
DENSITY RANDOMNESS

KENSHI MIYABE, ANDRÉ NIES, AND JING ZHANG

Abstract. We investigate a new randomness notion. A point is density
random in Cantor space if it is Martin-Löf random and each effectively
closed set or Π0

1-class in Cantor space has density one at the point. Aside
from the original definition, we also give equivalent characterizations of
density random points, such as points where every left-c.e. martingales
converge. Identifying a point in real line with a set in Cantor space via
binary expansion, we are also able to characterize density randomness
in methods of computable analysis. We show density random points
are exactly Lebesgue points for each integral test. We also investigate
density-one points in other arithmetical subsets of Cantor space.
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1. Introduction

In the classical setting of analysis, given a measurable set A ⊆ R, the

density of z ∈ A is defined as ρ(A|z) = limε→0
µ(A∩Bε(z))

Bε(z)
where Bε(z) =

{y ∈ R : d(y, z) < ε} d is the usual metric on R, which exists and equals
one almost everywhere by the well-known Lebesgue Density Theorem (see
for example, [3]). It has been proven fruitful to take the effective version of
theorems in analysis of “almost everywhere”-type and transform them into
notions of randomness. These analytic characterizations further elaborate
and enrich the hierarchy of known randomness notions. Two open prob-
lems in algorithmic randomness are recently solved relying on the analytic
aspects of randomness, the Martin-Löf cupping [4] and covering problem
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[5]. The randomness notion we explore in this paper is also characterized
by the effective version of Lebesgue Density Theorem. While in [2], com-
putable randomness, Schnorr randomness and Martin-Löf randomness are
characterized by the differentiability of special class of functions, we show a
point is density random is equivalent to being a Lebesgue point of each inte-
gral test. This expands our understanding of randomness notion in effective
analysis terms.

The following classes of functions that appear have interesting connections
with each other.

1 Function g of the form g(z) =
∫

[0,z] fdµ where f is an lower semi-

computable integrable function.
2 Function g is interval-c.e. and absolutely continuous.
3 Function g is interval-c.e. and continuous.

In [1] and [8], it is shown that density random points are exactly those
points where all interval-c.e. functions are differentiable. We will see later
that density randomness is characterized via Lebesgue points of the class of
functions in (1). Thus it is interesting to investigate the interaction among
the those classes of functions. We will show that (1)⇒ (2)⇒ (3) and each
implication is strict.

2. Preliminaries

2.1. Algorithmic Randomness. The idea of algorithmic randomness is
to think of a real as random if no effective null set captures it. Different
criteria for effectiveness might result in different randomness notions. For
general background we refer the readers to [14] and [6]. Next we give the
central definition of density randomness which we will use throughout the
paper.

We first need the following notions of density.

Definition 2.1 (Lower density of points in Cantor space and real line). For
any measurable set P ⊂ 2ω and Z ∈ 2ω, the lower density of Z ∈ 2ω in P is
defined to be

ρ2(P |Z) = lim inf
σ≺Z

µ(P ∩ [σ])

µ([σ])

Similarly, for measurable set Q ⊂ R and z ∈ R, the lower density of z in Q
is defined to be

ρ(Q|z) = lim inf
z∈I is open and |I|→0

µ(I ∩Q)

µ(I)

Definition 2.2 (Density random sets). A set Z ∈ 2ω is density random if it
is Martin-Löf random and for any Π0

1-class P ⊆ 2ω, Z ∈ P ⇒ ρ2(P |Z) = 1.
Then Z is called a dyadic density-one point.

Given a real number z ∈ R, we identify it with a set in 2ω via its binary
expansion, i.e. z is identified with Z if z = 0.Z.

Definition 2.3 (Density random points). A point z ∈ R is density random
if it is Martin-Löf random and for any effectively closed set P , z ∈ P ⇒
ρ(P |Z) = 1. Then z is called a (full) density-one point.
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We recall the following result.

Theorem 2.4 (Mushfeq Khan and Joseph Miller [8]). Let z be a ML-random
dyadic density-one point. Then z is a full density-one point.

Definition 2.3 and Definition 2.2 result in the same notion via the afore-
mentioned identification of real numbers with elements in Cantor space.

Martingales are important tools to calibrate the randomness of a set.

Definition 2.5. A martingale is a function d : 2<ω → Q+ such that 2d(σ) =
d(σ_0) + d(σ_1). A martingale succeeds on a set Z ∈ 2ω if lim supn d(Z �n
) =∞.

It is well-known fact that a set is Martin-Löf random if and only if no left-
c.e. martingale succeeds on the set. Based on this perspective, computably
random sets are defined as those no computable martingale could succeed
on. In this paper, we will show that density random sets are exactly those
on which every left-c.e. martingale converges on. This is the c.e. version
of computable random sets since each computable martingale converges on
any computably random set.

2.2. Overview of Results. In Section 4, we establish the result that den-
sity random sets are exactly those on which each left-c.e. martingale con-
verges.

In Section 5 we show lowness for density randomness coincides with K-
triviality.

In Section 7, we prove density random points are exactly Lebesgue points
for each integral test.

In Section 6, we extend the analysis to Π0
n-class and investigate how much

randomness it requires for a point to have density one in every Π0
n-class.

3. Upper density

The upper (Cantor-space) density of a set C ⊆ 2N at a point Z is:

%2(C|Z) := lim sup
σ≺Z ∧ |σ|→∞

λ(I ∩ C)
|I|

,

where I ranges over basic dyadic intervals containing z. Bienvenu et al.
[1, Prop. 5.4] showed that for any effectively closed set P and ML-random
Z ∈ P, we have %2(P | Z) = 1; this implies of course that the upper density
in R also equals 1.

The following shows that ML-randomness was actually too strong an as-
sumption. The right level seems to be partial computable randomness. See
[14, Ch. 7] for background.

