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THE THEORY OF THE RECURSIVELY ENUMERABLE 
WEAK TRUTH-TABLE DEGREES IS UNDECIDABLE 

KLAUS AMBOS-SPIES, ANDRE NIES, AND RICHARD A. SHORE 

Abstract. We show that the partial order of Zo-sets under inclusion is elementarily definable with 

parameters in the semilattice of r.e. wtt-degrees. Using a result of E. Herrmann, we can deduce that this 

semilattice has an undecidable theory, thereby solving an open problem of P. Odifreddi. 

The upper semilattice R.,, of r.e. weak truth-table (wtt) degrees has been investi- 
gated recently by several authors. Yet the question whether its elementary theory 
is undecidable, as posed first in [Od81], remained open. The first undecidability 
proof for the theory of the r.e. Turing degrees was announced in [Ha,Sh82]; a 
simpler one is presented in [ASp,Sh?]. The undecidability of the theory of the r.e. 
tt-degrees is proved in [Ht,S90]. However, the methods used in these proofs cannot 
be applied to establish the undecidability of Th(R.tt), since the r.e. wtt-degrees form 
a distributive semilattice. In this paper, we will show that the partial order &3 of 
Z?-sets under inclusion is elementarily definable with parameters (e.d.p.) in R.,, 
using distributivity in an essential way. The idea is to let Z0-sets correspond to cer- 
tain ideals of Rwtt. These ideals can be represented by pairs of wtt-degrees, a fact 
which makes it possible to talk about them in the language of Rwtt. After this, the 
undecidability of Th(Rwtt) can be deduced, using a general model theoretic theo- 
rem and E. Herrmann's result that all recursive Boolean pairs are, in a uniform way, 
e.d.p. in g3. 

Outline of the paper. The undecidability proof is split up into its model theoretic, 
algebraic and recursion theoretic components. In the first section, we show that the 
elementary definability with parameters of S3 in Rwtt implies the undecidability of 
Th(Rwtt). The next section provides algebraic lemmas about upper semilattices. In 
?3, we prove two recursion theoretic results about the r.e. wtt-degrees. Finally, in 
?4, all this material is combined. 

?0. Definitions, notation and conventions. An upper semilattice with least element 
(u.s.l.) is a structure P = (P; <, v, 0) such that 0 is the least element of the partial 
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order (P; <), and, for a, b E P, a v b is the supremum of {a, b}. An ideal of a u.s.l. 
P is a nonempty subset which is closed downwards and under suprema. A principal 
ideal is an ideal of the form [0, p] for some p E P. The ideal generated by a subset 
A of P is denoted by [A]id. Note that 

[A]id = {p E P: (]a1,.. .,a, E A)[p < sup{ai: 1 < i < n}]} 

(where sup(0) = 0). An equation a = b A c in a u.s.l. is to be interpreted as "the 
infimum of {b, c} exists and equals a". A u.s.l. P is called distributive if for a, b, c E P 
the following holds: 

a < b v c -+ ]bo0co(bo < b A Co < C A a = bo v co). 

By induction, a similar property holds for suprema of finitely many elements of P. 
For unexplained recursion theoretic notation, see [So87]. Given n > 1, &" is the 

partial order of Z?-sets under inclusion. <a, b> is the ordered pair of the objects 
a, b. If a and b are natural numbers, then <a, b> is assumed to be the value of a 
fixed recursive pairing function applied to a and b. Moreover, in this case we require 
that <a, b> ? max{a, b}. For a set X of natural numbers, X[k] denotes the set 
{u: <u, k> E X}. 

As in [So87, p. 49], we make the following convention for the use u(A; e, x, s) 
of a computation {e}A(x): if the computation is defined, then u(A; e, x, s) < s. For 
e = <eoe1>, we let 

[e](x) = {el}(x), [e]s(x) = {el s 

[e]A(X) = f{eo}A(x) if {eo}A(x)J and u(A; eo, x) < [e](x)J, 
(undefined otherwise, 

[e]X(x) = f{eo}s (x) if {eo} '(x)J and u(A; eox, s) < [e]s(x)1, 
S (undefined otherwise. 

