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GLOBAL PROPERTIES OF THE LATTICE OF II 1CLASSES 

DOUGLAS CENZER AND ANDRE NIES 

(Communicated by Carl G. Jockusch, Jr.) 

ABSTRACT. Let Sn be the lattice of II? classes of reals. We show there are 
exactly two possible isomorphism types of end intervals, [P, 2W]. Moreover, 
finiteness is first order definable in ?II 

1. INTRODUCTION 

The structure of the lattice SI of I0 classes has been investigated in several 
recent papers, for instance, [3]. A central theme is to compare and contrast the 
structure with the lattice ? of computable enumerable sets. 

In this paper, we solve a number of open problems from the 1999 AMS Sum- 
mer Conference on Computability Theory. One general problem is to determine 
which subsets invariant under automorphisms are definable in a given structure. 
In particular, this is relevant for subsets which are natural in some sense. For Sn, 
an example is the set of finite classes. We show that this set is definable in nr, 
which solves the first part of Problem 6.1 in [2]. The Cantor-Bendixson rank is an 
important way of classifying Ilo classes. We solve Problem 6.2 of [2] by showing 
that the family of countable HIo classes of rank a is definable if and only if a < w. 

Intervals of the lattice ?n were first studied in [3], where it was shown that, in 
contrast to the lattice E*, there are finite initial intervals in the quotient lattice 
?n/ =* which are not Boolean algebras. An important problem here is to charac- 
terize all the possible intervals. We show here that there are exactly two possible 
isomorphism types of end intervals, [P, 2w], which answers a question of Herrmann 
(Problem 6.6 of [2]) and also Problem 9.7 of [8]. As a tool, we prove results on 
the complexity of possible representations of ? and other structures, which are of 
interest by themselves. In recent work, Nies has found a E3 sentence separating 
the two lattices. 

2. PRELIMINARIES 

2.1. Some notation. As in [3] we will be applying some results on effective Boolean 
algebras and coding due to Nies [10, 11, 12] and also Harrington and Nies [9]. In 
the first paper, we used the language of c.e. ideals of the computable dense Boolean 
algebra rather than the language of HI? classes, to conform to the presentation of 
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[9, 10, 11, 12]. Here we will translate some of this background material into the 
language of II? classes, as in [1, 2, 5]. 

The underlying computable dense Boolean algebra Q may be thought of as the 
family of clopen subsets of {0, 1}W. For any finite sequence o, let I(a) = {x : -< x}. 
Each clopen set has a unique representation as a finite union of disjoint intervals 
I(cr) U ... U I(k), where each ai has the same length and k is taken to be as small 
as possible. Then the join (V) and meet (A) operations are clearly computable, as 
well as the complement operation and the partial ordering relation on Q. 

A c.e. Boolean algebra is given by a model (N, <, V, A) such that - is a c.e. 
relation which is a pre-ordering, V, A are total computable binary functions, and 
the quotient structure B = (N, V, V, A)/ % is a Boolean algebra (where n r m X 

n -< m & m - n). We can suppose that 0 E N names the least and 1 E N the 
greatest element of B. For E?-Boolean algebras, one requires that -< be S0 and 
that A, V be computable in 0(k1-). For a ES Boolean algebra B, let 

Z(B) := the lattice of E?-ideals of B. 

Clearly, c.e. Boolean algebras correspond to c.e. ideals of Q and similarly for com- 
putable algebras and ideals. At the same time an ideal I of Q corresponds to a 
I? class P in that I ={U Q: P n U 0} and P = {0, 1} - UI. We can 

use this last equation to assign index sets for II? classes (as in [4]). Let go, o1,... 
enumerate {0, 1}<W and let We be the eth c.e. subset of w, as usual. Then the eth 
HI class is given by 

(1) Pe= {0, 1}- U I(an). 
nEWe 

An ideal I in a Boolean algebra B is said to be principal if there is some b such 
that I {a : a < b}. The ideal I corresponding to a II? class P as above is 
principal if and only if P is clopen. Thus, we will refer to a non-clopen II? class P 
as nonprincipal. For any II? class P, let S(P) be the lattice of IIH classes Q such 
that P C Q. 

