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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 66, Number 4, Dec. 2001 

INITIAL SEGMENTS OF THE LATTICE OF no? CLASSES 

DOUGLAS CENZER AND ANDRE NIESt 

Abstract. We show that in the lattice 9'n of nIo classes there are initial segments [0, P] = 2(P) which 

are not Boolean algebras, but which have a decidable theory. In fact, we will construct for any finite 

distributive lattice L which satisfies the dual of the usual reduction property a no class P such that L is 

isomorphic to the lattice "(P)*, which is "(P), modulo finite differences. For the 2-element lattice, we 

obtain a minimal class, first constructed by Cenzer, Downey, Jockusch and Shore in 1993. For the simplest 

new no class P constructed, P has a single, non-computable limit point and Y(P) * has three elements, 

corresponding to 0, P and a minimal class Po C P. The element corresponding to Po has no complement 

in the lattice. On the other hand, the theory of Y(P) is shown to be decidable. 

A no? class P is said to be decidable if it is the set of paths through a computable tree with no dead ends. 

We show that if P is decidable and has only finitely many limit points, then 2'(P)* is always a Boolean 

algebra. We show that if P is a decidable nlo class and 2'(P) is not a Boolean algebra, then the theory of 

2(P) interprets the theory of arithmetic and is therefore undecidable. 

?1. Introduction. The study of the lattice 9' of computably enumerable sets under 
inclusion has been one of the central tasks of computability theory since the 1960s. 
We investigate here initial segments of the lattice 9'y of T1- classes under inclusion 
and we compare this lattice with '. For an introduction to 1-J? classes, see Cenzer 
[2]. For more on recent results and open problems, see Cenzer and Jockusch [4]. 
Some terminology and definitions are given at the end of this section. 

It was proved in Nies [13] that the theory of each interval of the lattice g which 
is not a Boolean algebra interprets true arithmetic (and is therefore certainly unde- 
cidable). However, we will show that in Y there are initial segments [0, P] = Y(P) 
which are not Boolean algebras, but which have a decidable theory. 

We will construct for any finite distributive lattice L which satisfies the dual of 
the usual reduction property a no class P such that L is isomorphic to the lattice 
2(P)*, which is 2(P), modulo finite differences. We will show that 2(P) is 
isomorphic to a sublattice of 9 (N) which is closed under finite differences and then 
apply a theorem of Lachlan [10] to conclude that the theory of 2'(P) is many-one 
reducible to the theory of the finite lattice L and is therefore decidable. 

The construction of the Il? class corresponding to a given lattice builds on the 
construction of a minimal ko class in [3]. The simplest minimal Il? class P has a 
single limit point together with countably many isolated points. P has the property 
that every Il? subclass Q of P is either finite or is cofinite in P - furthermore, Q is 
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the intersection of P with a clopen set. Thus the lattice 2(P) of rIo subclasses of 
P is isomorphic to the class of finite/cofinite subsets of co and is a Boolean algebra. 
Such a class plays a role in the lattice Y corresponding to the dual of the role played 
by a maximal c.e. set in the lattice W. 

For the simplest new rJ? class P constructed, P includes a minimal subclass Po, 
has a single, non-computable limit point and P has three types of subclasses: (i) 
finite classes, (ii) cofinite classes, and (iii) classes which are cofinite in Po and finite 
in P - Po. The third type of subclass has no complement in the lattice, which is why 
the lattice is not a Boolean algebra. 

This lattice is isomorphic to the lattice L of subsets of co containing all finite and 
cofinite sets together with all sets S containing cofinitely many even numbers and 
finitely many odd numbers. We observe that L is isomorphic to the dual lattice of 
complementary sets. The theory of L is seen to be decidable by Lachlan's result, 
as explained above. It is not hard to see that this lattice may not be realized as the 
class of c.e. subsets of any c.e. set. Indeed, let A c B be c.e. sets and let Y be the 
interval [A, B] of c.e. sets C such that A c C c B, modulo finite difference. If 
some set C is not complemented in 2, then it follows from repeated applications 
of the Owings Splitting Theorem ([14], p. 183) that Y is infinite. 

There is another notion of decidability. A 1-? class P is commonly defined to be 
the set [T] of infinite paths through a computable tree T. A node a of T is said to 
be extendible if there is an infinite path which passes through a. Then P = [T] is 
said to be decidable if the set of extendible nodes is computable. 

The original construction of a minimal thin class in Theorem 2.2 of [3], p. 88, 
provides a decidable Mj? class P such that 2(P)* is the trivial Boolean algebra 
{O, 1}. 

We will show that if P is decidable and has only finitely many limit points, then 
2'(P)* is always a Boolean algebra. Thus if P is a decidable rIo class and 2'(P)* is 
not a Boolean algebra, then P has infinitely many limit points. 

Finally, we will show that if P is a decidable 1I? class and 2(P) is not a Boolean 
algebra, then the theory of Y (P) interprets the theory of arithmetic and is therefore 
undecidable. 

As usual, we say that sets A and B are equal modulo finite difference (written 
A =* B) if the symmetric difference (A - B) U (B - A) is finite. For a lattice L 
of sets, let L* be the quotient lattice of L modulo the equivalence relation . We 
note here that if A and B are 1I? classes and A-B is finite, then any element of 
A - B is computable, so that A - B is also a rIo class. However, the lattice Wp is 
not closed under finite differences, since if x is a computable element of the rI? class 
P and is a limit point of P, then {x} is also a rIo class, but P-{x} is not even a 
closed set and thus is not a fI? class. 

