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For any rational number r, we show that there exists a set A (weak
truth-table reducible to the halting problem) such that any set B weak
truth-table reducible to it has effective Hausdorff dimension at most r,
where A itself has dimension at least r. This implies, for any rational r,
the existence of a wtt-lower cone of effective dimension r.

1. Introduction

Since the introduction of effective dimension concepts by Lutz [8, 9], consid-
erable effort has been put into studying the effective or resource-bounded
dimension of objects occurring in computability or complexity theory. How-
ever, up to now there are basically only three types of examples known for
individual sets of non-integral effective dimension: The first consists of sets
obtained by ‘diluting’ a Martin-Löf random set with zeroes (or any other
computable set). The second example comprises all sets which are random
with respect to a Bernoulli distribution on Cantor space. Here Lutz trans-
ferred a classic result by Eggleston [1] to show that if µ is a (generalized)
Bernoulli measure, then the effective dimension of a Martin-Löf µ-random
set coincides with the entropy H(µ) of the measure µ. Finally, the third ex-
ample is a parameterized version of Chaitin’s Ω introduced by Tadaki [23].

An obvious question is whether there exist examples of non-integral ef-
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fective dimension among classes of central interest to computability theory,
such as cones or degrees. It is interesting to note that all the examples
mentioned above actually produce sets which are Turing equivalent to a
Martin-Löf random set. Therefore, one cannot use them to obtain Turing
cones of non-integral dimension.

However, when restricted to many-one reducibility, Reimann and Ter-
wijn [15] showed that the lower cone of a Bernoulli random set cannot con-
tain a set of higher dimension than the random set it reduces to, thereby
obtaining many-one lower cones of non-integral effective dimension. But the
proof does not transfer to weaker reducibilities. Using a different approach,
Stephan [22] was able to construct an oracle relative to which there exists
a wtt-lower cone of positive effective dimension at most 1/2.

In this paper we construct, for an arbitrary rational number r, a wtt-
lower cone of effective Hausdorff dimension r. This result was independently
announced by Hirschfeldt and Miller [3]. The case of Turing reducibility
seems much more difficult and remains a major open problem in the field
(see also [12]).

Notation. Our notation is fairly standard. 2ω denotes Cantor space,
the set of all infinite binary sequences. We identify elements of 2ω with
subsets of the natural numbers N by means of the characteristic function,
thus elements of 2ω are generally called sets, whereas subsets of 2ω are
called classes. Sets will be denoted by upper case letters like A,B, C, or
X, Y, Z, classes by calligraphic upper case letters A,B, ....

Strings are finite initial segments of sets will be denoted by lower case
latin or Greek letters such as u, v, w, x, y, z or σ, τ . 2<ω will denote the set
of all strings. The initial segment of length n, A � n, of a set A is the string
of length n corresponding to the first n bits of A.

Given two strings v, w, v is called a prefix of w, written v � w, if there
exists a string x such that vx = w, where vx is the concatenation of v and
x. If w is strictly longer than v, we write v ≺ w. This extends in a natural
way to hold between strings and sets. A set of strings is called prefix free if
no element has a prefix (other than itself) in the set.

Initial segments induce a standard topology on 2ω. The basis of the
topology is formed by the basic open cylinders (or just cylinders, for short).
Given a string w = w0 . . . wn−1 of length n, these are defined as

[w] = {A ∈ 2ω : A � n = w}.

Imposing this topology turns 2ω into a totally disconnected Polish space.
A class is clopen in 2ω if and only it is the union of finitely many cylinders.
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Finally, λ denotes Lebesgue measure on 2ω, generated by setting λ[σ] =
2−|σ| for every string σ. For each measurable C ⊆ 2ω, recall that the condi-
tional probability is

λ(C | σ) = λ(C ∩ [σ])2|σ|.

For all unexplained notions from computability theory we refer to any
standard textbook such as [14] or [19], for details on Kolmogorov complex-
ity, the reader may consult [7]; [13]will provide background on the use of
measure theory, especially martingales, in the theory of algorithmic ran-
domness.

In the proof of our main result we will use so-called Kraft-Chaitin sets.
A Kraft-Chaitin set L is a c.e. set of pairs 〈l, x〉 (called requests), where l is a
natural number and x is a string, and

∑
L 2−l ≤ 1. It is a fundamental result

in algorithmic randomness that if L is a Kraft-Chaitin set, then K(x) ≤+ l

if 〈l, x〉 ∈ L.

