Superhighness and strong jump traceability

André Nies*

University of Auckland

Abstract. Let A be a c.e. set. Then A is strongly jump traceable if and
only if A is Turing below each superhigh Martin-Lof random set. The
proof combines priority with measure theoretic arguments.

1 Introduction

A lowness property of a set A C N specifies a sense in which A is computationally
weak.

(I) Usually this means that A has limited strength when used as an oracle. An
example is superlowness, A’ <i; ('. Further examples are given by traceability
properties of A. Such a property specifies how to effectively approximate the
values of certain functions (partial) computable in A. For instance, A is jump
traceable [1] if JA(n) | implies J4(n) € T, for some uniformly c.e. sequence
(T))nen of computably bounded size. Here J is the jump functional: If X C N,
we write JX (n) for @X(n).
(IT) A further way to be computationally weak is to be easy to compute. A
lowness property of this kind specifies a sense in which many oracles compute A.
For instance, consider the property to be a base for ML-randomness, introduced
in [2]. Here the class of oracles computing A is large enough to admit a set that
is ML-random relative to A. By [3] this property coincides with the type (I)
lowness property of being low for ML-randomness.

As our main result, we show a surprising further coincidence of a type (I) and
a type (II) lowness property for c.e. sets. The type (I) property is strong jump
traceability, introduced in [4], and studied in more depth in [5]. We say that a
computable function h: N — N\ {0} is an order function if h is nondecreasing
and unbounded.

Definition 1. A C N is strongly jump traceable (s.j.t.) if for each order func-
tion h, there is a uniformly c.e. sequence (Ty,)nen such that Vn |T,| < h(n) and
vn[JA(n) | — JA(n) € T,].

Figueira, Nies and Stephan [4] built a promptly simple set that is strongly jump
traceable. Cholak, Downey and Greenberg [5] showed that the strongly jump
traceable c.e. sets form a proper subideal of the K-trivial c.e. sets under Turing
reducibility.

* The author was partially supported by the Marsden Fund of New Zealand, grant no.
03-UOA-130.

We say that a set Y C N is superhigh if ("’ < Y. This notion was first stud-
ied by Mohrherr [6] for c.e. sets. For background and results on superhighness see
[7,8]. The type (II) property is to be Turing below each superhigh ML-random
set. Thus our main result is that a c.e. set A is strongly jump traceable if and
only if A is Turing below each superhigh Martin-Léf random set.

The property to be Turing below each superhigh ML-random set can be put
into a more general context. For a class H C 2“, we define the corresponding
diamond class

H® ={A: Aisce. & VY €e HNMLR[A <7 Y]}.

Here MLR is the class of ML-random sets. Note that H® determines an ideal in
the c.e. Turing degrees. By a result of Hirschfeldt and Miller (see [7, 5.3.15]), for
each null XY class, the corresponding diamond class contains a promptly simple
set A. Their construction of A is via a non-adaptive cost-function construction
(see [7, Section 5.3] for details on cost functions). That is, the cost function can
be given in advance. This means that the construction can be viewed as injury-
free. In contrast, the direct construction of a promptly simple strongly jump
traceable set in [4] varies Post’s construction of a low simple set, and therefore
has injury.

In [9] a result similar to our main result was obtained when H is the class of
superlow sets Y (namely, Y’ <;; 0"). Earlier, Hirschfeldt and Nies had obtained
such a coincidence for the class H of w-c.e. sets Y (namely, Y’ <y 0).

In all cases, to show that a c.e. strongly jump traceable set A is in the required
diamond class, one finds an appropriate collection of benign cost functions; this
key concept was introduced by Greenberg and Nies [10]. The set A obeys each
benign cost function by the main result of [10]. This implies that A is in the
diamond class.