Then A is weak truth table (wtt) reducible to B, written A <wtt B, if A=[e]B for 
some e. The wtt-degree of a set X of natural numbers is denoted by degwt,(X). 
We use lower case boldface letters for wtt-degrees containing an r.e. set. 

?1. The reduction scheme. The goal of this section is to show the following: if, 
for some n > 1, &n is e.d.p. in a u.s.l. P, then the elementary theory of P is 
undecidable. First we give a precise definition of elementary definability with 
parameters, which is the restriction of a definition in [Bu,McK81] to languages L 
and L' with relation symbols only. Intuitively speaking, to define an L-structure A 
in an L'-structure D, we represent elements of A by m-tuples of elements of D, for 
some fixed m > 1. Then the relations in the L-structure A (including equality) give 
rise to corresponding relations between such m-tuples. We require that the set of 
m-tuples in D representing elements of A as well as these relations are definable in 
D with some fixed parameter list. 
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DEFINITION 1. (i) Let L and L' be languages of finite type with relation symbols 
only. A scheme s for interpreting L in L' consists of 

natural numbers n 2 0 and m > 1, 
L'-formulas Un and Eq, and 
L'-formulas OR for each relation symbol R in L, 

such that (where xV = (Xj . m X ... XX(j+1) . m- 1), y- = ... X Yn - 1)X and all of these 
variables are assumed distinct) 

Un = Un(x?,jJ), Eq = 
Eq(V5 x1 y 

and, for each q-ary relation symbol R of L, 

PR = PR(X,.. * x1 y- 

(ii) Let D be an L'-structure and d an n-tuple of elements of D. (D, d) is said to 
admit the scheme s if the following holds (where c always denotes an m-tuple of 
elements of D): 

(1. 1) {<Ko, a1>: D V Un(io, d) A Un(a1, d) A Eq(iio a0, d)} 
is an equivalence relation, and, for each q-ary relation symbol R of L, the relation 

(1.2) {<o, . . ,aqi>: D l= Un(nod) A * A Un(1q -,d) A R(ao 5..aq-ld)} 

is compatible with the equivalence relation (1.1), i.e., if, for all i < q, D V Eq(ai, bj, d) 
A Un(ai, d) A Un(bi, d), then 

DV-PR(?o, * **, iq-1,d) iff DIPR(bo . .., bqk 1,d). 

If (D, d) admits s, then in a canonical way we can obtain a corresponding L-structure 
as follows: elements of the structure are the equivalence classes of the equivalence 
relation (1.1), and the relations are given by (1.2). We denote this structure by D(s, d). 

(iii) Let A be an L-structure. A is elementarily definable with parameters (e.d.p.) 
in D via a scheme s, if, for some n-tuple d, (D, d) admits s and A -D(s, d). A class X 
of models for L is e.d.p. in a class A' of models for L' if there is a scheme s such 
that every model A E X is e.d.p. in some model D E i' via s. 

Let L be as above. A class X of L-structures is hereditarily undecidable if every 
class of L-structures containing X has undecidable theory. In [Bu,McK81] there 
is a general theorem, which we now state in a simplified form. 

THEOREM 1 (Burris and McKenzie). Let L and L' be languages as above, and let 
X and A' be classes of models for L and L', respectively. Suppose that X is e.d.p. 
in A''. If -X' is hereditarily undecidable, then so is A'. 

We now provide an example of a hereditarily undecidable class which is very 
useful for undecidability proofs. A Boolean pair is a structure (B; Bo, <?) such that 
(B; <) is the partial order of a Boolean algebra and Bo is a subalgebra of this 
Boolean algebra. (Note that the Boolean operations of a Boolean algebra can be 
defined from the partial ordering.) A Boolean pair is recursive if, given some coding 
of B into the natural numbers, the Boolean operations and the set Bo are recursive. 

Burris and McKenzie [Bu,McK81] gave a certain class of Boolean pairs which 
is hereditarily undecidable. Herrmann [He84] observed that every Boolean pair in 
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this class is recursive. Therefore, every class of Boolean pairs which contains the 
class of recursive Boolean pairs is hereditarily undecidable. Herrmann uses this fact, 
together with Theorem 1, to prove (ii) of the following theorem. 