2.2. An effectively dense ES Boolean algebra. A c.e. Boolean algebra B is 
called effectively dense [11] if there is a computable F such that Vx [F(x) < x] and 
Vx 6 0 [0 -< F(x) -< x]. More generally, a 5k Boolean algebra B is effectively dense 
if the above holds with some F <T 0(k-1). We first summarize the construction 
from [3] of an effectively dense E3 Boolean algebra from an arbitrary nonprincipal 
I?? class P. We will present these results from the point of view of II1 classes rather 

than c.e. ideals. 
The following technical lemma shows that we can make the intervals I(rn) in 

(1) disjoint. 

Lemma 2.1. For any HI class P, there is a c.e. set A such that P = 2 - 

UncA I((n), where for m y n, I(um) n I(cn) = 0. 

Proof. Let 2' - P = Un I(7r), for some computable sequence {r7}. For each n, 
express the clopen set I(7n) - Um<n I(7m) as a finite union UkEC, I(Jk) and let 
A = Un<w Cn. 

The underlying lattice Snr of II? classes may be viewed as a I-? structure using 
the representation given by (1). That is, there are recursive functions m and j such 
that Pa U Pb = Pj(a,b) and Pa n Pb = Pm(a,b), and the relation "Pa = Pb" is Il?. 
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Let P be a nonprincipal 11o class. We write Q1 n Q2 = P if Q1 n Q2 = P and 
Q1 U Q2 = 2W, and P c Q if there exists Q2 such that Q H Q2 = P. We observe 
that for any clopen set V, (P U V) n (P U Vc) = P, so that P c P U V. In [P, 2W], 
we can define the ES Boolean algebra of complemented elements as 

B(P)= {X : P X}. 

This is indeed a E3 Boolean algebra, since Pa E 1(P) 4 (3b)[Pa n Pb = 
P&PaUPb = 2]. 

In the following, we recast Definition 4.5 from [12] in the language of 11? classes. 

Definition 2.2. Q is a locally principal extension of P if P c Q and Q - P is 
open. 

This has a first order definition in the lattice ?n, by the following. 

Lemma 2.3. Q is a locally principal extension of P if and only if P C Q and, for 
all clopen sets V, if P n V = 0, then Q n V is clopen. 

Proof. Let Q be a II class with P c Q. Suppose first that Q - P is open and let 
V be a clopen set disjoint from P. Then Q n V is closed, since both Q and V are 
closed. Q n V is also open, since Q n V = (Q- P) n V. On the other hand, suppose 
that Q satisfies the condition of the lemma. Then for any x E Q- P, choose a 
clopen set V such that x ? V and P n V = 0. It follows that Q n V is a clopen 
subset of Q - P containing x. Thus Q - P is an open set. D 

We show that our definition is, in fact, the dual of the definition for c.e. ideals 
of Q from [12]. An ideal B is a locally principal subideal of A if B C A and 
Ve E A [0, e] n B is principal . The immediate dual (with Q, P corresponding to 
B, A) is Q D P, and for all clopen W D P, WU Q is clopen. Now let V WC, 
and note that Vc U Q clopen iff V n Q clopen. 

Lemma 2.4. For any nonclopen 1H? class P, there exists a locally principal exten- 
sion Q of P such that P ? Q. 

Proof. By Lemma 2.3, let 2W - P = Un Un, where {Un}nj<, is a computable se- 
quence of disjoint intervals. Now choose a noncomputable c.e. set B and let 
Q = 2- UnEB Un. Clearly, P C Q and furthermore, Q- P = UnrB Un is an open 
set. Suppose by way of contradiction that R is a 11I class such that Q U R - 2 and 
Q n R = P. But this means that 2w - R =Q-P. Then e E B <- R n U, 0, 
which is a co-c.e. condition, contradicting the assumption that B is not com- 
putable. D 

If P C Q, we define in 13(Q) the filter 

Rp(Q) = {X : P C X & Q C X}. 

Note t e that {e: Pe C Zp(Q)} is a set. Thus, we define the ES Boolean algebra 

IC = 3(Q)/lRp(Q). 
Recall that a Boolean algebra Boole alg is effectively dense [12] if there is a function 

f computable in 0" such that for any a 7 0, 0 <3 f(a) <3 a. The following result 
is obtained by dualizing Lemma 3.6 of [3]. (Note that this reverses the ordering 
of the Boolean algebra, but this process does not affect effective density. In other 
words, B is effectively dense just if the corresponding Boolean algebra with the 
reverse ordering is.) 
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Lemma 2.5. /C is effectively dense. 

