
Trivial Reals∗

Rod G. Downey†

School of Mathematical and Computing Sciences

Victoria University of Wellington

New Zealand

Denis R. Hirschfeldt‡

Department of Mathematics

University of Chicago

U.S.A.

André Nies

Department of Computer Science

Auckland University

New Zealand

Frank Stephan§

Mathematical Institute

University of Heidelberg

Germany

Abstract

Solovay showed that there are noncomputable reals α such that H(α � n) 6
H(1n) + O(1), where H is prefix-free Kolmogorov complexity. Such H-trivial
reals are interesting due to the connection between algorithmic complexity and
effective randomness. We give a new, easier construction of an H-trivial real.
We also analyze various computability-theoretic properties of the H-trivial reals,
showing for example that no H-trivial real can compute the halting problem.
Therefore, our construction of an H-trivial computably enumerable set is an easy,
injury-free construction of an incomplete computably enumerable set. Finally, we
relate the H-trivials to other classes of “highly nonrandom” reals that have been
previously studied.

∗Some of the material in this paper was presented by Downey in his talk Algorithmic Randomness
and Computability at the 8th Asian Logic Meeting in Chongqing, China. A preliminary version of this
paper appeared as an extended abstract in Brattka, Schröder, and Weihrauch (eds.), Computability and
Complexity in Analysis, Malaga, Spain, July 12–13, 2002, Electronic Notes in Theoretical Computer
Science 66, vol. 1, 37–55.
†Supported by the Marsden fund of New Zealand.
‡Partially supported by NSF Grant DMS-02-00465.
§Supported by the Heisenberg program of the Deutsche Forschungsgemeinschaft (DFG), grant no.

Ste 967/1–2.

1

1 Introduction

Our concern is the relationship between the intrinsic computational complexity of a

real and the intrinsic randomness of the real. Downey, Hirschfeldt, LaForte and Nies

[8, 9] looked at ways of understanding the intrinsic randomness of reals by measuring

their relative initial segment complexity. (In this paper, “random” will always mean

“1-random”; see Section 2 for basic definitions.) Thus, for instance, if α and β are reals

(in (0, 1)), given as binary sequences, then we can compare the complexities of α and

β by studying notions of reducibility based on relative initial segment complexity. For

example, we define α 6K β if K(α � n) 6 K(β � n) + O(1), where we will be denoting

classical Kolmogorov complexity by K. For prefix-free Kolmogorov complexity H, we

define α 6H β analogously.

The goal of the papers [8, 9] was to look at the structure of reducibilities like the

above, and interrelationships among them, as a way of addressing questions such as:

How random is a real? Given two reals, which is more random? If we partition reals

into equivalence classes of reals of the “same degrees of randomness”, what does the

resulting structure look like?

The classic example of a random real is the halting probability of a universal prefix-

free machineM , Chaitin’s Ω =
∑

σ∈dom(M) 2−|σ|. It is well-known that Ω has the property

that α 6H Ω for all reals α.

A natural question to ask is the following: Given reals α 6R β (for R ∈ {H,K}),
what can be said about the computational complexity of α and β measured relative to,

say, Turing reducibility?

For example, if we restrict our attention to computably enumerable (= recursively

enumerable) reals, that is to the ones whose left cuts are computably enumerable, then

being H-complete like Ω implies that the real is Turing complete. A natural guess would

be that for all reals, if α 6R β then α 6T β. However, this is not true in general.

The present paper is concerned with “trivial reals”. These are reals whose complexity

is “low” or trivial from the point of view of randomness, in the sense that such reals

resemble computable reals like 1ω.

Building on work of Loveland [20], Chaitin [3] proved that if α is a real with K(α � n)

6 K(1n)+O(1) then α is computable. That is, if in terms of its Kolmogorov complexity,

α looks like 1ω, then it must be trivial computationally. What about the prefix-free

version? Chaitin also proved that if a real α has the property that H(α � n) 6 H(1n) +

O(1) then α is ∆0
2. He asked if this could be improved to say that α must be computable.

It is a remarkable result that one cannot so improve this: Solovay [27] proved that

there are ∆0
2 noncomputable reals β such that H(β � n) 6 H(1n) + O(1). Solovay’s

proof is in an unpublished manuscript, and is long and difficult. All known proofs of

Solovay’s theorem use variations of his technique.

In Section 3 we will give a new, short and easy proof of a strengthening of Solovay’s

2

result that such noncomputable “H-trivial reals” exist. (Such a proof also appears

in Vereshchagin [30].) To state an extension of this result, we need another triviality

notion.

Answering a question of Kučera and of van Lambalgen, Kučera and Terwijn [15]

constructed a set X which is low for random. Here we say that X is low for random

(also known as Martin-Löf-low) if the collection of sets random relative to X is exactly

the collection of random sets. It is possible to modify the construction given in Section

3 to show that there exist noncomputable computably enumerable sets that are both

H-trivial and low for random. (Recently, Nies [23] has shown that in fact a real is

H-trivial if and only if it is low for random.)

H-triviality is surely a remarkable phenomenon. The remainder of the present paper

is devoted to exploring this concept.

We prove that no H-trivial real can be Turing complete, or even high. (Nies [23]

has extended this result by showing that every H-trivial real is low.) An immediate

application of this result is that the construction of a noncomputable H-trivial real

provides a very simple injury-free solution to Post’s problem. Indeed, in Section 3 we

give an alternate construction of a noncomputable H-trivial real that is not only injury-

free but priority-free, in a sense that will be discussed in that section.

We also prove that there is an effective listing of the H-trivial reals along with

constants witnessing their H-triviality. This is in contrast to the strongly H-trivial

reals, which have no such listing, as shown by Nies [24]. (A real is strongly H-trivial if

H-complexity relativized to A is the same as H-complexity, up to an additive constant.)

Recently, Nies and Hirschfeldt (see Nies [23]) have shown that a real is H-trivial if and

only if it is strongly H-trivial. This was conjectured by Hirschfeldt and obtained as a

direct modification of Nies’ result that the H-trivial reals are downward closed under

Turing reducibility. (See the introduction to [23] for more details on the history of this

result.) Our result shows that there is no computable way of passing from a constant

witnessing H-triviality to one witnessing strong H-triviality.

In an unpublished report, Zambella [31] proved that there is a computable function

f such that for each c there are at most f(c) many reals α with

H(α � n) 6 H(1n) + c.

We will give a unified proof of this result and Chaitin’s result that every H-trivial real

is ∆0
2.

The reducibility 6H is a preordering and hence we can form a degree structure from

it, the H-degrees. The resulting degree structure on the computably enumerable reals

has as its join operation ordinary addition. That is, [α]∨ [β] = [α+ β], where [α] is the

H-degree of α. The H-trivial reals form the least H-degree.

The study of relative randomness seems intimately related to weak truth table re-

ducibility. Recall that A 6wtt B if there is a Turing procedure Φ and a computable

3

function ϕ such that ΦB = A and for all x the maximum number queried of B on input

x is bounded by ϕ(x). We prove that the H-trivial reals form an ideal in the wtt-degrees.

Related to the topic of H-triviality is work of Kummer [16]. Kummer investi-

gated “Kummer trivial” computably enumerable sets. In terms of classical (non-prefix-

free) Kolmogorov complexity, we know that if A is a computably enumerable set then

K(A � n) 6 2 log n+ O(1) for all n. Kummer constructed computably enumerable sets

A and constants c such that, infinitely often, K(A � n) > 2 log n− c. He called such sets

complex. Kummer also showed that the computably enumerable degrees exhibit a gap

phenomenon. Namely, either a degree a contains a complex set A, or all computably

enumerable A ∈ a are “Kummer trivial” in the sense that K(A � n) 6 (1+ε) log n+O(1)

for all ε > 0. (By Chaitin’s work [3], if K(A � n) 6 log n+ O(1) then A is computable,

so this result is sharp.) Kummer proved that the degrees containing such complicated

sets are exactly the array noncomputable (= array nonrecursive) degrees (see Section 7

for a definition). We prove that (i) no array noncomputable computably enumerable

set is H-trivial, and (ii) there exist Turing degrees containing only Kummer trivial sets

which contain no H-trivial sets. The result (ii) implies that being Kummer trivial does

not make a set H-trivial.