THEOREM 2 (E. Herrmann). Let n ? 1. 
(i) There is a class C, of Boolean pairs containing all recursive Boolean pairs such 

that C. is e.d.p. in 6fi. 
(ii) iffn (more precisely: the class {I"n}) is hereditarily undecidable. 
PROOF. See [He84] and [He83]. 
In ?4, we will show that 63 is e.d.p. in R. By the next theorem, this suffices to 

establish the undecidability of Th(R.tt). 
THEOREM 3. Let P = (P; <, v, O) be a u.s.l. such that, for some n ? 1, "n is e.d.p. 

in P. Then the elementary theory of P is undecidable. 
PROOF. By (ii) of Theorem 2, "n is hereditarily undecidable. Using Theorem 1, 

this property carries over to P. Therefore Th(P) is undecidable. 

?2. Ideals and definability in upper semilattices. Throughout this section, let 
P = (P; <, v, 0) be a u.s.l. A subset A of P is called independent if, for every 
nonempty finite subset F of A and every a E A - F, a i sup(F). Part (ii) of the next 
lemma contains a basic step of our proof that 63 is e.d.p. in Rtt: ideals generated 
by a subset of a countably infinite independent set can be viewed as subsets of co. 

LEMMA 1. Let A be a countably infinite independent subset of P. 
(i) If an ideal I of P is generated by a subset B of A, then B = I n A. 
(ii) Let W = {I: I is an ideal of P A I = [I r- Alid} and let (ai)iecw be a sequence 

of pairwise different elements of P such that A = {ai: i Ec w}. The map 0: P(o) -?W 

defined by +(Z) = [{ai: i E Z}lid is an isomorphism between (P(w)), c) and (%, 1). 
PROOF. (i) Obviously B c I n A. For the converse inclusion, if a E I n A, then 

a < sup(F) for some finite subset F of B. Since A is independent and B c A, we see 
that a E F. 

(ii) Clearly 0 is surjective. Moreover, if X c Y c co, then 0(X) c 0(Y). It re- 
mains to prove that +(X) c +(Y) implies X c Y. Consider any subset Z of co. By 
the definition of 0, {ai: i E Z} generates #(Z), whence by (i) {ai: i E Z} = 0(Z) n A. 
Therefore Z = {i: a' E +(Z)}. Now assume that X and Y are subsets of co such that 
?(X) c 0(Y). Then X = {i: a' E 0(X)} c {i: a' e 0(Y)} = Y. q.e.d. 

In part (iii) of the following lemma, we give stronger conditions on the set A 
which imply that, for a certain subclass IDA of the class W defined above, (IDA, c) 
is e.d.p. in P. In ??3 and 4, we will investigate a subset A of RW,, satisfying tIhese 
conditions and show that, in the sense of Lemma 1(ii), ideals in IDA correspond 
to Zo-sets. 

We say that a subset A of P is relatively definable if it is first-order definable in 
the u.s.l. ([A]id; <, v,0). 

LEMMA 2. Let A be an independent subset of P. and let S = {sup(F): F c A A F 
is finite}. 

(i) For any ideal I of P. I is generated by I n A if and only if 

(2.1) (VzGI)(]sGS)[sGI A z < s]. 

(ii) If A is relatively definable, then so is S. 
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(iii) Let IO = [A]id and 

IDA= {I: I is an ideal Of P A I = [I n A]id A (]U, V e P)(I = [0, U] n [0, V])}. 

Suppose that IO E IDA and that A is relatively definable. Then (IDA, c) is e.d.p. 
in (P, <). 

PROOF. (i) For one direction, suppose that I is generated by I n A, and let z E I 
be arbitrary. There exist a finite set F c I n A such that z < s = sup(F). Then 
s E I. This shows (2.1). For the other direction, suppose that (2.1) holds and let 
z E I. Choose s E S such that s E I and z < s. By definition, s = sup(F) for some 
finite subset of A. Then F c I n A. Hence I is generated by I n A. 

