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ABSTRACT

We study the computational complexity of an oracle set using a number

of notions of randomness that lie between Martin–Löf randomness and 2-

randomness in terms of strength. These notions are weak 2-randomness,

weak randomness relative to ∅′, Demuth randomness and Schnorr random-

ness relative to ∅′. We characterize the oracles A such that ML[A] ⊆ C,

where C is such a randomness notion and ML[A] denotes the Martin–Löf

random reals relative to A, using a new meta-concept called partial rela-

tivization. We study the reducibility associated with weak 2-randomness

and relate it with LR-reducibility.

1. Introduction

Studying the computational complexity of a set A of natural numbers is a fun-

damental goal of computability theory. As a tool, one often uses relativization,

an important operation in both set theory and computability. All concepts

in computability are ultimately defined in terms of computations; to relativize

such a concept to an oracle set A means to enhance the underlying computa-

tional device (such as a Turing machine) by allowing it to ask whether certain

numbers obtained during the computation are in A. Broadly speaking, one

wants to understand the complexity of A by its effect on specific concepts when

relativized to A.

There is a rich history of successful research in the case that the concept is

a randomness notion. A central such notion is the one of Martin–Löf. Let µ

denote the usual product measure on Cantor space 2ω. A Martin–Löf test is a

uniformly computably enumerable sequence (Vi) of open sets in Cantor space

such that µ(Vi) ≤ 2−i. A set is called Martin–Löf random if it passes all

Martin–Löf tests in the sense that Z "∈
⋂

i Vi.

Following [KT99], we say that an oracle A is low for Martin–Löf if each

Martin–Löf random set is already Martin–Löf random relative to A. This class

has multiple characterizations; for instance by [Nie05] it coincides with the

K-trivial sets introduced by Chaitin [Cha76].

Martin–Löf randomness has been criticized for not being strong enough to

appropriately formalize our intuition of a random set. For instance, relatively

easily definable setscan be Martin–Löf random, such as the halting probability
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Ω of a universal prefix-free machine, and some superlow sets (i.e., sets that are

computable from the halting problem by means of a truth-table reduction). On

the other hand, Martin–Löf randomness interacts very well with computability-

theoretic concepts. Many examples of such an interaction are given in [Nie09a,

Chapter 4]; see the beginning of that chapter for an overview.

We say that Z is 2-random if it is Martin–Löf random relative to the halt-

ing problem ∅′. In this paper we study the computational complexity of sets

via relativization of randomness notions between Martin–Löf randomness and

2-randomness. In this way, we also find new interactions of these random-

ness notions with computability theoretic concepts. The notions include weak

2-randomness, where in the definition of tests the condition µ(Vi) ≤ 2−i is re-

placed by the weaker condition that limi µ(Vi) = 0; Demuth randomness, where

passing the test means to be out of almost all Vi, but the components Vi can

each be “replaced” a computably bounded number of times; and Schnorr ran-

domness relative to ∅′, where tests are taken relative to ∅′, and in addition µ(Vi)

is uniformly computable relative to ∅′.

There are two measures of computational complexity of a set A: absolute

and relative. For the absolute complexity, one places A in classes, such as being

low (A′ ≤T ∅′), or of hyperimmune-free Turing degree (each function computed

by A is dominated by a computable function). For the relative complexity, one

compares A with other sets via a reducibility such as Turing ≤T .

We will study both aspects of complexity via relativization of randomness

notions. For the absolute complexity aspect, consider randomness notions C

and D where D is stronger than C, i.e., we have the containment D ⊂ C. We

ask:

which oracles A are computationally strong enough to ensure that CA ⊆ D?

If C is Martin–Löf randomness and D is 2-randomness, then certainly any set

Turing above ∅′ will have sufficient strength. However, there are others. Dobri-

nen and Simpson [DS04] called a set A uniformly a.e. dominating (u.a.e.d.)

if A computes a function f such that for each Turing functional Ψ, for almost ev-

ery Z, we have that ΨZ is total → ΨZ is dominated by f . Kjos-Hanssen, Miller

and Solomon [KHMS10] showed that the sets A such that each Martin–Löf

random in A is already 2-random coincide with the uniformly a.e. dominating

sets.
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In Section 3 we will answer the same question when C is Martin–Löf random-

ness, and D is any of the randomness notions mentioned above. For Demuth

randomness, this answers a question left open in [FHM+10]. Each of the answers

involves an important idea called partial relativization: a concept combining

several computational notions is given, and only some of these components are

relativized. This idea was introduced implicitly in papers of Simpson such as

[CS07], and in more explicit form in Nies’ 2009 talk [Nie09b]. See Subsection 2.1

for more detail.

For the relative complexity aspect, we consider reducibilities weaker than

Turing. The first one was introduced in [Nie05] and has been widely studied

since: A is LR reducible to a set B (denoted by A ≤LR B) if every B-random

set is A-random. (In particular, ∅′ ≤LR B iff each B-random set is 2-random,

which is equivalent to being u.a.e.d. as mentioned above.)

Generalizing the scheme that led to ≤LR, for each randomness notion C we

have an associated reducibility ≤C given by

A ≤C B ⇔ CA ⊇ CB.

Namely, if A can find “regularities” in a set in the sense of C, then so can B.

In Section 4 we study for the first time such a reducibility other than ≤LR:

we consider the reducibility associated with weak 2-randomness, denoted by

≤W2R. We show that it is unexpectedly close to ≤LR. Firstly, ≤W2R implies

≤LR. While this implication is shown to be strict, we also show that the degree

equivalence classes corresponding to both weak reducibilities coincide. This

extends the result that lowness for Martin–Löf coincides with lowness for weak

2-randomness (see [Nie09a, Thm. 5.5.17] and the references given there).

The degree equivalence classes are known to be countable by [KHMS10] com-

bined with [Nie05]. Yet, we also show that there are continuum many Z such

that Z ≤W2R ∅′′.

Every ∆0
2 set is a Π0

2 singleton. Hence, there is no weakly 2-random ∆0
2

set. In the final Section 5 we study the LR-interaction of ∆0
2 sets with weakly

2-random sets. We show that a ∆0
2 set LR-below a weakly 2-random must be

K-trivial. Further, there is a weakly 2-random set Z such that Z ≤LR ∅′, and

in fact Z is K-trivial relative to ∅′. Thus a weakly 2-random set can be very

close to ∅′.
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2. Background

2.1. Partial relativization. Recall that partial relativization of a compu-

tational concept to an oracle A means that we only relativize parts of its defi-

nition. In effect, we study what happens under restricted access to the oracle.

In [CS07, Sim07] some properties obtained by partial relativization were shown

to play an important role in the study of mass problems and the degrees of

difficulty. Although we are not going to study these in the present paper, we

mention the notions of bounded limit recursiveness and jump traceability as

examples.

Given a class C, we denote its full relativization to A by C[A]. While full

relativization to an oracle A is indicated with the phrase “relative to A” or “in

A”, partial relativization is indicated with the phrase “by A”. In this subsection

we give two examples of partial relativization which will be needed in Section 3.