2. Effective Dimension

In this section we briefly introduce the concept of effective Hausdorff di-
mension. As we deal exclusively with Hausdorff dimension, we shall in the
following often suppress “Hausdorff” and speak simply of effective dimen-
sion. For a more detailed account of effective dimension notions we refer to
[15].

Hausdorff dimension is based on Hausdorff measures, which can be ef-
fectivized in the same way Martin-Löf tests effectivize Lebesgue measure
on Cantor space.

Definition 2.1: Let 0 ≤ s ≤ 1 be a rational number. A class X ⊆ 2ω has
effective s-dimensional Hausdorff measure 0 (or simply is effectively Hs-
null) if there is a uniformly computably enumerable sequence {Cn}n∈N of
sets of strings such that for every n ∈ N,

X ⊆
⋃

σ∈Cn

[σ] and
∑

w∈Cn

2−s|w| ≤ 2−n.

It is obvious that if X is effectively Hs-null for some rational s ≥ 0,
then it is also effectively Ht-null for any rational t > s. This justifies the
following definition.

Definition 2.2: The effective Hausdorff dimension dim1
H X of a class X ⊆

2ω is defined as

dim1
H X = inf{s ∈ Q+ : X is effectively Hs-null}
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The classical (i.e. non-effective) notion of Hausdorff dimension can be
interpreted as the right “scaling factor” of X with respect to Lebesgue mea-
sure. The effective theory, however, allows for an interpretation in terms of
algorithmic randomness. There exist singleton classes, i.e. sets, of positive
dimension (whereas in the classical setting every countable class is of Haus-
dorff dimension zero). In fact, effective dimension has a strong stability
property [9]: For any class X it holds that

dim1
H X = sup{dim1

H{A} : A ∈ X}. (2.1)

That is, the effective dimension of a class is completely determined by
the dimension of its members (viewed as singleton classes). We simplify
notation by writing dim1

H A in place of dim1
H{A}. The effective dimension

of a set can be regarded as an indicator of its degree of randomness. This
is reflected in the following theorem.

Theorem 2.3: For any set A ∈ 2ω it holds that

dim1
H A = lim inf

n→∞

K(A � n)
n

.

In other words, the effective dimension of an individual set equals its
lower asymptotic entropy. In the following, we will use K(A) to denote
lim inf K(A � n)/n. Theorem 2.3 was first explicitly proved in [11], but
much of it is already present in earlier works on Kolmogorov complexity
and Hausdorff dimension, such as [17] or [20]. The result can be derived
quite easily from the existence of a universal semimeasure (discrete or con-
tinuous) by using the coding theorem, as observed by Reimann [15] and
Staiger [21].

Examples for effective dimension. As mentioned in the introduc-
tion, there are mainly three types of examples of sets of non-integral effec-
tive dimension.

(1) If 0 < r < 1 is rational, let Zr = {bn/rc : n ∈ N}. Given a Martin-Löf
random set X, define Xr by

Xr(m) =

{
X(n) if m = bn/rc,
0 otherwise.

Then, using Theorem 2.3, it is easy to see that

dim1
H Xr = r.

This technique can be refined to obtain sets of effective dimension s,
where 0 ≤ s ≤ 1 is any ∆0

2-computable real number (see e.g. [10]).
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(2) Given a Bernoulli measure µp with bias p ∈ Q ∩ [0, 1], the effective
dimension of any set that is Martin-Löf random with respect to µp

equals the entropy of the measure H(µp) = −[p log p+(1−p) log(1−p)]
[8]. This is an effective version of a classical theorem due to Eggleston
[1].

(3) Let U be a universal, prefix-free machine. Given a computable real
number 0 < s ≤ 1, the binary expansion of the real number

Ω(s) =
∑

σ∈dom(U)

2−
|σ|
s

has effective dimension s. This was shown by Tadaki [23]. Note that
Ω(1) is just Chaitin’s Ω.

2.1. Effective Dimension of cones and degrees

Fundamental results by Gacs [2] and Kučera [6] showed that every set is
Turing reducible to a Martin-Löf random one. Since a Martin-Löf random
set has effective dimension 1, it follows from (2.1) that every Turing upper
cone is of effective dimension 1. Even more, Reimann [15] was able to show
that every many-one upper cone has classical Hausdorff dimension 1 (and
hence effective dimension 1, too). This contrasts a classical result by Sacks
[18] which shows that the Turing upper cone of a set has Lebesgue measure
zero unless the set is recursive.

