
Superhighness and strong jump traceability

André Nies?

University of Auckland

Abstract. Let A be a c.e. set. Then A is strongly jump traceable if and
only if A is Turing below each superhigh Martin-Löf random set. The
proof combines priority with measure theoretic arguments.

1 Introduction

A lowness property of a set A ⊆ N specifies a sense in which A is computationally
weak.
(I) Usually this means that A has limited strength when used as an oracle. An
example is superlowness, A′ ≤tt ∅′. Further examples are given by traceability
properties of A. Such a property specifies how to effectively approximate the
values of certain functions (partial) computable in A. For instance, A is jump
traceable [1] if JA(n) ↓ implies JA(n) ∈ Tn, for some uniformly c.e. sequence
(Tn)n∈N of computably bounded size. Here J is the jump functional: If X ⊆ N,
we write JX(n) for ΦX

n (n).
(II) A further way to be computationally weak is to be easy to compute. A
lowness property of this kind specifies a sense in which many oracles compute A.
For instance, consider the property to be a base for ML-randomness, introduced
in [2]. Here the class of oracles computing A is large enough to admit a set that
is ML-random relative to A. By [3] this property coincides with the type (I)
lowness property of being low for ML-randomness.

As our main result, we show a surprising further coincidence of a type (I) and
a type (II) lowness property for c.e. sets. The type (I) property is strong jump
traceability, introduced in [4], and studied in more depth in [5]. We say that a
computable function h : N → N \ {0} is an order function if h is nondecreasing
and unbounded.

Definition 1. A ⊆ N is strongly jump traceable (s.j.t.) if for each order func-
tion h, there is a uniformly c.e. sequence (Tn)n∈N such that ∀n |Tn| ≤ h(n) and
∀n [JA(n) ↓ → JA(n) ∈ Tn].

Figueira, Nies and Stephan [4] built a promptly simple set that is strongly jump
traceable. Cholak, Downey and Greenberg [5] showed that the strongly jump
traceable c.e. sets form a proper subideal of the K-trivial c.e. sets under Turing
reducibility.
? The author was partially supported by the Marsden Fund of New Zealand, grant no.

03-UOA-130.

We say that a set Y ⊆ N is superhigh if ∅′′ ≤tt Y ′. This notion was first stud-
ied by Mohrherr [6] for c.e. sets. For background and results on superhighness see
[7, 8]. The type (II) property is to be Turing below each superhigh ML-random
set. Thus our main result is that a c.e. set A is strongly jump traceable if and
only if A is Turing below each superhigh Martin-Löf random set.

The property to be Turing below each superhigh ML-random set can be put
into a more general context. For a class H ⊆ 2ω, we define the corresponding
diamond class

H3 = {A : A is c.e. & ∀Y ∈ H ∩MLR [A ≤T Y]}.

Here MLR is the class of ML-random sets. Note that H3 determines an ideal in
the c.e. Turing degrees. By a result of Hirschfeldt and Miller (see [7, 5.3.15]), for
each null Σ0

3 class, the corresponding diamond class contains a promptly simple
set A. Their construction of A is via a non-adaptive cost-function construction
(see [7, Section 5.3] for details on cost functions). That is, the cost function can
be given in advance. This means that the construction can be viewed as injury-
free. In contrast, the direct construction of a promptly simple strongly jump
traceable set in [4] varies Post’s construction of a low simple set, and therefore
has injury.

In [9] a result similar to our main result was obtained when H is the class of
superlow sets Y (namely, Y ′ ≤tt ∅′). Earlier, Hirschfeldt and Nies had obtained
such a coincidence for the class H of ω-c.e. sets Y (namely, Y ′ ≤tt ∅′).

In all cases, to show that a c.e. strongly jump traceable set A is in the required
diamond class, one finds an appropriate collection of benign cost functions; this
key concept was introduced by Greenberg and Nies [10]. The set A obeys each
benign cost function by the main result of [10]. This implies that A is in the
diamond class.

It is harder to prove the converse inclusion: each c.e. set inH3 is s.j.t. Suppose
an order function h is given. For one thing, similar to the proof of the analogous
inclusion in [9], we use a variant of the golden run method introduced in [12].
One wants to restrict the changes of A to the extent that A is strongly jump
traceable. To this end, one attempts to define a “naughty set” Y ∈ H∩MLR. It
exploits the changes of A in order to avoid being Turing above A. The number of
levels in the golden run construction is infinite, with the e-th level based on the
Turing functional Φe. If the golden run fails to exist at level e then A 6= ΦY

e . If
this is so for all e then A 6≤T Y , contrary to the hypothesis that A ∈ H3. Hence
a golden run must exist. Since it is golden it successfully builds the required
trace for JA with bound h.