First example: Let JX(e) = ΦX
e (e) where Φe is the e-th Turing functional; J(e)

is short for J∅(e). Recall that a set Y is called diagonally non-computable

(d.n.c.) if there is a function f ≤T Y such that f(e) "= J(e) whenever J(e) is

defined. Then Y is d.n.c. relative to an oracleA if there is a function f ≤T Y ⊕A

such that f(e) "= JA(e) whenever JA(e) is defined. We say that Y is d.n.c. by

A if we can in fact choose f ≤T Y ; we do not relativize that component of the

definition.

Recall that a set A is generalized low (GL1) if A′ ≤T ∅′ ⊕A. Equivalently,

∅′ is Turing complete relative to A, so this is an example of a full relativization.

By the Arslanov completeness criterion relative to A, ∅′ ⊕ A is d.n.c. relative

to A iff ∅′ is Turing complete relative to A. If ∅′ is d.n.c. by A then it is d.n.c.

relative to A, and hence GL1.

Second example: We say that a sequence of sets (Tn)n∈N is a trace for a function

f if f(n) ∈ Tn for all n ∈ N. Also, a function h is a bound for (Tn) if |Tn| < h(n)

for all n ∈ N. Recall that Y is c.e. traceable if there is a computable function h

such that each function f ≤T Y has a uniformly c.e. trace with bound h. Since

we trace only total functions, by a method of Terwijn and Zambella ([TZ01], or

see [Nie09a, Thm. 8.2.3]), if Y is c.e. traceable then the bound on the required

trace can be any non-decreasing unbounded computable function.

We say that Y is c.e. traceable by A if there is a computable function h

such that each function f ≤T Y has a uniformly A-c.e. trace with bound h.
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Thus, we only have to trace functions f ≤T Y (not f ≤T Y ⊕ A as in full

relativization). On the other hand, the bound on the size of the trace sets

needs to be computable.

2.2. Randomness notions between Martin–Löf and 2-randomness.

Recall from the introduction that a Martin–Löf test is a uniformly computably

enumerable sequence (Vi)i∈N of open sets in Cantor space such that µ(Vi) ≤ 2−i,

and a set is called Martin–Löf random if it passes all Martin–Löf tests in the

sense that Z "∈
⋂

i Vi.

Randomness notions other than Martin–Löf’s are often obtained by varying

the highly malleable concept of a Martin–Löf test, and sometimes also the

passing condition.

• Weak randomness (or Kurtz randomness) is defined by asking that

the tests have the special property that Vi is a clopen set generated by

a uniformly computable finite set of strings.

• Schnorr randomness is defined by asking that the tests have the spe-

cial property that their members have uniformly computable measure.

• Weak 2-randomness is the notion obtained when the condition

µ(Vi) ≤ 2−i is replaced by the weaker condition that limi µ(Vi) = 0.

Note that Z is weakly random iff it is not a member of any null Π0
1 class; Z is

weakly 2-random if it is not a member of any null Π0
2 class.

Weak 2-randomness is a natural notion of randomness which has a very simple

definition. Its exact relation with Martin–Löf randomness was clarified by a

result of Hirschfeldt/Miller (see [Nie09a, Section 5.3]): a set is weakly 2-random

iff it is Martin–Löf random and it forms a minimal pair with ∅′.

Recall that a set is 2-random if it is Martin–Löf random relative to ∅′. We will

only consider Schnorr and weak randomness relative to ∅′. Table 1 summarizes

the relevant notations. For more background on algorithmic randomness we

refer to [Nie09a, Chapter 3].

A Martin–Löf test (Ui)i∈N is called universal if this single test is sufficient:
⋂

i Ui contains
⋂

k Vk for any Martin–Löf test (Vk)k∈N. It is well known that

there is a universal Martin–Löf test. In contrast, with the exception of 2-

randomness, the notions introduced above lack a universal test.

The following implications hold:

(2.1) ML[∅′] ⇒ SR[∅′] ⇒ W2R ⇒ Kurtz[∅′] ∩ML ⇒ ML.
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Martin–Löf randomness ML

weak randomness relative to ∅′ Kurtz[∅′]

weak 2-randomness W2R

Schnorr random relative to ∅′ SR[∅′]

2-randomness ML[∅′]

Table 1. Randomness notions and the symbols used to denote them.

The first implication follows from the definitions. The second follows from the

observation that every null Π0
2 class is contained in a Schnorr test. The third

follows in a similar way (every Π0
1[∅

′] class is a Π0
2 class) and the fourth is trivial.

In the following we indicate why none of the implications can be reversed.

The strictness of the first implication follows by relativizing the well known fact

that some Schnorr random set is not Martin–Löf random.

The strictness of the second implication can be derived from the following,

together with the result of [LMN07] that some weakly 2-random set is not GL1.

Proposition 2.1: Each set in SR[∅′] is GL1.

Proof. Uniformly in e, the set ∅′ can compute a stage s so large that e goes

into A′ after stage s for at most measure 2−e−1 oracles A. Let f be the

∅′-computable function that computes s from e. Given e and s = f(e), the

oracles A such that e goes into A′ after stage s form a Σ0
1 class Ve. Since

µVe < 2−e, ∅′ can uniformly form a Σ0
1[∅

′] class Ue that contains Ve and has

measure exactly 2−e. Then Si =
⋃

e>i Ue determines a Schnorr test relative to

∅′. If A "∈
⋂

i Si, then, except for finitely many e, we have e ∈ A′ iff e ∈ A′
f(e).

Thus A is GL1.

The strictness of the third implication in (2.1) is shown in Theorem 2.3 below.

Finally, for the strictness of the fourth implication, notice that some Martin–Löf

random set is computable from ∅′, and hence a Π0
1[∅

′] singleton.

Another strengthing of Martin–Löf randomness is Demuth randomness, in-

troduced by Demuth [Dem88] to study differentiability of constructive functions

defined on the unit interval. A Demuth test is a sequence of c.e. open sets

(Vi)i∈N such that ∀i µVi ≤ 2−i, and there is a function f ≤wtt ∅′ such that Vi is

the open set generated by the strings in Wf(i) (viewed as a subset of 2<ω).

A set Z passes the test if Z "∈ Vi for almost every i. We say that Z is

Demuth random if Z passes each Demuth test. See [Nie09a, 3.6.24] for more
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detail, and a proof that Demuth randomness is incomparable with weak 2-

randomness. Note that SR[∅′] is contained in the Demuth random sets. A more

complex argument than in the previous result shows that each Demuth random

set is in GL1 (see [Nie09a, 3.6.26]).

2.3. The weakness of Kurtz[A] randomness. In the present subsection,

which is independent of the rest of the paper, we investigate Kurtz[A] ran-

domness for an arbitrary oracle A. It is easy to see that there is no A such that

every Kurtz random relative to A is Martin–Löf random (in other words, there

is no set in High(Kurtz,ML) as defined at the beginning of Section 3 below).

This follows from purely topological considerations. Since each component of a

universal Martin–Löf test is dense in Cantor space, the non-ML random reals

form a comeager class. On the other hand, for any A, the union of all measure

zero Π0
1[A] classes is meager. Hence by the Baire category theorem, there is a

Kurtz random relative to A that is not Martin–Löf random. One must work

harder to answer the following question: what does Kurtz randomness relative

to A imply if Z is already Martin–Löf random? We show that there is no or-

acle A such that Martin–Löf randomness and Kurtz[A] randomness together is

enough to imply weak 2-randomness. First, we need the following lemma.