It is harder to prove the converse inclusion: each c.e. set in H® is s.j.t. Suppose
an order function h is given. For one thing, similar to the proof of the analogous
inclusion in [9], we use a variant of the golden run method introduced in [12].
One wants to restrict the changes of A to the extent that A is strongly jump
traceable. To this end, one attempts to define a “naughty set” ¥ € HNMLR. It
exploits the changes of A in order to avoid being Turing above A. The number of
levels in the golden run construction is infinite, with the e-th level based on the
Turing functional @.. If the golden run fails to exist at level e then A # &Y. If
this is so for all e then A £ Y, contrary to the hypothesis that A € H°. Hence
a golden run must exist. Since it is golden it successfully builds the required
trace for J4 with bound h.

A further ingredient of our proof stems from ideas that started in Kurtz
[13] and were elaborated further, for instance, in Nies [12,14]: mixing priority
arguments and measure theoretic arguments. In contrast, the proof in [9] is
not measure theoretic. (Indeed, they prove, more generally, that for each non-
empty IIY class P, each c.e. set Turing below every superlow member of P
must be strongly jump traceable. This stronger statement has no analog for
superhighness, for instance because all members of P could be computable.)

Here we need to make the naughty set Y superhigh. This is done by coding ("
(see [7, 3.3.2]) in the style of Kucera, but not quite into Y: the coding strings
change due to the activity of the tracing procedures. The number of times they
change is computably bounded. So the coding yields " < Y.

Notation. Suppose f is a unary function and f is binary. We write

Vi f(n) = LmS™ F(n, s)

if there is a computable function g : N — N such that for all n, the set
{s>0: f(n,s) # f(n,s—1)}

has cardinality less than g(n), and lim, f(n,s) = f(n).

Welet X' = {n: JX(n) |}, and X, = {n: JX(n) |}. We use Knuth’s bracket
notation in sums. For instance, Y, n™? [n is odd] denotes 1+1/9+1/25+... =
72 /8.

A forthcoming paper by Greenberg, Hirschfeldt and Nies (Characterizing the
s.j.t. sets via randomness) contains a new proof of Theorem 2 using the language
of “golden pairs”. This makes it possible to cut some parameters.

2 Benign cost functions and Shigh®

Note that a function f is d.n.c. relative to 0 if Vo —f(z) = J%(z). Let P be
the I19(0') class of {0,1}-valued functions that are d.n.c. relative to ('. The
PA sets form a null class (see, for instance, [7, 8.5.12]). Relativizing this to
(', we obtain that the class {Z: 3f <r Z & 0’ [f € P]} is null. Then, since
GL, ={Z: Z' =7 Z & ('} is conull, the following class, suggested by Simpson,
is also null:

H={Z: 3f <u Z'[f € P} (1)

This class clearly contains Shigh because ()"’ truth-table computes a function that
is d.n.c. relative to (/. Since H is XY, by a result of Hirschfeldt and Miller (see
[7, 5.3.15]) the class H® contains a promptly simple set. We strengthen this:

Theorem 1. Let A be a c.e. set that is strongly jump traceable.
Then A € H°.

Proof. In [10] a cost function c is defined to be benign if there is a computable
function g with the following property: if g < ... < x, and c(x;, ¢;y1) > 27°¢
for each ¢, then n < g(e). For each truth table reduction I" we define a benign
cost function ¢ such that for each AJ set A, and each ML-random set Y,

A obeys ¢ and I'Y" is {0, 1}-valued d.n.c. relative to ¢/ = A <7 Y.

Let (I.) be the sequence of consecutive intervals of N of length e. Thus min I, =
e(e + 1)/2. We define a function @ <p (. We are given a partial computable
function p and (via the Recursion Theorem) think of p as a reduction function
for o, namely, p is total, increasing, and Vz a(z) ~ J?(p(x)).

At stage s of the construction we define the approximation ag(x). Suppose

x € I.. If p(y) is undefined at stage s for some y € I, let ag(x) = 0. Otherwise,
let

Cos = {Y: Ftycres¥a € I [1 - an(@) = IV, p())]}, (2)

where v < s is greatest such that v = 0 or a, [I. # ay—1 | L. (Thus, C. s is
the set of oracles Y such that Y’ computes a correctly at some stage ¢ after the
last change of a[y,.)