Proposition 3.1. Let P ⊆ 2N be effectively closed. Let Z ∈ P be partial
computably random. Then %2(P | Z) = 1.

Proof. Suppose there is q < 1 and n∗ such that λσ(P) < q for each η ≺ Z
with |η| ≥ n∗. We will define a partial computable martingale M that
succeeds on Z. Let M(η) = 1 for all strings η with |η| ≤ n∗. Now suppose



4 KENSHI MIYABE, ANDRÉ NIES, AND JING ZHANG

that M(η) has been defined for a string η of length at least n∗, but M is as
yet undefined on extensions of η. Search for t > |η| such that

2−(t−|η|)#{τ | |τ | = t ∧ [τ ] ∩ Pt = ∅} > 1− q.

If t is found, bet all the capital existing at η on the strings σ � η with
|σ| = t that are not τ ’s as above, thereby multiplying the capital by 1/q.
Now repeat with all such strings σ � η of length t.

The formal definition of M is as follows. For all |τ | ≤ n∗, M(τ) = 1.
Next we define M inductively on 2<ω. Suppose M has been defined on α
and M(α) = β, let t ∈ ω such that t > |α| and let S = {τ ∈ 2t : [τ ] ∩ Pt}
and r = |S| > 2t−|τ |(1 − q). For each σ ∈ 2t\S, define M(σ) = 1

qα, and let

τ∗ ∈ S be the leftmost element and define

M(τ∗) = 2t−|τ |α− 1

q
α(2t−|τ | − r)

For any σ < α and |σ| < t, define M accordingly to make M a martingale.
Next is the verification. First we check that ∀τ 4 Z, M(τ) is defined.

We verify this inductively. Suppose η 4 Z is already defined. Then by
assumption, λη(P̄ ) > (1 − q). Therefore, there exists a stage t ∈ ω such

that λη(P̄t) > (1 − q). Thus we have Στ∈2t,η4τλτ (P̄t) = 2t−|η|λη(P̄t) >

2t−|η|(1− q); here we use the fact that for any measurable class Q ⊂ 2ω, the
function σ 7→ λσ(Q) is a martingale. Therefore, we have found such a t to
define a proper extension of η. By induction, M is defined on Z. It is easy
to see Z succeeds on M since every time a new string is defined, the capital
becomes 1

q > 1 times of the original capital.

Note that M succeeds on Z because all strings σ ≺ Z of length ≥ n∗

qualify as possible η’s where t exists. On the other hand, if η is off Z then
there may be no t, so M can be partial. �

Question 3.2. Is there a computably random Z in some Π0
1 class P so that

%2(P | Z) < 1 ?

Proposition 3.3. Let P ⊆ 2N be effectively closed with λP computable. Let
Z ∈ P be Schnorr random. Then %2(P | Z) = 1.

Proof. [?] and [9]. The characteristic function 1P is L1-computable because

there is a sequence
〈

1Pg(n)

〉
n∈N

, where g is a computable function such that

λ(Pg(n) − P ) ≤ 2−n. Now use e.g. [?, Theorem 3.15]. �

4. Equivalent definitions of density randomness

The goal of this section is to give the martingale characterization of den-
sity randomness.

A martingale L : 2<ω → R+
0 is called left-c.e. if L(σ) is a left-c.e. real

uniformly in σ. We focus on convergence of such a martingale along a real
Z, which means that limn L(Z �n) exists in R. Unlike the case of computable
martingales, convergence requires more randomness than boundedness. For
instance, let U = [0,Ω), and let L(σ) = λ(U | [σ]) (as a shorthand we
use λσ(U) for this conditional measure); then the left-c.e. martingale L is
bounded by 1 but diverges on Ω because Ω is Borel normal.
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The following theorem characterizing dyadic density-points is due to Madi-
son Group consisting of Andrews, Cai, Diamondstone, Lempp and Miller.
We give a proof here. Note a slight generalization could drop the “dyadic”
in the theorem.

Theorem 4.1. The following are equivalent for a ML-random real z ∈ [0, 1].

(i) z is a dyadic density-one point.
(ii) Every left-c.e. martingale converges along Z, where 0.Z is the bi-

nary expansion of z.

By Theorem 2.4, z is a full density-one point iff z is a dyadic density-one
point. Thus we have the following consequence.

Theorem 4.2. The following are equivalent for a ML-random real z ∈ [0, 1].

(i) z is a density-one point.
(ii) Every left-c.e. martingale converges on z.

A ML-random satisfying one of these conditions will be called density
random.

Proof of Theorem 4.1: (ii) → (i) is [1, Corollary 5.5].
(i) → (ii). We can work within Cantor space because dyadic density is
the same in Cantor space as in [0, 1]. For X ⊆ 2N we define the weight

wt(X) =
∑

σ∈X 2−|σ|. Let σ≺ = {τ ∈ 2<ω : σ ≺ τ}. We use a technical test
concept.

Definition 4.3. A Madison test is a computable sequence 〈Us〉s∈N of com-
putable subsets of 2<ω such that U0 = ∅, for there is a constant c such that
for each stage s we have wt(Us) ≤ c, and for all strings σ, τ ,

(a) τ ∈ Us − Us+1 → ∃σ ≺ τ [σ ∈ Us+1 − Us]
(b) wt(σ≺ ∩ Us) > 2−|σ| → σ ∈ Us.

Note that by (a), U(σ) := lims Us(σ) exists for each σ; in fact, Us(σ) changes

at most 2|σ| times. We say that Z fails 〈Us〉s∈N if Z �n∈ U for infinitely many
n; otherwise Z passes 〈Us〉s∈N.