A further ingredient of our proof stems from ideas that started in Kurtz
[13] and were elaborated further, for instance, in Nies [12, 14]: mixing priority
arguments and measure theoretic arguments. In contrast, the proof in [9] is
not measure theoretic. (Indeed, they prove, more generally, that for each non-
empty Π0

1 class P , each c.e. set Turing below every superlow member of P
must be strongly jump traceable. This stronger statement has no analog for
superhighness, for instance because all members of P could be computable.)

Here we need to make the naughty set Y superhigh. This is done by coding ∅′′
(see [7, 3.3.2]) in the style of Kučera, but not quite into Y : the coding strings
change due to the activity of the tracing procedures. The number of times they
change is computably bounded. So the coding yields ∅′′ ≤tt Y ′.

Notation. Suppose f is a unary function and f̃ is binary. We write

∀n f(n) = limcomp
s f̃(n, s)

if there is a computable function g : N → N such that for all n, the set

{s > 0: f̃(n, s) 6= f̃(n, s− 1)}

has cardinality less than g(n), and lims f̃(n, s) = f(n).
We let X ′ = {n : JX(n) ↓}, and X ′

t = {n : JX
t (n) ↓}. We use Knuth’s bracket

notation in sums. For instance,
∑

n n−2 [[n is odd]] denotes 1+1/9+1/25+ . . . =
π2/8.

A forthcoming paper by Greenberg, Hirschfeldt and Nies (Characterizing the
s.j.t. sets via randomness) contains a new proof of Theorem 2 using the language
of “golden pairs”. This makes it possible to cut some parameters.

2 Benign cost functions and Shigh3

Note that a function f is d.n.c. relative to ∅′ if ∀x¬f(x) = J∅′
(x). Let P be

the Π0
1 (∅′) class of {0, 1}-valued functions that are d.n.c. relative to ∅′. The

PA sets form a null class (see, for instance, [7, 8.5.12]). Relativizing this to
∅′, we obtain that the class {Z : ∃f ≤T Z ⊕ ∅′ [f ∈ P]} is null. Then, since
GL1 = {Z : Z ′ ≡T Z ⊕ ∅′} is conull, the following class, suggested by Simpson,
is also null:

H = {Z : ∃f ≤tt Z ′ [f ∈ P]}. (1)

This class clearly contains Shigh because ∅′′ truth-table computes a function that
is d.n.c. relative to ∅′. Since H is Σ0

3 , by a result of Hirschfeldt and Miller (see
[7, 5.3.15]) the class H3 contains a promptly simple set. We strengthen this:

Theorem 1. Let A be a c.e. set that is strongly jump traceable.
Then A ∈ H3.

Proof. In [10] a cost function c is defined to be benign if there is a computable
function g with the following property: if x0 < . . . < xn and c(xi, xi+1) ≥ 2−e

for each i, then n ≤ g(e). For each truth table reduction Γ we define a benign
cost function c such that for each ∆0

2 set A, and each ML-random set Y ,

A obeys c and ΓY ′
is {0, 1}-valued d.n.c. relative to ∅′ ⇒ A ≤T Y .

Let (Ie) be the sequence of consecutive intervals of N of length e. Thus min Ie =
e(e + 1)/2. We define a function α ≤T ∅′. We are given a partial computable
function p and (via the Recursion Theorem) think of p as a reduction function
for α, namely, p is total, increasing, and ∀x α(x) ' J∅′

(p(x)).

At stage s of the construction we define the approximation αs(x). Suppose
x ∈ Ie. If p(y) is undefined at stage s for some y ∈ Ie let αs(x) = 0. Otherwise,
let

Ce,s = {Y : ∃t v≤t≤s∀x ∈ Ie [1− αt(x) = Γ (Y ′
t , p(x))]}, (2)

where v ≤ s is greatest such that v = 0 or αv � Ie 6= αv−1 � Ie. (Thus, Ce,s is
the set of oracles Y such that Y ′ computes α correctly at some stage t after the
last change of α�Ie .)
Construction of α.
Stage s > 0. For each e < s, if λCe,s−1 ≤ 2−e+1 let αs � Ie = αs−1 � Ie. Otherwise
change α � Ie: define αs � Ie in such a way that λCe,s ≤ 2−e.
Claim. α(x) = lims αs(x) exists for each x.
We use a measure theoretic fact suggested by Hirschfeldt in a related context (see
[7, 1.9.15]). Suppose N, e ∈ N, and for 1 ≤ i ≤ N , the class Bi is measurable and
λBi ≥ 2−e. If N > k2e then there is a set F ⊆ {1, . . . , N} such that |F | = k + 1
and

⋂
i∈F Bi 6= ∅.