Construction of a.
Stage s > 0. For each e < s, if A\Cc s—1 < 27" let a5 | I = as—1 | L. Otherwise
change a [I.: define g | I, in such a way that AC. , < 27°.

Claim. a(z) = lim, as(z) exists for each x.
We use a measure theoretic fact suggested by Hirschfeldt in a related context (see
[7, 1.9.15]). Suppose N, e € N, and for 1 <1 < N, the class B; is measurable and
AB; > 27¢. If N > k2¢ then there is a set F C {1,..., N} such that |F|=k+1
and ;e p Bi # 0.

Suppose now that 0 = vy < v; < ... < vy are consecutive stages at which
a [I, changes. Thus p | I, is defined. Then AB; > 27¢ for each ¢ < N, where

Bi={Y: Y, x# Y &}

and k = use I'(max p(I.)), because AC, increased by at least 27¢ from v; to v;41.
Note that the intersection of any k 4+ 1 of the B; is empty. Thus N < 2¢k by the
measure theoretic fact. &

Since « is A9, by the Recursion Theorem, we can now assume that p is a
reduction function for «. Then in fact we have a computable bound g on the
number of changes of « | I, given by g(e) = 2°use I'(max p(l,)).

To complete the proof, let A be a c.e. set that is strongly jump traceable. We
define a cost function ¢ by c¢(z,s) = 277 for each z > s; if z < s, and e < x is
least such that e = x or oy [I, # as_1 | I, let

c(z,s) = max(c(x,s — 1),27°).

Note that the cost function c is benign as defined in [10]: if 2 < ... < z, and
e(xi,wip1) > 27 for each i, then ay | I. # as—1 | I. for some s such that
x; < 8 < x;41. Hence n < g(e) where g is defined after the claim.

By [10] fix a computable enumeration (Ag)sen of A that obeys c. (The rest
of the argument actually works for a computable approximation (Ag)sen of a
AY set A.)

We build a Solovay test G as follows: when A;_1(z) # A.(z), we put Ce,
defined in (2) into G where e is largest such that « | I. has been stable from z
to . Then 27¢ < c¢(x,t). Since ACet < 27T < 2¢(z,t) and the computable
approximation of A obeys ¢, G is indeed a Solovay test.

Choose sg such that ¢ A Y for each [o] enumerated into G after stage sqg. To
show A <7 Y, given an input y > sg, using Y as an oracle, compute s > y such
that as(z) = I'(Y!;xz) for each x < y. Then A(y) = A(y): if Au(y) # Au—1(y)
for u > s, let e < y be largest such that « | I. has been stable from y to w.

Then by stage s > y the set Y is in C. s € C.+, so we put Y into G at stage u,
contradiction.

In the following we give a direct construction of a null X9 class containing the
superhigh sets. Note that the class H defined in (1) is such a class. However, the
proof below uses techniques of independent interest. For instance, they might be
of use to resolve the open question whether superhighness itself is a X9 property.

Proposition 1. There is a null X9 class containing the superhigh sets.

Proof. For each truth-table reduction @, we uniformly define a null 119 class Sg
such that 0 = d(Y') — Y € Sp.

We build a A9 set Dg. Then, by the Recursion Theorem we have a truth-
table reduction I'y such that §” = &(Y') — Dg = I'(Y’'). We define Dg in
such a way that Sg = {Y: Dg = I'(Y"')} is null. Also, Sg is IT9 because

Y €S « YwVi>wds>iDg(w,s)=1I(Y,;w).

Claim. For each string o, the real number r, = MZ: o < Z'} is the difference
of left-c.e. reals uniformly in o (see [7, 1.8.15]).

To see this, note that for each finite set F' the class Cp = {Z: F C Z'} is
uniformly X9. Let F(o) = {j < |o|: o(j) = 1}, then

Te = A(CF(O') - Ur<\a\&a(r):0 C{T}UF(U))'

This proves the claim. Now, for each 7 let b, = M{Z: 7 < I'(Z’)}. Then b, =
Y o To [T =1"7] is uniformly difference left-c.e.