2.3. A definability lemma. A result in Nies [12, Lemma 6.3]) will be very im- 
portant for us. We translate the result into the notation of II? classes and filters. 
(Actually, the result in [12] is more general, since it is proven for any effectively 
dense Boolean algebra B, while we only apply the case B = Q.) 

A filter F of B(Q) is k-acceptablep if F has a ES index set and Rp(Q) C F. For 
example, 7Rp(Q) itself is 3-acceptablep. 

A class C of filters of B(Q) containing Rp(Q) is uniformly definable if, for some 
formula ~0(X; P1,..., Pn, P, Q) in the language of lattices with 0, 1, F E C if and 
only if there are parameters P1,..., Pn E ?En such that 

F = {X :Q r- X & En = (X; P,...,P, P , PQ)}. 

Lemma 2.6 (Definability Lemma). Let P be a nonprincipal H11 class and let Q be 
a locally principal extension of P such that P Vj Q. Then the class of k-acceptablep 
filters of B(Q) is uniformly definable for each odd k > 3. 

The result is obtained dualizing the one in [12]. One uses induction over odd 
k > 3. As an illustration, consider k = 3. In th laue language of II classes, one proves 
that F is a 3-acceptablep filter in B(Q) if and only if there is a parameter C E ?n, 
Q C C, such that 

F = {X E B(Q) : (3R E Rp(Q) & R C X U C)}. 

3. COMPLEXITY OF REPRESENTATIONS 

In this section, we prove two results restricting the possible Turing complexity 
of representations of the relativized lattice Ex, and of the lattice 1(B) of ideals of 
an effectively dense E? Boolean algebra. 

Suppose S is a finite signature containing an equality symbol _ and constants 
co, c1,..., and let D be the set of atomic relations and negations of atomic relations 
over S without free variables (typical elements of D are fc, = fgcm and -,Rcncm, 
where n, m C N, f, g are unary function symbols and R is a binary relation symbol 
in S). A representation is a subset JZ of D such that exactly one of an atomic 
relation or its negation is in R, and ER = {cn, Cm : Cn m Cm } is an equivalence 
relation compatible with R. In the following we identify Cn with the number n. A 
pair (R, a) is a representation of an S-structure A if a : N -> A is onto and the 
canonical S-structure on equivalence classes of Erz is isomorphic to A via a. For 
Y C N, a subset of A is E(Y) if its preimage under a is. If a = a(n), we say that 
n is an index for a. 

For a countable S-structure A and Y C N, we write A <T Y if there is a 
presentation (R, a) of A such that 1Z <T Y. In other words, for a relation symbol R 
in S, say binary, and including m, we can decide recursively in Y whether Rnm E 1Z, 
and for a function symbol f E S, say binary, given n, m, we can recursively in Y 
determine an index for fA(a(n), a(m)). 

Fact 3.1. Suppose A <T Y via (7Z, a), and U is a substructure whose domain is 
o(Y). Then U <T Y via a representation (S,/0) such that, in addition, Y can 

decide if an atomic relation holds for 3(n), a(m). 

Proof. To obtain (S,/3), choose a function f <T Y such that rg(f) = a-1(U). Let 
3=aof. D 
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We prove propositions saying that the natural representations of Ex and Z(B) 
are not far from optimal. 

Proposition 3.2. For each X C N, ?x ST X'. 

Proof. We use some concepts from Nies [10], which we review first. We need the 
notion of (uniform) coding of extended standard models of arithmetic (extended 
SMA). An extended SMA is a structure (M, U), where M - N and U C M. In 
general, a coding with parameters of a relational structure C of finite signature in a 
structure D is given by a scheme S of formulas pOD(X, p) (to code the domain) and 

PR(x1, .. ,xn; p) for each n-ary relation symbol R in the language of C (including 
equality ~) such that, for an appropriate list d of parameters in D, (p defines an 
equivalence relation on {x: D = os (x, d)} and the structure defined on equivalence 
classes by the remaining formulas Rn is isomorphic to C. 