Suppose now that 0 = v0 < v1 < . . . < vN are consecutive stages at which
α � Ie changes. Thus p � Ie is defined. Then λBi ≥ 2−e for each i ≤ N , where

Bi = {Y : Y ′
vi+1

�k 6= Y ′
vi

�k},

and k = use Γ (max p(Ie)), because λCe increased by at least 2−e from vi to vi+1.
Note that the intersection of any k + 1 of the Bi is empty. Thus N ≤ 2ek by the
measure theoretic fact. 3

Since α is ∆0
2, by the Recursion Theorem, we can now assume that p is a

reduction function for α. Then in fact we have a computable bound g on the
number of changes of α � Ie given by g(e) = 2euse Γ (max p(Ie)).

To complete the proof, let A be a c.e. set that is strongly jump traceable. We
define a cost function c by c(x, s) = 2−x for each x ≥ s; if x < s, and e ≤ x is
least such that e = x or αs � Ie 6= αs−1 � Ie, let

c(x, s) = max(c(x, s− 1), 2−e).

Note that the cost function c is benign as defined in [10]: if x0 < . . . < xn and
c(xi, xi+1) ≥ 2−e for each i, then αs � Ie 6= αs−1 � Ie for some s such that
xi < s ≤ xi+1. Hence n ≤ g(e) where g is defined after the claim.

By [10] fix a computable enumeration (As)s∈N of A that obeys c. (The rest
of the argument actually works for a computable approximation (As)s∈N of a
∆0

2 set A.)
We build a Solovay test G as follows: when At−1(x) 6= At(x), we put Ce,t

defined in (2) into G where e is largest such that α � Ie has been stable from x
to t. Then 2−e ≤ c(x, t). Since λCe,t ≤ 2−e+1 ≤ 2c(x, t) and the computable
approximation of A obeys c, G is indeed a Solovay test.

Choose s0 such that σ 6� Y for each [σ] enumerated into G after stage s0. To
show A ≤T Y , given an input y ≥ s0, using Y as an oracle, compute s > y such
that αs(x) = Γ (Y ′

s ;x) for each x < y. Then As(y) = A(y): if Au(y) 6= Au−1(y)
for u > s, let e ≤ y be largest such that α � Ie has been stable from y to u.

Then by stage s > y the set Y is in Ce,s ⊆ Ce,t, so we put Y into G at stage u,
contradiction.

In the following we give a direct construction of a null Σ0
3 class containing the

superhigh sets. Note that the class H defined in (1) is such a class. However, the
proof below uses techniques of independent interest. For instance, they might be
of use to resolve the open question whether superhighness itself is a Σ0

3 property.

Proposition 1. There is a null Σ0
3 class containing the superhigh sets.

Proof. For each truth-table reduction Φ, we uniformly define a null Π0
2 class SΦ

such that ∅′′ = Φ(Y ′) → Y ∈ SΦ.
We build a ∆0

2 set DΦ. Then, by the Recursion Theorem we have a truth-
table reduction ΓΦ such that ∅′′ = Φ(Y ′) → DΦ = Γ (Y ′). We define DΦ in
such a way that SΦ = {Y : DΦ = Γ (Y ′)} is null. Also, SΦ is Π0

2 because

Y ∈ SΦ ↔ ∀w ∀i > w∃s > iDΦ(w, s) = Γ (Y ′
s ;w).

Claim. For each string σ, the real number rσ = λ{Z : σ ≺ Z ′} is the difference
of left-c.e. reals uniformly in σ (see [7, 1.8.15]).
To see this, note that for each finite set F the class CF = {Z : F ⊆ Z ′} is
uniformly Σ0

1 . Let F (σ) = {j < |σ| : σ(j) = 1}, then

rσ = λ(CF (σ) −
⋃

r<|σ|&σ(r)=0 C{r}∪F (σ)).