Here are a few basic definitions needed for the discussion of fI? classes. 
Let coW be the set of strings, that is, functions from a finite initial segment of co 

into co. Similarly, 2'w is the set of strings with values in {0, 1 }. We write a -q T for 
a C iC. For x c co' and n C co, let x In = (x (0), x (1), . . ., x (n-1 )). Let a - x if 
a = x [n for some n. We write I aI for the cardinality of the domain of the string a 

and often identify a with the sequence (ac(0), ai(1), . . ., a(II- 1)). 
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A subset T of co" is a tree if whenever T c T and a IC T it is the case that a C T. 
For any tree T, [T] denotes the set of infinite paths through T, that is, 

[T] ={x co' : (Vn)[x[n c T]}. 

The set of extendible nodes of T is defined by 

Ext(T) = {a: (3x c [T])[a -- x]}. 

The usual product topology on the space coo has a sub-basis of intervals 

I(a) ={x : a - x}. 

With this topology, the closed subsets of coo are exactly those of the form [T] for 
some tree T. For the subspace 2', the clopen sets are just finite unions of intervals. 

A 1-? class in co' is an effectively closed set, i.e., one of the form [T] for some 
computable tree T. It is easily seen that an equivalent definition is obtained by 
requiring T to be primitive recursive, or only co-c.e., instead of computable. A 1-? 
class is called decidable if it has the form [T] for some computable tree T such that 
Ext(T) is computable. A rIo class P C 2W is called a rIo class of sets and clearly 
has the form [T] for some computable tree T C 2'. 

An element x of a 1I? class P is said to be isolated if there is some a such that 
P n I (a) = {x}. The Cantor-Bendixson derivative D (P) is the set of nonisolated 
points of P; the oth iteration of D is Do. The rank of x in P is the least a such that 
x E DO (P) \ D`+1 (P). If P is countable, the rank of P is the least ordinal ae such 
that D`(P) 0. 

An infinite H?? class P C 20 is said to be thin if every rIo subclass Q of P is equal 
to U n P for some clopen set U. P is said to be minimal if every fI? subclass of P 
is either finite or cofinite in P. 

The first example of a thin 1I? class is due implicitly to D. Martin and M. Pour-El 
in [11]. They constructed an axiomatizable, essentially undecidable theory T such 
that every axiomatizable extension of T is finitely axiomatizable over T. It is easy 
to see that the class of complete extensions of such a theory T is a thin H?? class, 
and it is perfect because it contains no computable element. Information on the 
degrees of such theories may be found in [6] and [7]. Countable thin no? classes of 
arbitrary computable rank, including minimal classes, were constructed in [3]. 

For more on 'n? classes and the dual concept of c.e. ideals of computable Boolean 
algebras, see the survey papers by Cenzer [2] and Cenzer and Remmel [5]. 

?2. Representation of finite lattices. For any TI? class P, the family 2 (P) of nIo 
subclasses of P is an initial segment of the lattice of 1I? classes. It is clear that each 
such initial segment is a sublattice of the full lattice of El? classes with least member 
0 = 0 and greatest element P = 1, and is distributive. The quotient lattice 2 (P) 
is likewise a distributive lattice. In this section, we characterize the family of finite 
lattices L which are isomorphic to 22(P)* for some 1-? class P and also the family 
of finite lattices L which are isomorphic to 22(P)* for some decidable 1j? class P. 

We will show that Y (P) satisfies the following Dual Reduction Property. 

DEFINITION 2.1. The lattice (L, ?) satisfies the dual reduction property if for any 
a, b c L, there exist a, > a and b1 > b such that a, V b= 1 and a, A b, = a A b. 
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Let Y (P))* denote the lattice [0, P] modulo finite difference. This lattice will also 
be distributive and satisfy the dual reduction property. 

PROPOSITION 2.2. For any LI? class P, the lattices Y (P) and 22*(P) satisfy the 
dual reduction property. 

PROOF. Let P1 and P2 be (nonempty) H?? subclasses of P and, for i = 0, 1, let Ti 
be a computable tree such that Pi = [Ti] is the set of infinite paths through Ti. We 
define computable trees Si D Ti such that SI n S2= T1 0 T2 and SI U S2 {O, 1}' 
and let Q' = [Si]. It will follow that Q n Q2= PI n P2 and that Q1 U Q2 ={O, 1 }t; 
the desired classes are Qi n P and Q2 n P. For the first condition, suppose that 
x C Qi n Q2. Then x [n c SI n S2 for each n, so that x [n c T1 n T2 for each n, 
and therefore x c P1 n P2. For any x, we have that for each n, either x [n C SI or 
x [n c S2. Thus without loss of generality x [n c SI for infinitely many n. Since SI 
is a tree, x [n c SI -- x [m c SI for m < n, so that x [n c SI for all n and therefore 
x C Q1. 

The definition of the trees Si is by recursion on the length of a {,O 1}'. First 
put the empty string in both SI and S2 since it is in T1 n T2. Now assume by 
induction that for strings a of length < n, we have 

(i) c c SI U S2 and 
(ii) c SS n S2 <- a ci T1 n T2. 

Now for z = a-0 or cr 1, there are 4 cases; the final case is most important. 

(a) If T c T1 n T2, then we put -c SI n S2. 
(b) If c TcI-T2, then we put -c SI-S2. 
(c) If T c T2-T1, then we put - E S2-S1. 
(d) If T , T1 U T2, then we consider whether a c SI or S2. If a C S2 - SI, 
then we put c C S2 - SI and otherwise, we put T c SI - S2. 

It is easy to check that in each case, if - c Si, then a c Si, so that each Si is a tree. 
The conditions (i) and (ii) follow from the construction by induction on the length 
of a. 

In this section, we obtain a converse result. 

THEOREM 2.3. For anyfinite distributive lattice L which satisfies the dual reduction 
property, there exists a LI? class Q such that Y (Q)* is isomorphic to L. Furthermore, 
the theory of 22(Q) is decidable. 