Notice from the definition that wt(Us) ≤ wt(Us+1) ≤ c, and wt(U) =
sups wt(Us). Thus, wt(U) is a left-c.e. real. To see this, we show that
wt(Us) ≤ wt(Us+1). For each τ ∈ Us − Us+1, there exists σ ≺ τ such that

σ ∈ Us+1 − Us. Further, since wt(σ≺ ∩ Us) ≤ 2−|σ| due to the fact that

σ 6∈ Us and (b), the weight of strings removed in Us above σ is at most 2−|σ|

which is less than or equal to the weight added to Us+1. Hence we have
wt(Us) ≤ wt(Us+1).

Lemma 4.4. Let Z be a ML-random dyadic density-one point. Then Z
passes each Madison test.

Proof. To see this, suppose that Z fails a Madison test 〈Us〉s∈N. We build a

ML-test
〈
Sk
〉
k∈N such that ∀σ ∈ U [λσ(Sk) ≥ 2−k], and therefore ρ(2N−Sk |

Z) ≤ 1 − 2−k. Since Z is ML-random we have Z 6∈ Sk for some k. So Z is
not a density-one point.

To define the Sk we introduce for each k, s ∈ ω and each string σ ∈ Us
clopen sets Akσ,s ⊆ [σ] given by uniformly computable strong indices, such
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that λ(Akσ,s) = 2−|σ|−k for each σ ∈ Us. We update these clopen sets at
stages s when σ ∈ Us+1 − Us. For each τ � σ with τ ∈ Us − Us+1, put

Akτ,s into an auxiliary clopen set Ãkσ,s+1. Since σ 6∈ Us, by (b) we have

wt(σ≺ ∩Us) ≤ 2−|σ|, and so inductively λ(Ãkσ,s+1) ≤ 2−|σ|−k. Now to obtain

Akσ,s+1 simply add mass from [σ] to Ãkσ,s+1 in order to ensure equality as
required.

Let Skt =
⋃
σ∈Ut A

k
σ,t. Then Skt ⊆ Skt+1 by property (a) of Madison tests.

Clearly λSkt ≤ 2−kwt(Ut) ≤ 2−k. So Sk =
⋃
t Skt determines a ML-test. So

Z 6∈ Sk for some k. If σ ∈ U then by construction Akσ,s has measure 2−|σ|−k

for almost all s. Thus λσ(Sk) ≥ 2−k as required. This shows the lemma. �

Next we turn to the other direction. We first show if a set passes all
Madison tests, it is already computably random.

Lemma 4.5. Suppose that Z passes each Madison test, then Z is computably
random.

Proof. We build computable sets Vn by levels, such that each Vn is prefix-
free and for each τ ∈ Vn+1 there exists some σ ∈ Vn such that σ ≺ τ . Aside
from this, we maintain the following invariant during the construction:

Invariant: For each n, if η 6∈
⋃
i≤n Vn, then wt(η≺∩

⋃
i≤n Vn) < 2−|η|. Notice

the value of wt(η≺ ∩
⋃
i≤n Vn) is computable.

Let V0 = {λ} where λ is the empty string. It trivially satisfies the invari-
ants. Suppose we have defined up to Vn, we describe the procedure on how
to define Vn+1. First of all, pick q0, q1 ∈ Q such that wt(η≺∩

⋃
i≤n Vn) < q0 <

q1 < 2−|η|. This could be done effectively since the value of wt(η≺∩
⋃
i≤n Vn)

is computable. For each σ ∈ Vn, let h = max{2|γ| : γ ≺ σ} and de-
fine Vn+1,σ to be a maximal prefix-free subset of {τ : σ ≺ τ ∧ M(τ) >

max{ 2|σ|

q1−q0 , h · 4 · 2
|σ|}}. Then Vn+1 =

⋃
σ∈Vn Vn+1,σ. It is easy to see that

Vn+1 is computable and prefix-free. We are left to check that the invariant
is satisfied. Given η 6∈

⋃
i≤n+1 Vi, assume η≺ ∩

⋃
i≤n+1 Vi 6= ∅ (otherwise we

are done), we consider the following two cases.

Case 1: η ≺ σ for some σ ∈ Vn. By Kolmogorov inequality, for each such
string, the measure added above σ is at most q1−q0

2|σ|
. Therefore,

wt(η≺∩
⋃
i≤n+1 Vi) ≤ wt(η≺∩

⋃
i≤n Vi) + Σσ∈Vn2−|σ|(q1− q0) ≤ 2|η|,

the last inequality uses the fact that Vn is prefix-free.
Case 2: η ≺ β for some β ∈ Vn+1 and η � σ for some σ ∈ Vn. Let k =

max{ 2|σ|

q1−q0 , h ·4 ·2
|σ|}. Since η 6∈ Vn+1, we know M(η) ≤ k. Suppose

wt(
⋃
j≤n+1 Vj∩η≺) = wt(Vn+1∩η≺) ≥ 2−|η|. Then we have k2−|η| ≥

2−|η|M(η) ≥ Ση≺τ∧τ∈Vn+12−|τ |M(τ) > kΣη≺τ∧τ∈Vn+12−|τ | =

kwt(Vn+1 ∩ η≺) ≥ k2−|η|, contradiction.

The Madison test would be defined as Un =
⋃
i≤n Vn, such that no string

ever leaves, so the first requirement of Madison test is satisfied trivially. The
second requirement is ensured by the construction invariant. Z fails the test
since lim supnM(Z �n) =∞.

�
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Lemma 4.6. Suppose that Z passes each Madison test. Then every left-c.e.
martingale L converges along Z.

Proof. Now let L(σ) = sups Ls(σ) where 〈Ls〉 is a uniformly computable
sequence of martingales and L0 = 0. Since Z is computably random, for
each s the limit limn Ls(Z �n) exists. If L diverges along Z, there is ε < L(〈〉)
such that for each s

lim sup
n

L(Z �n)− lim
n
Ls(Z �n) > ε.

Based on this insight we define a Madison test which Z fails. Along with the
Us we define a uniformly computable labelling function γs : Us → {0, . . . , s}.