One can define the A set D = Dg in such a way that 2bp in+1 < bpyy, for
each n. Then 27" > MY: Dg [,= I'(Y’')[,} for each n, so Sg is null.

3 Each set in Shigh® is strongly jump traceable

Theorem 2. Let A be a c.e. set that is Turing below all ML-random superhigh
sets. Then A is strongly jump traceable.

Proof. Let h be an order function. We will define a ML-random superhigh set Z
such that A <7 Z implies that A is jump traceable via bound h. In fact for
an arbitrary given set G we can define Z such that G < Z’. If also G >4 (",
then Z is superhigh.

Preliminaries. Let A denote the uniform measure on Cantor space. We will
need a lower bound on the measure of a non-empty II{ class of ML-random sets.
This bound is given uniformly in an index for the class (Kucera; see [7, 3.3.3]).
Let @y € MLR be the complement 2¢ — Ry of the second component of the
standard universal ML-test.

Lemma 1. Given an effective listing (P)yen of 11 classes, P’ C Qq, there is
a constant co such that A\P? < 2-K@)—co _, pv — @,

We assume an indexing of all the T} classes. Given an index for a II} class P we
have an effective approximation P = ("), P, where P, is a clopen set ([7, Section
1.8]).
The basic set-up. For each e, a procedure R¢ (with further parameters to be
discussed later) builds a c.e. trace (T})zen with bound h. Either for almost all z,
JA(x) | implies JA(z) € T, or R® shows that A # &Z. Since Z is superhigh,
the first alternative must hold for some e.

When a new computation w = J4(x) | with use u appears, R® activates
a sub-procedure S¢. This sub-procedure waits for evidence that A [, is stable
before putting w into the trace set T,. By first waiting long enough, it makes
sure that an A [, change after this tracing can happen for at most h(x) times,
so that |T,| < h(x). S¢ also calls an instance of the next procedure R°T!. Thus,

during the construction we can have many runs of each of the procedures R®
and S¢.

The environment of a procedure. Each R has as further parameters a IT) class P
and a number r € N. It assumes that Z € P and 27" < AP. Each S¢ activated
by R¢(P,r) will specify an appropriate subclass @ C P and a number ¢ € N,
and call R°T1(Q, q).

Initially we call R%(Qo, 2)

The two phases of S&. A procedure S¢ alternates between Phases I, and II. When
changing phases it returns control to R¢. In our first approximation to describing
the construction, once a computation w = J4(z) | with use u appears, S¢ enters
Phase 1. It considers the X9 class C = {Z: &7 [,= A [,}. It calls R*T1(Q, q)
where Q = P — C' and q is obtained by Lemma 1. If it stays here then, because
Z € Q, its outcome is that 7 # A.

For a threshold ¢ depending only on r and z, once \(Ps; N Cy) > § at stage s
it lets D = C, and puts w into T,. Now the outcome is that J“(x) has been
traced. So S¢ can return and stay inactive unless A [, changes.

Once A [, has changed, S¢ enters Phase II by calling R*T1(Q, q) where now
Q = PN D and q is obtained by Lemma 1. Its outcome is again that ®Z # A,
this time because ®Z [, is the previous value of A [, (here we use that 4 is c.e.).

If, later on, PN D becomes empty, then S¢ returns. It is now turned back to

the beginning and may start again in Phase I when a new computation J4(z)
appears. Note that P has now lost a measure of §. So SS can go back to Phase 1
for at most 1/0 times.
The golden run. For some e we want a run of R® such that each sub-procedure
S¢ it calls returns. For then, the c.e. trace (T})zen this run of R® builds is a
trace for J4. If no such run R® exists then each run of R® eventually calls some
S¢ which does not return, and therefore permanently runs a procedure R¢*t. If
Z € (P, where P, is the parameter of the final run of a procedure R®, then
A £7 Z. So we have a contradiction if we can define a set Z € (), P such that
G<y 7.

Ensuring that G <i; Z'. For this we have to introduce new parameters into the
procedures S%.