PROOF. Notice that for any finite class Q, Y(Q)* will be the one-point lattice. 
For the simplest non-trivial example, the two-point lattice L = {O, 1}, Q must be 
a minimal HO class, meaning that every fI? subclass is either finite or is cofinite in 
Q. Such a class was constructed in [3]. The construction given below is based on 
the construction of a minimal HO class. Let Te be a standard enumeration of the 
primitive recursive trees, so that Pe = [Te] enumerates the HO classes as in [5]. 

We need the following characterization of the finite distributive lattices satisfying 
the dual reduction property, which follows from Hermann [8]. 

LEMMA 2.4. Suppose L is afinite lattice of sets. Then L satisfies the dual reduction 
property if and only if there exists a tree S with root 0 which generates L in the sense 
that every element of L is a join of a set of nodes. 

Note that S is uniquely determined from L as the set of join-irreducible elements 
of L. 
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2S 3 5 

1 4 

FIGURE 1. S. 

To illustrate this idea, let S consist of the following subsets of {0, 1, 2, 3}: 
0,{0},{0,1},{0,1,2},{0,1,3},{0,4},{0,4,5}. Here a set B is a successor of a 
set A if B = A U {b } for some b. S is a lower semi-lattice under the operation of in- 
tersection and generates a lattice with the operation of union as follows. The leaves 
of S are the sets {0, 1, 2}, {0, 1, 3} and {0, 4, 5}. Thus S generates a lattice L(S) 
with the addition of 8 sets: {0, 1, 4}, {0, 1, 4, 5}, {0, 1, 2, 4}, {0, 1, 3, 4}, {0, 1, 2, 3}, 
{0, 1, 2, 4, 5}, {0, 1, 3, 4, 5} and {0, 1, 2, 3, 4, 5} - the maximum element of L(S). A 
sketch of the tree S is given above in Figure 1. 

Suppose now that the lattice L is generated by a tree S of finite sets with B a 
successor of A in S if and only if B = A U {b } for some b as in the above example, 
so that the new elements are ordered as usual from left to right in the tree. 

Each b < m may be identified with the unique B (b) c S such that B (b) = A U {b } 
for some A E S. Then we define a partial ordering on {O, 1, . . ., m } by 

a <* b B(a) c B(b). 

We may assume that a <* b implies a < b (by renumbering if necessary). We may 
also simplify the problem by assuming, without loss of generality, that there is only 
one atom {O} in L. If there are several atoms {i} for i =1 to k, then we can use 
the construction for one atom to produce disjoint HO classes Q1, . Qk such that 
2(Qi)* is isomorphic to the lattice Li = {0} U {A c L: i c A}. It is then easy to 
see that for Q = Ui Qi, (Q)* is isomorphic to L. 

Suppose therefore that the generating tree S has a single atom {0} and is a 
family of subsets of {0, 1, . . ., m }. We will construct the class Q with corresponding 
subclasses QA for each A c L such that every subclass of Q differs from one of the 
QA by a finite set. The classes are constructed so that A C B i=> QA C QB. It is 
immediate that Q{o} is a minimal H1O class. 



1754 DOUGLAS CENZER AND ANDRE NIES 

Our goal is to define a 1-10 class Q with natural subclasses QA for each A C L so 
that for each Ho class Pe C Q, there is some A such that the difference between Pe 
and QA is finite. 

The class Q will have a single limit element x, which will also be the only element 
of Q containing infinitely many "1 "s. If we express x in the form On, * 1 * on, * 1 * ..., 

let co = 0 and let Uk = Ono * 1 *... * Onk, then the class Q{o} will have additional 
elements XO,k = Uk * 0 * 1 * O' for each k. 

For each i < m with i > 0, we will have a corresponding label li+1 such that for 
A c L and i c A, the elements of QA will all contain 0 * 1i+1 * 0 as a substring. 
In fact, we will characterize QA as those elements of Q which have no labels of the 
form 0 * lm+1 * 0 for any m , A. Note that this will make QA a H1? subclass of Q. 
For each B = A U { i } c S, we will define a sequence of elements Xi,k which have 
labels for all i c B and no other labels. This will be done so that for each i, Xink is 
an extension of cik but not an extension of ?k+1 - 

A sketch of the class Q for the simple case of S = {0, {O}, {O, I}} is given below 
in Figure 2. 

It follows from the above discussion that the map taking A c L to QA is a lattice 
homomorphism, that is, A c B -z= QA C QB. 

The key to making the subclasses of Q, modulo finite difference, isomorphic to 
Y, is the following condition: 

(*) For any b < m, any e and any A andB inS with B = AU {b}, if 
Pe (QB - QA) is infinite, then QB - Pe is finite. 

Given this condition, we now show that for every nIo subclass Pe of Q, there exists 
C c L such that Pe = QC modulo finite difference. Just let 

C = U{A: QA - Pe is finite}. 

Clearly QC - Pe is finite. Now suppose by way of contradiction that Pe - QC is 
infinite. Then there must be some B c S with Pe n (QB - QC) infinite. Let B 
have minimal cardinality among the set of D such that Pe n (QD - QC) is infinite 
and let A be the predecessor of B. Then there is a b such that B = A U {b} and 
Pe n (QB - QA) is infinite. It now follows from (*) that QB - Pe is finite. But 
the definition of C now requires that QB c QC, contradicting the assumption that 
Pe n (QB - QC) is infinite. Thus Pe and QC have a finite difference, as desired. 

Now let us see how to obtain this condition in the construction. Recall that we 
are defining x as the limit of strings Uk and also defining Xb,k for each k and for 
b < m as the limit of, say, fb,k 

The requirements used in the construction to obtain condition (*) are the follow- 
ing, for each b < m and each pair of natural numbers e < j. 
Requirement Rb,j,e: 

(i) if b = Oand x C Pe, then xo,j C Pe; 
(ii) if b > 0, a <* b, and Xb,j C Pe, then Xa,k C Pe for all k > j. 

(Recall that Pe is the e-th Il? class.) Let us demonstrate that these requirements 
imply the condition (*) given above. 