2 Basic Definitions

Our notation is standard, except that we follow the tradition of using H for prefix-

free Kolmogorov complexity and K for non-prefix-free complexity. Following a recent

proposal to change terminology, we call the recursively enumerable sets computably

enumerable and the array nonrecursive sets array noncomputable. The remaining com-

putability-theoretic notation follows Soare’s textbook [26].

We work with reals between 0 and 1, identifying a real with its binary expansion, and

hence with the set of natural numbers whose characteristic function is the same as that

expansion. A real α is computably enumerable if its left cut is computably enumerable

as a set, or equivalently, if α is the limit of a computable increasing sequence of rationals.

We work with machines with input and output alphabets {0, 1}. A machine M is

prefix-free (or self-delimiting) if M(τ) ↓ ⇒ M(τ ′) ↑ for all finite binary strings τ (τ ′.

It is universal if for each prefix-free machine N there is a constant c such that, for all

binary strings τ , if N(τ)↓ then M(µ)↓= N(τ) for some µ with |µ| 6 |τ |+ c. We call c

the coding constant of N .

For a prefix-free machine M and a binary string τ , let HM(τ) be the length of the

shortest binary string σ such that M(σ)↓= τ , if such a string exists, and let HM(τ) be

undefined otherwise. We fix a universal prefix-free machine U and let H(τ) = HU(τ).

The number H(τ) is the prefix-free complexity of τ . (The choice of U does not affect

the prefix-free complexity, up to a constant additive factor.) For a natural number

4

n, we write H(n) for H(1n). A real α is random, or more precisely, 1-random, if

H(α � n) > n − O(1). There are several equivalent definitions of 1-randomness, the

best-known of which is due to Martin-Löf [21]. References on algorithmic complexity

and effective randomness include Ambos-Spies and Kučera [1], Calude [2], Chaitin [4],

Downey and Hirschfeldt [7], Fortnow [12], Kautz [14], Kurtz [17], Li and Vitanyi [19],

and van Lambalgen [29].

The above definitions can be relativized to any set A in the obvious way. The

prefix-free complexity of σ relative to A is denoted by HA(σ).

An important tool in building prefix-free machines is the Kraft-Chaitin Theorem.

2.1 Theorem (Kraft-Chaitin). From a computably enumerable sequence of pairs

(〈ni, σi〉)i∈ω (known as axioms) such that
∑

i∈ω 2−ni 6 1, we can effectively obtain a

prefix-free machine M such that for each i there is a τi of length ni with M(τi) ↓= σi,

and M(µ)↑ unless µ = τi for some i.

A sequence satisfying the hypothesis of the Kraft-Chaitin Theorem is called a Kraft-

Chaitin sequence.

3 A short proof of Solovay’s theorem

We now give our simple proof of Solovay’s theorem that H-trivial reals exist. This was

proved by Solovay in his 1974 manuscript [27]. The proof there is complicated and only

constructs a ∆0
2 real.

3.1 Theorem (after Solovay [27]). There is a noncomputable computably enumerable

set A such that H(A � n) 6 H(n) +O(1).

3.2 Remark. While the proof below is easy, it is slightly hard to see why it works. So,

by way of motivation, suppose that we were to asked to “prove” that the set B = {0n :

n ∈ ω} has the same complexity as ω = {1n : n ∈ ω}. A complicated way to do this

would be for us to build our own prefix-free machine M whose only job is to compute

initial segments of B. The idea would be that if the universal machine U converges to 1n

on input σ then M(σ)↓= 0n. Notice that, in fact, using the Kraft-Chaitin Theorem it

would be enough to build M implicitly, enumerating the length axiom 〈|σ|, 0n〉. We are

guaranteed that
∑

τ∈dom(M) 2−|τ | 6
∑

σ∈dom(U) 2−|σ| 6 1, and hence the Kraft-Chaitin

Theorem applies.

Note also that we could, for convenience and as we do in the main construction, use

a string of length |σ|+ 1, in which case we would ensure that
∑

τ∈dom(M) 2−|τ | < 1/2.

Proof of Theorem 3.1. The idea is the following. We will build a noncomputable com-

putably enumerable set A in place of the B described in the remark and, as above, we

will slavishly follow U on n in the sense that whenever U enumerates, at stage s, a

5

shorter σ with U(σ) = n, then we will enumerate an axiom 〈|σ|+ 1, As � n〉 for our ma-

chine M . To make A noncomputable, we will also sometimes make As � n 6= As+1 � n.

Then for each j with n 6 j 6 s, for the currently shortest string σj computing j, we

will also need to enumerate an axiom 〈|σj|, As+1 � j〉 for M . This construction works

by making this extra measure added to the domain of M small.

We are ready to define A:

A = {〈e, n〉 : ∃s (We,s ∩ As = ∅ ∧ 〈e, n〉 ∈ We,s ∧
∑

〈e,n〉6j6s

2−H(j)[s] < 2−(e+2))},

where We,s is the stage s approximation to the e-th computably enumerable set and

H(j)[s] is the stage s approximation to the H-complexity of j.

Clearly A is computably enumerable. Since
∑

j>m 2−H(j) goes to zero as m increases,

if We is infinite then A[e] ∩ W [e]
e 6= ∅. It is easy to see that this implies that A is

noncomputable. Finally, the extra measure put into the domain of M , beyond one half

of that which enters the domain of U , is bounded by
∑

e 2−(e+2) (corresponding to at

most one initial segment change for each e), whence∑
σ∈dom(M)

2−|σ| <
∑

σ∈dom(U)

2−(|σ|+1) +
∑
e

2−(e+2) 6
1

2
+

1

2
= 1.

Thus M is a prefix-free machine, and hence H(A � n) 6 H(n) +O(1).

We remark that the above proof can be modified to prove the result, which appears to

be due to Muchnik, that there exists a noncomputable computably enumerable set A

that is strongly H-trivial, in the sense that H-complexity relativized to A is the same

as H-complexity, up to an additive constant, i.e., ∀σ (H(σ) 6 HA(σ) + c). Such an A

is both H-trivial and low for random. (As mentioned above, Nies and Hirschfeldt (see

Nies [23]) improved the result by showing that a real is H-trivial if and only if it is

strongly H-trivial.)

Clearly the proof also admits many variations. For instance, we can make A promptly

simple, or below any nonzero computably enumerable degree. We cannot control the

jump or make A Turing complete, since, as we will see, all H-trivials are nonhigh (and

in fact, as shown by Nies [23], low).

As we see in the next section, the construction above automatically yields a Turing

incomplete computably enumerable set. It is thus an injury-free solution to Post’s prob-

lem. It is not, however, priority-free, in that the construction depends on an ordering of

the simplicity requirements, with stronger requirements allowed to use up more of the

domain of the machine M . We can do methodologically better by giving a priority-free

solution to Post’s problem, in the sense that no explicit diagonalization (such as that of

We above) occurs in the construction of the incomplete computably enumerable set, and

6

therefore the construction of this set (as opposed to the verification that it is H-trivial)

does not depend on an ordering of requirements. We now sketch this method, which is

rather more like that of Solovay’s original proof of the existence of a ∆0
2 H-trivial real.

Let us reconsider the key idea in the proof of Theorem 3.1. At certain stages we

wish to change an initial segment of A for the sake of diagonalization. Our method is to

make sure that the total measure added to the domain of our machine M (which proves

the H-triviality of A) due to such changes is bounded by 1. Suppose, on the other hand,

we were fortunate in the sense that the universal machine itself “covered” the measure

needed for these changes. That is, suppose we were lucky enough to be at a stage s

where we desire to put n into As+1 − As and at that very stage Hs(j) changes for all

j ∈ {n, . . . , s}. That would mean that in any case we would need to enumerate new

axioms describing As+1 � j for all j ∈ {n, . . . , s}, whether or not these initial segments

change. Thus at that very stage, we could also change As � j for all j ∈ {n, . . . , s} at

no extra cost.

