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Two lowness notions in the setting of Schnorr randomness have been
studied (lowness for Schnorr randomness and tests, by Terwijn and Zam-
bella [19], and by Kjos-Hanssen, Stephan, and Nies [7]; and Schnorr
triviality, by Downey, Griffiths and LaForte [3, 4] and Franklin [6]). We
introduce lowness for computable machines, which by results of Downey
and Griffiths [3] is an analog of lowness for K. We show that the reals
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Victoria University and was also partially supported by the Marsden Fund and by a
“Doktorandenstipendium” from the DAAD (German Academic Exchange Service).

1



June 1, 2006 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) totalmachines

2 Downey, Greenberg, Mihailović, and Nies

that are low for computable machines are exactly the computably trace-
able ones, and so this notion coincides with that of lowness for Schnorr
randomness and for Schnorr tests.
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1. Introduction

A central set of results in the theory of algorithmic randomness were es-
tablished by Nies and his co-authors. They prove the coincidence of a num-
ber of natural “anti-randomness” classes associated with prefix-free Kol-
mogorov complexity. Recall that A is called low for K if for all x, KA(x) ≥
K(x)−O(1),a A is called K-trivial if for all n, K(A � n) ≤ K(n)+O(1), and
A is called low for Martin-Löf randomness if the collection of reals Martin-
Löf random relative to A is the same as the collection of Martin-Löf random
reals. We have the following.

Theorem 1.1: (Nies, Hirschfeldt, [12, 13]) For every real A, the following
are equivalent.

(i) A is low for K.
(ii) A is K-trivial.
(iii) A is low for Martin-Löf randomness.

The situation for other notions of randomness is less clear. In this paper
we look at the situation for Schnorr randomness. Recall that a real A is
said to be Schnorr random iff for all Schnorr tests {Un : n ∈ N}, A 6∈ ∩nUn,
where a Schnorr test is a Martin Löf test such that µ(Un) = 2−n for all n.
(Of course 2−n is a convenience. As Schnorr [16] observed, any uniformly
computable sequence of reals with effective limit 0 would do.)

The reader might note that there are two possible lowness notions asso-
ciated with Schnorr randomness. A real A is low for Schnorr randomness

aIn this paper K will denote prefix-free Kolmogorov complexity and we will refer to
members A = a0a1 . . . of Cantor space as reals, with A � n being the first n bits of A.
We assume that the reader is familiar with the theory of algorithmic randomness. For
details we refer to the monographs of Li and Vitányi [10], of Downey and Hirschfeldt [5],
and of Nies [14].
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if no Schnorr random real becomes non-Schnorr-random relative to A. But
since there is no universal Schnorr test, we can also define the stronger
(and more technical) notion of lowness for tests; a real A is low for Schnorr
tests if for every A-Schnorr test {UA

n : n ∈ N}, there is a Schnorr test
{Vn : n ∈ N} such that ∩nUA

n ⊆ ∩nVn.
Terwijn and Zambella [19] proved that there are reals that are low for

Schnorr tests. In fact, they classified the collection of reals which are low
for Schnorr tests.

For any n, we let Dn denote the nth canonical finite set.

Definition 1.2: (Terwijn and Zambella [19]) We say that a real A is com-
putably traceable if there is a computable function h(x) such that for all
functions g ≤T A, there is a computable collection of canonical finite sets
Dr(x) with |Dr(x)| ≤ h(x) and such that g(x) ∈ Dr(x).

We remark that (as noticed by Terwijn and Zambella) if A is computably
traceable then for the witnessing function h we can choose any computable,
non-decreasing and unbounded function.

Terwijn and Zambella proved the following attractive result.

Theorem 1.3: (Terwijn and Zambella [19]) A is low for Schnorr tests iff
A is computably traceable.