Lemma 2.2: Let P ⊆ 2ω be a nowhere dense Π0
1 class. There is a null Π0

2 class

Q such that Q ∩ P is dense in P .1

Proof. We will define Q to cover the left endpoints of maximal open intervals

in P = 2ω − P . Since P is nowhere dense, these points are dense in P . It

will be helpful to use the euclidean metric on 2ω; that is, for X,Y ∈ 2ω we

take |X − Y | to be distance between the reals numbers in [0, 1] whose binary

expansions are given by X and Y .2 We also use the natural order on 2ω and

1 Liang Yu independently proved this lemma, and even without the assumption that P

is nowhere dense. To show that this assumption is superfluous, let P be any Π0
1 class

and consider the null Π0
2 class Q ∪

⋂
i∈ω

Ui, where Q is the null Π0
2 class constructed in

our proof and (Ui) is a universal Martin–Löf test. Since Q covers the left endpoints of

maximal open intervals in 2ω − P and
⋂

i∈ω
Ui is dense in 2ω , the union is dense in P .

2 Strictly speaking, this is not a metric on 2ω since the two distinct sequences representing

a dyadic rational have distance zero from each other.
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let F ⊆ 2ω represent the sequences with finitely many ones. For s ∈ ω, let

Vs = {X : (∃t ≥ s)(∃A,B ∈ F) X ∈ Ps and X < A < B and

[A,B] ∩ Pt = ∅ and |A−X | < |B −A|/s}.

It should be clear that Vs is a Σ0
1 class. It is also easy to see that if X is the

left endpoints of a maximal open interval in P , then X ∈ Vs. Hence, letting

Q =
⋂

s∈ω Vs, we have X ∈ Q. All that remains to prove is that µ(Q) = 0, for

which it is sufficient to show that lims µ(Vs) = 0.

Fix s ∈ ω. Let (Y, Z) be a maximal interval in P and let " = |Z − Y | be its

length. Say that X is added to Vs with witnesses A,B ∈ (Y, Z). If X /∈ (Y, Z),

then it must be the case thatX < Y and |Y −X | < |A−X | < "/s. Thus we have

µ(Vs) ≤ (1 + 1/s)µ(P ). On the other hand, this estimate includes the measure

of all the sequences in Ps, but these have been excluded in the definition of Vs.

So in fact, we have µ(Vs) ≤ (1 + 1/s)µ(P ) − µ(Ps). But both (1 + 1/s)µ(P )

and µ(Ps) approach µ(P ) as s goes to infinity. Therefore, lims µ(Vs) = 0.

Now we are ready to separate Kurtz[A] from the weakly 2-randoms within the

class of Martin–Löf randoms.

Theorem 2.3: For any oracle set A, there is a Martin–Löf random Z in

Kurtz[A] that is not weakly 2-random.

Proof. Let P be a Π0
1 class containing only Martin–Löf random reals. Let Q be

the measure zero Π0
2 class from the lemma. We will, as in the remarks before

Lemma 2.2, use the Baire category theorem, but this time with respect to the

compact subspace P . Note that Q∩P is a Gδ set relative to P and it is dense in

P , hence it is comeager in P . Next, consider a measure one Σ0
1[A] class V . Let

σ ∈ 2<ω. If [σ]∩P "= ∅, then it is a non-empty Π0
1 class containing a Martin–Löf

random. So µ([σ] ∩ P ) > 0 because otherwise we would obtain a Martin–Löf

test which contains a Martin–Löf random set. Hence V ∩ [σ] ∩ P is non-empty.

Therefore, V ∩ P is dense in P . Since it is an open set relative to P , it is also

comeager in P . By the Baire category theorem relative to P , there is a Z ∈ P

in the intersection of Q with (the countable collection of) all measure one Σ0
1[A]

classes. Clearly Z is Kurtz random relative to A. Since Z ∈ P , it is Martin–Löf

random. Finally, Z ∈ Q implies that it is not weakly 2-random.
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3. Characterizing highness notions

For two classes C and D where usually C ⊃ D, we define High(C,D) to be the

class containing all oracles A such that CA ⊆ D. In this section we charac-

terize highness notions when C is Martin–Löf randomness and D is a stronger

randomness notion. The results are summarized in Table 2. We prove the char-

acterizations in (a)–(d). As already mentioned, the equivalence (e) is due to

Kjos-Hanssen, Miller and Solomon [KHMS10] (also see [Sim07] for a proof). In

Corollary 4.4 we show that High(W2R,ML[∅′]) also coincides with the uniformly

a.e. dominating sets.

(a) A ∈ High(ML,Kurtz[∅′])
∅′ is non-d.n.c. by A

(b) A ∈ High(ML,W2R)

(c) A ∈ High(ML,Demuth) A is ω-c.e. tracing

(d) A ∈ High(ML, SR[∅′]) ∅′ is c.e. traceable by A

(e) A ∈ High(ML,ML[∅′]) A is u.a.e. dominating

Table 2. Highness classes with respect to randomness notions,

and their computability-theoretic characterizations.

3.1. The class High(ML,W2R). We give a characterization of the highness

property High(ML,W2R) in computability theoretic terms. Despite the fact that

W2R is a stronger randomness notion than ML ∩ Kurtz[∅′], the computational

strength that is required for an oracleA to turnML[A] into a subclass of Kurtz[∅′]

is the same as the strength required to turn it into a subclass of W2R.

We start with the following lemma, which is a partial relativization of a result

from [GM09]; the proof is due to the second author. Let DNC[A] denote the

set of functions f such that f(e) "= JA(e) whenever JA(e) is defined. Thus, Y

is d.n.c. by A iff Y computes such a function.

Lemma 3.1: If A ∈ High(ML,Kurtz[Y ]), then Y does not compute a DNC[A]

function.

Proof. Assume that f ≤T Y is a DNC[A] function. We show that Y computes

an infinite subset D of a set that is ML-random in A. This shows that there is

a set that is Martin–Löf random in A but is in a null Π0
1[Y ] class, thus not in
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Kurtz[Y ]. Let Q be a non-empty Π0
1[A] class of ML[A]-random sets. By a well

known lemma of Kučera [Kuč85], we may assume that if P ⊆ Q is a non-empty

Π0
1[A] class, then we can compute, uniformly from an index for P , a k such that

2−k < µP .

Using f we compute a sequence d0 < d1 < · · · such that, for each n, the

Π0
1[A] class {Z ∈ Q : d0, . . . , dn−1 ∈ Z} is non-empty. Let D = {d0, d1, d2, . . .}.

By compactness {Z ∈ Q : D ⊆ Z} is non-empty. Suppose we have determined

d0 < · · · < dn−1 such that the Π0
1[A] class

Pn = {Z ∈ Q : d0, . . . , dn−1 ∈ Z}

is non-empty. The set G = {m : ∀Z ∈ Pn [Z(m) = 0]} is c.e. in A uniformly

in an index for Pn. We will determine dn "∈ G. Since Pn ⊆ Q is non-empty,

compute k such that 2−k < µPn and hence |G| ≤ k.