(ii) We show that, for each x E [Slid = [A1id, x E S if and only if 

(2.2) (Vy < x)(3a E A)[a <x A a y]. 

This will imply (ii). 
For one direction, suppose that x E S. Then x = sup(F) for some finite subset F 

of A. Given y < x, there exists a E F such that a i y. This shows (2.2). 
For the other direction, suppose that x 0 S. Since x E [Slid, X < sup(F) for some 

finite subset F of A. Let y = sup({a E F: a < x}). Then y < x. Now, if a E A and 
a < x, then a E F by independence of A. Hence a < y. This shows that (2.2) fails. 

(iii) First we consider ideals I of P which can be represented by a pair v, w of 
elements of P in the sense that I = [0, v] n [0, w]. The formula 

(p<(x, y, x',y') (Vz)[(z < X A z < y) -+ (z < X' A z < y')] 

describes inclusion of represented ideals: For all v, w, v', w' E P 

(2.3) P = p<(v, w, v',w') iff [0, v] n [0, w] c [0, v'] n [0, w']. 

Then the formula 

Eq(x,y,x',y') (p<(xyx',y') A (p<(x',y',xy) 

describes equality of represented ideals. 

Finally we give a formula Un defining the set 

E = { <v, w>: [O, v] n [O, w] e IDA} 

in P with parameters. Choose elements ro and r1 of P such that IO = [0, ro] n [0, r1]. 
Since A is relatively definable, (ii) shows that the set S is first-order definable with 
parameters in P by a formula (Ps(x, Po, p1) (substituting the parameters ro and r1 for 
the variables po and pl). To obtain a formula with parameters defining E in P, we 
transcribe (2.1), replacing ideals by pairs of variables. The resulting formula is 

Un(x, y.popl) (VZ)[(Z < X A Z < y) (3s)[9s(s5Po pi) A S< X A S?<y A Z < S]]. 

So, by (i), 

(2.4) <v, w> e E iff P l= Un(v, w, ro, rl). 

It is easy to see that the formulas Un, Eq and 5p< form a scheme s in the sense of 
Definition 1 (with m = n = 2), which is admitted by (P, <ro, r1 >). Since, by (2.3) and 
(2.4), (IDA, ) )-P(s, <ro, r1 >), this implies that (IDA, c ) is e.d.p. in P. q.e.d. 
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We now give a sufficient condition on a subset A of a distributive u.s.l. which 
implies that A is independent and relatively definable. For an element p of P we 
write ncl(p) if p # 0 and the u.s.l. [0,p] is nowhere complemented, i.e. there are no 
r, s e P - {O} such that r v s = p and r A s = 0. 

LEMMA 3. Let P = (P; <, v, O) be a distributive u.s.l. 
(i) Suppose that A is a nonempty subset of P - {O} such that 

(2.5) a,beA A a=b-?aA b=O. 

If a,a1,... ,a, are pairwise distinct elements of A, then a A sup{ai: 1 < i < n} = O. 
In particular, A is independent. 

(ii) Let A be a nonempty subset of P satisfying (2.5) and a E A -+ ncl(a). Then A 
is relatively definable. 

PROOF. (i) Assume for a contradiction that there is an element u of P such that 
u = 0, u < a and u < sup{ai: 1 < i < n}. By distributivity, u = sup{bj: 1 < i < n} 
for some elements bi of P, bi < ai (1 < i < n). Hence there is an index k, 1 < k < n, 
such that bk # 0. Since bk < a, this contradicts a A ak = 0. 

(ii) Let pncl(x) be a formula defining the property ncl(p) of an element p of P in 
the language of upper semilattices. We claim that the formula 

(2.6) pncl(X) A (Vy)[X < y A ncl(y) -+ x = Y] 

defines A in the u.s.l. ([A]id; <, v,0). 
First we show that for every p e [A]id the following holds: 

(2.7) ncl(p) -+ (3a)[a e A A p < a]. 