Suppose therefore that B = A U {b} and that Pe n (QB - QA) is infinite and let 
a c B. This means that Xb,j C Pe for infinitely many j and thus for some j > e. 
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FIGURE 2. Q (S). 

Then the requirement Rb,j,e implies that Xak C P, for all but finitely many k. Thus 
QB - Pe is finite as desired. 

We will show below that these requirements also imply that x is the unique limit 
point of Q and that x is not computable. 

Priority is assigned to the requirements as follows. Raid has higher priority than 
Rb,j,e if either i < j, or i = j and d < e, or i = j and d = e and a < b. 

It remains to construct the set Q by a finite injury argument. The construction 
will proceed in stages. At stage s we will have, for e < s, strings a'S -< jiU, 

containing at least e l's, such that, for all e < s, aes 1 < us+,, together with strings 
bkfor 1 b < m and k < s such that /b,k extends as but does not extend 

CS+,. The construction will ensure the existence of the limits Cre lim, acs for each 
e. The unique limit point x of Q will the union of {Cre e C co }. For each b 
and k, the element Xb,k of Q will be the limit of the strings 'bUk in the sense that 
Xb,k(i) = limsu'bk(i) for each i. At the same time we will be defining a sequence 
n (0) < n (1) < ... so that s < n(s) and constructing a computable tree T in stages 
Ts. At stage s, we will have decided whether each finite sequence of length n (s) is 
in T. This will ensure that T is computable. 
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We first give an outline of the construction for the case when L is a chain with 3 
nodes 0,{0} and {0, 1}. We will build a computable tree T with 

Q =[T] ={x} U {xo,j j: <cK} U {x1,j: j co}, 

where x is the unique limit path of Q, also called the main path. Thus Qo 0, 
Q{o} = {x} U {xosj: j < cow} and of course Q{o,I} = Q. The main path will have the 
form Ono * 1 * 0'n * ..., while the isolated paths will each end in 0W. The paths x1,j 
will each have as a label the substring (I 1), while the other paths will not have this 
label. The isolated paths Xa,j will agree with x at least as far as Ono * 1 * ... * 1 * 0ni. 

We achieve the requirements Rb,j,e by working on the converses. That is, if it 
looks like xoJ , Pe but x C Pe, then we move x to xoj (by making j +1 C a?1) to 
ensure that x , Pe. Similarly, if for some < k it looks like xo,j C Pe but XO,k , Pe 
then we move xoj to XO,k to ensure that x0,; , Pe. The other cases move xjj to 
X1,k or move X1,k to x1,J for j < k. The restriction that e < j will ensure that the 
construction converges. 

To see that these requirements lead to the desired conclusion, we suppose now 
that some Pe C Q and show that Q is equal (modulo finite difference) to one of the 
three sets QA defined above. If Pe is finite, then clearly Pe = Qo (modulo finite). If 
Pe is infinite, then it has a limit point, so that x C Pe and therefore, by part (i) of 
the Requirement, xosj C Pe for all j > e, so that Q{o} C Pe (modulo finite). In this 
case, if Pe contains just finitely many x1,j, then Pe = Q{o} (modulo finite). If Pe 

contains infinitely many x1,j, then, by part (ii), it must contain all points x1,j and 

xoj for j > e, so that Pe = Q (modulo finite). 
We begin the construction by setting n (0) = 0 and letting co0 be the null string. 
Now suppose we have completed the construction as far as stage s. Thus we have 

defined n (s) > s and decided whether a c T for all strings a of length < n (s). We 
have also defined cas for all e < s and also Ha for all a < m and k < s as described 
above. 

At stage s + 1, the triple (b, j, e) with j > e and b > 0 requires action if we have 
i4 C Te and we have some a <* b and some k > j such that H Te. 

The triple (0, j, e) with j > e requires action if ay E Te and there is some k > j 
such that 'Us/1k V Te. 

If no triple requires action at stage s + 1, then we simply extend the tree as follows. 
For each a < m, let 0 = ao <* al <* ... <* a, = a list the nodes below or equal 

to a in S, let 

?(a) = a + 1 +ao+2+ +a, +2 

andletE =max{f (a): a < m} and n(s + 1) = n(s) + t. 
For all a < m and all k < s, let Ysj f+ = k * 0e. Let s+' =as and let 

5s+1 = cr * 1 * 0e-1. Finally, let 
s+1 

s+l as * oa+1 * iao+l * 0 * lai+1 * 0** *0* la +1 * O 

Otherwise, let (b, j, e) be the triple with highest priority which requires action at 
stage s + 1 and do the following. 

Case I: b = 0. Then we have as E Te and k > j such that Yo k Te. Now 

the idea is to move aj to U0ok, to abandon the part of the tree which branches off 
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between as and s,,, and restart the construction above the new us+'. The details 
follow. 

Define s as above and let n(s + 1) n(s) + (s + 1 - j)( ). For i < s + 1 - j, let 

as+1 = ,Ok * (1 *0o ). 

For a < m as above and for i < s -j, let 
a+1 =s+1 * oa?1 * 1ao+l * 0 * iai+l *0*... *0* lan+1 * 0(s+l-j-i)e-f(a) 

For i < ], let c s+f1 = ar and for each a, let /us+if =si * 0(s+?-j)e. 

Case II: b > 0. Then we have us j E Te and we have some c <* b and k >1 
such that Te. Now the idea is to move Ubj to sk move c? to ,k and to 
abandon the part of the tree which branches off between ar and as, except for the 

I-a,j with a =A b. The tree above s is relabeled and the construction is restarted 
above as. The details follow. 

