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Abstract. We review and present the proof, as originally due to Julia Robinson 1949,
that the integers are definable within the field of rationals using first order logic. We
discuss consequences of this result, for instance showing that the theory of the rationals
is undecidable. We mention Hilbert’s tenth problem, and briefly discuss its relevance
to first order definability. Further, we look at Poonen’s recent work on definability of
the integers in the rationals.
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1. Introduction

Then called the High Prophets:
What seest thou, Imbaun? And
Imbaun said: I see naught.
Then called the High Prophets:
What knowest thou, Imbaun?
And Imbaun said: I know
naught.
Then spake the High Prophet of
Eld of All the gods save One,
who is first on Earth of prophets:
O Imbaun! we have all looked
upwards in the Hall of Night
towards the secret of Things,
and ever it was dark, and the
Secret faint and in an unknown
tongue. And now thou knowest
what all High Prophets know.

Lord Dunsany, The Gods of
Pegana

In order to use first order definability, we must first explain what it is. The term
‘first order’ refers to the type of formal logic used, often simply referred to as ‘predicate
logic’. Primarily, we say ‘first order’ to differentiate between logics of the ‘first order’
(quantifying over variables), and ‘second order’ (quantifying over relations). We say that
a concept is first order definable, if there exists some formula A(x) that characterizes
exactly the properties thereof. Thus we give a definition of some concept in a first order
language. Consider the following example:

(1) N(k) = ∃x(x2 = k)

Clearly, if we take the field R, (1) would define the nonnegative reals.
In her PhD thesis ‘Definability and Decision Problems in Arithmetic’, Section 3

[10], Julia Robinson presented a first order definition of Z in the field of rationals,
(Q,+,×, 0, 1). She does so by taking the second order definition of N in Q as the in-
tersection of all inductive sets, and shows that one can convert this into a first order
definition by presenting a first order definition with parameters of a sufficiently large
subclass of the inductive set.

This has very powerful implications. For starters, since it is a fact that the natural
numbers are first order definable in the integers, and since the theory of natural numbers
is undecidable, one can conclude that the theory of rationals itself is undecidable.

Most of this essay will be dedicated to the proof of Julia Robinson’s theorem, as the
author has found that her paper assumes many results without giving sufficient proofs
that can be understood by those outside of the discipline of number theory. Near the
end we will look at Hilbert’s tenth problem and its relevance to Robinson’s work. We
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will also briefly mention Bjorn Poonen’s method of defining the integers within rationals,
which is in many ways more efficient, as judged by the number of quantifier alternations.
Also Jochen Koenigsmann’s results a briefly mentioned, who provides similar results, but
only using one universal qantifier.

2. Defining Z in Q

2.1. Overview.

Theorem 2.1. The set of integers Z is first order definable in the field Q.

We first consider what it means for some subset S of Q to be inductive. S is inductive
if 0 ∈ S, and for all y, if y ∈ S, then y + 1 ∈ S. This is enough to obtain a second order
definition of N in Q, even without using multiplication in Q:

(2) k ∈ N⇔ ∀S(S is inductive → k ∈ S)

In other words, if we take all the inductive sets S over Q, then k is a natural number iff
it appears in

⋂
S.

The crux of Robinson’s definition comes in the idea that we can construct a smaller
collection of inductive sets S for the same purpose. This is done via the use of certain
constructs of number theory (ie quadratic forms) parameterizable by only two rationals
a and b. We consider sets Sa,b = {k | Q � Φ(a, b, k)} where Φ(a, b, k) is:

(3) Φ(a, b, k) ≡ ∃x∃y∃z(2 + abk2 + bz2 = x2 + ay2)

Using this way of talking about S, we can take the second order definition (2) and replace
the quantification over sets S by the quantification over the parameters a and b, thereby
turning it into a first order definition. We define

(4) A(k) ≡ ∀a∀b[(Φ(a, b, 0) ∧ ∀m〈Φ(a, b,m)→ Φ(a, b,m+ 1)〉)→ Φ(a, b, k)]

In other words, we have it that k is an integer iff for all inductive sets Sa,b, k ∈ Sa,b.
Further, we say that:

(5) k ∈ Z⇔ Q � A(k)

The reason why we replace N with Z is because the smaller number of inductive sets we
now use cannot be ridded of the negative integers; we note that in (3), k appears in the
form of k2, and thus we have k ∈ Sa,b iff −k ∈ Sa,b.