Choose a1, ... ., e A pairwise different such that p < sup{ai: 1 < i < n}. If n = 1, 
then we are finished. So let n > 1. By distributivity of P, there are bi (1 < i < n) such 
that bi < ai and p = sup{bj: 1 < i < n}. Since p # 0, some component bi of p is 
nonzero, say b1. By (i) and (2.5), b1 A sup{bj: 2 < i < n} = 0. Since ncl(p) holds, 
this implies sup{bj: 2 < i < n} = 0 and therefore p < a1. By (2.7), an element of 
[A]id satisfying the formula (2.6) must be in A. On the other hand, if a e A does 
not satisfy this formula, then there is p e [A]id such that ncl(p) and a < p. By (2.7), 
p < b for some b e A, contradicting (2.5). q.e.d. 

From (iii) of Lemma 2 and (ii) of Lemma 3, we obtain the following theorem. 
THEOREM 4. Let P = (P; <, v, 0) be a distributive u.s.l., and let A be a nonempty 

subset of P - {0} which satisfies a, b e A A a # b -+ a A b = 0 and a e A -+ ncl(a). 
Let 

IDA = {I: I = [I n A]id A (]u, v e P)(I = [0, u] r) [0, v])}. 

If [A]id e IDA, then (IDA, -) is e.d.p. in P. 

?3. Preliminary results about r.e. wtt-degrees. In this section, we provide results 
about the r.e. wtt-degrees which will be used later (1) to construct a set A of r.e. 
wtt-degrees satisfying the hypotheses of Theorem 4 (where P = Rw,,)5 and (2) to 
guarantee in addition that 63 (IDA, _). 

For (1), we cite a lemma of A. Lachlan. Further on, we verify that a theorem 
by Ambos-Spies and Soare about r.e. Turing degrees carries over to the r.e. wtt- 
degrees. For (2), we characterize the ideals of Rw,, which can be represented as 
the intersection of two principal ideals. 
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LEMMA 5 (Lachlan). The u.s.l. R.t, is distributive. 
PROOF. See [La72]. 
We review some definitions. A pair A, B of r.e. sets is called a minimal pair if A 

and B are nonrecursive and every r.e. set X which is T-reducible to A and to B is 
recursive. A nonrecursive r.e. set C is nonbounding if there is no minimal pair A, B, 
such that A, B <T C. These notions make sense as well if we replace Turing re- 
ducibility by wtt-reducibility. To emphasize the difference we will write T-minimal 
pairs, wtt-minimal pairs, etc. 

An r.e. Turing degree is called contiguous if it contains only one r.e. wtt-degree. 
By [Ld,Sa75], for every nonrecursive r.e. set B there is a nonrecursive r.e. set A 
such that A <wtt B and degT(A) is contiguous. From this we can infer the follow- 
ing lemma. 

LEMMA 6. If an r.e. set C is T-nonbounding, then it is wtt-nonbounding. 
PROOF. Assume for contradiction that C is T-nonbounding and there are r.e. 

sets U and V which are wtt-reducible to C and form a wtt-minimal pair. Choose 
nonrecursive r.e. sets U1 <wtt U and V1 <?tt V whose T-degrees are contiguous. 
Then U1 and V1 form a T-minimal pair bounded by C, since for each r.e. set X 

X <T U15 V1 => X U1 -T U1 and X ? V1 T V1 

=> X U1 -wtt U1 and X ? V1 -wtt V1 

=> X <Wtt U1, V1 

=> X is recursive. q.e.d. 

THEOREM 5 (Ambos-Spies and Soare). There is an u.r.e. sequence (Ai) (i e w) of 
r.e. sets with the following properties: 

(i) degwtt(Ai) is wtt-nonbounding for every i. 
(ii) i j -+A and Aj form a wtt-minimal pair. 
PROOF. By [ASp,So89], there is a sequence of r.e. sets satisfying (i) and (ii) with 

wtt-reducibility replaced by Turing reducibility. By the preceding lemma, (i) holds 
for this sequence. Since every T-minimal pair is a wtt-minimal pair, (ii) holds as 
well. By the construction in [ASp,So89], the sequence is u.r.e. q.e.d. 

LEMMA 7 (Cohen). The relation {<k, 1>: Wk <wtt W1} is '3 
PROOF. 