This proves the claim. Now, for each τ let bτ = λ{Z : τ ≺ Γ (Z ′)}. Then bτ =∑
σ rσ [[τ = Γ σ]] is uniformly difference left-c.e.
One can define the ∆0

2 set D = DΦ in such a way that 2bD�n+1 ≤ bD�n for
each n. Then 2−n ≥ λ{Y : DΦ �n= Γ (Y ′)�n} for each n, so SΦ is null.

3 Each set in Shigh3 is strongly jump traceable

Theorem 2. Let A be a c.e. set that is Turing below all ML-random superhigh
sets. Then A is strongly jump traceable.

Proof. Let h be an order function. We will define a ML-random superhigh set Z
such that A ≤T Z implies that A is jump traceable via bound h. In fact for
an arbitrary given set G we can define Z such that G ≤tt Z ′. If also G ≥tt ∅′′,
then Z is superhigh.

Preliminaries. Let λ denote the uniform measure on Cantor space. We will
need a lower bound on the measure of a non-empty Π0

1 class of ML-random sets.
This bound is given uniformly in an index for the class (Kučera; see [7, 3.3.3]).
Let Q0 ⊆ MLR be the complement 2ω − R1 of the second component of the
standard universal ML-test.

Lemma 1. Given an effective listing (P v)v∈N of Π0
1 classes, P v ⊆ Q0, there is

a constant c0 such that λP v ≤ 2−K(v)−c0 → P v = ∅.

We assume an indexing of all the Π0
1 classes. Given an index for a Π0

1 class P we
have an effective approximation P =

⋂
t Pt where Pt is a clopen set ([7, Section

1.8]).
The basic set-up. For each e, a procedure Re (with further parameters to be
discussed later) builds a c.e. trace (Tx)x∈N with bound h. Either for almost all x,
JA(x) ↓ implies JA(x) ∈ Tx, or Re shows that A 6= ΦZ

e . Since Z is superhigh,
the first alternative must hold for some e.

When a new computation w = JA(x) ↓ with use u appears, Re activates
a sub-procedure Se

x. This sub-procedure waits for evidence that A �u is stable
before putting w into the trace set Tx. By first waiting long enough, it makes
sure that an A �u change after this tracing can happen for at most h(x) times,
so that |Tx| ≤ h(x). Se

x also calls an instance of the next procedure Re+1. Thus,
during the construction we can have many runs of each of the procedures Re

and Se
x.

The environment of a procedure. Each Re has as further parameters a Π0
1 class P

and a number r ∈ N. It assumes that Z ∈ P and 2−r < λP . Each Se
x activated

by Re(P, r) will specify an appropriate subclass Q ⊆ P and a number q ∈ N,
and call Re+1(Q, q).

Initially we call R0(Q0, 2)

The two phases of Se
x. A procedure Se

x alternates between Phases I, and II. When
changing phases it returns control to Re. In our first approximation to describing
the construction, once a computation w = JA(x) ↓ with use u appears, Se

x enters
Phase I. It considers the Σ0

1 class C = {Z : ΦZ
e �u= A �u}. It calls Re+1(Q, q)

where Q = P − C and q is obtained by Lemma 1. If it stays here then, because
Z ∈ Q, its outcome is that ΦZ

e 6= A.
For a threshold δ depending only on r and x, once λ(Ps ∩Cs) > δ at stage s

it lets D = Cs and puts w into Tx. Now the outcome is that JA(x) has been
traced. So Se

x can return and stay inactive unless A�u changes.
Once A�u has changed, Se

x enters Phase II by calling Re+1(Q, q) where now
Q = P ∩D and q is obtained by Lemma 1. Its outcome is again that ΦZ

e 6= A,
this time because ΦZ

e �u is the previous value of A�u (here we use that A is c.e.).
If, later on, P ∩D becomes empty, then Se

x returns. It is now turned back to
the beginning and may start again in Phase I when a new computation JA(x)
appears. Note that P has now lost a measure of δ. So Se

x can go back to Phase I
for at most 1/δ times.
The golden run. For some e we want a run of Re such that each sub-procedure
Se

x it calls returns. For then, the c.e. trace (Tx)x∈N this run of Re builds is a
trace for JA. If no such run Re exists then each run of Re eventually calls some
Se

x which does not return, and therefore permanently runs a procedure Re+1. If
Z ∈

⋂
Pe where Pe is the parameter of the final run of a procedure Re, then

A 6≤T Z. So we have a contradiction if we can define a set Z ∈
⋂

e Pe such that
G ≤tt Z ′.

Ensuring that G ≤tt Z ′. For this we have to introduce new parameters into the
procedures Se

x.