As regards lower cones and degrees, the situation is different. First,
using coding at very sparse locations along with symmetry of algorithmic
information, one can show that effective dimension is closed upwards in the
weak truth-table degrees, that is, for any sets A ≤wtt B, the weak truth
table-degree of B contains a set C of dimension dim1

H A. It is sufficient to
choose a computable set R of density limn |R ∩ {0, . . . , n− 1}|/n = 1, and
let C equal A on R and B on the complement of R. It follows that the
dimension of the weak truth-table degree and the weak truth-table lower
cone of a set coincide. The same holds for Turing reducibility.

All three types of examples mentioned above compute a Martin-Löf
random set, albeit for different reasons.

It is obvious that any diluted set Xr computes a Martin-Löf random
sequence. Furthermore, Levin [25] and independently Kautz [4] showed that
any sequence which is random with respect to a computable probability
measure on 2ω (which includes the Bernoulli measures µp with rational
bias) computes a Martin-Löf random set. Finally, for every rational s, the
set Ωs is a left-c.e. real number. Furthermore, it is not hard to see that
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it computes a fixed-point free (fpf) function. Hence it follows from the
Arslanov completeness criterion that Ωs is Turing complete and therefore
computes a Martin-Löf random set as well.

Regarding stronger reducibilities, Reimann and Terwijn [15] showed that
a many-one reduction cannot increase the entropy of a set random with
respect to a Bernoulli measure µp, p rational. It follows that the many-one
lower cone of such a set has effective dimension H(µp).

However, this result does not extend to weaker reducibilities such as
truth-table reducibility, since for such measures the Levin-Kautz result
holds for a total Turing reduction.

Recently, using a different approach, Stephan [22] was able to construct
an oracle relative to which there exists a wtt-lower cone of positive effective
dimension at most 1/2. In the next section we improve this by showing
that, for an arbitrary rational number r, there exists an (unrelativized)
weak truth-table lower cone of effective Hausdorff dimension at most r.

3. The Main Result

Theorem 3.1: For each rational α, 0 ≤ α ≤ 1, there is a set A ≤wtt ∅′
such that K(A) = α and K(Z) ≤ α for each Z ≤wtt A.

Proof. Let P be the Π0
1-class given by

P = {Z : ∀n ≥ n0 K(Z � n) ≥ bαnc},

where n0 is chosen so that λP ≥ 1/2. Recall that each Π0
1-class comes

with an effective clopen approximation, so we assume that there exists
an effective sequence (Ps) of finite sets of strings such that P =

⋂
s Ps. To

facilitate readability we mostly identify finite sets of strings with the clopen
class they induce. (If we want to explicitly denote the clopen class induced
by some finite set S of strings, we write [S]�.) As usual, it is useful to
imagine P and the Ps as sets of infinite paths through trees.

Lemma 3.2: Let C be a clopen class such that C ⊆ Ps and C ∩ Pt = ∅ for
stages s < t. Then Ωt − Ωs ≥ (λC)α.

Proof. Each minimal string in C has a substring x that receives a description
of length at most α|x| between s and t. Thus there is a prefix free set
{x1, . . . , xm} such that all [xi] ∩ Ps 6= ∅, C ⊆

⋃
i[xi], and Kt(xi) ≤ α|xi|.

Then, since the function y 7→ yα is concave,

Ωt − Ωs ≥
∑

i

2−α|xi| ≥ (
∑

i

2−|xi|)α ≥ (λC)α.
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This proves the lemma.

Now we build A on P , thus K(A) ≥ α. To ensure K(Z) ≤ α for each
Z ≤wtt A, we meet the requirements Rj , for each j = 〈e, b〉 > 0.

Rj : Z = Ψe(A) ⇒ ∃k ≥ j K(Z � k) ≤+ βk,

where β = α + 2−b < 1, and (Ψe)e∈N is a uniform listing of wtt reduction
procedures, with partial computable use bound ge, such that

∀k (m = ge(k) ↓ ⇒ m ≥ βk/2).