Phase I Phase II

Requires attn. when
J A(x) converges
Call R™(P-C)

Wait for
MPNC)>0

Requires attn. when
Al has changed

CallR®*(P N D)

Wait for
P, MD =g

Put w into T, ; let D=Cg;

[goto Phase I; return }
goto Phase II; return

Fig. 1. Diagram for the procedure Sy

Note that G <y Z’ iff there is a binary function f <7 Z such that Vz G |,=
Hm{°™P f(z,s) (namely, the number of changes is computably bounded). We
will define Z such that Z’ encodes G. We use a variant of Kucera’s method
to code into ML-random sets. We define strings z, = lim{"™" 2z, ; and let Z =
U <G P The strings 2, s are given effectively, and for each s they are pairwise
incomparable. Then we let f(z,s) =y if |y| =z and 2, < Z, and f(z,s) =@
if there is no such ~.

Firstly, we review Kuéera’s coding into a member of a IT{-class P of positive
measure. For a string x let A\(P|z) = 2/*I\(P N [2]).

Lemma 2 (Kuéera; see [7], 3.3.1). Suppose that P is a II) class, = is a
string, and A\(P|z) > 27" where | € N. Then there are at least two strings w = x
of length |z| + 141 such that A\(P|w) > 2771, We let wy be the leftmost and w;
be the rightmost such string.

In the following we code a string (3 into a string yz on a I1{ class P.

Definition 2. Given a II{ class P, a string 2 such that P C [z], and r € N such
that 27" < AP, we define a string

as follows: yz = z; if © = yz has been defined, let | = r + |3], and let ygv, = wy

for b € {0,1}, where the strings w; are defined as in Lemma 2.
Note that for each § we have A(P | yz) > 27""1#l and

lysl < [2[+18(r + 18] + 1). ()

At stage s we have the approximation yg s = kuc(Ps N [2],7, 2, 5). While ys , is
stable, the string wj, in the recursive definition above changes at most 2! times.
Thus, inductively, y3 . changes at most 21217 +B+1) times.

For each e,n we may have a version of R® denoted R®"(P,r, z,). It assumes
that n has already been coded into the initial segment z, of Z, and works within
P C [z,]. It calls procedures S$"*(P,r,z,) for certain z, . In this case we let
Zna = Ya = kuc(P, 1, 2,).

For each x, once JA(z) |, R®" wishes to run S&"* for all a of a certain
length m defined in (5) below, which increases with h(x). Thus, as = increases,
more and more bits beyond 1 are coded into Z. The trace set T, will contain all
the numbers enumerated by procedures S¢7* where |a| = m. We ensure that m
is small enough so that |T,| < h(x). To summarize, a typical sequences of calls
of procedures is

R&M nga — Retlma

Formal details. Some ML-random set Y Zr @’ is superhigh by pseudo jump
inversion as in [7, 6.3.14]. Since A <p Y and A is c.e., A is a base for ML-
randomness; see [7, 5.1.18]. Thus A is superlow. Hence there is an order function g
and a computable enumeration of A such that J4(x)[s] becomes undefined for
at most g(z) times.

We build a sequence of ITY classes (P"),en as in Lemma 1. If n = (e, ~, x,1),
then since K(n) <t 2log(e,v) + 2logz + 2log, we have

Ple@i) £0 = AP&E:1) > 974 (4)

where ¢ = 2log(e,) + 2log x 4+ 2log i + ¢ for some fixed ¢ € N. By the Recursion
Theorem we may assume that we know c in advance.
The construction starts off by calling R%?(Qo, 3, 2).

Procedure R®"(P,r,z), where z € 2<%, P C MLRN [2] is a ITY class and r € N.
This procedure enumerates a c.e. trace (T)zen. (It assumes that 277 < AP.)
For each string « of length at most the stage number s, see whether some proce-
dure S£"%(P) requires attention, or is at (b) or (e), and no procedure Sg"°(P)
for B < « satisfies the same condition. If so, choose x least for o and activate
S&1(P). (This suspends any runs S for na < p. Such a run may be resumed
later.)