In [10] we show that (the relativizable structure) ? as a lattice satisfies, for some 
k, a coding condition Co(k), which states that there is a scheme of Ek formulas 
with parameters so that, for each X C N, an extended SMA (M, U) 

- 
(N, X(k+l)) 

(viewed as a structure with two ternary and one unary relation) can be coded in 
?x. 

We use an argument as in the proof of the Separation Theorem [10, Thm 2.1] to 
show the claim. Suppose that ?x <T Y so that there is a representation (R7, a) of 
?x with Z recursive in Y (later, Y will be X'). Then the preimage under a of the 
successor relation of M is c.e. in y(k-1). Hence there is a function f <T yk-1 such 

that, for all n, a(f(n)) = nM (i.e., f(n) is an index for n in M). Then U (viewed 
as a subset of N) is c.e. in y(k-1) via the enumeration procedure which enumerates 
n into U iff the Ek-formula defining U (with a fixed list of parameters in ?x) holds 
for a(f(n)). Since U = X(k+l), for Y = X' this implies X(k+1) c.e. in X(k), which 
is not the case. O 

In the following, we use notation from Nies [11]. 

Proposition 3.3. Suppose that the E?I-Boolean algebra B is effectively dense. Then 

Z(L) ST 0(k). 

Proof. We prove the claim for k = 1, i.e., we show that (1B) ST 0' for a c.e. 
effectively dense B. For larger k, one relativizes this to 0(k-1) 

Choose a c.e. separating ideal Io (defined in [11, (7)]) such that B/Io is infinite, 
and let K be the lattice of ES-ideals of B which contain Io. We show that 

(2) Z(B) <T 0' X K T (3). 

This suffices since, by the proof of [11, Lemma 2.4], there is an interval [C, D]K 
isomorphic to E3, the lattice of S?-sets. By Fact 3.1, if K <T 0(3), then also 
[C, D]K <T 0(3), which contradicts Proposition 3.2 for X = 0(2). Thus 1(B) AT 0'. 

To prove (2), assume that there is a representation (R, a) of the lattice Z(B), 
with R7 Turing below 0'. Note that B is canonically isomorphic to the complemented 
elements in 1(B), a El-definable subset of Z(B). Hence from 7Z, using Fact 3.1, we 
can derive a presentation (S, 3), for B such that S <T 0', which we will use in the 
following. Let x, r, s range over B. 

Given a c.e. ideal L C Io, let 

J(L) = {x E B: 3r E IoVs E Io [s A r 0 = x A s e L]}. 

243 



DOUGLAS CENZER AND ANDRE NIES 

In Nies [11, Lemma 2.3] it is shown that each J E K is of the form J(L) for some 
c.e. L. Thus, to obtain the desired representation of K, we represent J E C by an 
index for an L such that J = J(L). Note that 

J(L) = {x E : r E Io 0 n [0, rA x] C L}. 

Thus, by Fact 3.1, "{x : x E J(L)}" is E? with respect to (S, /), and a E?-index 
can be obtained uniformly in an ?R-index for L. Then "J(Lo) C J(L1)" is HI. For 
the lattice operations, given Lo, L1 note that J = J(Lo) V J(L1) E K, so there is 
L such that J = J(L). Since we can determine a ES index with respect to S for J, 
and equality of E?-ideals (under the representation S) of B is II,- we can find an 
index for L using 0(3) as an oracle. For J(Lo) n J(L1) one argues similarly. O 

4. NONISOMORPHIC END INTERVALS OF 5In 

In this section, we apply the results from Sections 2 and 3 to the lattice of II? 
classes to show that there are exactly two distinct types of nontrivial end intervals 
[P, 1] of In. It is an easy observation that there are at most two, those where P is 
principal and where P is nonprincipal [6]. 

Theorem 4.1. Let P be nonprincipal. Then [P, 1]?I is not isomorphic to En. 

Proof. Suppose for a contradiction that [P, 1]?rn Sn via I, but P is nonprincipal. 
If the structure X is coded in [P, 1],? with first-order formulas and parameters 
Pi,...,Pm, we will denote by ((X) the structure coded in En with the same 
formulas and the parameter list ((P1),..., ((Pm). (Thus, X behaves the same 
way in [P, 1]?n as ((X) in ?n.) 