Thus we only consider reductions which do not turn a short oracle string
into a long output string. This is sufficient because a short oracle string
would be enough to compress an initial segment of Z. More precisely, con-
sider the plain machine S given by S(0e1σ) ' Φσ

e (where that (Φe)e∈N
is a uniform listing of Turing reduction procedures). Using S, we see that
Φσ

e = x implies C(x) ≤+ |σ|+e+1. Hence |σ| < βk/2 implies K(x) ≤+ β|x|.
We let A =

⋃
j σj where σj is a string of length mj . Both mj and σj

are controlled by Rj for j > 0. At any stage s, we have σj−1,s ≺ σj,s and

λ(P | σj) ≥ 2−2j−1. (3.1)

We let m0 = 0 and hence σ0 = ∅, so (3.1) is also true for j = 0.
We construct a Kraft-Chaitin set L. Each Rj may enumerate into L in

order to ensure K(Z � k) ≤+ βk.
The idea behind the construction is as follows. We are playing the fol-

lowing Rj strategy. We define a length kj where we intend to compress Z,
and let mj be the use bound of Ψe, ge(kj). We define σj of length mj in
a way that, if x = Ψσj

e is defined then we compress it down to βkj , by
putting an appropriate request into L. The opponent’s answer could be to
remove σj from P. But in that case, the measure he spent for this removal
exceeds what we spent for our request, so we can account ours against his.
Of course, usually σj is much longer than x. So we will only compress x

when the measure of oracle strings computing it is large, and use Lemma
3.2.

For each j,m ∈ N and each stage t, let

Gj,m,t = {σ : |σ| = m & λ(Pt | σ) ≥ 2−2j}.

Informally, let us call a string σ of length mj good for Rj at stage t if
σ � σj−1,t and σ ∈ Gj,mj ,t. These are the only oracle strings Rj looks at.
The reason to allow the conditional measure to drop from 2−2j+1 at σj−1

down to 2−2j is that we want a sufficiently large measure of them.
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Lemma 3.3: There is an effective sequence (uj) of natural numbers such
that the following holds. Whenever ρ is a string such that λ(Pt ∩ [ρ]) ≥
2−(2j−1)−|ρ|, then for each m > |ρ|,

λ(Gj,m,t ∩ [ρ]) ≥ 2−uj−|ρ|.

Proof. For each measurable C, one obtains a martingale by letting

MC(σ) = λ(C | σ) = λ(C ∩ [σ])2|σ|.

Now let C = 2ω −P. Let d = 2j− 1. By hypothesis MC(ρ) ≤ 1− 2−d, so we
may apply the so-called Kolmogorov inequality, which bounds the measure
of strings σ � ρ where M can reach 1− 2−(d+1):

λ({σ : |σ| = m & MC(σ) ≥ 1− 2−(d+1)} | ρ) ≤ 1− 2−d

1− 2−(d+1)
.

Now it suffices to determine uj such that 1 − 2−uj ≥ (1 − 2−d)/(1 −
2−(d+1)), since then λ(Gj,m,t | ρ) ≤ 2−uj . This proves the lemma.

Rj compresses x when the measure of good strings computing it is large
(4. below). If each good string σ computing x later becomes very bad, in
the sense that the conditional measure λ(P | σ) dropped down to half, then
we can carry out the accounting argument mentioned above and therefore
choose a new x (5. below).

The construction at stage s > 0 consists in letting the requirements Rj ,
for j = 0 . . . s, carry out one step of their strategy. Each time σj is newly
defined, all the strategies Rl, l > j, are initialized. Suppose j > 0, that
ρ = σj−1 is defined already, (3.1) holds for j − 1 and mj−1 = |ρ|. Let

init(j) = j + 2 + the number of times Rj has been initialized.

1. Let kj be so large that βkj ≥ max(init(j), 2mj−1), and, where rj =
uj + mj−1 + kj,

α(rj + 2j + 1) ≤ βkj − init(j). (3.2)

2. While ge(kj) is undefined, let mj = mj−1+1, let σj,s be the leftmost
extension of σj−1 of length mj such that λ(Ps | σj,s) ≥ 2−2j, and
stay at 2. Else let mj = ge(kj) and go to 3.

3. Let Gs = Gj,mj ,s ∩ [ρ]. While there exists, let σj,s be the leftmost
string σ ∈ Gs such that Ψσ

e � kj ↑, and stay at 3. Else, for each
string y of length kj, let

Sy = {σ � ρ : |σ| = mj & Ψσ
e,s = y},
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and go to 4.
4. Let x be the leftmost string of length kj such that λ(Gs∩Sx) ≥ 2−rj

where rj = uj + mj−1 + kj as above. Put a request

〈dβkje, x〉

into L. Note that x exists since λGs ≥ 2−uj−mj−1 by Lemma
3.3, and (Gs ∩ Sy)|y|=kj

is a partition of Gs into at most 2kj sets
(because we passed 3). Of course, Gs∩Sx may shrink later, in which
case we have to try a new x. Eventually we will find the right one.