Notice that we would not need to copy the universal machine U at every stage. We

could also enumerate a collection of stages t0, t1 . . . and only update M at stages ti. Thus

for the lucky situation outlined above, we would only need the approximation to H(j)

to change for all j ∈ {n, . . . , ts} at some stage u with ts 6 u 6 ts+1. This observation

would seem to allow a greater possibility for the lucky situation to occur, since many

more stages can occur between ts and ts+1.

The key point in all of this is the following. Let t0, t1, . . . be a computable collection

of stages. Suppose that we construct a set A =
⋃
sAts so that for n 6 ts, if Ats+1 � n 6=

Ats � n then Hts(j) < Hts+1(j) for all j with n 6 j 6 ts. Then A is H-trivial.

We are now ready to define A in a priority-free way.

Let t0, t1, . . . be a collection of stages such that ti as a function of i dominates all

primitive recursive functions. (Actually, as we will see, dominating the overhead in the

Recursion Theorem is enough.) At each stage u, let {ai,u : i ∈ ω} list Au. Define

Ats+1 = Ats ∪ {an,ts , . . . , ts},

where n is the least number 6 ts such that Hts+1(j) < Hts(j) for all j ∈ {n, . . . ts}.
(Naturally, if no such n exists, Ats+1 = Ats .) Requiring the complexity change for all

j ∈ {n, . . . , ts}, rather than just j ∈ {an,ts , . . . , ts}, ensures that A is coinfinite, since for

each n there are only finitely many s such that Hts+1(n) < Hts(n).

Note that there is no priority used in the definition of A. It is like the Dekker

deficiency set or the so-called “dump set” (see [26, Theorem V.2.5]).

It remains to prove that A is noncomputable. By the Recursion Theorem, we can

build a prefix-free Turing machine M and know the coding constant c of M in U . That

is, if we declare M(σ) = j then we will have U(τ) = j for some τ such that |τ | 6 |σ|+ c.

Note further that if we put σ into the domain of M at stage ts, then τ will be in the

7

domain of U by stage ts+1−1. (This is why we chose the stages to dominate the primitive

recursive functions. This was the key insight in Solovay’s original construction.)

Now the proof looks like that of Theorem 3.1. We will devote 2−e of the domain of our

machine M to making sure that A satisfies the e-th simplicity requirement. When we see

an,ts occur in We,ts , where
∑

n6j6ts
2−Hts (j) < 2−(e+c+1), we change the Mts descriptions

of all j with n 6 j 6 ts so that Hts+1(j) < Hts(j) for all such j. The cost of this change

is bounded by 2−e, and an,ts will enter Ats+1 , as required.

4 Turing degrees of H-trivials

In this section we give a proof that every H-trivial real α is Turing incomplete, and in

fact not high (i.e., α′ <T ∅′′).

4.1 Theorem. If the real A is H-trivial then A is not high.

Proof. By Corollary 6.7 part (ii), we can choose a ∆0
2 approximation for A. We enu-

merate a Kraft-Chaitin sequence L of axioms of the form 〈rn, n〉. If E ⊆ N, the weight

of E is
∑

n∈N
2−rn .

Our enumeration of L depends on the behavior of a total Turing reduction ΓA. At

first we will be quite general about what Γ is, but we adopt the usual conventions on

the use γ of Γ.

The basic idea is as follows. We enumerate an axiom 〈r, n〉 into L for some small

r, thus ensuring that H(n) is small. Each time A � n changes, the “opponent” has to

provide a corresponding short description of A � n via the fixed universal prefix-free

machine U . Thus we make the opponent load up many descriptions of approximations

to A � n, while we enumerate only one short description of n. We will be able to argue

that there are enough A � n-changes for certain n, which will be picked so that n > γ(m)

for certain numbers m.

We first consider the simpler case where we only want to show that A is Turing

incomplete. Fix a Turing reduction K = ΨA. We build a computably enumerable set

B. By the Recursion Theorem, we can assume that we know in advance a computably

enumerable index i for B. Since B equals the i-th row of K, this means we also know

a total reduction Γ such that ΓA = B. (For the full construction, we will use the fact

that if ∅′′ 6T A′ then there is a reduction Γ such that f = ΓA eventually dominates each

computable function.)

Let b be a number such that ∀n (H(A � n) 6 H(n) + b). By the Recursion Theorem

we can assume that the coding constant d for the prefix-free machine M corresponding

to L via the Kraft-Chaitin theorem is known ahead of time. Let c = b + d, so that

∀n (H(A � n) 6 HM(n) + c).

8

All values appended by [s] will be taken at the end of the stage. We carry out our

construction at stages s0 < s1 < · · · so that ∀i ∀n 6 si (H(A � n)[si+1] 6 HM(n)[si+1] +

c) and ∀i ∀n 6 si (Γ
A(n)[si+1]↓).

Let k ∈ N be a sufficiently large number (the precise value will be determined below).

We describe procedures Pi(g), 0 6 i < k, where the parameter g is a rational of the

form 2−x, x ∈ N. Each procedure Pi, 0 6 i < k − 1, calls Pi+1 many times.

The basic idea is that, for each n we work with, each level of procedures is responsible

for creating a change in A � n, thus forcing the opponent to provide a short description

of a new string of length n. For certain n, however, changes will come too early, thus

creating a certain amount of “trash”, that is, axioms enumerated into L that do not

cause the appropriate number of short descriptions to appear in U . We will need to

show that this trash is small enough that it will not cause us problems.

The bottom procedure Pk−1(g).

The output of this procedure (if the procedure returns at all) is a set C = Ck−1 of

numbers n such that

(i) first we put an axiom 〈rn, n〉 into L (and therefore have M(σ) = n for some σ of

length rn), and

(ii) then we see strings σ0, σ1 of length n with U -descriptions of length 6 rn + c. (The

strings are approximations to A � n at certain stages.)

Moreover, the weight
∑

n∈C 2−rn of C equals g, and the “trash” put into L by this

procedure, namely
∑

n6∈C 2−rn , is at most 2−2(k−1)g.

Here is the procedure:

1. Choose a fresh number m = mk−1.

2. Let qk−1 = 0 and C = ∅.
WHILE qk−1 < g:

(a) Choose a fresh number n (in particular, n > γ(m)) and put an axiom 〈r, n〉
into L, where r is given by 2−r = 2−2(k−1)2−(u+1)g, and u is the number of

times the expression A � γ(m) has changed so far.

(b) At the next stage (in the sense described above):

IF A � γ(m) changed, add 2−r to the real trash (which is global for the

construction, being 0 initially), and continue at 2(a).

ELSE put n into C and add 2−r to qk−1.

END WHILE

9

3. Wait for an A � γ(m) change. If this happens, RETURN the set C.

(In the case where we only want to show that A is not Turing complete, we are

enumerating B, and we know B = ΓA. Thus we may simply put m into B. For

the proof of the full theorem, it remains to show that this A-change happens often

enough.)

This completes the description of the procedure.

Note that the procedure can only get stuck at step 3, because we assume A � γ(m)

settles.

We verify the required property (ii) of C. If n gets into C at a stage s, then γ(m) < n

(and we see a short description of A[s] � n). Since we assume the procedure returns at a

stage t > s, A � γ(m) has changed from its value at s, so at t there is a short description

of a second string of length n.

Clearly
∑

n∈C 2−rn = g, since g has the form 2−x and we stop when qk−1 reaches this

value. Moreover, trash 6 2−2(k−1)g
∑

u>0 2−(u+1) 6 2−2(k−1)g.

The procedure Pi(g) for 0 6 i < k − 1.

The output of this procedure (if the procedure returns at all) is a set C = Ci of

numbers n such that

(i) first we put an axiom 〈rn, n〉 into L, and

(ii) then at later stages we see strings σj (0 6 j 6 k − i + 2) of length n with U -

descriptions of length 6 rn + c. (Again, these strings are approximations to A � n
at those stages.)