Wait for
λ(Ps∩Cs)≥δ

Put w into Tx; let D=Cs;

 goto Phase II; return

Call Re+1(P-C)

Requires attn. when
 JA(x) converges

Wait for
Ps ∩D =∅

goto Phase I; return

Call Re+1(P ∩ D)

Requires attn. when
 A|u has changed

Phase I Phase II

Fig. 1. Diagram for the procedure Se
x

Note that G ≤tt Z ′ iff there is a binary function f ≤T Z such that ∀xG�x=
limcomp

s f(x, s) (namely, the number of changes is computably bounded). We
will define Z such that Z ′ encodes G. We use a variant of Kučera’s method
to code into ML-random sets. We define strings zγ = limcomp

s zγ,s and let Z =⋃
γ≺G zγ . The strings zγ,s are given effectively, and for each s they are pairwise

incomparable. Then we let f(x, s) = γ if |γ| = x and zγ,s ≺ Z, and f(x, s) = ∅
if there is no such γ.

Firstly, we review Kučera’s coding into a member of a Π0
1 -class P of positive

measure. For a string x let λ(P |x) = 2|x|λ(P ∩ [x]).

Lemma 2 (Kučera; see [7], 3.3.1). Suppose that P is a Π0
1 class, x is a

string, and λ(P |x) ≥ 2−l where l ∈ N. Then there are at least two strings w � x
of length |x|+ l +1 such that λ(P |w) > 2−l−1. We let w0 be the leftmost and w1

be the rightmost such string.

In the following we code a string β into a string yβ on a Π0
1 class P .

Definition 2. Given a Π0
1 class P , a string z such that P ⊆ [z], and r ∈ N such

that 2−r < λP , we define a string

yβ = kuc(P, r, z, β)

as follows: y∅ = z; if x = yβ has been defined, let l = r + |β|, and let yβbb = wb

for b ∈ {0, 1}, where the strings wb are defined as in Lemma 2.
Note that for each β we have λ(P | yβ) ≥ 2−r−|β| and

|yβ | ≤ |z|+ |β|(r + |β|+ 1). (3)

At stage s we have the approximation yβ,s = kuc(Ps ∩ [z], r, z, β). While yβ,s is
stable, the string wb in the recursive definition above changes at most 2l times.
Thus, inductively, yβ,s changes at most 2|β|(r+|β|+1) times.

For each e, η we may have a version of Re denoted Re,η(P, r, zη). It assumes
that η has already been coded into the initial segment zη of Z, and works within
P ⊆ [zη]. It calls procedures Se,ηα

x (P, r, zη) for certain x, α. In this case we let
zηα = yα = kuc(P, r, zη, α).

For each x, once JA(x) ↓, Re,η wishes to run Se,ηα
x for all α of a certain

length m defined in (5) below, which increases with h(x). Thus, as x increases,
more and more bits beyond η are coded into Z. The trace set Tx will contain all
the numbers enumerated by procedures Se,ηα

x where |α| = m. We ensure that m
is small enough so that |Tx| ≤ h(x). To summarize, a typical sequences of calls
of procedures is

Re,η → Se,ηα
x → Re+1,ηα.

Formal details. Some ML-random set Y 6≥T ∅′ is superhigh by pseudo jump
inversion as in [7, 6.3.14]. Since A ≤T Y and A is c.e., A is a base for ML-
randomness; see [7, 5.1.18]. Thus A is superlow. Hence there is an order function g
and a computable enumeration of A such that JA(x)[s] becomes undefined for
at most g(x) times.

We build a sequence of Π0
1 classes (Pn)n∈N as in Lemma 1. If n = 〈e, γ, x, i〉,

then since K(n) ≤+ 2 log〈e, γ〉+ 2 log x + 2 log i, we have

P 〈e,γ,x,i〉 6= ∅ ⇒ λP 〈e,γ,x,i〉 ≥ 2−q (4)

where q = 2 log〈e, γ〉+2 log x+2 log i+ c for some fixed c ∈ N. By the Recursion
Theorem we may assume that we know c in advance.

The construction starts off by calling R0,∅(Q0, 3, ∅).

Procedure Re,η(P, r, z), where z ∈ 2<ω, P ⊆ MLR ∩ [z] is a Π0
1 class and r ∈ N.