5. From now on, let σj,s be the leftmost string σ in Sx that satisfies
(3.1), namely, λ(Ps | σ) ≥ 2−2j−1. If there is no such σ, then we
need to pick a new x, so go back to 4. (We had picked the wrong x.
As indicated earlier, we will have to verify that this change is al-
lowed, i.e., the contribution to L does no become too large. The rea-
son is that the opponent had to add at least a measure 2−α(rj+2j+1)

of new descriptions to the universal prefix free machine in order to
make Gs ∩ Sx shrink sufficiently, and we will account the cost of
our request against the measure of his descriptions.)

Verification.

Claim 3.1: For each j, σj = lims σj,s exists.

This is trivial for j = 0. Suppose j > 0 and inductively the claim holds for
j − 1. Once σj−1 is stable at stage s0, we define a final value kj in 1. If
mj = ge(kj) is undefined then |σj | = |σj−1|+ 1 and σj can change at most
once after s0. Otherwise σj can change at most 2mj times till we reach 4.
As remarked above, we always can choose some x in 4. If we cannot find σ

in 5. any longer, then λ(Gs ∩ Sx) < 2−rj , so we will discard this x and not
pick it in 4. any more. Since there is an x such that λ(Gt ∩ Sx) ≥ 2−rj for
all t ≥ s0, eventually we will stay at 5. Since all strings σj we try here have
length mj , eventually σj stabilizes. This proves the claim.

Note that |σj | > |σj−1|, so A =
⋃

j σj defines a set. Let As =
⋃

j σj,s.
It is easy to verify that for each x, the number of changes of As(x) is
computably bounded in x, since the values mj,s are nondecreasing in s,
and in 3. and 5., we only move to the right. Thus A ≤wtt ∅′.

Claim 3.2: L is Kraft-Chaitin set.

By the definition of init(j), it suffices to verify that for each value v = init(j),
the weight of the contributions of Rj to L is at most 2−v+1. When a request
〈r, x〉 is enumerated by Rj at stage s, we distinguish two cases.
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Case 1. The strategy stays at 5. after s or Rj is initialized. Then this
was the last contribution, and it weighs at most 2−v since we chose kj in a
way that βkj ≥ v.

Case 2. Otherwise, that is, the strategy gets back to 4. at a stage t > s.
Then, for each σ ∈ Gs ∩ Sx, λ(Pt | σ) < 2−2j−1 (while, by the definition of
Gs, we had λ(Ps | σ) ≥ 2−2j). Now consider the clopen class

C = Ps ∩ [Gs ∩ Sx]� − Pt.

Since λ(Gs ∩ Sx) ≥ 2−rj ,

λC ≥
∑

σ∈Gs∩Sx

2−|σ|(λ(Ps|σ)− λ(Pt|σ))

≥
∑

σ∈Gs∩Sx

2−|σ|(2−2j − 2−2j−1) =
∑

σ∈Gs∩Sx

2−|σ|2−2j−1 ≥ 2−rj−2j−1.

Clearly C ⊆ Ps and C ∩ Pt = ∅, so by Lemma 3.2 and (3.2),

Ωt − Ωs ≥ 2−α(rj+2j+1) ≥ 2−βkj+v,

hence the total contributions in Case 2 weigh at most 2−vΩ. Together, the
contribution is at most 2−v+1.

Claim 3.3: If Z ≤wtt A then K(Z) ≤ α.

It suffices to show that each requirement Rj is met. For then, if Z ≤wtt A

either, the reduction has small use (see remarks at the beginning of the
proof) or it is included in the list (Ψe). In the latter case, meeting R〈e,b〉
for each b ensures K(Z) ≤ α.

By the first claim, σj and kj reach a final value at some stage s0. If
ΨA

e � kj ↑ then Rj is met. Otherwise, the strategy forRj gets to 4. after s0,
and enumerates a request into L which ensures K(Z � kj) ≤+ βkj .

This concludes the proof of Theorem 3.1.

4. Concluding Remarks

It remains an open problem whether there exists a Turing lower cone of
non-integral effective dimension (see [12]). This case appears to be much
harder. It is, for instance, not even known whether there exists a set of
non-integral dimension which does not compute a Martin-Löf random set.

The best known result in this direction is that there exists a com-
putable, non-decreasing, unbounded function f and a set A such that
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K(A � n) ≥ f(n) and A does not compute a Martin-Löf random set. This
has been independently proved by Reimann and Slaman [16] and Kjos-
Hanssen, Merkle, and Stephan [5].
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