By Lemma 2.4, choose a locally principal extension Q of P such that P ? Q. 
Then, by Lemma 2.5, the E?-Boolean algebra B = B(Q)/RZp(Q)) is effectively 
dense. Hence, by Proposition 3.3 for k = 3, 1(B) iT 0(3). Taking complements in 
B, 1(B) is isomorphic to the lattice H of ES filters of B(Q) containing 7p(Q), so 
H ST 0(3). Note that -(P) =0. Let Q = ((Q), a nonprincipal IIH class. Note 
that o(7Zp(Q)) = 1Z0(Q), so B = B(Q)/ O(0) is the isomorphic image of B under 
<>. For the "B-side", we have by the Definability Lemma 2.6 and the remark after 
that, for each F E H, there is a C D Q such that 

(3) F = {X E B(Q) : (3R E Rp(Q))(R C X u C)}. 

So this situation is copied to the B-side by (>. There, R0(Q) is the family of 

clopen sets containing Q. For C E En, G(C) is a filter, where 

G(C) = {X E (Q) : (3V)(Q C V C X U C)}, 

and V ranges over the clopen sets. If 

G {G(C) : C E Sn}, 

then G is the isomorphic image under () of H, and G is a lattice with the standard 
operations V, A on the filters of B(Q). To conclude the proof we show G <T 0(3). 

The relation "Pe E G(Pc)" is ES uniformly in C, since "Q C V" is E?, and "V C 
X U C" is I?, being equivalent to "V U X U C = 2=". (It is here where the 
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difference between the principal and nonprincipal end intervals becomes apparent, 
since the set in (3) corresponding to G(C) is merely ES.) It follows that the relation 

"G(Pc) = G(Pd)" is II. Since 1 is an isomorphism, G is a lattice with the usual 
operations on filters. To show that these operations are recursive in 0(3), first note 
that G(Pc) n G(Pd) = G(Pc n Pd). For the supremum, we have 

G(Pc) v G(Pd) -= X n Y: X E G(Pc) & Y E G(Pd)), 

and this equals G(Pe) for some e. In fact, such an e can be obtained with oracle 
0(3), because e satisfies 

(Vi)[Pi E G(Pe) e (3a, b)(Pa E G(Pc) & Pb E G(Pd) & Pi = Pa n Pb)]. 

D 

5. SOME DEFINABLE SUBSETS OF rni 

In this section, we will demonstrate the definability in Sni of various sets of 1I? 
classes, including the finite classes and the minimal classes. Recall that the Cantor- 
Bendixson derivative D(P) of a closed set P contains exactly the limit points of P. 
Then {P: card(Dn(P)) > k} is a E,+3 filter for each finite n and k by Theorem 
45 of [4]. We will show that this family is in fact definable in ?nr. 

For a HI class P, let C(P) be the initial segment [0, P] in En. In general, L(P) 
may not be a Boolean algebra. Hence, we also consider the subfamily CL(P) of 
relative clopen subclasses. That is, CL(P) = {P n V : V E Q}. Then CC(P) 
is al always a Boolean algebra and has a A representation using as indices G6del 
numbers for clopen sets. Recall that P is thin if ?(P) is a Boolean algebra; the 
corresponding ideal I in Q is said to be hh-simple in analogy to E. Then P is thin if 
and only if L(P) = CL(P). It is shown in [4] that the set of indices for thin classes 
is a HIl set. 

Recall that the derivative B* of a boolean algebra B is B/U, where U is the 
ideal generated by the atoms of B; equivalently, the derivative is the quotient of 
B modulo the filter generated by the co-atoms. Note that B* = {0} iff B is 
finite. We say P is minimal if L(P)* is the trivial Boolean algebra {0, 1} and 
P is quasi-minimal if ?*(P) is finite; the corresponding ideal I in Q is maximal 
(quasi-maximal). 

Certainly, any family definable in ?(P) will have an arithmetical index set. As 
was done in [9] for ?, we will obtain a partial converse here. 