This procedure enumerates a c.e. trace (Tx)x∈N. (It assumes that 2−r < λP .)
For each string α of length at most the stage number s, see whether some proce-
dure Se,ηα

x (P) requires attention, or is at (b) or (e), and no procedure Se,ηβ
y (P)

for β ≺ α satisfies the same condition. If so, choose x least for α and activate
Se,ηα

x (P). (This suspends any runs Se,ρ
z for ηα � ρ. Such a run may be resumed

later.)

Procedure Se,ηα
x (P, r, z), where |α| is the greatest m > 0 such that,

if n = m(r + m + 1), we have

2|ηα|22n+r+2 ≤ h(x). (5)

There only is such a procedure if x is so large that m exists.
Let yα,s = kuc(Ps, α, r, z). Let

δ = 2−|yα,s|−m−r−1.

(Comment: Se,ηα
x (P, r, z) cannot change yα,s. It only changes “by itself” as Ps

gets smaller. This makes the procedure go back to the beginning. So in the
following we can assume yα is stable.)

Phase I.

(a) Se,ηα
x requires attention if w = JA(x) ↓ with use u. Let

C = [yα] ∩ {Z : ΦZ
e �u= A�u},

a Σ0
1 class. Let Cs = [yα,s] ∩ {Z : ΦZ

e �u= A �u [s]} be its approximation at
stage s, which is clopen.

(b) While λ(Ps ∩ Cs) < δ run in case e < s the procedure

Re+1,ηα(Q, q, yα,s);

here Q is the Π0
1 class P ∩ [yα,s]− C, and

q = 2 log〈e, ηα〉+ 2 log x + 2 log i + c,

where i is the number of times Se,ηα
x has called Re+1,ηα (the constant c

was defined after (4) at the beginning of the formal construction). Then
2−q < λQ unless Q = ∅. Meanwhile, if yα,s 6= yα,s−1 put w into Tx, cancel
all sub-runs, goto (a), and return. Otherwise, if As �u 6= As−1 �u cancel all
sub-runs, goto (a) and return.
(Comment: if the run Se,ηα

x stays at (b) and Z ∈ Q, then A�u= ΦZ
e �u fails,

so we have defeated Φe.)
(c) Put w into Tx, let D = Cs, goto (d), and return. (Thus, the next time

we call Se,ηα
x (P) it will be in Phase II.)

Phase II.

(d) Se,ηα
x requires attention again if A�u has changed.

(e) While Ps ∩D 6= ∅ run in case e < s

Re+1(P ∩D, q, yα,s)

where q ∈ N is defined as in (b). Meanwhile, if yα,s 6= yα,s−1 cancel all
sub-runs, goto (a), and return.
(Comment: if the run Se,ηα

x stays at (e) and Z ∈ Q then again A�u= ΦZ
e �u

fails, this time because Z ∈ D and ΦZ
e �u is an old version of A�u.)

(f) Goto (a) and Return.

Verification. The function g was defined at the beginning of the formal proof.
First we compute bounds on how often a particular run Se,ηα

x does certain things.
Claim 1. Consider a run Se,ηα

x (P, r, z) called by Re,η(P, r, z). As in the con-
struction, let m = |α| and n = m(r + m + 1).

(i) While yα,s does not change, the run passes (f) for at most 2m+r+1 times.
(ii) The run enumerates at most 22n+r+2 elements into Tx.
(iii) It calls a run Re+1,ηα at (b) or (e) for at most 2n+1g(x) times.

To prove (i), as before let δ = 2−|yα|−m−r−1. Note that each time the run
passes (f), the class P ∩ [yα] loses λD ≥ δ in measure. This can repeat itself at
most 2m+r+1 times. (This argument allows for the case that the run of Se,ηα

x is
suspended due to the run of some Se,ηβ

z for β ≺ α. If Se,ηβ
z finishes then Se,ηα

x ,
with the same parameters, continues from the same point on where it was when
it was suspended.)
(ii) There are at most 2n values for yα during a run of Se,ηα

x by the remarks
after Definition 2. Therefore this run enumerates at most 2n2n+r+1+2n elements
into Tx where at most 2n elements are enumerated when yα changes.
(iii): for each value yα there are at most 2g(x) calls, namely, at most two for each
computation JA(x) (g is defined at the beginning of the formal proof). 3

Note that |Tx| ≤ h(x) by (ii) of Claim 1 and (5).
Strings zγ,s, γ ∈ 2<ω are used to code the given set G into Z ′. Let z∅,s = ∅.

– If zη,s has been defined and Re,η(P, r, zη,s) is running at stage s, then for
all β such that no procedure Se,ηα is running for any α ≺ β, let zηβ,s =
kuc(P, r, zη,s, β).