Define t as above and let n(s + 1) n(s) + (k-]j)Y. Let c-co <* cl <* <* 
Cr = b list the nodes of T between c and b and let 

s+b j 
- ~~ * O * , * lCr+1 * q, J~J- sc,k lc1 

where q is chosen so that 1,us+1 has length n(s + 1). For a 7z b, let 

JU aj a, 

Let a1s+ = ay. For 0 < i < s-k, let J I. 

as+1 as 
~j~i ~k~i 

and for i with 0 < i < k - j and for any a < m, let 
s+1 _(-~ 

Uaj+i = 
/a,k+i * 

For i <k-j +1,let 
as+1 *s (1*O-l 

s+ j-k+i = 5*(1 - 

and for a < m and 0 < i < k - j + 1, let 
s+ k s+k * oa+0 * iao+l * 0 * la,+l * 0 * * * 0 * * 0(k-n-i)*-e(a) 

Finally, for i < j, let as= a-r and for each a, let yai?1 - ,s. * 

In each case, a string a of length < n(s + 1) is in T if and only if either a -- us+ 

for some k, or a s? 1us+ * Ot for some a, k, t. 

CLAIM 2.5. For every k, the sequence as converges to some limit k andfor every 
a < m and every e, there is a stage s such that, for all t > s, ,u'+ is an extension of 
tak by a string of O's. 

PROOF. It follows from the construction that we only have <+' Az as when we 
take action on a requirement Rb,j,e with j < k and similarly we only move Yk 
when we take action on Rb,j,e with j < k. 

Thus it suffices to show that for each k, there is a stage after which we never again 
take action on any requirement Rb,j,e with j < k. We proceed by induction on k. 
For k = 0, the only possible requirements have the form RbOO. For b = 0, one 
action at stage s will put as ? To and no later action can injure this requirement. 
Now suppose that we have reached a stage so such that we never act on requirement 
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Ro,o,o after stage so. Then for each b, c < m with b, c =A 0, observe that action taken 
on requirement Rb,o,o does not move uco, so that one action taken on requirement 
Rc,o,o will move /uc,O out of To and no further action will be required. 

Now suppose that we have reached a stage Sk-1 such that no action is ever taken 
on any requirement Rb,,e with j < k after stage Sk-1. Then we see as in the k = 0 
case above that there will be a stage after which we never act on requirement Ro,k,o 
and then a stage Sk,o after which we never act on requirement Rb,k,O for any b. Since 
we always have e < k in requirement Rb,k,e, we can show by induction on e < k 
that there are stages Ske after which we never act on requirement Rb,k,e for any b. 
Thus after stage Sk = Sk,k, we never act on any requirement Rb,j,e with j < k. -d 

Since asr -- s for all s and e, it follows that Se - Ce+1 for all e. Thus we can 
define the limit point x of Q to be x= Uege. 

For each a < m and each k, the sequence -sk likewise converges to a path 
I-a,k E Q. Since all other paths are eventually terminated, Q consists of precisely 
the elements Xa,k and the elements Xe. For each k > e, XO,k is an extension of 0e, 

so that x is a limit point of Q. It is clear that each Xa,k is isolated in Q since /ta,k iS 

eventually only extended by O's in T. Thus x is the unique limit point of Q. 
It remains to verify the requirements Rb,j,e given above. Note that for each A C L, 

QA = {X} U {Xak a c A & k < co}. 

CLAIM 2.6. Let e < j. 

(i) If b = Oand ifx C Pe, then xoj C Pe. 

(ii) If b > 0, andB =Au {b}for some A, B c S andXbj C Pe, thenXa,k C Pe 

for all a c B and allk > j. 

PROOF. For the first part, suppose that x C Pe and let s be a stage such that no 
action is taken on any requirement of priority less than or equal to R0,ej after stage 
s. Then the condition must never require action at any stage t + 1 > s. It follows 
that aj = ac. Since x C Pe, it follows that aj c Te, so that for all t > s, /uok C Te 
for all k > j. It follows that xO,j C Pek 

For the second part, assume the hypothesis of part (ii) and let s be a stage such 
that no action is taken on any requirement of priority less than or equal to Rb,e,j 
after stage s. Then the condition must never require action at any stage t + 1 > s. 
It follows that Uaj = jS j for all a C B. Since Xbj C Pe, it follows that /b,j C Te, 
so that for all a c B and all t > s, C k c Te for all k > j. It follows that Xa,k C Pe, 
as desired. - 

It is important to note that these requirements, now verified, imply that the limit 
point x is not computable. If it were, then {x} would be a ]lol class, say Pe. But 
then we would have xO,j C Pe for all j > e, which is a contradiction. 

Finally, we consider the furthermore clause of the theorem, that is, that the theory 
of Y (Q) is decidable. By a theorem of Lachlan [10], if a lattice L c s' (N) is closed 
under finite differences, then the theory of L is many-one reducible to the theory of 
L*. 

LEMMA 2.7. Suppose that P is a countable Ho class such that every computable 
member of P is isolated. Then the lattice 5(P) of 17 subclasses of P is isomorphic 
to a sublattice L of 9(N) which is closed underfinite differences. 



INITIAL SEGMENTS OF THE LATTICE OF n0 CLASSES 1759 

PROOF. Let A = {tan: n < co} be a list of the isolated points in P. It is sufficient 
to show that a ?1? subclass of P is determined by its intersection with A. To see this, 
suppose that Qi and Q2 are two 11? classes having the same intersection with A. We 
first show by induction on the rank of x c P that if x c Qj (where i = 0, 1), then for 
any open neighborhood U of x, there is an element of A which belongs to Qj n U. 
The hypothesis covers the case of rank zero. Now suppose that x c Qj and that x 
has rank a in P. Let U be an open set such that x c U and such that U contains 
no points of rank > a in P other than x. Since x is not computable, Qj n U must 
contain some point y + x and necessarily y has rank < a. It follows by induction 
that Qj n U contains an element of A. Now if x c Q1, then every neighborhood 
of x contains an element of A n Qi and therefore, by assumption, an element of 
A n Q2. Since Q2 is closed, it follows that x C Q2. Similarly, x c Q2 -* x C Q1. -A 

The I17? class constructed above is certainly countable and the finitely many limit 
points are each non-computable. Thus by Lemma 2.7 the theory of Y (Q) is many- 
one reducible to the theory of Y(Q)*. But the latter is the theory of a finite structure 
and is therefore decidable. 