A closed set is nowhere dense if it does not include any nontrivial clopen set. 
Note that thin classes and countable classes are nowhere dense. 

Theorem 5.1. Suppose the Hlo class P is nowhere dense. Then for each odd 
k > 3, the class of ES filters of CL(P) is uniformly definable in En, via a formula 
pO(X; P1,..., P, P) which does not depend on P. 

The proof of Theorem 5.1 is given below. We first show how to derive the 
definability of subsets of ?n from this. If F is a filter of CL(P), let A(F) be the 
filter of CL(P) generated by the co-atoms of CL(P)/F, so that CL(P)/A(F) is 
the derivative of CC(P)/F. Let B(k) be the kth derivative of B. It follows from 
Theorem 4.7 of [1] that for any f1? class P, CL(P)(k) is effectively isomorphic to 
CL(Dk(P)). 
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Proposition 5.2. If F is a filter of C?(P) which is definable in (En, P), then so 
is A(F). The formula defining A(F) only depends on the one defining F, not on 
the particular choice of P. 

Proof. Suppose that F is a E? filter, k > 3. Then A(F) is +2 Using Theorem 
5.1, we may define A(F) as the least ES+2 filter of CL(P) which contains all the 
elements of F and all B C P such that B/F is a co-atom in CL(P)/F. O 

In the following theorem, the case n = 1 and B = {0} gives a first-order defini- 
tion of finiteness. 

Theorem 5.3. Let n > 0 and let B be a finite Boolean algebra or B = {0}. Then 

{P: CL(P)(n) r B} is definable in ?r 

without parameters. 

Proof. Let Fo - {1} and for each n, let FP+1 = A(Fn). It follows from Proposition 
5.2 that there is a formula (pn (independent of P) which defines F,P in CC(P). 
Hence, we can express that the quotient algebra of CL(P) modulo FfP is isomorphic 
to B. F 

Corollary 5.4. The following families of H? classes are definable in En without 
parameters: 

(a) For any fixed n and k, {P: card(Dn(P)) < k}. 
(b) The minimal classes. 

Proof. (a) This follows from Theorem 5.3 and the fact that CL(Dn(P)) is isomor- 
phic to CL(P)). 

(b) P is minimal if and only if, for all Q C ?(P), either Q is finite or P - Q is 
finite. D 

This corollary takes care of countable classes of finite rank, but we can also 
consider uncountable classes of finite rank. (Recall that the rank of a class P is the 
least a such that D"+(P) = D"(P).) 

Proposition 5.5. For each ordinal a, the family of H? classes of rank a is definable 
in Ern if and only if a is finite. 

Proof. For infinite a, the family cannot be definable since {e: card(Da(Pe)) = 0} 
is S?,+1 complete and thus not arithmetical, by Theorem 45 of [4]. For finite a, 
P has rank a if and only if FP~+1 - FP, where FP is defined as in the proof of 
Theorem 5.3. D 

In the following we refer to Tarski's classification of the completions T of the 
theory of Boolean algebras, in the form presented in Chang and Keisler [7, Section 
5.5.]. They assign invariants m(B), n(B) E w+l to Boolean algebras and prove that 
two Boolean algebras are elementarily equivalent iff they have the same invariants. 
Thus, if T is a completion of the theory of Boolean algebras, we can also write 
m(T), n(T) for m(B), n(B), where B is some model of T. 
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Theorem 5.6. For any completion T of the theory of Boolean algebras, except 
possibly the one with invariants m(T) = oc and n(T) = 0, the family of Ho classes 
such that CL(P) I= T is definable in ?n without parameters. 

Note that the theorem is nontrivial since some completions are not finitely ax- 
iomatizable. 

Proof. To define the invariants for a Boolean algebra B, one introduces definable 
ideals Ik: let Io = {0}, and let Ik+l be the preimage in B of the ideal of B/Ik 
generated by the atomic and the atomless elements. Consider B = CL(P). There 
are formulas 1,(P) in the language of ?nr expressing that B/Ik has n atoms, or, 
using Theorem 5.1 for ideals, there are infinitely many atoms (that is, the ideal 
generated by the atoms is nonprincipal). Thus, we can express that CL(P) satisfies 
the required invariants. O 

Proof of Theorem 5.1. We use the Definability Lemma 2.6. Given a locally principal 
extension Q of a thin I?H class P and the effectively dense EO Boolean algebra 
KC = B(Q)/'Zp(Q) as above, consider the Boolean homomorphism 4 : CL(P) -) 1C 
defined by 

(Pn V) = (Qu V)/p(Q). 
We first show that this map is well defined. Suppose that P n V = P, then 

P n Vc = 0, so that Q n vc is clopen by Lemma 2.3, and thus Q U V = (Q n VC) u V 
is also clopen; hence, P C Q U V. 