– If α is maximal under the prefix relation such that zηα,s is now defined,
it must be the case that Re+1,ηα(Q, q, zηα) runs. So we may continue the
recursive definition. Note that |α| > 0 by the condition that m > 0 in (5).

Claim 2 For each γ, zγ = lims zγ,s exists, with the number of changes com-
putably bounded in γ.

We say that a run of Se,ρ
x is a k-run if |ρ| ≤ k. For each number parameter p

we will let p(k, v) denote a computable upper bound for p computed from k, v.
Such a function is always chosen nondecreasing in each argument.

To prove Claim 2, we think of k as fixed and define by simultaneous recursion
on v ≤ k computable functions r(k, v), x(k, v), b(k, v), c(k, v) with the following
properties:

(i) r(k, v) bounds r in any call Re,η(Q, r) where |η| ≤ k and e ≤ v.
(ii) x(k, v) bounds the largest x such that some k-run Se,ηα

x is started where
e ≤ v.

(iii) For each x, b(k, v) bounds the number of times a k-run Se,ηα
x for e ≤ v

requires attention.
(iv) For each x, c(k, v) bounds the number of times a run Re+1,ηα is started by

some k-run Se,ηα
x for e ≤ v.

Fix γ such that |γ| = k. In the following we may assume that ηα � γ, because
then the actual bounds can be obtained by multiplying with 2k.

Suppose now k ≥ v ≥ 0 and we have defined the bounds in (i)–(iv) for v−1 in
case v > 0. We define the bounds for v and verify (i)–(iv). We may assume e = v,
because then the required bounds are obtained by adding the bounds for k, v−1
to the bounds now obtained for e = v.
(i). First suppose that v = 0. Then η = ∅, so let r(k, 0) = 3. If v > 0, we
define a sequence of Π0

1 classes as in Lemma 1: if for the i-th time a run Se−1,ρ
x

calls a run Re,ρ(Q, q) we let P 〈e,ρ,x,i〉 = Q. By the inductive hypothesis (iii)

and (iv) for v − 1 we have a bound i(v, x) on the largest i such that a class
P 〈v,ηα,x,i〉 is defined (when Sv−1,η

x in (b) or (e) starts a run Rv,η). Thus let
r(k, v) = 2 log〈v, γ〉+ 2 log x(k, v − 1) + 2 log i(v, x(k, v − 1)) + c.
To prove (ii) and (iii), suppose Re,η(Q, r) calls Se,ηα

x . Let m = |α| and n =
m(r + m + 1). Then n ≤ k(r(k, v) + k + 1).
(ii) We have h(x) < 2k+2k(r(k,v)+k+1)+3 because m is chosen maximal in (5).
Since h is an order function, this gives the desired computable bound x(k, v)
on x.
(iii). By Claim 1(i), for each value of yα, the run can pass (f) for at most
2k+r(k,v)+1 times. Further, it can require attention 2n + g(x(k, v)) more times
because yα changes or because JA(x) changes. This allows us to define b(k, v).
(iv). By Claim 1(iv) a run Rv+1,ηα is started for at most b(k, v)2k+1g(x(k, v))
times.

This completes the recursive definition of the four functions. Now, to obtain
Claim 2, fix γ. One reason that zγ changes is that (A) some run Se,ρ

y for ρ �
γ, calls Re+1,ρ in (e). This run is a k-run for k = |γ|. By (ii) and (iii), the
number of times this happens is computably bounded by b(k, k)x(k, k). While
it does not happen, zγ can also change because (B) for some ηα � γ as in the
construction, yα changes because some Ps, which defines yα, decreases. Since
there is a computable bound l(k) on the length of zγ by (i) of this claim and (3),
while the first reason does not apply, this can happen for at most 2l(k) times.
Thus in total zγ changes for at most b(k, k)x(k, k)2l(k) times. 3

Now let Z =
⋃

γ≺G zγ . By Claim 2 we have G ≤tt Z ′.
Claim 3 (Golden Run Lemma) For some η ≺ G and some e, there is a run
Re,η(P, r) (called a golden run) that is not cancelled such that, each time it calls
a run Se,ηα

x where ηα ≺ G, that run returns.
Assume the claim fails. We verify the following for each e.

(i) There is a run Re,η that is not cancelled; further, Se,ηα
x (P) is running for

some x, where ηα ≺ G, and eventually does not return.
(ii) A 6= ΦZ

e .