Moreover, the weight
∑

n∈C 2−rn of C is g, and the trash put into L by this procedure,

namely
∑

n6∈Ci 2−rn , is at most 2−2ig.

Here is the procedure:

1. Choose a fresh number m = mi.

2. Let qi = 0 and C = Ci = ∅.
WHILE qi < g:

(a) Call Pi+1(gi+1), where gi+1 = 2−2(i+1)2−(u+1)g, and u is the number of times

the expression A � γ(m) has changed so far. If A � γ(m) changes during the

execution of Pi+1, put the current
∑

j>i qj into trash and end the subproce-

dures called by Pi.

(b) If Pi+1 returns a set Ci+1 then put this set into Ci, and add gi+1 to qi.

END WHILE

10

3. Wait for an A � γ(m) change. If this happens RETURN the set C.

This completes the description of the procedure.

Again, we verify the required property (ii) of Ci. When Pi+1 returns a set Ci+1

at stage s, by induction, for each n ∈ Ci+1 we have already seen short descriptions of

distinct strings σj (0 6 j < k−i+1) of length n. Since this run of Pi+1 was not stopped,

A � γ(mi) did not change during this run, and in particular γ(mi) < n. If A � γ(mi)

changes before Pi returns, this gives a new string of length n with a short description.

Otherwise A � γ(mi) changes when Pi leaves step 3, again giving a new string of length

n with a short description.

4.2 Lemma. If Pi(g) is called and stopped during the loop performed at step 2, then

the amount added to trash by Pi(g) and the subprocedures it calls is at most 2−2ig.

Proof. We use induction on descending values of i. Above, we verified the lemma for

i = k − 1. Now suppose the statement is true for i+ 1.

(a) If Pi(g) calls Pi+1 at stage s with goal gi+1,s, then by the induction hypothesis,

at most 2−2(i+1)gi+1,s is put into trash by this subprocedure. Since
∑

s gi+1,s 6 gi, the

total contribution to trash of the subprocedures called by Pi(g) is 6 2−2(i+1)gi.

(b) When Pi stops its subprocedures during execution of step 2, it puts
∑

j>i qj into

trash. But always qj+1 6 qj/2, and letting u be the number of times the expression

A � γ(m) has changed so far, qi+1 6 2−2i−22−(u+1)g. So
∑

j>i qj 6 2−2i−12−(u+1)g, and

the total sum over all u is 6 2−2i−1g.

The trash contributed by (a) and (b) together is at most 2−2ig.

The proof of Turing incompleteness of A runs as follows. Let k = 2c+3. We start the

construction by calling P0(g) with g = 1/4. Then
∑

n∈C0
2−rn = g and, by Lemma 4.2,

trash 6 g. Thus the total weight put into L (i.e., the weight of N) is 6 2g, and hence L

is a Kraft-Chaitin sequence.

Now, by induction on descending i < k, we can show that each run of a procedure

Pi(g) returns unless stopped. Suppose i = k − 1, or i < k − 1 and the claim is true for

i + 1. Since ΓA is total, eventually the counter u in step 2 is constant. So if i < k − 1

then eventually we call Pi+1(g
′) for a fixed g′ often enough to reach the required weight

(for i = k− 1 the argument is similar). We can enforce the A � γ(mi) change needed at

step 3 by enumerating mi into B. Thus Pi(g) returns.

When the initial procedure P0(g) returns, by the property (ii) of C0, the opponent

has to provide at least measure kg2−c in descriptions of length n strings. So if g = 1/4,

we reach the contradiction µ(dom(U)) > 1.

We now complete the Proof of Theorem 4.1. Assume ∅′′ 6T A′. Then there is a total

function f = ΓA that eventually dominates each computable function.

Again let k = 2c+3.

11

Modify the construction as follows. Run procedures P0(2
−p), p > 3, in parallel. At

stage s, look for the least p > 3 such that no procedure P0(2
−p) is running, and start

such a procedure. Stop when the sum of the q0 values for the various procedures P0

reaches 1/4.

This completes the construction. We now verify its correctness.

We first show that L is a Kraft-Chaitin sequence. The trash produced by the stopping

subprocedures of a run P0(g) is bounded by g, by Lemma 4.2. Thus the overall trash of

this type is at most 1/4. However, there is a new type of trash, produced by procedures

P0(2
−p) that never receive an A � γ(m0) change at step 3. For each p > 3, at most one

procedure P0(2
−p) can get stuck in this way, in which case the sum of wasted descriptions

is 6 2−p. So this trash adds up to at most 1/4. Altogether, the weight of L is bounded

by 3/4.

4.3 Lemma. Almost all runs of procedure P0 terminate.

Proof. We prove by induction on descending i < k that almost all runs of procedure Pi
stop. We number the successive runs of a Pi procedure R0, R1, If i < k− 1, then by

the induction hypothesis, there is a v0 such that, for v > v0, no run Rv gets stuck while

performing a subroutine Pj, k > j > i. We want to prove that only finitely many runs

Rv get stuck at step 3. Let the total computable function fi(x) be defined as follows. If

x is not the parameter mi of a run Rv with v > v0 by stage x, then f(x) = 0. Otherwise,

fi(x) is one greater than the first stage where mi has been canceled or γ(x) is defined

and Rv reaches step 3. (Such a stage exists by the induction hypothesis and the fact

that Γ is total.)

Now for almost all x, the initial segment A � γ(x) changes after the stage when f(x)

has been defined, so the corresponding run Rv does not get stuck.

Thus, for a sufficiently large p, we complete procedures P0(2
−p) as many times as needed

to reach a set C0 of weight 1/4. This gives a contradiction as before.

One final limitation is the following.

4.4 Theorem. The Turing degrees of H-trivial reals are bounded by a computably enu-

merable degree strictly below 0′.

Proof. Nies (unpublished) has shown that every H-trivial real is Turing reducible to

an H-trivial computably enumerable set, so it is enough to prove the theorem for the

degrees of H-trivial computably enumerable sets. Notice that the statement “H(Wi �
n) 6 H(n) + c for all n” is Π0

2 in the parameters i, c. Thus the collection of indices of

H-trivial computably enumerable sets is Σ0
3. We can enumerate a piecewise computably

enumerable set A where the 〈i, c〉-th column is equal to Wi iff Wi is H-trivial with

constant c, and finite otherwise. By Theorem 7.3, the H-trivials are closed under join,

so such a set has the property that
⊕

m6nA
(m) is Turing incomplete for all m. Hence,

12

the result follows from the strong form of the Thickness Lemma (see Soare [26], Ch.

VIII, Theorems 2.3 and 2.6).

In unpublished work, Nies has shown that the degrees of H-trivial computably enumer-

able sets are bounded below 0′ by a low2 computably enumerable set. This is much

more difficult to prove.

5 Listing the H-trivials

We next prove a result about the presentation of the class H of H-trivial reals. First

consider the computably enumerable case. As is true for every class that contains the

finite sets and has a Σ0
3 index set, there is a uniformly computably enumerable listing

(Ae) of the computably enumerable sets in H. Here we show there is a listing that

includes the witnesses of the Σ0
3 statement, namely the constants via which the Ae are

H-trivial. This is true even in the ∆0
2 case.

We say that α is H-trivial via the constant c if H(α � n) 6 H(n) + c for all n. A ∆0
2-

approximation is a computable {0, 1}-valued function λx, s Bs(x) such that Bs(x) = 0

for x > s and B(x) = limsBs(x) exists for each x.

5.1 Theorem. There is an effective list ((Be,s(x))s∈N, de) of ∆0
2-approximations and

constants such that each H-trivial real occurs as a real Be = limsBe,s, and each Be

is H-trivial via the constant de. Moreover, Be,s(x) changes at most O(x2) times as s

increases, with effectively given constant.

Proof. We define, uniformly in e, ∆0
2-approximations Be,s and Kraft-Chaitin sequences

Ve such that, for effectively given constants ge and for each stage u,

∀w 6 u ∃r 6 Hs(n) + ge + 3 (〈r, Be,s � n〉 ∈ Ve,s). (5.1)

Then we obtain de by adding to ge + 2 the coding constant of a prefix-free machine

uniformly obtained from Ve.