Procedure S¢"*(P,r, z), where || is the greatest m > 0 such that,
if n=m(r+m+1), we have

2|n(x|22n+r+2 < h(l’) (5)

There only is such a procedure if x is so large that m exists.
Let yqo,s = kuc(Ps, a, 1, 2). Let

§ = 27 Waslmm=r=1,
(Comment: S&"*(P,r, z) cannot change yo 5. It only changes “by itself” as P

gets smaller. This makes the procedure go back to the beginning. So in the
following we can assume y, is stable.)

Phase I.
(a) S requires attention if w = JA(z) | with use u. Let
C= [ya] n {Z: @eZ = A ru}’7

a XY class. Let Cs = [yos) N {Z: 7 [,= A1, [s]} be its approximation at
stage s, which is clopen.
(b) WHILE A(P; N Cs) < ¢ run in case e < s the procedure

Re+1,na(Q7 q, ya,s)§
here @ is the IT{ class PN [y,.s] — C, and
q = 2log(e,na) + 2logx + 2logi + c,

where i is the number of times SS7* has called R (the constant ¢
was defined after (4) at the beginning of the formal construction). Then
2779 < A\Q unless Q = 0. Meanwhile, if y, s # Ya,s—1 Put w into T, cancel
all sub-runs, GOTO (a), and RETURN. Otherwise, if Ag [,# As_1 [cancel all
sub-runs, GOTO (a) and RETURN.
(Comment: if the run S&" stays at (b) and Z € Q, then A[,= &7 |, fails,
so we have defeated @..)

(¢) Put w into T}, let D = C,, coTO (d), and RETURN. (Thus, the next time
we call S¢"*(P) it will be in Phase II.)

Phase 1I.

(d) S&"< requires attention again if AT, has changed.
(e) WHILE P, N D # () RUN in case e < s

RTYPND,q,ya,s)

where ¢ € N is defined as in (b). Meanwhile, if y4 s # Ya,s—1 cancel all
sub-runs, GOTO (a), and RETURN.
(Comment: if the run S&"* stays at (e) and Z € Q then again A[,= &7,
fails, this time because Z € D and &7 [, is an old version of A[,.)

(f) GoTto (a) and RETURN.

Verification. The function g was defined at the beginning of the formal proof.
First we compute bounds on how often a particular run S$7* does certain things.
Claim 1. Consider a run SS"*(P,r, z) called by R*"(P,r,z). As in the con-
struction, let m = |a| and n =m(r+m+1).

i) While y. s does not change, the run passes or at most 2T times.
(i) Yo, ge, p

(ii) The run enumerates at most 22" +t72 elements into T,.

(iii) It calls a run RETYMY at (b) or (e) for at most 2" 1g(x) times.

To prove (i), as before let § = 2~ 1¥al=m="=1 Note that each time the run
passes (f), the class P N [yo] loses AD > § in measure. This can repeat itself at
most 2™ 71 times. (This argument allows for the case that the run of S&* is
suspended due to the run of some S¢"% for 3 < . If S finishes then S$7%,
with the same parameters, continues from the same point on where it was when
it was suspended.)
(ii) There are at most 2" values for y, during a run of S&"7* by the remarks
after Definition 2. Therefore this run enumerates at most 272" +7+1 427 elements
into T, where at most 2" elements are enumerated when y, changes.
(iii): for each value y,, there are at most 2g(z) calls, namely, at most two for each
computation J4(x) (g is defined at the beginning of the formal proof). <&
Note that |T,;| < h(z) by (ii) of Claim 1 and (5).
Strings z,5, 7 € 2<¢ are used to code the given set G into Z'. Let z5 s = @.

— If z, s has been defined and R*"(P,r,z,) is running at stage s, then for
all 8 such that no procedure S*"* is running for any a < 3, let z,3, =
kuc(P, 7, 2.5, 3).

— If a is maximal under the prefix relation such that z,, s is now defined,
it must be the case that Rt17%(Q, ¢, z,,) runs. So we may continue the
recursive definition. Note that |«| > 0 by the condition that m > 0 in (5).