Let ω<ω be the set of finite sequences of natural numbers. We denote con-

catenation of strings by ∗. Let (Sσ)σ∈ω<ω be a uniformly computable sequence

of sets such that S∅ = N and, for each σ, (Sσ∗i)i∈N is an infinite partition of Sσ

into non-empty sets. Define a Turing functional Ψ as follows. Let ΨA(σ) = i if

i is the first number such that some element of Sσ∗i is enumerated in G. The

relation ‘3’ means that if the left-hand side is defined then it is equal to the

right-hand side. Let α be a computable function such that JA(α(σ)) 3 ΨA(σ)

for all σ ∈ ωω, where J is the jump functional (i.e., JA(e) 3 ΦA
e (e), where (Φe)

is an effective list of all Turing functionals). Since f is d.n.c. relative to A, we

have f(α(σ)) "= ΨA(σ) for each σ.

Now let σ0 = ∅ and σi+1 = σi ∗ f(α(σi)) for i < k. Clearly G ∩ Sσk
= ∅

since for each i < k some element of G is in some Sσi∗r for r "= f(α(σi)) (unless

already G ∩ Sσi = ∅). Choose dn > dn−1 in Sσk
. Then dn is as desired, and

the sequence (di) is computable in Y . So
⋂

i Pi is a non-empty Π0
1[Y ] class of

measure 0 and it is contained in Q. Therefore there is a Martin–Löf random

set relative to A that is not in Kurtz[Y ].

Theorem 3.2: For A ∈ 2ω, the following are equivalent:

(i) A ∈ High(ML,W2R),

(ii) A ∈ High(ML,Kurtz[∅′]),

(iii) ∅′ does not compute a DNC[A] function.
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Proof. (iii)⇒(i) Assume that {Vn}n∈ω is an effective sequence of Σ0
1 classes such

that µ(Vn) → 0. It suffices to show that
⋂

n Vn is contained in a Martin–Löf

test relative to A. Note that ∅′ computes a function f such that µ(Vf(k)) ≤ 2−k,

for all k ∈ ω. For a Σ0
1 class V and rational ε > 0, let (V )ε denote the Σ0

1 class

uniformly obtained by enumerating V as long as the measure does not exceed

ε. Since ∅′ does not compute a DNC[A] function, there are infinitely many

k such that f(k) = JA(k), where J denotes the jump functional. Therefore,

Sm =
⋃

k>m(VJA(k))2−k covers
⋂

n∈ω Vn, for each m (where VJA(k) is taken to

be empty if JA(k) ↑). By definition, µ(Sm) ≤ 2−m, so {Sm}m∈ω is a Martin–Löf

test relative to A that covers
⋂

n Vn. Hence A ∈ High(ML,W2R).

Since every Π0
1[∅

′] class is a Π0
2 class, we have (i)⇒(ii). Finally, (ii)⇒(iii)

follows by Lemma 3.1 for Y = ∅′.

By (i)↔(iii) of Theorem 3.2 and the remarks in Subsection 2.1, if A is not GL1,

then A is in High(ML,W2R). In particular we obtain the following.

Corollary 3.3: Let A be a ∆0
2 set. Then the following are equivalent:

(i) A ∈ High(ML,W2R),

(ii) A ∈ High(ML,Kurtz[∅′]),

(iii) A is not low.

3.2. The class High(ML, SR[∅′]). Recall from Subsection 2.1 that Y is called

c.e. traceable by A if there is a computable function h such that for each f ≤T Y

there is an A-c.e. trace for f with bound h. The next theorem with Y = ∅′

characterizes the condition that A ∈ High(ML, SR[∅′]), row (d) in Table 2.

First, we need the following fact whose proof relies on the Lebesgue density

theorem. For a string τ , let µτ (S) be the measure of a class S ⊆ 2ω relative to

[τ ] = {X | τ ≺ X}. That is, µτ (S) = µ([τ ] ∩ S)/2−|τ |.

Lemma 3.4 ([Nie09a], Lemma 8.3.4): Suppose that
⋂

n Un ⊆ R for open sets

Un, R with µ(R) < q < 1. Then there is a string τ and d ∈ N such that

µτ (R) < q and µτ (Ud −R) = 0.

Theorem 3.5: Let A, Y ∈ 2ω. Then

ML[A] ⊆ SR[Y ] ⇔ Y is c.e. traceable by A.

Proof. ⇐: It suffices to show that every Schnorr test relative to Y is contained

in a Martin–Löf test relative to A. Let (Vi) be a Schnorr test relative to Y , i.e.,
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a Martin–Löf test relative to Y where the sequence (µ(Vi)) is Y -computable.

Without loss of generality we can assume that µ(Vn) = 2−n−1 for each n ∈ N.

Now let (Di) be an effective sequence of all finite sets. There is a Y -computable

function f such that Vn =
⋃

i Df(n,i) and µ(Df(n,i)) ≤ 2−n−i for all n, i ∈ N.

Now consider a trace of f(n, i) which is computable in A with bound n + i.

That is, an A-c.e. sequence (Tn,i) such that |Tn,i| ≤ n+ i and f(n, i) ∈ Tn,i for

all n, i ∈ N. Without loss of generality we can assume that Tn,i only contains

numbers j such that µ(Dj) ≤ 2−n−i. Define Un =
⋃

i

⋃

j∈Tn,i
Dj. Clearly

Vn ⊆ Un for all n ∈ N. Also,

µ(Un) ≤
∑

i

(n+ i) · 2−n−i,

which means that (Un) is a Martin–Löf test relative to A (modulo a computable

shift of the indices).

⇒: Suppose f ≤T Y and we wish to build an A-c.e. trace for f with bound 2n.

It suffices to build an A-c.e. trace for the function given by g(n) := nf(n) + n.

Let Bk,n be the set of reals that have n consecutive 0s starting at the k-th

digit. Clearly, µ(Bk,n) = 2−n for all k, n ∈ N. It is easy to check that the

sets Ud =
⋃

n>dBg(n),n form a Schnorr test relative to Y . Let R be the second

member of the universal Martin–Löf test relative to A, so that µ(R) < 2−2.

Since ML[A] ⊆ SR[Y ] we have
⋂

d Ud ⊆ R. By Lemma 3.4 there is a string τ

and d ∈ N such that µτ (R) < 2−2 and µτ (Bg(n),n − R) = 0 for all n > d. Now

let nN denote the multiples of n and consider the following trace:

(3.1) Tn = {k ∈ nN | µτ (Bk,n −R) < 2−k−3}.

Since Bk,n clopen and R is Σ0
1[A], the sequence (Tn) is uniformly c.e. in A. On

the other hand, g(n) ∈ Tn for all n > d, by the choice of d, τ .

It remains to show that the sequence |Tn| is computably bounded. By (3.1)

we have µτ (
⋃

k∈Tn
Bk,n −R) < 2−2, which implies that

µτ

(

2ω −
⋃

k∈Tn

Bk,n

)

+ µτ (R) ≥ 1− 2−2.