This completes the proof of Theorem 2.3. - 

For the remainder of the section, we will show that the construction of Theo- 
rem 2.3 may not, in general, be achieved with a decidable class P. In Section 3, 
we will present a stronger result, that the theory of 5(P) is undecidable, and in 
fact interprets the theory of arithmetic, whenever P is decidable and S (P) is not a 
Boolean algebra. We include the next result since it gives a more direct proof that 
no decidable I?1 class P can have S(P)* isomorphic to a finite lattice, such as the 
three-point lattice {0, 1, 2}, which is not a Boolean algebra. 

THEOREM 2.8. If P is a countably infinite, decidable ]Flo class, and SQ(P)* is not a 
Boolean algebra, then Y (P)* is infinite. 

PROOF. First suppose that P has infinitely many limit points. This condition alone 
implies that Y(P)* is infinite; by the countability of P, there must be infinitely many 
{ xo, x1, . .. } which have rank one. This means that for each n, there is an interval 
U, such that P n U, contains x, and contains no other limit point of P. We 
claim that the sets P n Un are distinct modulo finite difference. Suppose by way of 
contradiction that P n U,, and P n Un had a finite difference. Since xm is a limit 
point of P, there is a sequence yo, y1, . . . of (isolated) elements of P n U,, which 
converges to x,. Then all but finitely many of these Yk would belong to P n U, and 
therefore xrn would be in P n Un, contradicting the assumptions above. 

Now suppose that P has only finitely many limit points {xO, . . ., Xk}. As above, 
we can separate them by intervals Un so that P n U, contains x, and no other limit 
point. Since P - (Uo U ... U Un) contains no limit points and is therefore finite, we 
may assume that the sets P n U, partition P. The assumption that Y (P)* is not a 
Boolean algebra thus implies that ? (P n U,)* is not a Boolean algebra for some 
n. Thus we may assume without loss of generality that P has a unique limit point. 

Since Y(P)* is not a Boolean algebra, there must be some infinite subset Po of 
P such that P - Po is also infinite. Assuming that ? (P)* is finite, we may take 
Po to be minimal and P to be a minimal extension of Po. That is, we may assume, 
without loss of generality, that Y (P)* has exactly 3 nodes, corresponding to 0, Po 
and P. Now let P = [T] where T has no dead ends, let Po = [To], and let x be the 
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unique limit point of P. Of course x c Po since Po is infinite and x is the only limit 
point of P. Observe that for any a E T-To, a has only finitely many extensions 
in P, since otherwise P - Po would contain a limit point of P. 

Then we can recursively define a sequence cl, a,.... of pairwise incompatible 
nodes in T - To, as follows. Let oO be the least element of T - To. Given 

.o, ***, a, C T - To, there exists an element y c P - Po which does not extend any 
of co, . . ., a, since P - Po is infinite and each ai has only finitely many extensions 
in P. Thus there exists some initial segment ac T - To of y which is incompatible 
with each of ro,.. ., Un. Just take 0n?+ to be the least such a (first under length and 
then lexicographically). The key conclusion now is that since T has no dead ends, 
each interval I (9n ) must contain a point xn of P - Po. Now consider the 1I- class 
Pi {x C P: (Vn) -(u2n -< X)}. Since each ck V To, we have Po c P, and in 
addition X2n-1 c P, for each n. Thus P, is distinct modulo finite difference from 
the three subclasses which make up Y(P)*. This contradiction demonstrates the 
result. -d 

Note that we are not assuming in the previous theorem that Y (P) is closed under 
finite differences. In particular, we are not assuming that every limit point of P is 
non-computable. 

For the special case of a single node, there does exist a computable tree T with 
no dead ends such that P = [T] is a minimal TIl class. 

In the next section, we consider the general problem of a decidable 1I- class where 
5 (P) is not a Boolean algebra. 

?3. Decidable rIl classes. In this section, we consider in more detail the theory 
of the lattice Y (P) of 1I- subclasses of a decidable rI? class when Y(P) is not a 
Boolean algebra. By Theorem 2.8 this means that either P is uncountable or Y(P)* 
is infinite. We prove the following theorem. 

THEOREM 3.1. Suppose that P is a decidable 1-10-class such that Y(P) is not a 
Boolean algebra. Then Th(Y (P)) interprets Th(N, +, x). 

Let 9 be the computable dense Boolean algebra. For ease of notation and also to 
conform with Nies [12], we will use the language of c.e. ideals of 9 under inclusion 
instead of 1I--classes under inclusion. If H is a c.e. ideal of X, let Y(H) be the 
lattice of c.e ideals of 9 containing H. 

THEOREM 3.2. Suppose H is a computable ideal of 9 and Y(H) is not a Boolean 
algebra. Then Th(Y(H)) interprets Th(N, +, x). 

The equivalence of Theorem 3.1 and the preceding theorem can be obtained 
using effective Stone duality. See Cenzer and Remmel [5] for details. It will be 
clear from the proof how the decidability of H is used: this enables one to see that 
a requirement is satisfied permanently, when it depends on the fact that a certain 
element of 9 which has been enumerated into an ideal is not in H. 

We first need some terminology and notation. A c.e. Boolean algebra is given by 
a model (N, -<, V, A) such that -- is a c.e. relation which is a pre-ordering, V, A are 
total computable binary functions, and the quotient structure u= = (N, 5. V A)/ 
is a Boolean algebra (where n m X n -< m & m -< n). We can suppose that 
0 c N names the least and 1 c N the greatest element of S. For Sk -Boolean 
algebras, one requires that - be Sk and that A, V be computable in 0(k-1). For a Sk 
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Boolean algebra A, let 

J1'(_W) := the lattice of Sk-ideals of -. 