Let U0 = ∅. For s > 0 we put the empty string 〈〉 into Us and let
γs(〈〉) = 0. If already σ ∈ Us with γs(σ) = t, then we also put into
Us all strings τ � σ that are minimal under the prefix ordering ≺ with
Ls(τ)− Lt(τ) > ε. Let γs(τ) be the least r with Lr(τ)− Lt(τ) > ε.

Note that γs(τ) simply records the greatest stage r ≤ s at which τ en-
tered Ur. We verify that 〈Us〉 is a Madison test. For (a), suppose that
τ ∈ Us − Us+1. Let σ0 ≺ σ1 ≺ . . . ≺ σn = τ be the prefixes of τ in
Us. We can choose a least i < n such that σi+1 is no longer the minimal
extension of σi at stage s + 1. Thus there is η with σi ≺ η ≺ σi+1 and
Ls+1(η)− Lγs(σi)(η) > ε. Then η ∈ Us+1 and η ≺ τ , as required.

To verify (b) requires more work.
We fix s and write Mt(η) for Ls(η)− Lt(η).

Claim 4.7. For each ρ ∈ Us, where γs(ρ) = r, we have

2−|ρ|Mr(ρ) ≥ ε · wt(Us ∩ ρ≺).

In particular, for ρ = 〈〉, we obtain that wt(Us) is bounded by a constant
c = Ls(〈〉)/ε as required.

For σ ∈ Us and n ∈ N let Uσ,ns be the strings strictly above σ and at a
distance to σ of at most n, that is, the set of strings τ such that there is
σ = σ0 ≺ . . . ≺ σm = τ on Us with m ≤ n and σi+1 a child of σi for each
i < m. To establish the claim, we show by induction on n that

2−|ρ|Mr(ρ) ≥ ε · wt(Uρ,ns ).

If n = 0 then Uρ,ns is empty so the right hand side is 0. Now suppose that
n > 0. Let F be the set of immediate successors of ρ on Us. Let rτ = γs(τ).
By the inductive hypothesis, we have for each τ ∈ F

2−|τ |Mr(τ) = 2−|τ |[(Lrτ (τ)− Lr(τ)) +Mrτ (τ)](1)

≥ 2−|τ | · ε+ ε · wt(U τ,n−1
s ).

Then, taking the sum over all τ ∈ F ,

2−|ρ|Mr(ρ) ≥
∑
τ∈F

2−|τ |Mr(τ) ≥ ε · wt(Uρ,ns ).

The first inequality is Kolmogorov’s inequality for martingales, using that
the τ form an antichain. For the second inequality we have used (1) and

that Uρ,ns = F ∪
⋃
τ∈F U

τ,n−1
s . This completes the induction and shows the

claim.
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Now, to obtain (b), suppose that wt(Us∩σ≺) > 2−|σ|. We use Claim 4.7 to
show that σ ∈ Us. Assume otherwise. Let ρ ≺ σ be in Us with |ρ| maximal,
and let r = γs(ρ). As before, let F be the prefix minimal extensions of σ in
Us, and rτ = γs(τ). Then Lrτ (τ) − Lr(τ) > ε for τ ∈ F . Since τ ∈ Us, we
can apply the claim to τ , so (1) is valid.

Arguing as before, but with σ instead of ρ, we have

2−|σ|Mr(σ) ≥
∑
τ∈F

2−|τ |Mr(τ) ≥ ε · wt(Us ∩ σ≺)

(that part of the argument did not use that ρ ∈ Us). Since wt(Us ∩ σ≺) >

2−|σ|, this implies that Mr(σ) > ε. Hence some σ′ with ρ ≺ σ′ � σ is in Us,
contrary to the maximality of ρ.

This concludes the verification that 〈Us〉 is a Madison test. As mentioned
already, for each r there are infinitely many n with L(Z �n)− Lr(Z �n) > ε.
This shows that Z fails this test: suppose inductively that we have σ ≺ Z
and r is least such that σ ∈ Ut for all t ≥ r (so that γt(σ) = r for all such
t). Choose n > |σ| for this r. Then τ = Z �n is a viable extension of σ, so
τ , or some prefix of it that is longer that σ, is in U . �

5. Lowness for density randomness

We say A is low for density randomness if whenever Z is density random,
Z is already density random relative to A. Although density randomness is a
stronger notion than Martin-Löf randomness, the class of sets low for density
randomness coincides with the class of sets low for Martin-Löf randomness.
To establish the equivalence, we need the following lemmas. Denote W2R as
the class of all weakly-2-random sets, i.e. sets that do not lie in any Π0

2-null
class of sets.

Lemma 5.1 (Downey, Nies, Weber and Yu [7]). Low(W2R, MLR)=Low(MLR).

Lemma 5.2 (Day and Miller [4]). Suppose Z is Martin-Löf random and A

is K-trivial and P is a Π0,A
1 -class containing Z. Then there exists Π0

1-class
Q ⊆ P such that A ∈ Q.

Theorem 5.3. Given A ∈ 2ω, A is K-trivial if and only if A is low for
density randomness.

Proof. (⇐): Let DR denote the class of density random sets. By 5.1,
and the fact the W2R ⊆ DR ⊆ MLR, we know Low(DR) ⊆ Low(W2R,
MLR)=Low(MLR). It is known that the class K-trivial sets coincide with
the class of sets that are low for Martin-Löf randomness.

(⇒): Suppose A is not low for density randomness, i.e., there exists a
set Z such that Z is density random but not density random relative to
A. Since Z is Martin-Löf random, so it is Martin-Löf random relative to

A by the K-triviality of A. Hence, there exists a Π0,A
1 -class P containing

Z such that ρ2(P|Z) < 1. By Lemma 5.2, have Π0
1-class Q ⊆ P such

that Z ∈ Q, since Z is density random thus Martin-Löf random. Therefore,
ρ2(Q|Z) ≤ ρ2(P|Z) < 1, contradicting with the fact the Z is density random.