Since µτ (R) < 2−2, this means that µτ (2ω −
⋃

k∈Tn
Bk,n) > 2−1. On the other

hand, µτ (Bk,n) = 2−n for n > |τ |. Since Tn consists of multiples of n, the sets
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Bk,n, k ∈ Tn are independent and

µτ

(

2ω −
⋃

k∈Tn

Bk,n

)

= (1− 2−n)|Tn|

for n > |τ |. Hence (1 − 2−n)|Tn| > 2−1 which shows that |Tn| < 2n, for

n > |τ |.3

We note that the proof of Theorem 3.5 is an adaptation of the proof of Theorem

8.3.3 in [Nie09a].

3.3. The class High(ML,Demuth). Note that ∅′ is c.e. traceable by A if there

is a computable function h such that, for each ∆0
2 function, there is an A-c.e.

trace for f with bound h. In the foregoing subsection, we showed that this

computability theoretic condition characterizes the class High(ML, SR[∅′]). In

this subsection we characterize the larger class High(ML,Demuth) by a weaker

variant of this property, which was introduced in [FHM+10, Definition 21 of

the Journal version].

A set A is called ω-c.e.-tracing if there is a computable function h such

that each function f ≤wtt ∅′ has an A-c.e. trace (Tx)x∈N such that |TA
x | ≤

h(x) for each x. Since we trace only total functions, by the method of Ter-

wijn and Zambella already mentioned above, the bound h can be replaced

by any non-decreasing unbounded computable function without changing the

class. In [FHM+10, Prop. 32] it is shown that each ω-c.e. tracing set is in

High(ML,Demuth). We provide the converse implication. This establishes row

(c) in Table 2.

Theorem 3.6: For A ∈ 2ω, we have

ML[A] ⊆ Demuth ⇔ A is ω-c.e.-tracing.

Proof. ⇐: This was proved in [FHM+10].

⇒: The proof is a modification of the proof of the corresponding implication in

Theorem 3.5. Firstly, we provide a variant of Lemma 3.4 suitable for Demuth

randomness.

Lemma 3.7: Suppose that {Z | ∃∞nZ ∈ Un} ⊆ R for open sets Un, R with

µ(R) < q < 1. Then there is a string τ and d ∈ N such that

3 This follows from the fact that (1− 1/k)k < e−1 for any k ≥ 1.
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µτ (R) < q and ∀n > d [µτ (Un −R) = 0].

Assume the hypothesis holds but the conclusion fails. We define inductively

a sequence of strings (τd)d∈N such that τ0 ≺ τ1 ≺ · · · and ∀dµ(R | τd) < q.

Let τ0 be the empty string. Suppose τd has been defined and µ(R | τd) < q.

Then, since the Lemma fails, there is n > d such that µ((Un − R) | τd) > 0.

So we can choose y such that [y] ⊆ Un and µ([y] − R | τd) > 0; in particular,

y ! τd. By the Lebesgue density theorem we may choose τd+1 8 y such that

µ(R | τd+1) < q.

Now let Z =
⋃

d τd; then ∃∞nZ ∈ Un and Z "∈ R, contradiction. This

establishes the lemma.

To conclude the proof of Theorem 3.6, suppose f is an ω-c.e. function and we

wish to build an A-c.e. trace for f with bound 2n. As before, it suffices to build

an A-c.e. trace for the function given by g(n) := nf(n) + n. Let Un = Bg(n),n.

Since g is ω-c.e., the sequence (Un)n∈N forms a Demuth test. As before let

R be the second member of the universal Martin–Löf test relative to A, so

that µ(R) < 2−2. By the hypothesis that ML[A] ⊆ Demuth, we may pick τ, d

according to Lemma 3.7 where q = 2−2.

Define the A-c.e. trace (Tn)n∈N by (3.1). By the Lemma we have µτ (R) < q

and ∀n > d [µτ (Un − R) = 0]. Hence, as before, |Tn| < 2n and (Tn)n∈N is a

trace for g.

4. The reducibility associated with weak 2-randomness

Recall from the introduction the weak reducibility associated with weak 2-

randomness: A ≤W2R B if each weak 2-random relative toB is weakly 2-random

relative to A. In this section we study ≤W2R and compare it to ≤LR.

A set is called low for Ω if Ω is Martin–Löf random relative to it. We show

that ≤LR and ≤W2R coincide on the ∆0
2 sets, as well as the low for Ω sets. Given

that the low for Ω sets are downward closed with respect to ≤LR, it follows that

the two reducibilities have interesting common initial segments. On the other

hand, we show that they differ on the class of ∆0
3 sets.

The two reducibilities ≤LR and ≤W2R induce equivalence relations ≡LR and

≡W2R respectively on P(N), and therefore degree structures. We show that

≡LR, ≡W2R coincide on all sets. Hence, although the degree structures differ

as partially ordered sets, the actual degrees as equivalence classes coincide.
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Barmpalias, Lewis and Soskova [BLS08a] proved that there are continuum

many sets ≤LR ∅′. We conclude Section 4 with a similar result, proving that

there are continuum many sets ≤W2R ∅′′.

We will frequently use a theorem of Kjos-Hanssen, Miller and Solomon (also

see [Nie09a, Thm. 5.6.9]).

Theorem 4.1 ([KHMS10]): If A ≤LR B and A ≤T B′ then every Π0
2[A] class

is contained in a Π0
2[B] class of the same measure.

In fact, the converse implication also holds.

4.1. ≤W2R implies ≤LR. We say that a class C ⊆ 2ω is bounded if µC < 1. Let

U be the second component of a fixed universal oracle Martin–Löf test (thus

µUX ≤ 1/2 for each oracle X). Kjos-Hanssen [KH07] proved that the following

are equivalent for X,Y ∈ 2ω:

(a) X ≤LR Y ;

(b) there exists a bounded Σ0
1[Y ] class V such that UX ⊆ V .

This shows that ≤LR is Σ0
3. We show that instead of UX ⊆ V , one can equiva-

lently require the weaker condition that UX − V is null.

Lemma 4.2: The following are equivalent for X,Y ∈ 2ω:

(a) X ≤LR Y .

(b) There exists a bounded Σ0
1[Y ] class V such that µ(UX − V ) = 0.

Proof. We have (a) ⇒ (b) from the Theorem of Kjos-Hanssen, so it suffices to

show that (b)⇒ (a). Choose a bounded Σ0
1[Y ] class V such that µ(UX−V ) = 0,

and a rational q < 1 such that µ(V ) < q. We claim that µσ(V ) = 1 for all σ

such that [σ] ⊆ UX . Otherwise, there is a σ such that µσ(V ) < 1 and [σ] ⊆ UX .

This implies

µ(UX − V ) ≥ µ([σ]− V ) > 2−|σ|(1− µσ(V )) > 0,

which contradicts the hypothesis (b). Let

F = {τ | τ is minimal such that µτ (V ) > q}.

In other words, F is the set of all strings τ such that µτ (V ) > q and µρ(V ) ≤ q

for all proper prefixes ρ of τ . Then we have UX ⊆ [F ] and [F ] is a Σ0
1[Y ] class.
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If (ρi) is a list of the strings in F , then

q · µ([F ]) ≤
∑

i

2−|ρi|µρi(V ) = µ(V ∩ [F ]) ≤ µ(V ) < q,

which implies that µ(F ) < 1, proving (a).