Furthermore, note that with the canonical representations, 4 is A?. 

Claim 5.7. Suppose that for all clopen V, P r Q U V implies that P C V. Then 
(I is an embedding. 

Proof. Suppose that PnV is in the kernel of ). Then P Cr Q UV, so that P c VC, 
and hence P n V = 0. O 

Next we show such a Q exists. 

Claim 5.8. Suppose that P is nowhere dense. Then there exists a locally principal 
extension Q of P such that, for all clopen V, P E Q U V implies that P C V. 

Proof. First note that, if P Z V, then P U V is nonprincipal. To see this, suppose 
that P U V = U is clopen, so that P- V = U - V is a nonempty clopen subset of 
P. Since P is nowhere dense, U - V = 0, so that P C V, contradiction. 

Recall that 2 P - P = Un U,, where the clopen sets Un are disjoint. We will 
define Q to be 2W - UnEA Un for a certain c.e. set A. We build A by extending 
the construction in the proof of Lemma 2.4 above. Let Pe be the eth II? class and 
express Pe as the intersection of a uniformly computable, decreasing sequence of 
clopen sets Pe,s. It suffices to meet the following requirements for each clopen V 
and each e: 

Rv,e (QUV) n Pe = P =P PcV. 

Construction of A: In the beginning all requirements are declared unsatisfied. 
At stage s of the construction, we may select a candidate Un for some requirement, 
and we may take action on some requirements, as follows. 

1. If Rv,e is the highest priority requirement without a candidate and VCnUs 7 0, 
then declare Us to be its candidate. 

247 



DOUGLAS CENZER AND ANDRE NIES 

2. For each unsatisfied requirement Rv,e which has a candidate Un, if now 
U n Pe,s =0, then put n into A and declare the requirement satisfied. 

We observe that no Un can be a candidate for more than one requirement. 
Verification: Clearly, Q is a locally principal extension of P. Suppose by way of 

contradiction that the requirement R = R,e is not met. Then (Q U V) n Pe = P 
and P U V is nonprincipal. By the first assumption, (Q U V) U Pe = 2w and 
(Q U V) n Pe = P. Then for each n, we have Un C Q U V U Pe and we have 
Un n (Q U V) n Pe = 0. By the second assumption, there are infinitely many n such 
that VC n Un 7 0. That is, suppose by way of contradiction that only finitely many 
of the U, meet VC, say {Ui : i E F} for some finite set F. Then it is easily seen 
that P U V = V U (2W - UieF Ui). Thus, R eventually receives a candidate Un. 
Now there are two cases. 
Case I: First, suppose that Un H Pe = 0. Then for some s, Un Pe,s = 0, so that 
n E A and Un H Q = 0 by the construction. But we chose n such that Un n VI # 0, 
that is, Un Z V, which contradicts Un C Q U V U Pe. 
Case II: Suppose that UnsPe 7 0. Then by the construction n ? A. Thus, U, C Q, 
which contradicts Un n (Q U V) n Pe = 0. D 

Now, given a nowhere dense oI ? class P and odd k > 3, then ,o(X; P1,..., Pn, P) 
for Theorem 5.1 is obtained as follows. Suppose P C Q is as in Claim 5.8. Since 
1 is 1-1 and is A?, if t ranges through the k-acceptablep filters of B(Q), then 

-l (H//Rp(Q)) ranges through the SE filters of C?(P). Let ,(X; P1,..., Pn, Q) be 

3Q[P, Q as in Claim 5.8 & 3V[X = P n V & b(Q U V; P1,..., Pn, P, Q)]] 

where ,(X; P1,..., Pn, P, Q) is the formula from the Definability Lemma 2.6. D 
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