We now set out to prove (5).
First, for convenience we take the hypothesis of (5), and call it B(a, b), so:

(6) B(a, b) ≡ (Φ(a, b, 0) ∧ ∀m〈Φ(a, b,m)→ Φ(a, b,m+ 1)〉)
First we must take a closer look at the sets Sa,b and prove that they are indeed inductive.
Any k ∈ Q can be written as n

d , where n ∈ Z, d ∈ N, and n and d are co-prime; we say
that k = n

d in its lowest terms, where d is the denominator of k in its lowest terms.

Fact 2.2. Let S be a set of rationals. Say S is defined by some condition that holds
for 0 and only depends on the denominator of the rational in lowest terms. Then S is
inductive.
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Proof. We use the fact that for all q ∈ Q the denominator in lowest terms of q is the
same as that of q + 1. In more detail, say q ∈ Q, and q = n

d in its lowest terms. Then

q + 1 = n
d + 1 = n

d + d
d = n+d

d . Since d and n are co-prime, so are n+ d and d. �

Now all that needs to be done is to show that (3) satisfies the conditions of (2.2).
Robinson does this by showing that there are two specific choices of a and b such that
the condition Φ(a, b, k) for Sa,b only depends on the denominator of k in its lowest terms.

The first such choice is of a being a prime p equivalent to 3 mod 4, and b being 1.

Lemma 2.3. If p is a prime and p ≡ 3 mod 4, then the equation 2 + pM2 + pZ2 =
X2 +Y 2 has a solution for X, Y , and Z iff the denominator of M in its lowest terms is
odd, and is co-prime to p.

For the second choice, b is taken to be some prime p equivalent to 1 mod 4, and a is
determined by b to be some prime q such that the Legendre symbol (q/p) evaluates to
−1 (see the glossary at the end for number theoretic terms).

Lemma 2.4. If p and q are odd primes, where p ≡ 1 mod 4 and (q/p) = −1, then
2 + pqM2 + pZ2 = X2 + qY 2 has a solution for X, Y , and Z iff the denominator of M
in its lowest terms is co-prime to both q and p.

In light of the above, we also need a number theoretic claim that shows that for any
such p as discussed above, we can find such a q:

Claim 2.5. If p is a prime, and p ≡ 1 mod 4, there exists an odd prime q such that
(q/p) = −1.

Proof. Take some s that is a quadratic non-residue of p. Either s is odd, or s + p is
odd, and clearly both still are non-residues of p. But an odd non-residue of p must
have an odd prime factor which is also a non-residue of p, as the Legendre symbol is
multiplicative . Call this factor q. �

2.2. Proof of (5) assuming Lemmas 2.3 and 2.4. We first consider the left to right
direction in (5). We take some k ∈ Q such that k is also in Z. Then without loss of
generality we take some a and b that satisfy (6). If this were not the case, then trivially
Q � A(k).

There are two cases, either k is positive, or it is not. Presuming that k is positive,
we can use the hypothesis to initiate a proof by induction. Since we already know that
Q � Φ(a, b, 0), and we know that for all m, if Q � Φ(a, b,m), then Q � Φ(a, b,m + 1),
trivially Q � Φ(a, b, k).

If, on the other hand, k is negative, then we have the following; first we recall that
k ∈ Sa,b if and only if −k ∈ Sa,b, which is the same as Q � Φ(a, b, k) if and only if
Q � Φ(a, b,−k). Then, we note, that if k is negative, −k must be positive, and the proof
in the case above can be used to show that Q � Φ(a, b,−k). Thus Q � Φ(a, b, k).

Thus, in both cases, Q � A(k).
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Now we consider the right to left direction in (5). Suppose k ∈ Q such that Q � A(k).
We write k in its lowest terms, n

d . By Lemma 2.3, d is odd and not divisible by all primes
p equivalent to 3 mod 4. But also by Lemma 2.4 in conjunction with Claim 2.5, d is
not divisible by any prime p that is equivalent to 1 mod 4. But that just means that
the d must be 1.
Thus k ∈ Z.

By the two lemmas the formula A(k) provides a definition of Z in Q. A variant of the
proof in the style of natural deduction can be found in the Appendix, Section 7.