Claim 2 For each vy, zy = lim, 2z, exists, with the number of changes com-
putably bounded in ~.

We say that a run of S&” is a k-run if |p| < k. For each number parameter p
we will let p(k,v) denote a computable upper bound for p computed from k, v.
Such a function is always chosen nondecreasing in each argument.

To prove Claim 2, we think of & as fixed and define by simultaneous recursion
on v < k computable functions 7(k,v), Z(k,v), b(k,v), ¢(k,v) with the following
properties:

(i) 7(k,v) bounds r in any call R®"(Q,r) where |n| <k and e < v.
(ii) T(k,v) bounds the largest x such that some k-run SS"* is started where
e <w.
(iii) For each x, b(k,v) bounds the number of times a k-run S&" for e < v
requires attention.
(iv) For each z, ¢(k,v) bounds the number of times a run RE*L1% is started by
some k-run S$"1 fore < w.

Fix v such that |y| = k. In the following we may assume that na < ~, because
then the actual bounds can be obtained by multiplying with 2%.

Suppose now k > v > 0 and we have defined the bounds in (i)—(iv) for v—1in
case v > 0. We define the bounds for v and verify (i)—(iv). We may assume e = v,
because then the required bounds are obtained by adding the bounds for k,v—1
to the bounds now obtained for e = v.

(i). First suppose that v = 0. Then n = &, so let 7(k,0) = 3. If v > 0, we
define a sequence of IT{ classes as in Lemma 1: if for the i-th time a run S¢=1
calls a run R*?(Q,q) we let P{&r=i) = Q. By the inductive hypothesis (iii)

and (iv) for v — 1 we have a bound i(v,x) on the largest i such that a class
Pmezi) s defined (when SY~17 in (b) or (e) starts a run RY7). Thus let
7(k,v) = 2log(v,7) + 2logZ(k,v — 1) + 2logi(v,Z(k,v — 1)) + c.

To prove (ii) and (iii), suppose R®"(Q,r) calls S&"*. Let m = |a| and n =
m(r +m+1). Then n < k(F(k,v) + k+1).

(ii) We have h(z) < 2F+2kT(E2)+h+D+3 hecause m is chosen maximal in (5).
Since h is an order function, this gives the desired computable bound Z(k,v)
on .

(iii). By Claim 1(i), for each value of y,, the run can pass (f) for at most
2k+7(kv)+1 times. Further, it can require attention 2" + g(Z(k,v)) more times
because y,, changes or because J*(z) changes. This allows us to define b(k,v).
(iv). By Claim 1(iv) a run R*T17% is started for at most b(k,v)25+1g(Z(k, v))
times.

This completes the recursive definition of the four functions. Now, to obtain
Claim 2, fix 7. One reason that z, changes is that (A) some run SyP for p =2
7, calls RT1* in (e). This run is a k-run for & = |y|. By (ii) and (iii), the
number of times this happens is computably bounded by b(k, k)Z(k, k). While
it does not happen, z, can also change because (B) for some na <~ as in the
construction, y, changes because some P;, which defines y,, decreases. Since
there is a computable bound I(k) on the length of 2., by (i) of this claim and (3),
while the first reason does not apply, this can happen for at most 2/*) times.
Thus in total 2, changes for at most b(k, k)Z(k, k)2'*®) times. <&

Now let Z = U,HG zy. By Claim 2 we have G <y Z'.

Claim 3 (Golden Run Lemma) For some n < G and some e, there is a run
Re"(P,r) (called a golden run) that is not cancelled such that, each time it calls
a run S$"1 where na < G, that run returns.

Assume the claim fails. We verify the following for each e.

