA
U ≤ X , and so ΩA

U = X .
Therefore A ∈ RX , which proves (9.3).

It remains to prove that RX is nonempty. Let Q be a finite set of rationals less
than X and P a finite set of rationals greater than X . Define l = max{lq | q ∈ Q}
and r = min(P ∪ {rq | q ∈ Q}). Note that X ∈ (l, r). Because X ∈ (range ΩU )c,
there is an A ∈ 2ω such that ΩA

U ∈ (l, r). From (9.4) it follows that A ∈ Bq for all
q ∈ Q. Clearly, A ∈ Cp for every p ∈ P . Hence

⋂
q∈Q Bq ∩

⋂
p∈P Cp is nonempty. By

compactness, RX is nonempty.
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If X ∈ range(ΩU ) is not 2-random, then an examination of the construction
gives an upper-bound on the complexity of Ω−1

U [X ]. The Π0
1 classes Cp can be

computed uniformly. The Bq are also Π0
1 classes and can be found uniformly in

X ⊕ ∅′. Therefore, Ω−1
U [X ] =

⋂
q<X Bq ∩

⋂
p>X Cp is a nonempty Π0

1[X ⊕ ∅′] class.
The following corollary gives an interesting special case of Theorem 9.4. It is

not hard to prove that there is an A ∈ 2ω such that ΩA
U = inf(range ΩU ) (see

Theorem 6.1). It is much less obvious that ΩU achieves its supremum.

Corollary 9.5. There is an A ∈ 2ω such that ΩA
U = sup(range ΩU ).

Proof. Note that sup(range ΩU ) is a c.e. real, hence not 2-random. So, the corol-
lary is immediate from Theorem 9.4.

No 1-generic is 1-random, so µ{A | ΩA
U = sup(range ΩU )} = 0. Therefore,

sup(range ΩU ) is an example of a c.e. real in the range of ΩU which is not in
Spec(ΩU ).

One might ask whether Theorem 9.4 is vacuous. In other words, is the range of
ΩU actually closed? We can construct a specific universal prefix-free oracle machine
such that it is not. The construction is somewhat similar to the proof of Theo-
rem 5.3. In that case, we avoid a measure zero set by using an oracle that codes
a relativized Martin-Löf test covering that set. Now we will avoid a measure zero
closed set by using a natural number to code a finite open cover with sufficiently
small measure.

The following example makes use of the recursion theorem for prefix-free ora-
cle machines. Let V be a universal prefix-free oracle machine. Assume that ψA:
2<ω × 2<ω → 2<ω is a partial computable oracle function such that σ �→ ψA(σ, τ)
defines a prefix-free oracle machine, for all τ ∈ 2<ω. Then we can compute a ρ ∈ 2<ω

such that V A(ρσ) = ψA(σ, ρ), for all σ ∈ 2<ω and A ∈ 2ω. Informally, this means
that we can define a prefix-free oracle machine N in terms of a prefix ρ by which V

simulates N . The recursion theorem for prefix-free oracle machines is a straightfor-
ward application of the relativized recursion theorem. See Downey and Hirschfeldt
[4] for a (relativizable) proof.

Example 9.6. There is a universal prefix-free oracle machine V such that

µ(range ΩV ) < µ((range ΩV )c).

Proof. Let U be a universal prefix-free oracle machine. Let M be a prefix-free
oracle machine such that

ΩA
M =

{
1, if |A| > 1,

0, otherwise.

Define a universal prefix-free oracle machine V by V A(0σ) = UA(σ) and
V A(1σ) = MA(σ), for all σ ∈ 2<ω. This definition ensures that ΩA

V ≤ 1/2 if
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and only if |A| ≤ 1. Therefore µ(range(ΩV ) ∩ [0, 1/2]) = 0. We will prove that
µ((range ΩV )c ∩ [0, 1/2]) > 0.

Let {Oi}i∈ω be an effective enumeration of all finite unions of open intervals
with dyadic rational endpoints. We construct a prefix-free oracle machine N . By
the recursion theorem for prefix-free oracle machines, we may assume in advance
that we know the prefix ρ by which V simulates N . Given an oracle A ∈ 2ω,
find the least n ∈ ω such that A(n) = 1. Intuitively, NA will try to prevent ΩA

V

from being in On. Whenever a stage s ∈ ω occurs such that ΩA
V [s] ∈ On and

(∀σ ∈ 2<ω) V A(ρσ)[s] = NA(σ)[s], then NA acts as follows. Let ε be the least
number such that ΩA

V [s]+ε /∈ On and note that ε is necessarily a dyadic rational. If
possible, NA converges on additional strings with total measure 2|ρ|ε. This would
ensure that ΩA

V ≥ ΩA
V [s] + ε. If µOn ≤ 2−|ρ|, then NA cannot run out of room in

its domain and we have ΩA
V /∈ On.

Assume, for the sake of contradiction, that µ((range ΩV )c ∩ [0, 1/2]) = 0. Then
there is an open cover of (range ΩV )c ∩ [0, 1/2] with measure less than 2−|ρ|. We
may assume that all intervals in this cover have dyadic rational endpoints. Because
(range ΩV )c ∩ [0, 1/2] is compact, there is a finite subcover On. But µOn < 2−|ρ|

implies that Ω0n10ω

V /∈ On. This is a contradiction, so µ((range ΩV )c ∩ [0, 1/2]) > 0.

Note that the proof above shows that if U is a universal prefix-free oracle
machine and A = {Ω0n10ω

U }n∈ω, then Ac has positive measure and Ac � A con-
tains only 2-randoms.

Having constructed a specific Omega operator whose range is not closed, it is
natural to ask if this is always the case.

Question 3. Is it true for every universal prefix-free oracle machine U that
range(ΩU ) is not closed?

In the other direction, we have no nontrivial upper-bound on the complexity of
the range of ΩU .

Question 4. If U is a universal prefix-free oracle machine, must range(ΩU ) be an
arithmetical class (or at least Borel)? Can it be?

Related to both questions, note that (range ΩU )c is an arithmetical class.

Proposition 9.7. (range ΩU )c is a Π0
3 class.

Proof. It is easy to verify that a ∈ (range ΩU )c if and only if

(∀ ε > 0)(∃σ ∈ 2<ω)
[

Ωσ
U [|σ|] > a − ε∧

(∀n ≥ |σ|)(∃τ � σ) |τ | = n ∧ Ωτ
U [n] < a + ε

]
,

where ε ranges over rational numbers. This is a Π0
3 definition because the final

existential quantifier is bounded.
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[13] A. Kučera, Measure, Π0
1-classes and complete extensions of PA, in Recursion The-

ory Week, eds. H.-D. Ebbinghaus, G. H. Müller and G. E. Sacks, Lecture Notes in
Mathematics, Vol. 1141 (Springer, Berlin, 1985), pp. 245–259.

[14] L. A. Levin, The concept of a random sequence, Dokl. Akad. Nauk SSSR 212 (1973)
548–550.

[15] L. A. Levin, Laws on the conservation (zero increase) of information, and questions
on the foundations of probability theory, Problemy Peredači Inf. 10(3) (1974) 30–35.
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