We remark that while all K-trivials are ∆0
2 by a result of Chaitin [1], the

computably traceable reals are all hyperimmune-free, and there are 2ℵ0

many of them.
Subsequently, Kjos-Hanssen, Stephan, and Nies [7] proved that A is low

for Schnorr randomness iff A is low for Schnorr tests.
The reader might wonder about analogs of the other results for K. The

other members of the coincidence involve K-triviality and lowness for K.
What about the Schnorr situation? We want some analog of the character-
ization of Martin-Löf randomness in terms of prefix-free complexity. (R is
Martin-Löf random iff for all n, K(R � n) ≥ n−O(1).) Such a characteriza-
tion was discovered by Downey and Griffiths [3]. They define a prefix-free
Turing machine M to be computable if the domain of M has computable
measure, that is,

∑
{σ : M(σ)↓} 2−|σ| is a computable real. They then estab-

lish the following:
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Theorem 1.4: (Downey and Griffiths [3]) R is Schnorr random iff for all
computable machines M , for all n, KM (R � n) ≥ n−O(1).b

The quantification over machines is necessary because (as in the situ-
ation for Schnorr tests), there is no universal computable machine. With
this result we are in a position to define a real A to be Schnorr trivial if
for every computable machine N there is a computable machine M such
that for all n, KM (A � n) ≤ KN (n) + O(1). This notion was initially ex-
plored by Downey and Griffiths [3] and Downey, Griffiths and LaForte [4],
who showed that this class does not coincide with the reals that are low
for Schnorr randomness. For instance, there are Turing complete Schnorr
trivial reals. Johanna Franklin [6] established the following.

Theorem 1.5: (Franklin [6])

(i) There is a perfect set of Schnorr trivials.
(ii) Every degree above 0′ contains a Schnorr trivial.
(iii) Every real that is low for Schnorr randomness is also Schnorr triv-

ial. c

Thus the relationship between lowness for Schnorr randomness and Schnorr
triviality is quite different from the analogous situation for Martin-Löf ran-
domness.

The last piece of the puzzle is the analog for lowness for K. Armed with
the machine characterization of Schnorr randomness, we give the following
definition.

Definition 1.6: A real A is low for computable machines iff for all A-
computable machines M there is a computable machine N such that for
all x,

KA
M (x) ≥ KN (x)−O(1).

bNote that since the range of M need not be all of 2<ω , we need to let KM (x) = ∞ for
all strings x not in the range of M .
cInterestingly, Franklin also showed that the reals that are low for Schnorr randomness

are not closed under join. The referee points out that a proof from Lerman [9] can be used
to establish Franklin’s result. To wit, the minimal degrees generate the Turing degrees
under meet and join, and the referee points out that the proof (in [9]) also shows that

such degrees can be chosen computably traceable, in the same way that the standard
construction of a minimal degree is automatically computably traceable.
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The reader might be concerned about whether for an A-computable
machine MA as in the definition above, MB is B-computable for other
oracles B. However, given a such a machine, we can obtain another oracle
machine M̃ such that MA = M̃A, and such that M̃B is prefix-free and
B-computable for every oracle B. d

A relativized version of the Kraft-Chaitin Theorem (Lemma 2.1) can
be used to show that Theorem 1.4 relativizes. Namely, we have that R is
A-Schnorr random iff for all A-computable machines M , for all n, KA

M (R �
n) ≥ n−O(1). Therefore, every real A that is low for computable machines
is low for Schnorr randomness, and by the results quoted above it follows
further that A is low for Schnorr tests and thus is computably traceable. In
this paper we show that unlike the situation for triviality, the coincidence
of the reals low for Martin-Löf randomness and the low for K ones carries
over to the Schnorr case:

Theorem 1.7: A real A is low for computable machines iff A is computably
traceable.

We remark that part (iii) of Theorem 1.5 above is a consequence of The-
orem 1.7, since every real A that is low for computable machines is Schnorr
trivial. For let N be a computable machine. Let L be an A-computable
machine such that for all n, KA

L (A � n) = KN (n) (for all x, if N(x) = n

then let L(x) = A � n.) Then there is some computable machine M such
that for all x, KM (x) ≤ KA

L (x) + O(1); M is as required to witness that A

is trivial.