�
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6. Density-one points for Π0
n-classes and Σ1

1 classes

The discussion above focuses on density-one points of effectively closed
sets. It is natural to ask how much randomness is required for a point to
be a density-one point for Π0

n-classes. The following analysis shows that

these are not really different from density-one points in Π0,∅(n−1)

1 -classes.
We rely on a technical lemma about the approximation of Π0

n-classes with

Π0,∅(n−1)

1 -classes.

Lemma 6.1 (Kurtz [11], Kautz [10]). From an index of a Π0
n-class P and

q ∈ Q+, ∅(n−1) can compute an index of a Π0,∅(n−1)

1 -class V ⊆ P such that
λ(P )− λ(V ) < q.

Theorem 6.2. Suppose n ≥ 1 and z ∈ 2ω is density random relative to
∅(n−1). Let P be Π0

n-class such that z ∈ P . Then ρ2(P |z) = 1.

Proof. Suppose P =
⋂
s Us where 〈Us : s ∈ ω〉 is a uniform nested Σ0

n−1-

class. If we could show that there exists a Π0,∅(n−1)

1 -class Q ⊆ P such that
z ∈ Q then we are done.

We inductively define the following test. Given n, by Lemma 6.1 we

∅(n−1)-effectively obtain the index of Π0,∅(n−1)

1 -class Qn ⊆ Un such that

λ(Un)− λ(Qn) < 2−n.

Then consider the test
〈Un\Qn : n ∈ ω〉,

which is a uniform sequence of Σ0,∅(n−1)

1 -classes.

This is a Solovay test relative to ∅(n−1) since λ(Un\Qn) ≤ 2−n. Notice

z ∈ P ⊆ Un for each n ∈ ω. Since z is Martin-Löf random relative to ∅(n−1),
there exists k ∈ ω such that for all j ≥ k, z ∈ Qj . Since 〈Qj : j ≥ k〉
is a uniform sequence of Π0,∅(n−1)

1 -classes, the set V =
⋂
j≥kQj is itself a

Π0,∅(n−1)

1 -class. Also V ⊆
⋂
i∈ω Ui = P because Qj ⊆ Uj . Thus we have

found a Π0,∅(n−1)

1 -class V ⊆ P that contains z. �

Corollary 6.3. A Martin-Löf random set Z is a density one point for Π0
n-

classes if and only if every left-∅(n−1)-c.e. martingale converges along Z.

The work of the Madison group described in Section ?? can be lifted to
the domain of higher randomness. Interestingly, density one now can be
equivalently required for any Σ1

1 class containing the real, not necessarily
closed.

We use the following fact due to Greenberg. It is a higher analog of the
original weaker version of Prop. 3.1.

Proposition 6.4 (N. Greenberg, 2013). Let C ⊆ 2N be Σ1
1. Let Z ∈ C be

Π1
1-ML-random. Then %2(C | Z) = 1.

Proof. If %2(C | Z) < 1 then there is a positive rational q < 1 and n∗

such that for all n ≥ n∗ we have λZ�n(C) < q. Choose a rational r with
q < r < 1. We define Π1

1-anti chains in 2<ω Un, uniformly in n. Let
U0 = {〈Z �n∗〉}. Suppose Un has been defined. For each σ ∈ Un, at a stage
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α such that λσ(Cα) < q, we obtain effectively a hyper-arithmetical antichain
V of extensions of σ such that Cα ∩ [σ] ⊆ [V ]≺ and λσ([V ]≺) < r. Put V
into Un+1.

Clearly λUn ≤ rn for each n. Also, Z ∈
⋂
n Un, so Z is not Π1

1-ML-
random. �

A martingale M : 2<ω → R is called left-Π1
1 if M(σ) is a left-Π1

1 real
uniformly in σ.

Theorem 6.5. Let Z be Π1
1-ML-random. The following are equivalent.

(i) ρ(C | Z) = 1 for each Σ1
1-class C containing Z.

(ii) ρ(C | Z) = 1 for each closed Σ1
1-class C containing Z.

(iii) each left-Π1
1 martingale converges on Z to a finite value.

Proof. (iii) → (i): The measure of a Σ1
1 set is left-Σ1

1 in a uniform way
(see e.g. [14, Ch. 9]). Therefore M(σ) = 1 − λσ(C) is a left-Π1

1 martingale.
Since M converges along Z, and since by Prop. 6.4 lim infnM(Z �n) = 0, it
converges along Z to 0. This shows that ρ(C | Z) = 1.
(ii)→ (iii). We follow the proof of the Madison Theorem 4.1 given above. All
stages s are now interpreted as computable ordinals. Computable functions/
constructions, are now functions ωCK1 → LωCK1

with Σ1 graph/ assignments

of recursive ordinals to instructions.

Definition 6.6. A Π1
1-Madison test is a Σ1 over LωCK1

function 〈Us〉s<ωCK1

mapping ordinals to (hyperarithmetical) subsets of 2<ω such that U0 = ∅,
for each stage s we have wt(Us) ≤ c for some constant c, and for all strings
σ, τ ,

(a) τ ∈ Us − Us+1 → ∃σ ≺ τ [σ ∈ Us+1 − Us]
(b) wt(σ≺ ∩ Us) > 2−|σ| → σ ∈ Us.

Also Uγ(σ) = limα<γ Uα(σ) for each limit ordinal γ.

The following well-known fact can be proved similar to [14, 1.9.19].

Lemma 6.7. Let A ⊆ 2N be a hyperarithmetical open. Given a rational
q with q > λA, we can effectively determine from A, q a hyperarithmetical
open S ⊇ A with λS = q.

Lemma 6.8. Let Z be a Π1
1 ML-random such that ρ(C | Z) = 1 for each

closed Σ1
1-class C containing Z. Then Z passes each Π1

1-Madison test.