(i) We use induction. For e = 0 clearly the single run of R0,∅ is not cancelled.
Suppose now that a run of Re,η is not cancelled. Since we assume the claim
fails, some run Se,ηα

x , ηα ≺ G, eventually does not return. From then on the
computation JA(x) it is based on and yα are stable. So the run calls Re+1,ηα

and that run is not cancelled.
(ii) Suppose the run Se,ηα

x (P, r, z) that does not return has been called at stage s.
Suppose further it now stays at (b) or (e), after having called Re,ηα(Q, q, yα).
Since yηα is stable by stage s, we have Z ∈ Q. Hence A 6= ΦZ

e by the comments
in (b) or (e). 3

Let (Tx)x∈N be the c.e. trace enumerated by this golden run.
Claim 4 (Tx)x∈N is a trace for JA with bound h.

As remarked after Claim 1, we have |Tx| ≤ h(x). Suppose x is so large that m
in (5) exists. Suppose further that the final value of w = JA(x) appears at stage t.
Let ηα ≺ G such that |α| = m.

As the run is golden and by Claim 1(i), eventually no procedure Se,ηβ
y (P)

for β ≺ α is at (b) or (e). Thus, from some stage s > t on, the run Se,ηα
x

is not suspended. If yα has not settled by stage s then w goes into Tx. Else
λ(P | yα,s) > 2−r−|α|. Since Se,ηα

x returns each time it is called, the run is at
(a) at some stage after t. Also, Ps ∩ Cs must reach the size δ = 2−|yα|−|α|−r−1

required for putting w into Tx.

As a consequence, we can separate highness properties within the ML-random
sets. See [7, Def. 8.4.13] for the weak reducibility ≤JT , and [10] for the highness
property “∅′ is c.e. traceable by Y ”. Note that JT-hardness implies both this
highness property and superhighness.

Corollary 1. There is a ML-random superhigh ∆0
3 set Z such that ∅′ is not c.e.

traceable by Z. In particular, Z is not JT -hard.

Proof. By [7, Lemma 8.5.19] there is a benign cost function c such that each c.e.
set A that obeys c is Turing below each ML-random set Y such that ∅′ is c.e.
traceable by Y . By [7, Exercise 8.5.8] there is an order function h such that some
c.e. set A obeys c but is not jump traceable with bound h. Then by the proof
of Theorem 2 there is a ML-random superhigh set Z ≤T ∅′′ such that A 6≤T Z.
Hence Z is not JT -hard.

References

1. Nies, A.: Reals which compute little. In: Logic Colloquium ’02. Lecture Notes in
Logic, Springer–Verlag (2002) 260–274

2. Kučera, A.: On relative randomness. Ann. Pure Appl. Logic 63 (1993) 61–67
3. Hirschfeldt, D., Nies, A., Stephan, F.: Using random sets as oracles. J. Lond.

Math. Soc. (2) 75(3) (2007) 610–622
4. Figueira, S., Nies, A., Stephan, F.: Lowness properties and approximations of the

jump. Ann. Pure Appl. Logic 152 (2008) 51–66
5. Cholak, P., Downey, R., Greenberg, N.: Strongly jump-traceability I: the com-

putably enumerable case. Adv. in Math. 217 (2008) 2045–2074
6. Mohrherr, J.: A refinement of lown and highn for the r.e. degrees. Z. Math. Logik

Grundlag. Math. 32(1) (1986) 5–12
7. Nies, A.: Computability and Randomness. Oxford University Press (2009) Oxford

Logic Guides, xv + 443 pages.
8. Kjos-Hanssen, B., Nies, A.: Superhighness. To appear in Notre Dame J. Formal

Logic
9. Greenberg, N., Hirschfeldt, D., Nies, A.: Characterizing the strongly jump traceable

sets via randomness. To appear
10. Greenberg, N., Nies, A.: Benign cost functions and lowness properties. To appear
11. Downey, R., Hirschfeldt, D., Nies, A., Stephan, F.: Trivial reals. In: Proceedings of

the 7th and 8th Asian Logic Conferences, Singapore, Singapore Univ. Press (2003)
103–131

12. Nies, A.: Lowness properties and randomness. Adv. in Math. 197 (2005) 274–305
13. Kurtz, S.: Randomness and genericity in the degrees of unsolvability. Ph.D. Dis-

sertation, University of Illinois, Urbana (1981)
14. Nies, A.: Non-cupping and randomness. Proc. Amer. Math. Soc. 135(3) (2007)

837–844