We need a lemma whose proof will be obtained by analyzing the proof of Theorem

5.8 in [23]. For those familiar with that paper, we include a proof of this lemma below.

The lemma says that there is a uniformly computable set Qe of “good stages” such that

Be changes only at a good stage, and the cost of these changes, namely the weight of

short descriptions of the new initial segments Be,s � m, is bounded by an effectively

given constant 2ge .

5.2 Lemma. There is an effective list ((Be,s(x))s∈N, ge, Qe) of ∆0
2-approximations, con-

stants, and (indices for) computable sets of stages, with the following properties.

1. Be,u(x) 6= Be,u−1(x)⇒ u ∈ Qe.

13

2. Let Qe = {qe(0) < qe(1) < · · · } (Qe may be finite). If qe(r+ 1) is defined, then let

ĉ(z, r) =
∑

z<y6qe(r)
2−Hqe(r+1)(y) and let

Ŝe =
∑
{ĉ(x, r) : u = qe(r + 2) defined ∧

x is minimal such that Be,u(x) 6= Be,u−1(x)}.

Then Ŝe < 2ge.

Moreover, Be,s(x) changes at most O(x2) times as s increases, with effectively given

constant.

We first complete the proof of the theorem assuming the lemma. We obtain Ve by

emulating the construction of an H-trivial real in Theorem 3.1 (see also [23, Proposition

3.3]). At stage u, for each w 6 u, put 〈Hu(w) + ge + 3, Bu � w〉 into Vu in case

(a) u = w, or

(b) u > w ∧ Hu(w) < Hu−1(w), or

(c) Bu−1 � w 6= Bu � w.

Clearly, each Ve satisfies (5.1). It remains to show that Ve is a Kraft-Chaitin sequence.

We drop the subscript e in what follows. The weight contributed by axioms added for

reasons (a) and (b) is at most 2−g−2 6 1/4. Now consider the axioms added for reason

(c). Since B only changes at stages in Q, for each w there are at most two enumerations

at a stage u = q(r + 2) such that w > q(r). The weight contributed by all w at such

stages is at most Ω/4. Now assume w 6 q(r), and let u = q(r + 2).

Case 1. Hq(r+1)(w) > Hu(w). This happens at most once for each value Hu(w),

u ∈ Q. Since each value corresponds to a new description of w, the overall contribution

is at most Ω/8.

Case 2. Hq(r+1)(w) = Hu(w). Since B(x) changes for some minimal x < w at u, the

term 2−Hu(w) occurs in the sum ĉ(x, r). Since Ŝ 6 2g, the overall contribution is at most

1/8.

Proof of Lemma 5.2. By [23, Theorem 6.2], let (Γm)m∈N be a list of (total) tt-reductions

such that the class of H-trivial reals equals {Γm(∅′) : m ∈ N}. Let Am = Γm(∅′), with

the ∆0
2-approximation Am,s = Γm(∅′s). We refer to the proof of [23, Theorem 5.8] and

adopt its notation.

Let e be a computable code for a tuple consisting of the following: m, a constant b

(we hope Am is H-trivial via b), numbers i (a level in the tree of runs of procedures)

and n (we consider the n-th run of a procedure Pi(p, α), hoping it will be golden), and a

constant ge which we hope will be such that 2ge = p/α. (We assume that ge is at least the

14

constant via which the empty set is H-trivial.) Given e, we define a set Qe. If e meets

our expectations then Qe will be equal to Am and will be H-trivial via ge. Otherwise,

Qe will be finite, but ge will still be a correct constant via which Qe is H-trivial.

As in the main construction, we obtain a coding constant d for a prefix-free machine

by applying the Recursion Theorem with parameters to m, b, let k = 2b+d, and only

consider those i 6 k.

Given e, we run the construction as in [23, Theorem 5.8] in order to define Qe. For

each u, we can effectively determine if u is a stage in the sense of that construction.

Moreover we can determine if by stage u we started the n-th run Pi(p, α) of a procedure

Pi. We leave Qe empty unless ge = p/α. In that case we check if u = q(r) in the sense

of [23, Theorem. 5.8]. If so we declare u ∈ Qe.

Finally we let Be,u(x) = Am,max(Qe∩{0,...,u}). Thus if Qe is finite we are stuck with

Am,maxQe . The property Ŝ 6 2ge is verified in the proof of [23, Theorem 5.8]. The O(x2)

bound on the number of changes follows as in [23, Fact 3.6].

Note that we can replace the list (Γm) in the above proof by a listing of a subclass

of the H-trivials containing the finite sets. Thus there are also effective listings with

constants for theH-trivial computably enumerable sets and for theH-trivial computably

enumerable reals.

Let C be a set of computably enumerable indices closed under equality of computably

enumerable sets. We say that C is uniformly Σ0
3 if there is a Π0

2 relation P such that

e ∈ C ↔ ∃n (P (e, n)) and there is an effective sequence (en, bn) such that P (en, bn) and

∀e ∈ C ∃n (We = Wen). We have proved that H is uniformly Σ0
3. It would be interesting

to see which other properly Σ0
3 index sets have that property, for instance the class of

computable sets.

Recall that A is strongly H-trivial via a constant c if ∀σ (H(σ) 6 HA(σ) + c), where

HA is H-complexity relativized to A. In [23] it is proved that each H-trivial real is

strongly H-trivial. However, in the proof the constant of strong H-triviality is not

obtained in a uniform way. The following corollary shows that this non-uniformity is

necessary.

5.3 Corollary. There is no effective way to obtain from a pair (A, b), where A is a

computably enumerable set that is H-trivial via b, a constant c such that A is strongly

H-trivial via c.

Proof. Otherwise, by Theorem 5.1 above we would obtain a listing (Ae, ce) of all the

strongly H-trivials with appropriate constants. Nies [24, Theorem 5.9] showed that such

a listing does not exist.

15

6 Theorems of Chaitin and of Zambella

In this section we give a unified proof of some unpublished material of Zambella and of

Chaitin’s result that all H-trivials are ∆0
2, while establishing some intermediate results

of independent interest.

6.1 Definition. Given a prefix-free machine D, let ZD(σ) = µ(D−1(σ)).

That is, ZD(σ) is the probability that D outputs σ. If D is the fixed universal

machine we will write Z(σ) for ZD(σ).

6.2 Theorem. ZD(σ) = O(2−H(σ)).

We make a few comments before proving this theorem. A measure of complexity is any

function F : 2<ω → ω such that
∑

σ 2−F (σ) < 1 and {〈σ, k〉 : F (σ) 6 k} is computably

enumerable. Chaitin [3] introduced this concept and showed that H-complexity is a

minimal measure of complexity in the sense that, for any measure of complexity F , we

haveH(σ) 6 F (σ)+O(1). Notice that− log2 Z(σ) is a measure of complexity, and hence,

by the minimality of H among measures of complexity, we know that 2−H(σ) 6 Z(σ).

Therefore, by Theorem 6.2, we know that for some constant d,

2−H(σ) 6 Z(σ) 6 d2−H(σ).

Thus we can often replace usage of H by Z. As an illustration, for reals α and β, we

have the following result.

6.3 Theorem. α 6H β iff there is a constant c such that for all n,

cZ(β � n) > Z(α � n).

Proof. Suppose that α 6H β. Then there is a constant d such that H(α � n) 6 H(β � n)

+ d for all n. This happens iff there is a constant d′ such that for all n,

2−H(α�n) > d′2−H(β�n).

This happens iff there is a c such that Z(α � n) > cZ(β � n) for all n. The other

direction is similar.

6.4 Remark. For any σ, the real Z(σ) is random.

To see that the remark is true we use the Kraft-Chaitin Theorem to build a machine

M and show that Ω 6S Z(σ), where 6S is Solovay reducibility (see [9] for a definition

and discussion of Solovay reducibility). At stage s, if we see U(ν) ↓, where U is the

universal machine, we declare that M(ν) = σ. Then for some c = cM , there is a ν ′ with

U(ν ′) = σ, and furthermore |ν| 6 |ν ′| + c. Thus whenever we add 2−|ν| to Ω, we add

2−(|ν|+c) to Z(σ), and hence Ω 6S Z(σ), which implies Z(σ) is random.