We will now use the foregoing lemma to show that X ≤LR Y is equivalent to

W2R[Y ] ⊆ ML[X ]:

Theorem 4.3: The following are equivalent for X,Y ∈ 2ω:

(a) X ≤LR Y .

(b) Every weakly 2-random relative to Y is Martin–Löf random relative to

X .

Hence, ≤W2R implies ≤LR.

Proof. By definition of ≤LR we have (a) ⇒ (b). For (b) ⇒ (a) suppose that

X "≤LR Y . We construct a set Z that is weakly 2-random relative to Y but not

Martin–Löf random relative to X .

Let (Ui) be a universal oracle Martin–Löf test. By Lemma 4.2 we know that

for every τ ∈ 2<ω, every Σ0
1[Y ] class V Y and every i ∈ N, if µ([τ ] − V Y ) > 0

then there exists [σ] ⊆ UX
i such that τ ⊂ σ and µ([σ] − V Y ) > 0. Otherwise,

(2ω − [τ ]) ∪ V Y would satisfy part (b) of Lemma 4.2. Let (Se
j ) be a double

sequence of Σ0
1[Y ] classes such that Se

j+1 ⊆ Se
j and every Π0

2[Y ] class is of the

form
⋂

j S
e
j for some e. We build Z =

⋃

s σs and a sequence of open sets (Rs)

in stages.

Let σ0 = ∅ and R0 be S0
j for the least j such that µ(S0

j ) < 2−2 if there is such,

and ∅ otherwise. Inductively assume that µ([σs] − Rs) > 0 and at stage s + 1

we choose some σ ⊃ σs such that σ ∈ UX
s and µ([σ] − Rs) > 0. Let σs+1 = σ.

Let q > 0 be a rational such that µ([σs+1] − Rs) > q and let Rs+1 = Rs ∪ S

where S is Ss+1
j for the least j such that µ(Ss+1

j ) < q if there is such, and ∅

otherwise. Notice that µ([σs+1]−Rs+1) > 0.

The construction is well defined since Rs is Σ0
1[Y ] for all s ∈ N, so the required

string σ will be found at every stage s + 1. Moreover, [σs] "⊆ Rs for all s ∈ N

and Rt ⊆ Rs for all t < s. So Z =
⋃

s σs is not in any Rt, which shows that

it is not in any null Π0
2[Y ] class. On the other hand Z ∈

⋂

i U
X
i , so it is not

1-random relative to X .
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As mentioned above, ∅′ ≤LR Y is equivalent to Y being uniformly a.e. dominat-

ing. Hence Theorem 4.3 with X = ∅′ yields a further classification of a highness

property along the lines of Table 2.

Corollary 4.4: High(W2R,ML[∅′]) equals the class of u.a.e.d. sets.

In contrast, by the remarks after Theorem 3.2 we haveGL1⊆High(ML,W2R).

Since GL1 is a much larger class than the u.a.e.d. sets, this gives evidence that

the class ML is closer to W2R than W2R is to ML[∅′]. Indeed, the compu-

tational strength required for an oracle A to lift Martin–Löf randomness to

weak 2-randomness is just the property ‘∅′ non-d.n.c. by A’ (which contains

GL1 and coincides with non-lowness for ∆0
2 sets). This is much less than u.a.e.

domination, which is the strength required for A to lift weak 2-randomness to

2-randomness.

4.2. When ≤W2R coincides with ≤LR. The sets that are low for Ω are, by

definition, closed downward with respect to ≤LR; in other words, they form an

initial segment of the LR degrees.

Theorem 4.5: The relations≤W2R and≤LR coincide on the LR initial segment

of sets that are low for Ω.

Proof. Let X,Y be low for Ω reals such that X ≤LR Y . In view of Theorem

4.3 it suffices to show that X ≤W2R Y . By a theorem in [Mil10] we have that

X ≤T Y ′. Then by Theorem 4.1 due to [KHMS10], every weakly 2-random real

relative to Y is also weakly 2-random relative to X , i.e., X ≤W2R Y .

By Theorem 4.1 we also obtain the following.

Corollary 4.6: The relations ≤LR,≤W2R coincide on the class of ∆0
2 sets.

4.3. When ≤W2R does not coincide with ≤LR. First we show that the

relations ≤W2R and ≤LR differ on every LR-lower cone of a non-K-trivial ∆0
2

set.

Theorem 4.7: If Y is ∆0
2 and Y is not K-trivial, then for all Z ≥T ∅′ there

exists X ≤LR Y such that X ⊕ ∅′ ≡T Z.

Proof. By [Bar10] we know that there is a perfect Π0
1 class P such that A ≤LR Y

for all A ∈ P . We use P and a standard coding to define X ∈ P in stages s

by finite extensions σs. Let σ0 = ∅ and, if σs is defined, find (with oracle ∅′)
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the least node τ ⊃ σs such that both τ ∗ 0, τ ∗ 1 are extendible in P . Then

define σs+1 = τ ∗Z(s). Clearly Z ≡T X ⊕ ∅′ and X ≤LR Y since X belongs to

P .

Corollary 4.8: If Y is ∆0
2 and not K-trivial, then there exists X ≤LR Y such

that X "≤W2R Y .

Proof. Let X be as in Theorem 4.7 for Z = ∅′′′. It suffices to find a set A that

is not weakly 2-random relative to X but is weakly 2-random relative to Y . Let

A be a 3-random that is recursive in ∅′′′. Since Y ≤T ∅′, the set A is (weakly)

2-random relative to Y (i.e., A ∈ ML[Y ′]). However,

A ≤T ∅′′′ ≤T X ⊕ ∅′ ≤T X ′,

so A belongs to a null Π0
2[X ] class; in fact, {A} is Π0

2[X ]. Hence, A is not weakly

2-random relative to X .

Next, we obtain a result that contrasts with Corollary 4.6. It follows by using

lowness in the proof of Corollary 4.8.

Corollary 4.9: The relations ≤LR,≤W2R do not coincide on the class of ∆0
3

sets.

Proof. Notice that the set X separating ≤LR, ≤W2R that was constructed in

the proof of Theorem 4.7 is computable in ∅′ ⊕ Z. Now in the statement of

Corollary 4.8, pick Y such that Y ′ ≡T ∅′ and Y "≤LR ∅. We modify the proof

so that we separate ≤LR, ≤W2R within ∆0
3. Consider the X given by Theorem

4.7 for Z = ∅′′. Let A be 2-random and computable in ∅′′. Since Y is low, the

set A is 2-random relative to Y , i.e., A ∈ ML[Y ′]. In particular, it is weakly

2-random relative to Y . However,

A ≤T ∅′′ ≤T X ⊕ ∅′ ≤T X ′,

so A belongs to a null Π0
2[X ] class. Hence, it is not weakly 2-random relative

to X . Finally, note that Y is ∆0
2 and X ≤T ∅′ ⊕ Z ≡T ∅′′ is ∆0

3.

4.4. The equivalence relations ≡LR and ≡W2R coincide. From

[KHMS10] and [Nie05] we know that if A ≡LR B then A′ ≡tt B′ (see [Sim07]

for more discussion). This, combined with Theorem 4.1, gives the following.