2. The proof

We note that if we enumerate a Kraft-Chaitin set with a computable sum
then the machine produced is computable:

Lemma 2.1: (Kraft-Chaitin) Let 〈d0, τ0〉, 〈d1, τ1〉, . . . be a computable
list of pairs consisting of a natural number and a string. Suppose that

dIndeed, define the machine fM as follows. First, we may assume that for every oracle
B, MB is prefix-free. Now let F be a computable functional such F (A) is total and the

measure of the set {x ≤ F (A, n) : MA(x) is defined after F (A, n) steps} approximates

µ(MA) to within 2−n. Define fMB inductively: at stage n, first wait for F (B, n) to

halt (in the meantime, no new fMB-computations are recognised.) Next, allow MB to

run for F (B, n) many steps and accept new computations as fMB-computations; if at a

later stage we see that µ(MB) > µ(MB)[F (B, n)] + 2−n then we stop accepting newfMB-computations altogether. Then move to stage n + 1. Note that the construction is
uniform in M, F but not in M alone.
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∑
i<ω 2−di is a computable real (in particular, is finite). Then there is a

computable machine N such that for all i, KN (τi) ≤ di + O(1).

(See Downey [2] for a proof of the Kraft-Chaitin theorem; the fact that we
get a computable machine is immediate from the proof.)

To prove Theorem 1.7 we need to show that every computably traceable
set A is low for computable machines. So let A be a computably traceable
set and let M be an oracle machine such that MA is A-computable. The
idea (somewhat following Terwijn and Zambella) is to “break up” the ma-
chine MA into small and finite pieces which we trace. We view MA as a
function from strings to strings. We will partition MA into finite pieces
g, f0, f1, f2, . . . where for n < ω, the measure of the domain of fn is smaller
than some small rational εn. We then trace the sequence 〈fn〉; so for every
n, we get h(n) many candidates for fn, each with domain with measure
smaller than εn. If we keep

∑
n h(n)εn finite, the union of all of the candi-

dates can be translated into a Kraft-Chaitin set that produces the machine
we want.

Let h be the computable function given by Definition 1.2 (again we
remark that we can pick any reasonable function; it doesn’t matter for this
proof.) Fix a computable, decreasing sequence of positive rationals ε0, ε1, . . .

such that
∑

n<ω h(n)εn is finite; moreover, we want the convergence to be
quick, say for every m < ω,∑

n≥m

h(n)εn < 2−m.

Let 〈(σi, τi)〉i<ω be an A-computable enumeration of MA. We let MA
s ,

the machine MA at stage s, be {(σi, τi) : i < s}, and similarly let MA
≥s =

MA \MA
s = {(σi, τi) : i ≥ s}, and for s < t, MA

[s,t) = MA
t \MA

s .
Let tn be the least stage t such that µ(dom MA

≥t) < εn. We let
g = MA

t0 ; for n < ω, we let fn = MA
[tn,tn+1)

. The point is that the se-
quence 〈tn〉, and so the sequence 〈fn〉, are A-computable, as µ(dom MA

≥t) =
µ(dom MA) − µ(dom MA

t ); the first number is A-computable by assump-
tion, and the latter a rational, computable from the sequence 〈(σi, τi)〉 and
so from A. For all n < ω, µ(dom fn) < εn.

Each fn is a finite function (and so has a natural number code.) We can
thus computably trace the sequence 〈fn〉; there is a computable sequence of
finite sets 〈Xn〉n<ω (i.e. Xn = Dr(n) where r is computable) such that for
each n, |Xn| ≤ h(n), and for each n, (the code for) fn ∈ Xn. By weeding
out elements, we may assume that for each n < ω, every element of Xn
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is a code for a finite function f from strings to strings whose domain is
prefix-free and has measure at most εn.

Enumerate a Kraft-Chaitin set L as follows. Let 〈d, τ〉 ∈ L if there is
some σ such that |σ| = d, and one of the following holds:

• (σ, τ) ∈ g;
• For some n and for some f ∈ Xn, (σ, τ) ∈ f .

The set L is computably enumerable. Further, the total of the requests
s =

∑
(d,τ)∈L 2−d is a finite, computable real, as we know that for any m,∑
{2−|σ| : (∃n ≥ m)(∃f ∈ Xn)[σ ∈ dom f ]} ≤

∑
n≥m

h(n)εn ≤ 2−m.

From the “computable” Kraft-Chaitin theorem we get a computable
machine N such that for some constant c, if (d, τ) ∈ L, then KN (τ) ≤
d + c. On the other hand, we know that if τ is in the range of MA then
(KA

M (τ), τ) ∈ L because fn ∈ Xn for all n. Thus N is as required.
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