16

Proof of Theorem 6.2. The idea of the proof is the following: We will use the Kraft-

Chaitin Theorem to define a prefix-free machineM as follows. Whenever we see ZD(σ) >
22r−n, where n is the current H-complexity of σ, we will enumerate an axiom 〈n−r+1, σ〉
(saying that some string of length n− r + 1 is mapped to σ by M). For large enough r

we will get to contradict the minimality of H. In detail, at stage s, we do the following.

For each σ, n, r < s, if

• σ, n, s is not yet attended to,

• n > 2r > 2,

• H(σ)[s] = n, and

• ZD(σ) > 22r−n,

then attend to σ, r, n by enumerating an axiom 〈n− r + 1, σ〉.
Notice that for any fixed σ, r, we put in axioms 〈n− r + 1, σ〉 for descending values

of n. Let hσ,r be the last value put in. We add at most

∞∑
n=0

2−(hσ,r−r+1+n) = 2−hσ,r+r

to the measure of the domain of M .

When we put in the last axiom 〈hσ,r − r+ 1, σ〉, we see that ZD(σ) > 22r−hσ,r . Since

D is prefix-free, for this fixed r we can conclude that∑
σ

22r−hσ,r 6 1.

Therefore,

2r
∑
σ

2−hσ,r+r 6 1.

Hence, for r we can add at most 2−r to the measure of the domain of M . Thus, as

r > 1, we can apply the Kraft-Chaitin Theorem to conclude that M exists.

Let c be such that

H(σ) 6 HM(σ) + c.

Let d = 22(c+2). Then we claim that

ZD(σ) 6 d2−H(σ).

To see this, let r = c + 2. If ZD(σ) > 22r−H(σ), then eventually we put in an axiom

〈H(σ)− r + 1, σ〉, and hence HM(σ) 6 H(σ)− (c+ 1), a contradiction.

17

This result allows us to get an analog of the result of Chaitin [3] on the number of

descriptions of a string.

6.5 Corollary. There is a constant d such that for all c and all σ,

|{ν : D(ν) = σ ∧ |ν| 6 H(σ) + c}| 6 d2c.

Proof. Trivially,

µ({ν : D(ν) = σ ∧ |ν| 6 H(σ) + c}) >
2−(H(σ)+c) · |{ν : D(ν) = σ ∧ |ν| 6 H(σ) + c}|.

But also, µ({ν : D(ν) = σ ∧ |ν| 6 H(σ) + c}) 6 d · 2−H(σ), by Theorem 6.3. Thus,

d2−H(σ) > 2−c2−H(σ)|{ν : D(ν) = σ ∧ |ν| 6 H(σ) + c}|.

Hence, d2c > |{ν : D(ν) = σ ∧ |ν| 6 H(σ) + c}|.

We can now conclude that there are few H-trivials.

6.6 Theorem. The set Sd = {σ : H(σ) < H(|σ|) + d} has at most O(2d) many strings

of length n.

Proof. Given a universal prefix-free machine U , there is another machine V with the

following property: V has for each n a program of length m (on which it converges)

whenever the sum of all 2−|p| such that U(p) is defined and has length n is at least 21−m;

furthermore V has for every n and every length m at most one program of length m. As

U is universal, it follows that there is a constant c such that the following holds: If the

sum of all 2−|p| such that U(p) is defined and has length n is at least 2c−m, then there

is a program q of length m with U(q) = n.

Let m = H(n) and n be any length. There are less than 2d+c+1 many programs p of

length m+ d or less such that U(p) has length n, as otherwise the sum 2−|p| over these

programs would be at least 2c+1−m, which would cause the existence of a program of

length m−1 for n, a contradiction to H(n) = m. So the set Sd = {σ : H(σ) < H(|σ|)+d}
has at most 2d+c+1 many strings of length n, where c is independent of n and d.

6.7 Corollary. (i) (Zambella [31]) For a fixed d, there are at most O(2d) many reals

α with

H(α � n) 6 H(n) + d

for all n.

(ii) (Chaitin [3]) If a real is H-trivial, then it is ∆0
2.

Proof. Consider the ∆0
2 tree Td = {σ : ∀ν ⊆ σ(ν ∈ Sd)}. This tree has width O(2d), and

hence it has at most O(2d) many infinite paths. For each such path X, we can choose

σ ∈ Td such that X is the only path above σ. Hence such X is ∆0
2.

18

7 Triviality and wtt-reducibility

Recall that A 6wtt B iff there is a procedure Φ with computable use ϕ such that ΦB = A.

As we have seen in the earlier papers mentioned in the introduction, wtt-reducibility

seems to have a lot to do with randomness considerations. Triviality is no exception.

7.1 Theorem. Suppose that α 6wtt β and β is H-trivial. Then α is H-trivial.

Proof. For each computable ϕ : N 7→ N,

H(ϕ(n)) 6 H(n) +O(1).

(To see this consider the prefix-free machine M such that for all σ, if U(σ) = n then

M(σ) = ϕ(U(σ)), where U is a universal prefix-free machine.)

Now suppose that α = Φβ with computable use ϕ and that β is H-trivial. We have

H(α � n) 6 H(β � ϕ(n)) +O(1) 6 H(ϕ(n)) +O(1) 6 H(n) +O(1),

by the above.

Nies [23] has extended this result to Turing reducibility, but with a much more difficult

proof.

We now show that the H-trivials are closed under join, and hence form an ideal in

the wtt-degrees. We begin by showing that the H-trivials are closed under addition.

7.2 Theorem. If α and β are H-trivial then so is α + β.

Proof. Assume that α, β are two H-trivial reals. Then there is a constant c such that

H(α � n) and H(β � n) are both below H(n) + c for every n. By Theorem 6.6 there

is a constant d such that for each n there are at most d strings τ ∈ {0, 1}n satisfying

H(τ) 6 H(n)+c. Let e be the shortest program for n. One can assign to α � n and β � n
numbers i, j 6 d such that they are the i-th and the j-th string of length n enumerated

by a program of length up to |e|+ c.

Let U be a universal prefix-free machine. We build a prefix-free machine V witnessing

the H-triviality of α + β. Representing i, j by strings of the fixed length d and taking

b ∈ {0, 1}, V (eijb) is defined by first simulating U(e) until an output n is produced and

then continuing the simulation in order to find the i-th and j-th string α and β of length

n such that both are generated by a program of size up to n+ c. Then one can compute

2−n(α + β + b) and derive from this string the first n binary digits of the real α + β.

These digits are correct provided that e, i, j are correct and b is the carry bit from bit

n+ 1 to bit n when adding α and β – this bit is well-defined unless α+ β = z · 2−m for

some integers m, z, but in that case α+β is computable and one can get the first n bits

of α + β directly without having to do the more involved construction given here.

19

7.3 Corollary. The wtt-degrees containing H-trivials form an ideal in the wtt-degrees.

Proof. By Theorem 7.2, we know that if α and β are H-trivial, then so is α+β, where +

is normal addition. Now let α′ = α(0)0α(1)0 . . ., where α(n) is the nth bit of α, and let

β′ = 0β(0)0β(1) Both α′ and β′ are H-trivial, since they have the same wtt-degrees

as α and β, respectively. It follows that α′ + β′ = α⊕ β is H-trivial.

Theorem 7.2 suggests the question of whether addition is a join on the H-degrees.

In general, it is not, as the example Ω
H Ω + (1 − Ω) shows. But for computably

enumerable reals it is. This fact considerably simplifies the analysis of the H-degrees

of computably enumerable reals (compare for instance the difficulties in studying the

sw-degrees considered in [8], many of which arise from the lack of a join operation).

7.4 Theorem. If α, β are computably enumerable reals then the H-complexity of α+ β

is – up to an additive constant – the maximum of the H-complexities of α and β. In

particular, α + β represents the join of α and β with respect to H-reducibility.