Corollary 4.10: For all sets A,B we have A ≡LR B if and only if A ≡W2R B.
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Hence the equivalence classes induced by ≤W2R coincide with those induced by

≤LR, but the ordering of them differs as was shown in Corollary 4.8.

4.5. An uncountable initial segment of ≤W2R. Despite the above results,

we do not have a characterization of ≤W2R similar to the one of Kjos–Hanssen

mentioned above. In particular, we do not know whether ≤W2R is arithmetical

(note that its definition is merely Π1
1).

For a first approarch, note that if every Π0
2[A] null class is contained in some

Π0
2[B] null class (i.e., if A is “test-wise” reducible to B), then A ≤W2R B.

However, the converse is open:

Question 4.11: Does A ≤W2R B imply that every Π0
2[A] null class is contained

in some Π0
2[B] null class?

As noted in Theorem 4.1, Kjos-Hanssen, Miller and Solomon [KHMS10] stud-

ied a stronger condition, that every Π0
2[A] class is contained in a Π0

2[B] class of

the same measure. They proved that this condition is equivalent to A ≤LR B

and A ≤T B′, and hence arithmetical. We can separate this stronger condition

from A ≤W2R B by proving that A ≤W2R B does not imply A ≤T B′. In

[BLS08a] it was shown that there are uncountably many sets ≤LR ∅′. Since

every lower Turing cone is countable, A ≤LR B does not imply A ≤T B′. We

follow a similar approach for ≤W2R.

Theorem 4.12: The class of sets {X : X ≤W2R ∅′′} is uncountable.

Proof. It suffices to build a perfect tree T and a Martin–Löf test (Ui) relative

to ∅′′ with the following property: for all X ∈ [T ], every null Π0
2[X ] is contained

in
⋂

i Ui. A perfect tree can be seen as a function from strings to strings that

preserves the prefix and incompatibility relations. Level n of T is the set of

strings T (σ) such that |σ| = n. We build T level by level, computably in ∅′′. At

stage e we define level e and enumerate into the open sets Si, i ≤ e. We ensure

that the total measure of Si is at most 2−i. Our Martin–Löf test relative to ∅′′

will be Uj :=
⋃

i>j Si.

Consider a double sequence (Ve,j) of oracle Σ0
1 classes such that V X

e,j+1 ⊆ V X
e,j

for all e, j ∈ N and all sets X . Notice that every Π0
2[X ] class is of the form

⋂

j V
X
e,j for some e ∈ N. We refer to the map X →

⋂

j V
X
e,j as the oracle Π0

2

class with index e (the eth oracle Π0
2 class). Level e of T will be devoted to

dealing with the eth oracle Π0
2 class. For each string σ, let Tσ be the full subtree
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of T above node T (σ).4 We consider a countable set of requirements that are

sufficient for the proof. For each e ∈ N and each Tσ for σ of length e, we require

that one of the following holds:

• for all X ∈ [Tσ] the e-th Π0
2[X ] class is not null, or

• for some j ∈ N and all X ∈ [Tσ] we have V X
e,j ⊆ Se.

To see that this is sufficient, suppose that X ∈ [T ] and let F =
⋂

j V
X
e,j be a null

Π0
2[X ] class. Then we can show that F ⊆ Sk for infinitely many k. Indeed, let

k0 ∈ N be given and let e > k0 be an index of F . Let σ be the string of length e

such that X ∈ [Tσ]. Since F is null, the construction will ensure that V X
e,j ⊆ Se

for some j ∈ N and all X ∈ [Tσ]. In particular, F ⊆ Se.

The requirements can be written as follows:

Re : ∀σ ∀X

[

|σ| = e ∧ X ∈ [Tσ] ⇒

(

µ

(

⋂

j

V X
e,j

)

> 0 ∨ ∃j V X
e,j ⊆ Se

)]

.

At level/stage e we first define splittings of the strings in the previous level,

in order to ensure that T is perfect. After this preliminary step, we make a

decision about how to deal with the eth Π0
2 class (above each string of this

level). In particular, for each node T (ρ) on the eth level of T , we check if we

can force
⋂

j V
X
e,j to be non-null for all X ∈ [Tρ]. That is, for an appropriately

small value 2−t, we check if for all τ ⊇ T (ρ) and all i ∈ N there exists γ ⊇ τ such

that µ(V γ
e,i) > 2−t. In that case we let f(ρ) = 0 to declare this fact. In later

stages we define T above ρ to ensure that µ(
⋂

j V
X
e,j) ≥ 2−t for all X ∈ [Tρ].

Otherwise, for some n > 1 and ζ ⊇ T (ρ), the oracle class Ve,n has the uniform

bound 2−t on the measure of V X
e,n for all X extending ζ. To declare this fact,

we let f(ρ) = n and move T (ρ) to ζ.5 By choosing appropriate extensions in

later stages, under this hypothesis we will be able to enumerate into Se all V X
e,n

for X ∈ Tρ while keeping the measure of Se small.6

To sum up, at stage e the following actions determine level e:

• split the strings of the previous level,

• define extensions of the current paths according to the decisions that

have been made in previous stages about Ri, for i < e, and

• make a decision about how to satisfy Re above each node of level e.

4 Our trees are ‘growing’ upward.
5 The final value of T (ρ) is only fixed at the end of stage e.
6 The method in this case is the same as in the proof in [BLS08a] that the class of sets

≤LR ∅′ is uncountable.
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Construction. At stage 0 define T (∅) = ∅ (where ∅ is the empty sequence

here). At stage e > 0 we can assume that all previous levels of T have been

defined. Given σ of length e we define T (σ) in e substages, corresponding to

the indices of the first e oracle Π0
2 classes (starting from index 1). We define

τ0, . . . , τe−1 successively, and set T (σ) ⊇ τe−1. Define τ0 so that incompatibility

is met: let i be the last digit of σ and define τ0 := T (σ−) ∗ i, where σ− is the

predecessor of σ. Now if τj , j < k have been defined and k < e, let ρk = σ " k. If

f(ρk) = 0, let τk be an extension of τk−1 such that µ(V τk
k,e) > 2−2k−1. Otherwise,

let τk be an extension of τk−1 such that

(4.1) µ(V τ
k,f(ρk)

− V τk
k,f(ρk)

) ≤ 2−2(e+1)−1 for all τ ⊇ τk.

When τe−1 is defined, using ∅′′ as an oracle determine if the following is true:

(4.2) ∀i∀ρ ⊇ τe−1∃γ ⊇ ρ [µ(V γ
e,i) > 2−2e−1].

If (4.2) holds, set f(σ) = 0 and T (σ) = τe−1. Otherwise, choose an n ∈ N and

ρ ⊇ τe−1 such that µ(V γ
e,n) ≤ 2−2e−1 and

(4.3) µ(V γ
e,n − V ρ

e,n) ≤ 2−2(e+1)−1,

for all γ ⊇ ρ. Let T (σ) = ρ and f(σ) = n.

Finally, for all k < e such that f(ρk) > 0 enumerate V T (σ)
k,f(ρk)

into Sk.