The proof follows the proof of the analogous Lemma 4.4. The sets Akσ,s
are now hyperarithmetical open sets computed from k, σ, s. Suppose σ ∈
Us+1 − Us. The set Ãkσ,s is defined as before. To effectively obtain Akσ,s+1,

we apply Lemma 6.7 to add mass from [σ] to Ãkσ,s+1 in order to ensure

λ(Akσ,s+1) = 2−|σ|−k as required.

As before let Skt =
⋃
σ∈Ut A

k
σ,t. Then Skt ⊆ Skt+1 by property (a) of Π1

1

Madison tests. Clearly λSkt ≤ 2−kwt(Ut) ≤ 2−k. So Sk =
⋃
t<ωCK1

Skt
determines a Π1

1 ML-test.
By construction ρ(2N − Sk | Z) ≤ 1 − 2−k. Since Z is ML-random we

have Z 6∈ Sk for some k. So ρ(C | Z) < 1 for the closed Σ1
1-class C = 2N−Sk

containing Z.
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The analog of Lemma 4.6 also holds.

Lemma 6.9. Suppose that Z passes each Π1
1-Madison test. Then every

left-Π1
1 martingale L converges along Z.

The proof of 4.6 was already set up so that this works. The uniformly
hyp labelling functions γs now map Us to ωCK1 . Note that the antichains F
can now be infinite. �

7. Computable Analysis

We give a characterization of density randomness via the Lebesgue dif-
ferentiation theorem.

7.1. Background on computable Analysis.
Computable Reals. A sequence of rational numbers 〈qk : k ∈ ω〉 is call
Cauchy name if |qk − qn| ≤ 2−n for each n ≥ k. If limk qk = x ∈ R then
we say 〈qk : k ∈ ω〉 is a Cauchy name for x. A real is computable if it has
computable Cauchy name.

Computable Functions. Let f : [0, 1]→ R, then f is computable if there
exists a oracle Turing functional Φ such that given any Cauchy name 〈qk :

k ∈ ω〉 for x, Φ〈qk:k∈ω〉 outputs a Cauchy name for f(x).

Lower/upper semi-computable functions. A function f : [0, 1] → R is
lower semi-computable if f−1(q,∞) is effectively open, or equivalently, if it
has an computable approximation from below by increasing rational-valued
step functions 〈fs : s ∈ ω〉 defined on dyadic intervals such that f = sups fs
pointwise. Upper semi-computable functions are defined analogously.

For a more detailed background, we refer the readers to [16].

7.2. Integral tests.

Definition 7.1 (Integral test). A function f : [0, 1] → R̄+ = R+ ∪ {∞} is
an integral test if it is lower semi-computable and

∫
[0,1] fdµ <∞. Here the

measure is the standard Lebesgue measure on real numbers.

The following fact is well known.

Theorem 7.2 (Li, Vitanyi [12]). A real z is Martin-Löf random if and only
if for each integral test f , f(z) <∞.

Definition 7.3. Given a Lebesgue integrable non-negative function f on
[0, 1], a point z in the domain of f is a weak Lebesgue point if

limε→0

∫
Bε(x) fdµ

µ(Bε(x))

exists. Further if this value equals f(z), then z is called a Lebesgue point.

The following lemma shows that Martin-Löf randomness is strong enough
to guarantee that weak Lebesgue points coincide with Lebesgue points. The
general idea of the following proof is, given a point z, by assumption the
derivative of the integration at z exists and if it does not equal the value of
the function at z, then we are able to define an integral test whose value is
infinity at z. By Theorem 7.2, we conclude z is not Martin-Löf random.
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Lemma 7.4. Suppose a Martin-Löf random set z is a dyadic weak Lebesgue
point for an integral test f . Then z is a dyadic Lebesgue point for f .

Proof. As a notation, for a function f :⊆ [0, 1]→ R and z ∈ [0, 1], let

E(f, σ) =

∫
[σ] f dµ

2−n
.

Then, z is a dyadic Lebesgue point iff limnE(f, z � n) = f(z). If f is a
integral test, then E(f,−) is a left-c.e. martingale.

Suppose that z is not a dyadic Lebesgue point for an integral test f and
z is a dyadic weak Lebesgue point for f . Then limnE(f, z � n) =: r exists
and f(z) 6= r.

By Lemma 4.6, 4.8 in [13], f could be approximated by a computable
sequence of rational step functions up to Kurtz equivalence, i.e. their values
coincide at each Kurtz random points. Let

f =Kurtz sup
s
fs

where {fs} is a computable sequence of rational step functions.
Then, there is a computable order u such that E(fs, σ) = E(fs, σ0) =

E(fs, σ1) for each σ satisfying |σ| ≥ u(s). Unless z is a dyadic rational, we
have

lim
n
E(fs, z � n) = fs(z).

Firstly, suppose that r < f(z). Since lims fs(z) = f(z) for each Kurtz
random point z, there is t such that

r < ft(z) ≤ f(z).

Then
r < ft(z) = lim

n
E(ft, z � n) ≤ lim

n
E(f, z � n).

This is a contradiction.
Secondly, suppose that r > f(z). Let q be a rational number such that

f(z) < q < r. We build a new integral test g such that g(z) =∞.
We prepare auxiliary uniformly c.e. sets {Sn} where Sn ⊆ 2<ω × ω for

each n. Let S0 = {(λ, 0)} where λ is the empty string. For each n ≥ 1 and
(σ, s) ∈ Sn−1, computably enumerate (τ, t) into Sσn so that

• σ ≺ τ ,
• |τ | ≥ u(s),
• E(ft, τ) > q,
• {τ ∈ 2<ω : (τ, t) ∈ Sσn} is prefix-free,

We can further assume that⋃
{[τ ] : σ ≺ τ, |τ | ≥ u(s), E(f, τ) > q} =

⋃
{[τ ] : (τ, t) ∈ Sσn}.