Wk <wtt WI : (]e)(Vx)(Vt)(]s 2 t)[[e]S' s(x)j = Wks(x)]. 
Since the matrix of this expression is recursive, the whole expression is in Z'-form. 

THEOREM 6. Let I be an ideal of Rwtt. Then the following are equivalent: 
(i) There are a, b e Rwtt such that I = [0, a] n [0, b]. 
(ii) The set {e: degwtt(W2) e I} is Z3. 
(iii) There is an r.e. set U representing I in the sense that 

I = {degwtt(WJ): e e U}. 

An ideal of Rwtt satisfying one of these equivalent conditions will be called a 
Z'-ideal. 

PROOF. For the implication (i) (ii), choose r.e. sets Wn e a and W4 e b. Then 

{e: degwtt(We) e I} = {e: We <wtt Wn A We <wtt Wm}. 

By Lemma 7, this set is Z'. 



THE THEORY OF THE R.E. WTT-DEGREES IS UNDECIDABLE 871 

The implication (ii) -+ (iii) is a special case of a theorem by Yates (see [So87, 
p. 253]). 

It remains to show the implication (iii) -+ (i). Since U is nonempty, there is a 
recursive function g such that U = rg(g). Let X,, = Wg(n) and Xnys = Wg(n),s. It 
suffices to construct r.e. sets A and B satisfying for every n the infinitary positive 
requirements 

pA : A1n] =* X, pB g:[n] =* X 

and for every k = <e, i> the negative requirement 

Nk: f = [e]A = [i]B, f total =- f <wtt Xo * Xk-.1 

The negative requirements are satisfied by the usual minimal pair strategy (see 
[So87, Theorem IX.1.2]). We associate with every k = <e, i> a function l(k, s) mea- 
suring the length of agreement between the computations [e]A and [i]B at stage 
s. Given {At: t < s} and {B,: t < s}, let 

l(k,s) = max{x: (Vy < x)([eIsAl(y) = [j]ss(y)4)}. 

Based on this definition of 1, as in [So87] we define k-expansionary stages and 
the restraint function r(k, s). Stage s is O-expansionary if (Vt < s)[l(O, t) < 1(0, s)] and 

r(O s) = O if s is O-expansionary, 
r(O s) the greatest O-expansionary stage t < s otherwise. 

For k > 0, stage s is k-expansionary if 

(Vt < s)(r(k - 1, t) = r(k - 1, s) I-+ (k, t) < l(k, s)), 

and r(k, s) is the maximum of 

(a) r(k- 1, s), 
(b) those t < s such that r(k - 1, t) < r(k - 1, s), 

those t < s such that r(k - 1, t) = r(k - 1, s) and t is k-expansionary, 
(c) if s is not k-expansionary. 

Note that [e]A = [i]B implies that there are infinitely many k-expansionary stages. 
Construction of A and B. Stage 0. Let AO = Bo = 0. 
Stage s + 1. If there is x < s, x = <y,k> such that ye Xks, x 0 As n Bs and 

x ? r(k, s), then choose a minimal x with these properties. Enumerate x in A if 
x 0 As, and in B otherwise. (For x = <y, k>, we call this enumeration of x an action 
for pA or PB , respectively). 

For a proof that the constructed sets have the required properties, first, exactly 
as in [So87], one can show that for every n 

r(n) = lim inf, r(n, s) exists. 

Next, by construction 

(3.1) <y, n> 2 r(n) >- (y c- X. Y- y c Aln] + y c- B[n]). 

Therefore the requirements pA and pnB are met. 
Finally, to show that the requirements Nk are met, fix k = <e, i> sdch that 

f = [e]A = [i]B is total. We give a wtt-reduction of f to XO (B (B Xk- 1 
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Since the recursive bounds [e] and [i] on the use functions for [e]A and [i]B 

are total, we can define the recursive function 

m(x) = max {[e](x), [i](x)}. 

Choose so such that (Vs ? so)(Vi < k)[r(i, s) ? r(i)]. 
Our reduction is as follows: given input x, compute the least t ? so such that 

r(k, t) = r(k), t is k-expansionary, l(k, t) > x and 

(3.2) (Vi < k)(Vy) [(<y, i> E [r(i), m(x)) A y G Xi) 

(Y G Xi' t A <y5 i> E- At A <y5 i> E- Btfl. 