Verification. First we note that the construction is well defined. That is,

when the construction defines a string according to (4.1) or (4.3), the search

halts. Otherwise, we could inductively push up the measure of V τ
k,f(ρk)

(or V γ
e,n)

as high as we would like, which is impossible.

Second, we show that µ(Se) ≤ 2−e for all e ∈ N. Notice that the only

‘strategies’ that enumerate into Se are the nodes T (ρ) with |ρ| = e and f(ρ) > 0.

There are at most 2e such nodes ρ, so fix one. Let Se(ρ) be the part of Se that

is enumerated by Tρ. Consider the full subtree Tρ of T above T (ρ).

By the construction, µ(V τ
e,f(ρ)) ≤ 2−2e−1 for all strings τ ∈ Tρ. In particular,

µ
(

V
Tρ(∅)
e,f(ρ)

)

≤ 2−2e−1. Also, by the way we define Tρ we have

µ
(

V Tρ(η)
e,f(ρ) − V Tρ(η

−)
e,f(ρ)

)

≤ 2−2(e+|η|)−1 for all η ∈ 2<ω with |η| > 0.

Hence,

µ(Se(ρ)) ≤ 2−2e−1 +
∑

i>0

2i · 2−2(e+i)−1 = 2−2e,



Vol. xxx, 2013 RANDOMNESS NOTIONS 23

and so µ(Se) ≤ 2e · 2−2e = 2−e.

Third, we argue for the satisfaction of Re. At stage e the construction defines

f(ρ) for all strings ρ of length e. Fix such a string ρ. If f(ρ) = 0, the subtree

Tρ is defined such that µ(V X
e,i) > 2−2(e+1)−3 for all X ∈ [Tρ] and all i ∈ N.

Therefore µ(
⋂

i V
X
e,i) > 0 for all X ∈ [Tρ]. On the other hand, if f(ρ) > 0 the

construction enumerates V X
e,f(ρ) into Se, for all X ∈ [Tρ].

Corollary 4.13: A ≤W2R B does not imply A ≤T B′.

5. The LR-interaction of ∆0
2 sets with weakly 2-random sets

Note that ≤LR is a Σ0
3 relation implied by ≤T . In many further ways ≤LR

is similar to ≤T [BLS08a, BLS08b]. In this section we study the LR relations

between a ∆0
2 set A and a weakly 2-random set Z. Recall from Subsection 2.2

that A ≤T Z implies that A is computable.

5.1. The case A ≤LR Z. Recall that by [Nie05] the class of K-trivial sets

coincides with the class of low for Martin–Löf random sets.

Proposition 5.1: If Z is weakly 2-random then every ∆0
2 set A ≤LR Z is

K-trivial.

Proof. We prove the contrapositive. Suppose that A ≤LR Z and A is not

K-trivial. By the theorem of Kjos-Hanssen mentioned in Subsection 4.1, there

is a bounded oracle Σ0
1 class V such that UA ⊆ V Z , where U is a component

of a universal oracle Martin–Löf test. But then Z is a member of the class

{X | UA ⊆ V X} =
⋂

n,s0

⋃

s>s0

{X | UA!n[s] ⊆ V X},

which is Π0
2. Since A is K-trivial, it is also low for Martin–Löf. By a theorem

of Stephan (see [BLS08a]) all non-trivial LR upper cones are null. Therefore,

the above class is null. This shows that Z is not weakly 2-random.

5.2. The case Z ≤LR A when A = ∅′. Recently there has been some interest

in understanding the class of sets ≤LR ∅′; see for example [Nie09a, Section 5.6].

In [BLS08a] it was shown that this class is uncountable, and in [BLS08b] that

it contains sets of hyperimmune-free Turing degree. In the following we show

that it contains a weakly 2-random set. Notice that by definition of ≤LR it does

not contain 2-random sets.
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Theorem 5.2: There is a weakly 2-random Z that is K-trivial relative to ∅′.

Thus Z ≤LR ∅′. Moreover, Z can be chosen of hyperimmune-free Turing degree.

Proof. By Nies [Nie05], a set Z is K-trivial relative to ∅′ iff Z ⊕ ∅′ ≤LR ∅′. In

particular, this notion is closed downward with respect to ≤T . Kučera and Nies

[KNxx] have shown the following. Let P be a non-empty Π0
1 class. Suppose

that B >T ∅′ is Σ0
2. Then there is a set Z ∈ P of hyperimmune-free Turing

degree such that Z ′ ≤T B.

Now let P be a non-empty Π0
1 class of ML-randoms. The members of P that

form a minimal pair with ∅′ are weakly 2-random (see [Nie09a, Section 5.3]).

Let B >T ∅′ be a Σ0
2 set that is K-trivial relative to ∅′. This exists by a

relativization of the well known construction of a non-computable c.e. K-trivial

set. By applying the above theorem we get Z is as required. Indeed, since the

degree of Z is hyperimmune-free, it forms a minimal pair with ∅′. Hence it is

weakly 2-random. Moreover, it is computable from B, therefore it is K-trivial

relative to ∅′.

Theorem 5.2 does not hold if we replace ‘weakly 2-random’ with SR[∅′]. In-

deed, [Nie09a, Exercise 5.5.10] shows that no Schnorr random set is K-trivial;

the relativization of this argument to ∅′ shows that no set in SR[∅′] is K-trivial

relative to ∅′. Also, notice that any K-trivial relative to ∅′ is computable from

∅′′. This follows by relativization of the fact from [Cha76] that every K-trivial

is ∆0
2.

5.3. The case Z ≤LR A when A′ ≤T ∅′. Intuitively, it is possible to have

a weakly 2-random set LR-below ∅′ (Theorem 5.2) because the LR lower cone

below ∅′ is only Σ0
4. In contrast, we show that if the oracle A (the top of the

lower cone) is low then its LR lower cone is Σ0
3, which forbids the existence of

a weakly 2-random Z in this cone.

Proposition 5.3: If A′ ≤T ∅′ then there is no weakly 2-random Z (and in fact

no Z in Kurtz[∅′]) such that Z ≤LR A.

Proof. Again by the theorem of Kjos-Hanssen, Z ≤LR A iff Z belongs to

(5.1) {X | ∀n∃s UX!n ⊆ V A[s]}

for some bounded oracle Σ0
1 class V (where, as before, U is a member of

the universal oracle Martin–Löf test). For fixed V this is a Π0
1[A

′] class. If
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A′ ≤T ∅′ then (5.1) is a Π0
1[∅

′] class (and so a Π0
2 class). All lower LR cones

are null by [BLS08a], so Z cannot be Kurtz random relative to ∅′ (or weakly

2-random).

We note that if for some A there is a weakly 2-random Z ≤LR A, this does

not necessarily mean that there is a weakly 2-random in the same LR degree as

A. For example, [Nie09a, Exercise 5.6.22] shows that the only c.e. LR degree

that contains a Martin–Löf random set is the LR degree of ∅′. Also notice that

by Proposition 5.1 there is no weakly 2-random in the LR degree of ∅′. We

do not know whether the property of LR bounding a weakly 2-random is an

LR-completeness criterion for ∆0
2 sets; in other words, if the condition that ‘A

is low’ in Proposition 5.3 can be replaced with ‘A is ∆0
2 and not LR complete’.
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