(i) There is a run R®" that is not cancelled; further, S&"*(P) is running for
some z, where na < G, and eventually does not return.
(i) A # P2,
(i) We use induction. For e = 0 clearly the single run of R%? is not cancelled.
Suppose now that a run of R®" is not cancelled. Since we assume the claim
fails, some run S5, na < G, eventually does not return. From then on the
computation J4(z) it is based on and y, are stable. So the run calls RT1n®
and that run is not cancelled.
(ii) Suppose the run S¢"%(P,r, z) that does not return has been called at stage s.
Suppose further it now stays at (b) or (e), after having called R*"*(Q, ¢, Yo)-
Since y,q is stable by stage s, we have Z € Q. Hence A # ®Z by the comments
in (b) or (e). <&
Let (T,)zen be the c.e. trace enumerated by this golden run.
Claim 4 (T,)en is a trace for JA with bound h.
As remarked after Claim 1, we have |T;| < h(x). Suppose z is so large that m
in (5) exists. Suppose further that the final value of w = J4(x) appears at stage t.
Let na < G such that |a] = m.

As the run is golden and by Claim 1(i), eventually no procedure Sg"9(P)
for 5 < « is at (b) or (e). Thus, from some stage s > t on, the run S&"*
is not suspended. If y, has not settled by stage s then w goes into T,. Else
AP | Ya.s) > 277712l Since S returns each time it is called, the run is at
(a) at some stage after t. Also, Py N C, must reach the size § = 2~ vel=lal=r=1
required for putting w into 7.

As a consequence, we can separate highness properties within the ML-random
sets. See [7, Def. 8.4.13] for the weak reducibility <7, and [10] for the highness
property “@’ is c.e. traceable by Y”. Note that JT-hardness implies both this
highness property and superhighness.

Corollary 1. There is a ML-random superhigh AY set Z such that () is not c.e.
traceable by Z. In particular, Z is not JT-hard.

Proof. By [7, Lemma 8.5.19] there is a benign cost function ¢ such that each c.e.
set A that obeys ¢ is Turing below each ML-random set Y such that ()’ is c.e.
traceable by Y. By [7, Exercise 8.5.8] there is an order function A such that some
c.e. set A obeys ¢ but is not jump traceable with bound h. Then by the proof
of Theorem 2 there is a ML-random superhigh set Z <r (" such that A £ Z.
Hence Z is not JT-hard.

References

1. Nies, A.: Reals which compute little. In: Logic Colloquium ’02. Lecture Notes in
Logic, Springer—Verlag (2002) 260-274
Kugcera, A.: On relative randomness. Ann. Pure Appl. Logic 63 (1993) 61-67
3. Hirschfeldt, D., Nies, A., Stephan, F.: Using random sets as oracles. J. Lond.
Math. Soc. (2) 75(3) (2007) 610-622
4. Figueira, S., Nies, A., Stephan, F.: Lowness properties and approximations of the
jump. Ann. Pure Appl. Logic 152 (2008) 51-66
5. Cholak, P., Downey, R., Greenberg, N.: Strongly jump-traceability I: the com-
putably enumerable case. Adv. in Math. 217 (2008) 2045-2074
6. Mohrherr, J.: A refinement of low,, and high,, for the r.e. degrees. Z. Math. Logik
Grundlag. Math. 32(1) (1986) 5-12
7. Nies, A.: Computability and Randomness. Oxford University Press (2009) Oxford
Logic Guides, xv + 443 pages.
8. Kjos-Hanssen, B., Nies, A.: Superhighness. To appear in Notre Dame J. Formal
Logic
9. Greenberg, N., Hirschfeldt, D., Nies, A.: Characterizing the strongly jump traceable
sets via randomness. To appear
10. Greenberg, N., Nies, A.: Benign cost functions and lowness properties. To appear
11. Downey, R., Hirschfeldt, D., Nies, A., Stephan, F.: Trivial reals. In: Proceedings of
the 7th and 8th Asian Logic Conferences, Singapore, Singapore Univ. Press (2003)
103-131
12. Nies, A.: Lowness properties and randomness. Adv. in Math. 197 (2005) 274-305
13. Kurtz, S.: Randomness and genericity in the degrees of unsolvability. Ph.D. Dis-
sertation, University of Illinois, Urbana (1981)
14. Nies, A.: Non-cupping and randomness. Proc. Amer. Math. Soc. 135(3) (2007)
837-844

o