Proof. Let γ = α + β. Without loss of generality, the reals represented by α, β are in

(0, 1/2), so that we do not to have to care about the problem of representing digits

before the decimal point. Furthermore, we have programs i, j, k which approximate

α, β, γ, respectively, from below, such that at every stage and also for the limit the

equation α + β = γ holds.

First we show that H(γ � n) 6 max{H(α � n), H(β � n)} + c for some constant c.

Fix a universal prefix-free machine U . It is sufficient to produce a prefix-free machine

V that for each n computes (α+β) � n from some input of length up to max{H(α � n),

H(β � n)}+ 2.

The machine V receives as input eab where a, b ∈ {0, 1} and e ∈ {0, 1}∗. The length

of the input is |e|+2. First V simulates U(e). In the case that this simulation terminates

with some output σ, let n = |σ|. Now V simulates the approximation of α and β from

below until it happens that either

• a = 0 and σ = α � n or

• a = 1 and σ = β � n.

Let α̃, β̃ be the current values of the approximations of α and β, respectively, when the

above simulation is stopped. Now V outputs the first n bits of the real α̃+ β̃ + b · 2−n.

In order to verify that this works, given n, let a be 0 if the approximation of β is

correct on its first n bits before the one of α and let a be 1 otherwise. Let e be the

shortest program for α � n in case a = 0 and for β � n in case a = 1. Then U(e)

terminates and |e| 6 max{H(α � n), H(β � n)}. In addition, we know both values α � n
and β � n once U(e) terminates. So α̃ and β̃ (defined as above) are correct on their first

20

n bits, but it might be that bits beyond the first n cause a carry to exist which is not

yet known. But we can choose b to be that carry bit and have then that V (eab) = γ � n.

For the other direction, we construct a machine W that computes (α � n, β � n)

from any input e with U(e) = γ � n. The way to do this is to simulate U(e) and,

whenever it gives an output σ, to simulate the enumerations of α, β, γ until the current

approximation γ̃ � n = σ. As α̃+ β̃ = γ̃, it is impossible that the approximations of α, β

will later change on their first n bits if γ � n = σ. So the machine W then just outputs

(α̃ � n, β̃ � n), which is correct under the assumption that e, and therefore also σ, are

correct.

Recall that a computably enumerable set X is (Kummer) complex iff K(X � n) >
2 log n − c infinitely often. (No computably enumerable set can have K(X � n) >
2 log n− c for all n; see [19, Exercise 2.58].) Recall also that, by [16], a computably enu-

merable degree d either has complex computably enumerable sets or every computably

enumerable set D ∈ d is Kummer trivial in the sense that for all ε > 0 there is a constant

c such that for all n,

K(D � n) 6 (1 + ε) log n+ d.

The relevant degrees containing the complex sets are the array noncomputable degrees

of Downey, Jockusch and Stob. Recall that a very strong array {Fx : x ∈ N} is a strong

array such that |Fx| < |Fx+1| for all x. A computably enumerable set A is called array

noncomputable relative to such a very strong array if for all computably enumerable

sets W there are infinitely many x such that W ∩ Fx = A ∩ Fx. A relevant fact for our

purposes is the following.

7.5 Theorem (Downey, Jockusch and Stob [10, 11]). For all wtt degrees d, and all

very strong arrays {Fx : x ∈ N}, if d contains a set that is array noncomputable relative

to some very strong array, then d contains one that is array noncomputable relative to

{Fx : x ∈ N}.

We first show that array noncomputable wtt-degrees (i.e., ones containing array non-

computable computably enumerable sets) cannot be H-trivial.

7.6 Theorem. If d is an array noncomputable and computably enumerable wtt-degree

then no set in d is H-trivial.

Proof. We will build a prefix-free machine M . The range of M will consist of initial

segments of 1ω. By the Recursion Theorem, we can assume we know the coding constant

d of our machine in the universal prefix-free machine U . Choose a very strong array such

that |Fe| = 2d+e+1. By Theorem 7.5, d contains a set A array noncomputable relative

to this array. We claim that A is not H-trivial, and hence the wtt-degree d contains no

H-trivials.

21

Suppose that A is H-trivial and that A 6H 1ω with constant c. We will build a

computably enumerable set V with V ∩ Fg 6= A ∩ Fg for all g > c, contradicting the

array noncomputability of A. For each e, we do the following. First we “load” 2d+e+1

beyond max{x : x ∈ Fe+c}, by enumerating into our machine an axiom 〈2d+e+1, 1z〉 for

some fresh z > max{x : x ∈ Fe+c}. The universal machine must respond at some stage

s by converging to As � z on some input σ of length 6 d+ e+ 1 + c. We then enumerate

into Vs, our “kill” computably enumerable set, the least p ∈ Fe+c not yet in Vs, making

Fe+c ∩ A[s] 6= Vs ∩ Fe+c[s]. Notice that we only trigger enumeration into V at stages

after a quantum of 2e+1+c+d has been added to the measure of the domain of U . Now

the possible number of changes we can put into V for the sake of e+ c is |Fe+c|, which is

bigger than 2e+c+1+d. Hence A cannot respond each time, since if it did then the domain

of U would have measure bigger than 1.

One might be tempted to think that the Kummer trivial computably enumerable sets

and the H-trivial sets correspond. The next result shows that at least one inclusion

fails. Since the proof is rather technical, and the result also follows from the recent

results of Nies [23] mentioned above, we restrict ourselves to a brief proof sketch.

7.7 Theorem. There is a computably enumerable Turing degree a that consists only of

Kummer trivials but contains no H-trivials.

Proof sketch. We construct a contiguous computably enumerable degree a containing no

H-trivials. A contiguous degree is a Turing degree that consists of a single wtt-degree.

Such degrees were first constructed by Ladner and Sasso [18]. By Downey [5], every

contiguous computably enumerable degree is array computable. Hence, by Kummer’s

theorem, all of its members are Kummer trivial. The argument is a Π0
2 priority argument

using a tree of strategies.

We must meet the requirements below:

Re,i : ΦA
e = B ∧ ΦB

i = A implies A ≡wtt B.

There is a standard way to do this via dumping and confirming. Specifically, one has

a priority tree PT = {∞, f}<ω with versions of Re,i having outcomes ∞ <L f . The

outcome ∞ is meant to say that ΦA
e = B ∧ ΦB

i = A. The other outcome is meant to

say that the limit of the length of the agreement function

`(e, i, s) = max{x : ∀y 6 x(ΦB
i (y) = A(y) ∧ ∀z 6 ϕ(y)(ΦA

e (z) = B(z)[s]))},

the so-called A-controllable length of agreement, is finite.

The usual H-nontriviality requirements are that

Pe : A is not H-trivial via e.

22

These are met, as one would expect, by changing A sufficiently often when the universal

prefix-free machine U threatens to demonstrate that A has the same H-complexity as

1ω up to the additive constant e. We will discuss this further below.

As we see below, versions of P type requirements generate followers. The R require-

ments refine the collections of requirements into a well-behaved stream. Their action

is purely negative. If a version of P guessing that the outcome of Rα is ∞ (and so

associated with some node β ⊇ α̂∞) generates a follower x, then that will only happen

at an α̂∞ (i.e., α-expansionary) stage s0. (Note that any follower with a weaker guess

will be canceled at such a stage.) Then at the next α̂∞ stage, we will confirm the

number x. This means that we cancel all numbers > x (which will necessarily be weaker

than x). Thus x can only enter A after it needs to and at a β stage, at which point it

must be β-confirmed. (That is, α-confirmed for all α̂∞ ⊆ β.) Finally, we dump in the

sense that if we ever enumerate x into A at stage s, then we promise to also enumerate

z for x 6 z 6 s into A.

It is a standard argument to show that in the limit, for any follower x that survives

α̂∞-stages, A � x can be computed from the least α̂∞-stage s1 > s0 where Bs1 � s0

= B � s0 (assuming the standard convention that uses at stage s are bounded by s).