Let Sn =
⋃

(σ,s)∈Sn−1
Sσn .

For each (τ, t) ∈ Sn, let

gτ = (q − E(fs, τ))1[τ ]

where (σ, s) ∈ Sn−1 and σ ≺ τ . We define g by

g =
∑
n

∑
(τ,t)∈Sn

gτ .



DENSITY RANDOMNESS 13

Note that ∫
gτ dµ ≤ (E(ft, τ)− E(fs, τ))2−|τ | =

∫
[τ ]

(ft − fs)dµ,

thus
∫
g dµ ≤

∫
f dµ <∞. Hence, g is an integral test.

Since limnE(f, z � n) = r > q, there exists (τn, tn) ∈ Sn such that τn ≺ z
for each n. Then,

g(z) =
∑
n

(q − E(fs, τ)) ≥
∑
n

(q − f(z)) =∞.

�

Remark 7.5 (A special class of left-c.e. martingales). Let L be a left-c.e.
martingale. It is called special if it has a non-decreasing approximations
〈Ls : s ∈ ω〉 and there exists a computable function u : ω → ω such that
whenever τ ∈ 2<ω and |τ | > u(s), for all α, β � τ , Ls(α) = Ls(β). The
martingale we construct in the proof above is special. In fact we actually
prove the following: for each Martin-Löf random set Z and special left-
c.e. martingale L = supLs, if limn L(Z �n) exists, then limn L(Z �n) =
lims limn Ls(Z �n).

Theorem 7.6. The following are equivalent for z ∈ [0, 1]:

(i) z is density random.
(ii) z is a dyadic Lebesgue point for each integral test.
(iii) z is a Lebesgue point for each integral test.

Note that one direction is easy.

Proof of (ii) ⇒ (i) of Theorem 7.6. Suppose that z is a Lebesgue point for
each integral test. Then f(z) is finite for each integral test f , whence z is
ML-random.

Let C be a Π0
1 class containing z. We define a function f : [0, 1]→ R+

by

f(x) =

{
1 if x 6∈ C
0 if x ∈ C.

Then, f is an integral test. Since z is a Lebesgue point for f , C has density-
one at z. �

We next prove the converse.

Proof of (i) ⇒ (ii) of Theorem 4.2. Suppose that z is density random. Let
f be an integral test. Then E(f,−) as defined in Lemma 7.4 is a left-c.e.
martingale. By Theorem 4.2, limnE(f, z � n) exists, whence z is a dyadic
weak Lebesgue point for f . By Lemma 7.4, z is a dyadic Lebesgue point for
f . �

Recall the definition of interval-c.e. functions.

Definition 7.7. A non-decreasing, lower semi-continuous function f : [0, 1]→
R is call interval-c.e. if f(0) = 0 and f(y)− f(x) is a left-c.e. real uniformly
in rationals x < y.

To drop “dyadic”, we recall the following result.
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Theorem 7.8 (Nies [8]). Let f : [0, 1]→ R be interval-c.e. Let z be density
random. Then f ′(z) exists.

Proof of (ii) ⇐⇒ (iii) of Theorem 4.2. Note that (iii) ⇒ (ii) holds by def-
inition.

We prove (ii) ⇒ (iii). Suppose that z is a dyadic Lebesgue point for each
integral test. Then z is a convergence point for left-c.e. martingales.

Let f be an integral test. Then, F (x) =
∫

[0,x] f dµ is interval-c.e. Thus,

F ′(z) exists.

In particular, lim supQ→z

∫
Q f dµ

µ(Q) exists and is equal to lim supn

∫
[z�n] f dµ

2−n =

f(z). Hence, z is a Lebesgue point for f . �

Our next goal is to find a special integral test such that it alone character-
izes density random points. To achieve that, we need the following lemma,
due to Madison Group, Andrews, Cai, Diamondstone, Lempp and Miller,
which states the convergence of the sum of two left-c.e. martingales implies
the convergence of each summand.

Lemma 7.9. Let d1, d2 be left-c.e. martingales and Z ∈ 2ω is a Martin-Löf
random set. Suppose limn(d1 +d2)(Z �n) exists, then limn di(Z �n) exists for
each i = 1, 2.

Proof. Let c ∈ R such that limn(d1 + d2)(Z �n) = c. If c = 0 we are done
so assume c > 0. Suppose d1 does not converge on Z, the other case being
symmetric. The idea of the proof is as follows: since d1 +d2 converges, there
exists a natural number N where for any n > N the value of (d1 + d2)(Z �n)
is sufficiently close to c. Whenever the value of d1 (d2 respectively) is large,
we know d2 (d1) is relatively small. We thus bet our capital according to d2

(d1). We give the details in the following.

Claim 7.10. There are four rationals a > b, e > d and a natural number N
such that

(i) there are infinitely many i, j such that d1(Z �i) > a and d2(Z �j) > e;
(ii) for all n > N , whenever d1(Z �n) > a then d2(Z �n) < d; whenever

d2(Z �n) > e then d1(Z �n) <
a+ b

2
.

Proof of the claim. By the assumption of divergence of d1, there exists a, b ∈
Q such that 0 < b < a < c with lim supn d1(Z �n) > a and lim infn d1(Z �n
) < b. Choose q ∈ Q with

q < min{a− b
6

,
a

2
,
b

2
}

and N ∈ ω such that

∀n > N |(d1 + d2)(Z �n)− c| < q.

The existence of N follows from the convergence of d1 + d2 on Z.
Fix n > N . Since d1(Z �n) + d2(Z �n) < c + q, we know for infinitely

i > N ,

d2(Z �i) < c+ q − d1(Z �i) < c+ q − a < c+ 2q − a < c.
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Choose d ∈ Q such that

c+ q − a < d < c+ 2q − a.