(Here Xo ... ( Xk1 serves as an oracle, and the queries are bounded by a 
recursive function in x. By (3.1), t exists.) We claim that 

f(x) = [e]At(X). 

To show that the last equation holds, let t = to < t1 <*.. be the k-expansionary 
stages 2 t. The equation will follow, if 

between two consecutive k-expansionary stages t,, and t +1 one of the 
(3.3) computations [e]At(x) or [i]B,_(X) is not destroyed by changing 

answers of the oracle to queries; 

in this case f (x) = lim [e]At_(x) = [e]At(x), since at k-expansionary stages ? t both 
computations must agree. 

By the following two facts (3.3) holds: 
(1) Because of (3.2), no action for a requirement P' or PP (i < k) can destroy a 

computation after t. 
(2) Because of (c) in the definition of r(k, s), the only possible stages ? t where one 

computation can be destroyed are the stages t,, + 1. If at such a stage [e] At_(X) is 
destroyed, say, then the other side is protected until stage t,+ (where both sides 
must agree again). q.e.d. 

?4. Undecidability of Th(Rwtt). 
THEOREM 7. The partial order 63 of Z?-sets under inclusion is e.d.p. in R,,,. 
PROOF. Let (Ai)(iec.) be a u.r.e. sequence as in Theorem 5, a1 = deg, ,(Ai) and 

A = {ai: i e w}. Let 

IDA = {I: I = [I r- A]id A (]u, v e R,,,)(I = [0, u] r) [0, v])}. 

By Theorem 6, IDA is the set of Z?-ideals generated by their intersections with A. 
Note that, by distributivity of R,,, and by (i) of Lemma 3, the set A is in- 

dependent. Therefore, as in Lemma 1(ii), we can define an isomorphism 0 between 
(Y'(w), c) and the set of ideals of R,,, generated by their intersection with A: for 
any subset Z of wo, 4(Z) = [{ai: i e Z}]id. We claim that the restriction of the map 
+ to the EZ-sets yields an isomorphism &3 -* (IDA, c). It is sufficient to show that 

(4.1) every EZ-set is mapped to a Z?-ideal 
and 

(4.2) the preimage of every EZ-ideal is a Z?-set. 
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Proof of (4.1). Let the variable a range over tuples of natural numbers, and let 
i denote the empty tuple. Since the sequence (Ai) is u.r.e., we can choose a recursive 
function g such that Wg(I) = 0 and, for n = 01 ?1, Wg(a) = Aa(O) Aa(n- 1) 

Now let Z be any 2o-set and let 

U = {e: (]c)[We ?tt Wg(,) A (Vy < I0i)[7(y) Z]]}. 

Then e E U -= deg,,,(We) E +(Z). By Lemma 7, U is a 2o-set. Therefore, +(Z) is a 
Z?-ideal. 

Proof of (4.2). Fix a recursive function g such that Ai = Wg(i). Given I E IDA, 

the set V = {e: deg,,,(W,) E I} is Z0, whence Z = g-'(V) is 2o as well. Since I is 
generated by I n A, we have 0(Z) = I. 

Now we verify that the hypotheses of Theorem 4 with P = R,,, are satisfied. 
This will show that (IDA, c) and therefore 0o is e.d.p. in R,,,. 

If a, b E A and a 0 b, then a A b = 0 by (ii) of Theorem 5. Condition (i) of the 
same theorem implies that ncl(a) holds for every a E A. Since co is a 2o-set and 
[A]id = 0(#o), (4.1) shows that [A]id is a 2o-ideal, whence [A]id E IDA. Therefore 
all the hypotheses of Theorem 4 are satisfied. q.e.d. 

COROLLARY. The elementary theory of the r.e. weak truth-table degrees is un- 
decidable. 

PROOF. By Theorems 3 and 7. 
Note. Our method can be applied to other reducibility notions. For instance, in 

[ASp,N?] the first two authors have proved in an analogous way that the theory 
of the polynomial m-degrees of recursive sets is undecidable. 
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