Similarly, it is also a standard argument to prove that if x is the least α-confirmed

follower appointed at some α̂∞-stage t with `(e, i, s) > z, then B � z = Bs � z, where

s > t is the least α̂∞-stage with As � x = A � x. More details can be found in, for

example, Downey [5].

Returning to the P requirements, we build a prefix-free machine M via the Kraft-

Chaitin Theorem. By the Recursion Theorem we know the coding constant d of M . We

split the domain of M up into chunks for the various requirements. That is, each Pα on

the priority tree will be allowed to add at most 2−k(α) to the measure of the domain of

M , where the sum of 2−k(α) over all strategies Pα is one.

Suppose that Pα is the version of Pe on the true path, and we are at stage where

this version has priority (i.e., the construction never again moves to the left of Pα). Let

2−k be the amount of the measure of the domain of M devoted to Pα.

We wait until there are a large number of α-confirmed followers for Pα (the exact

number necessary is not hard to compute from k and d). Specifically, we pick a big x1 at

an α-stage, then when the total length of agreement is bigger than x1, we initialize and

α-confirm, as usual. Then we pick x2, and so on, until the whole entourage of followers

is stable.

Let xn be the largest of our followers. This is where we will satisfy Pe. The first

action is to enumerate 〈k, 1xn〉 as an axiom for M . Thus we are saying that the H-

complexity of 1xn is at most k + d. If we see U(τ)↓= A � xn, with |τ | 6 k + d+ e, then

we change A. This is done using the followers in reverse order, first xn, then later xn−1

if necessary, and so on. The reverse order guarantees the contiguity as usual.

Note that U has the option of later choosing something shorter than k+d to compute

23

1xn , but this can only happen k + d times, and we have enough xi’s to cope with this.

The remaining details consist of implementing this strategy on a priority tree.

Array noncomputable sets have one further connection with our investigations. Recall

that a set A is low for random iff every random set is still random relative to A. Kučera

and Terwijn [15] were the first to construct such sets. They used a theorem of Sacks

[25] to prove that any low for random set A must be of GL1 Turing degree. That is,

A ⊕ ∅′ ≡T A′. This was improved by Nies [22], who also showed that there are only

countably many low for random sets, and that they are all ∆0
2 and hence low (i.e., A′ ≡T

∅′). The following result seems to be a theorem of Zambella. Following Ishmukhametov

[13] we call a set A traceable or weakly computable if there is a computable function f

such that for all g 6T A, there is a weak array {Wh(x) : x ∈ N} such that

1. |Wh(x)| 6 f(x) for almost all x and

2. g(x) ∈ Wh(x) for all x.

Ishmukhametov [13] observed that if a degree is weakly computable then it is array

computable, and the notions coincide for computably enumerable sets. Ishmukhametov

proved the remarkable theorem that the computably enumerable degrees with strong

minimal covers are exactly the weakly computable degrees. Furthermore, any weakly

computable degree (in general) has a strong minimal cover.

7.8 Theorem. Suppose that A is low for random. Then A is low (Nies [22]) Further-

more, A is weakly computable.

Proof sketch. If one mimics the proof by Terwijn and Zambella [28] that Schnorr low

sets are computably traceable, but using Martin-Löf lowness in place of Schnorr lowness,

then the “if” direction proves the theorem.

References

[1] K. Ambos-Spies and A. Kučera, Randomness in computability theory, in Com-

putability Theory and its Applications (Cholak, Lempp, Lerman, Shore, eds.), Con-

temporary Mathematics 257, Amer. Math. Soc., Providence, 2000, 1–14.

[2] C. Calude, Information Theory and Randomness, an Algorithmic Perspective,

Springer-Verlag, Berlin, 1994.

[3] G. Chaitin, A theory of program size formally identical to information theory, Jour-

nal of the Association for Computing Machinery 22 (1975), 329–340, reprinted in [4].

[4] G. Chaitin, Information, Randomness & Incompleteness, 2nd edition, Series in

Computer Science 8, World Scientific, River Edge, NJ, 1990.

24

[5] R. Downey, ∆0
2 degrees and transfer theorems, Illinois J. Math 31 (1987), 419–427.

[6] R. Downey and D. Hirschfeldt, Aspects of Complexity (Short courses in complexity

from the New Zealand Mathematical Research Institute Summer 2000 meeting,

Kaikoura) Walter De Gruyter, Berlin and New York, 2001.

[7] R. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity, Springer-

Verlag, in preparation.

[8] R. Downey, D. Hirschfeldt, and G. Laforte, Randomness and reducibility, in Math-

ematical Foundations of Computer Science 2001 (Sgall, Pultr, P. Kolman, eds.),

Lecture Notes in Computer Science 2136, Springer, 2001, 316–327.

[9] R. Downey, D. Hirschfeldt, and A. Nies, Randomness, computability, and density,

SIAM Journal on Computing 31 (2002) 1169–1183 (extended abstract in proceed-

ings of STACS 2001).

[10] R. Downey, C. Jockusch, and M. Stob, Array nonrecursive sets and multiple per-

mitting arguments, in Recursion Theory Week (Ambos-Spies, Muller, Sacks, eds.)

Lecture Notes in Mathematics 1432, Springer-Verlag, Heidelberg, 1990, 141–174.

[11] R. Downey, C. Jockusch, and M. Stob, Array nonrecursive degrees and genericity, in

Computability, Enumerability, Unsolvability (Cooper, Slaman, Wainer, eds.), Lon-

don Mathematical Society Lecture Notes Series 224, Cambridge University Press

(1996), 93–105.

[12] L. Fortnow, Kolmogorov complexity, in [6], 73–86.

[13] S. Ishmukhametov, Weak recursive degrees and a problem of Spector, in Recursion

Theory and Complexity (Arslanov and Lempp, eds.), de Gruyter, Berlin, 1999,

81–88.

[14] S. Kautz, Degrees of Random Sets, Ph.D. Diss., Cornell University, 1991.

[15] A. Kučera and S. Terwijn, Lowness for the class of random sets, Journal of Symbolic

Logic 64 (1999), 1396–1402.

[16] M. Kummer, Kolmogorov complexity and instance complexity of recursively enu-

merable sets, SIAM Journal on Computing 25 (1996), 1123–1143.

[17] S. Kurtz, Randomness and Genericity in the Degrees of Unsolvability, Ph.D. Thesis,

University of Illinois at Urbana-Champaign, 1981.

[18] R. E. Ladner and L. P. Sasso, Jr., The weak truth table degrees of recursively enu-

merable sets, Ann. Math. Logic 8 (1975), 429–448.

25

[19] M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and its Applica-

tions, 2nd edition, Springer-Verlag, New York, 1997.

[20] D. Loveland, A variant of the Kolmogorov concept of complexity, Information and

Control 15 (1969), 510–526.

[21] P. Martin-Löf, The definition of random sequences, Information and Control 9

(1966), 602–619.

[22] A. Nies, Low for random sets are ∆0
2, Technical Report, University of Chicago,

2002.

[23] A. Nies, Lowness properties of reals and randomness, to appear.

[24] A. Nies, Reals which compute little, to appear.

[25] G. Sacks, Degrees of Unsolvability, Princeton University Press, 1963.

[26] R. Soare, Recursively enumerable sets and degrees, Springer, Berlin, 1987.

[27] R. Solovay, Draft of a paper (or series of papers) on Chaitin’s work, unpub-

lished manuscript, May, 1975, IBM Thomas J. Watson Research Center, Yorktown

Heights, NY, 215 pages.

[28] S. Terwijn and D. Zambella, Algorithmic randomness and lowness, Journal of Sym-

bolic Logic 66 (2001), 1199–1205.

[29] M. van Lambalgen, Random Sequences, Ph. D. Diss. University of Amsterdam,

1987.

[30] N. Vereshchagin, A computably enumerable undecidable set with low prefix com-

plexity: a simplified proof, Electronic Colloquium on Computational Complexity,

Revision 01 of Report TR01-083.

[31] D. Zambella, On Languages with simple initial segments, Technical Report, Uni-

versity of Amsterdam, 1990.

26