Also for infinitely many j > N , we have d1(Z �j) + d2(Z �j) > c − q and
d1(Z �j) < b so d2(Z �j) > c− q− b. Notice that c− q− b > c+ 2q− a since

q < a−b
6 . We choose e ∈ Q such that

max{c+ 2q − a, c− 2q − b} < e < c− q − b.

Thus there are infinitely j > N such that d2(Z �j) > e. For such j,

d1(Z �j) + d2(Z �j) < c+ q ⇒ d1(Z �j) < c+ q − e < 3q + b <
a+ b

2
.

�

Next we build a left-c.e. martingale M which succeeds on Z. We induc-
tively associate each string with a strategy– {0,1,2}. For any τ ∈ 2<ω with
|τ | ≤ N , M(τ) = 1. Each such τ has 0-strategy.

Given τ ,

Case 1: It is associated with 0-strategy. if |τ | > N and d1(τ) > a, τ switches
to 2-strategy. If |τ | > N and d2(τ) > e, τ switches to 1-strategy.
Otherwise M(τ_0) = M(τ_1) = M(τ).

Case 2: It is associated with 1-strategy. If d1(τ) > a, switch to 2-strategy.
Otherwise if d1(τ) = 0, M(τ_i) = 0, i = 0, 1. If d1(τ) 6= 0,

M(τ_0) =
d1(τ_0)

d1(τ)
·M(τ) and M(τ_1) =

d1(τ_1)

d1(τ)
·M(τ).

Case 3: It is associated with 2-strategy. If d2(τ) > e, switch to 1-strategy.
Otherwise if d2(τ) = 0, M(τ_i) = 0, i = 0, 1. If d2(τ) 6= 0,M(τ_0) =
d2(τ_0)

d2(τ)
·M(τ) and M(τ_1) =

d2(τ_1)

d2(τ)
·M(τ).

It is easy to verify that the martingale M as defined is left-c.e..
To check M succeeds on Z, notice that every time we switch from 1-

strategy to 2-strategy, the capital increases by a factor of
a

(a+ b)/2
> 1,

and every time we switch from 2-strategy to 1-strategy the capital increases

by a factor of
e

d
> 1. Since by assumption, this happens infinitely often, M

succeeds on Z. �

Corollary 7.11. Let f, g be integral tests. If an ML-random set x is a
dyadic weak Lebesgue point for f+g, then x is a dyadic weak Lebesgue point
for f .

Proof. Notice for any lower semi-computable function f , the function

E(f, σ) =

∫
[σ] fdµ

2−|σ|

is a left-c.e. martingale. Apply the previous lemma, we are done. �

Actually one integral test characterizes density randomness.

Theorem 7.12. Let f be a Solovay-complete integral test. Then x is a
Lebesuge point for f if and only if x is density random.



16 KENSHI MIYABE, ANDRÉ NIES, AND JING ZHANG

Proof. The “if” direction follows from Theorem 7.6.
Suppose x is not density random. We can assume that x is ML-random,

because, otherwise, f(x) = ∞ and x is not a dyadic Lebesgue point for f .
Then there is an integral test g such that x is not a dyadic Lebesgue point
for g. Since f is Solovay-complete, there are a rational q and an integral
test h such that

f =
g

q
+ h.

Notice that x is not a dyadic Lebesgue point for
g

q
. By Lemma 7.4, x is not

a dyadic weak Lebesgue point for
g

q
. By the lemmas above, x is not a dyadic

weak Lebesgue point for f . Thus, x is not a Lebesgue point for f . �

This finishes the characterization of density random points using integral
tests. Finally, compare different classes of functions as mentioned in the
introduction.

Remark 7.13 (Compare different classes of functions). Recall the three
classes of functions mentioned in the Introduction 1.

Next we construct the following counter-examples to show each implication
is strict.

Example 7.14 ([1], (2) 6⇒ (1)). There is a non-decreasing computable
(hence, interval-c.e.) Lipschitz function f that is not of the form f(x) =∫ x

0 gdµ for any lower semi-computable function g.

Proof. Let M be a computable martingale that succeeds on any Z ∈ 2N

failing the law of large numbers. By Theorem 4.2 of [9] (and its proof)
there is a computable Lipschitz function f such that f ′(z) fails to exist
whenever M succeeds on a binary expansion Z of z. Adding a linear term,
we may assume that f is nondecreasing. Now suppose f(x) =

∫ x
0 g dλ for

a lower semicontinuous function g. If C is a Lipschitz constant for f , then
{x : g(x) > C} is a null set. Since this set is also open, it is empty. Hence
g is bounded.

If Z is 1-generic then Z is a density-one point by the following observation:
an effectively closed class C contains a 1-generic z only if C contains an open
interval around z. Hence by [1, Proposition 7.1], z is a Lebesgue point of g.
Then f ′(z) exists.

On the other hand, each 1-generic Z fails the law of large numbers. So
M succeeds on Z, and f ′(z) does not exist. Contradiction. �

Example 7.15 (See for example [15], (3) 6⇒ (2)). There is an interval-c.e.
continuous function which is not absolutely continuous.

This example is the well-known Cantor’s function. Formally, we define
f : [0, 1]→ [0, 1] as follows:

(i) Express x in base 3;
(ii) If x contains a 1, replace every digit after the first 1 by 0;
(iii) Replace all 2’s by 1’s
(iv) Interpret the result as a binary expression of a real number, and

output as f(x).
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We could define the computable lower approximation of the function as we
inductively define the cantor set. This function is not absolutely continuous
since it maps the complement of Cantor set, which has measure 1, to a null
set.

8. Questions

Question 8.1. Does Density Randomness coincide with Oberwolfach Ran-
domness.

Question 8.2. Does there exist an ω-c.e. Turing incomplete Martin-Löf
random set which computes all K-trivial sets?

Question 8.3. Does there exist a ∆0
2 random exact pair for the class of

K-trivial sets?
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