Clearly c.e. Boolean algebras correspond to c.e. ideals of r, and similarly for 
computable. In this language, Theorem 3.2 can be restated a further time as 
follows: for a computable Boolean algebra W, if (W) is not a Boolean algebra, 
then Th(Jr(V)) interprets Th(N, +, x). 

PROOF. We will first prove the weaker result that Th(Y(H)) is undecidable, and 
then obtain the full result by an extra argument. We use a result from Nies [12]. 
A c.e. Boolean algebra - is called effectively dense [12] if there is a computable F 
such that Vx [F (x) -< x] and 

(1) Vx 6 O [O - F(x) - x]. 

More generally, a Sk Boolean algebra - is effectively dense if the above holds with 
some F <T 0(k-1). In [12], it is proved that, for any effectively dense V Boolean 
algebra W, Th(J7Q(V)) is hereditarily undecidable (i.e., all subtheories containing the 
valid sentences are undecidable). By the standard methods to transfer hereditary 
undecidability (see e.g., [1]), it suffices to give a coding in 2(H) with parameters 
of Jr (W), for an effectively dense 1? Boolean algebra W . 

In the following we describe how to determine V and how to do the coding. We 
first need some more notation. 

DEFINITION 3.3. 1. For S C X, let [Slid be the ideal of 9 generated by S U H. 
2. A enumeration of an ideal X of -W = 9 /H is given by a c.e. subset X = Us Xs 

of 9 such that X = [X]id . We let Xs = [Xs]id (thereby slightly deviating from 
the notation in [13], where H is usually not decidable). We let (Ve) be a 
uniform enumeration of all c.e. ideals containing H. 

3. For a c.e. ideal X, we let 

(2) xO = O. xS = sup XS-sup XS-1 (s > 0). 

Thus, (xf)lEN is an effective "partition" generating X. 
4. Capital letters A,. . E, X, Y V W range over c.e. ideals of a containing H. 
5. An element b of - is identified with the corresponding principal ideal [{b }]id. 

6. (Splittings of ideals) We write B i C = A if B n C = H and B V C = A. In 
this case we denote C by CplA(B). We write B E A if 3C B H C = A. 

Fix A c Jr(-) and choose a 0"-listing (Xi) of -W(A), where 

- (A) = {X: X E A}. 

Since 1 (-) is a distributive lattice, (-W(A), n, v, CplA, H, A) is a Z?-Boolean alge- 
bra (with the presentation determined by that listing). We consider ideals of - (A). 
To avoid confusion, we will write "IDEAL" when we mean such a level 2 ideal. For 
certain A, E such that A C E, we will view 

RE(A) = {X zE : X C A} 
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as the IDEAL of negligible splittings of A. Note that {e: Xe C RE (A)} is a n?-set. 
Let 

(3) W = _W(A/E) = _W(A)/IBE(A) 

We first give an outline of the coding. Under certain conditions on A and E (for 
instance, if E is nonprincipal), we will be able to show that W is effectively dense 
as a S? Boolean algebra. Then, to give the coding of I (W) in 2 (H), we represent 
a n?-IDEAL I C Jr(W) by (any) C c 2(H) such that, for X E A, X C Jr(W) if 
and only if X n C is negligible, that is, X n C c R for some R C SE (A). Clearly, 
any subset of _W(A) represented in this way is a Z?-IDEAL containing R9E(A). 
The main technical result, proved in [13], is that also each such IDEAL I can be 
represented. 

Then with the listing (Xi/E)ic., JW(A/E) becomes a Z? Boolean algebra. To 
obtain the desired Z? Boolean algebra, we require that E is a nonprincipal ideal, 
A C E is not a split of E and A also satisfies the following property. 

DEFINITION 3.4. We say that A is locally principal (l.p.) in E if A C E and 

Ve C E[e n A is principal ]. 

Locally principal ideals were introduced by Nies in [13]. Note that this property 
of A, E can be expressed in J(Jd) in a first-order way, since the principal ideals 
are just the complemented elements of Jr (JW). The motivation is that the situation 
A C E is in a sense similar to an inclusion of sets: whenever e C E, the intersection 
A n e has only a finite amount of information. 

Since 2(H) is not a Boolean algebra, a nonprincipal E exists. We first supply 
the fact that an A C E as required also exists. 

LEMMA 3.5. For any E V_ 1, there is A C E A t E such that A is l.p. in E. 

PROOF. Since E V_ 1, we can fix an enumeration E = [{en : n < ST}id, where (en) 
is a u.c.e. sequence of elements of D - H which have pairwise meet H. It suffices 
to meet the requirements 

Rn :-(A H V, = E). 

To do so, we reserve en for Rn. At stage s, for each n < s, if now en C Vn,s, we 
put en into A (precisely speaking, into A). 

Clearly A is l.p. in E. Moreover, each requirement is met: If A V Vn = E, then, 
since we threaten to keep en out of A, en C Vn,s for some s. Then the construction 
ensures Vn n A :& H. H 

In the following we fix A, E with the properties as above. We prove that the Z?3 
Boolean algebra -4(A/E) is effectively dense. Clearly if A is l.p. in E and Y E A, 

then so is Y. So the following is sufficient. 

LEMMA 3.6. Suppose Y is l.p. in E. Then one can effectively obtain a splitting 
Y = Yo H Y1 such that Y V_ E implies Yi V E (i = 0, 1). 

PROOF. Let E = [{en: n C N}]id as above. We call S C E small if 

InS C eo V ... V en. 
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For c.e. ideals C, D let C \ D be the ideal X given by enumerating (into a set X) 
at stage s those x such that 

x c Cs-1 & X Ds- & x cDs, 

(and, as always, letting Xs be the ideal of Ds generated by Xs U H). Similarly to 
the proof of the Friedberg Splitting Theorem [14], we meet the requirements 

Pei: Ve \ Y not small => Ve \ Yi = H, 

while ensuring that Y - Yo Li Y1. 
We first verify that this is sufficient. Suppose Y1 E E. Choose k such that 

Yi H Vk = E & YO n Vk = H. Then Vk Y is not small: assume 

Vk \YCn =eoV...Ven, 

and let V [{y < CplE(efl): !S (y C Vk,s &J2 Y Ys)}]id. Then 

(en V Y) V V - E & (-e- v Y) n V = H. 

Thus ('e V Y) E E, and since Y is i.p. in E, Y E E. 
Since Vk \ Y is not small, Vk \ Y1 = H, contrary to Vk n Yi H. So it 

suffices to meet the requirements PeJi. 
Construction of Yo, Y1. At stage s determine the least (e, i) < s such that Pei has 

not been met (i.e., Ve \ Yj [s] C H and ys n Ves l H). Enumerate ys into Yi. 
If (e, i) fails to exist, put ys into Yo. 

Clearly, Y = Yo L Y1. To prove that Pei is met, suppose that by stage t, Pk has 
been met for each k < (e, i). Since Ve \ Y is not small, there is s > t such that 
Ys V H, ys A -et C H and ys n Ves- I = H. Then the requirement is satisfied from 
stage s + 1 on. -1 

Since _4(A/E) is an effectively dense 1? Boolean algebra, by Nies [12], the lattice 
Yig(A/F)) has a hereditarily undecidable theory. Therefore it is sufficient to give 

a coding with parameters of J (W (A/F)) in Y (H). We rely on the proof of Nies 
[13, Lemma 6.3], where it is shown that, if A is l.p. in E, then, for each Z3 IDEAL I 
of _ (A) containing SE (A), there is a C1 such that 

(4) I = fX C XW(A) : (:OR C WE(A))(C, n x c R)J. 

(In [13] the assumption is made in the proof of Lemma 6.3 that the base Boolean 
algebra 92/H is effectively dense, but this is not needed.) Note that, conversely, each 
subset of _ (A) determined by (4) is a V IDEAL containing SE (A). Since the set of 
these IDEALS corresponds to jr (_4(A/E)), we obtain the desired coding: represent 
I by any C1, and give a first-order formula Woc (C1, C2; A, E) expressing inclusion 
of the represented ideals in the obvious way. 

This settles undecidability. We now give the extra argument needed to obtain an 
interpretation of Th(N, +, x) in Th(Y (H)). First we prove a uniqueness property 
of (A/E). 

PROPOSITION 3.7. Suppose that 

(5) E y 1, A C E A y E, A isl.p.inE, 

and the same properties also holdfor E, A. Then _4(A/E) _(A/) via an isomor- 

phism which is computable in 0". 
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PROOF. A c.e. Boolean algebra W is called effectively inseparable (e.i.) if the 
sets { n c N: n O}, {n C N : n 1} (i.e., the sets of names for OW, 1') are 
effectively inseparable. By the methods of Kripke and Pour-El [9], any two e.i. 
Boolean algebras are effectively isomorphic. We apply their result, relativized to 0". 
It suffices to show that under the given hypotheses ,/(A/E) (with the presentation 
given at (3)) is 0"-e.i.. Recall that (Xi) is an 0"-listing of W (A). We prove that 

(6) S = {i: Xi C SE(A)}, T = {i: A-Xi C. WE(A)} 

are 0"-e.i. sets. Fix a pair of n-sets 8, T which is e.i. relative to 0". It suffices to 
find a total f < 0" such that 

(7) f (S) C S, f (T) C T. 

Fix a u.c.e. double sequence Z' of initial segments of N such that 

i C S X ]nZ2", = N and i c T X 3nZ2n+1 = N. 

For each i we will effectively obtain a splitting A = AO H AI such that i C S AS 
AO z E and i c T ?* A, z- E. Then f, given by f (i) the first j such that 
Xj = AO, is a function computable in 0" as desired. We employ a simple fact from 
Nies [13, Fact 6.1]. Recall that we are identifying elements of W and principal 
ideals. 

FACT 3.8. Suppose B C E is a c.e. ideal such that Vk B n ek = bk, where bk is 
obtained effectively from k. Then B E E. 

PROOF. Let C = [{ek - bk}kN]id. Then B H C -E. 

At stage s, we decide whether to put a, into AO or into AI, as follows: Compute 
the maximal k such that as A ek , H. Let m be minimal such that I Zs| > k. If m 
is even or fails to exist put as into AI, else into AO. 

To verify (7), first suppose i c S and let m be least such that Z2m N. Then Fact 
3.8 implies B = Ao E E as follows. Given k, since B is l.p. in A we can assume that 
k > maxr<2m IZr, (because finitely many bi can be fixed in advance). Compute s 

such that I Z2imsl > k. Then oO n ek = AO,s n ek, so let bk = sup(AO,s n ek). If i C 
one proves Al z E in a similar fashion. This completes the proof of Proposition 
3.7. 

By the uniqueness up to 0" isomorphism of W(A/E), all possible structures 
'* = ,'(W(A/E)), where E, A satisfy (5), are isomorphic. By Nies [13] and the 

effective density of W(A/E), Th(Jr*) interprets Th(N, +, x). But 

D A* I= 
p 
f 5(H) 1= 3E3A[(5) & "/J(,(A/E)) l= (p1 

so Th(Jr*) can be interpreted in Th(Y2(H)). 
This demonstrates fact 3.8 and completes the proof of Proposition 3.7, Theorems 

3.1 and 3.2. 

Open problem: Characterize those P such that Th(Y (P)) is decidable. 
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