3. Proofs of Lemmas 2.3 and 2.4

We first consider two lemmas that are derived from the Hasse-Minkowski theorem,
originally presented in [6]. These are non-trivial results, and to prove them would require
a discussion of the p-adic integers to an extent that would fall outside of the scope of this
project. An introduction to p-adics and the Hasse-Minkowski theorem can be found, for
instance, in [2]. The proofs for the below lemmas can be found in Fräısse[8], Appendix 1.

Lemma 3.1. If some prime p has the property p ≡ 3 mod 4, then X2 + Y 2 − pZ2

represents M ∈ Q, M 6= 0, iff it is not the case that either:
a) M = pkS2, where (k/p) = 1.
b) M = kS2 with k ≡ p mod 8

Where S is some rational.

Lemma 3.2. If p and q are odd primes with p ≡ 1 mod 4 and (q/p) = −1, then there
is some non-zero M in the rationals such that X2 + qY 2 − pZ2 represents M , iff it is
not the case that:

a) M = pkS2 and (k/p) = −1
b) M = qkS2 and (k/q) = −1

Where S is some rational.

Below are the proofs for Lemmas 2.3, 2.4, and 2.5.

Proof of Lemma 2.3. We note that the statement “2 + pM2 + pZ2 = X2 + Y 2 has a
solution for X, Y, and Z” is equivalent to:

(7) X2 + Y 2 − pZ2 represents 2 + pM2

We consider M = n/d, where d is the denominator in lowest terms. Then, we have (7)
if and only if

(8) X2 + Y 2 − pZ2 represents pn2 + 2d2

The proof for this is simple: suppose we have one of the two equations, we di-
vide/multiply through by d2, and then, because X, Y, and Z are variables ranging
over the rationals, we get the other. Hence (7) is equivalent to (8)

By considering three cases, we show that the only scenario where (8) holds, is when
d is odd, and co-prime to p.
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Case 1: (d is even)
Suppose d = 2a. We note that u has to be odd, otherwise d would not be the denomina-
tor in lowest terms. We write n as 2b+ 1. Thus, pn2 + 2d2 = 8a2 + p(2b+ 1)2. We now
show that this integer is equivalent to p mod 8. Clearly this is the case if p(2b+ 1)2 ≡ p
mod 8, if 8 | p(2b + 1)2 − p, if 8 | p(4b2 + 4b) if 8 | 4b(b + 1), in which case, either b is
even or odd, but in both cases we have it that b(b + 1) = 2c(2d + 1) for some c and d.
Thus 4b(b+ 1) = 8c(2d+ 1) implies that indeed 8 | 4b(b+ 1).

Suppose S = 1, then pn2 + 2d2 can be written as k, and consequently S2k. Since we
have already shown that k ≡ p mod 8, by Lemma 3.1 b, we have it that X2 +Y 2− pZ2

does not represent pn2 + 2d2.

Case 2.1: (d is odd and p | d)
We write d as pa, then pn2 + 2d2 = p(n2 + 2pa2). We note that p - n, as otherwise d
would not be the denominator in lowest terms of M . Thus p - (n2 + 2pa2). We then
note that ((n2 + 2pa2)/p) = (n2/p) = 1. We then take S = 1, and write k = (n2 + 2pa2).
But this means that pn2 + 2d2pkS2, where (k/p) = 1. But then, by Lemma 3.1(a), we
conclude that X2 + Y 2 − pZ2 does not represent pn2 + 2d2.

Case 2.2: (d is odd and p - d)
Here, we show that given our assumptions, pn2 + 2d2 does not satisfy conditions a and b
of Lemma 3.1. From the case-given assumption, we get p - 2d2, and thus p - (pn2 + 2d2).
In other words, p is not a factor of pn2 + 2d2. Hence the latter cannot be written as
pkS2 and thus pn2 + 2d2 doesn’t satisfy condition a of Lemma 3.1.

As d is odd, d ≡ 1 or 3 mod 4. In both cases, we have it that d2 ≡ 1 mod 4. We
now consider n. Without loss of generality, we know that n ≡ 0, 1, 2, or 3 mod 4, and
so n2 must be equivalent modulo 4 to either 0, 1, 4, or 6. Thus n2 ≡ 0 or 1 mod 4. But
this means that pn2+2d2 ≡ 3∗0+2∗1 ≡ 2 mod 4 or pn2+2d2 ≡ 3∗1+2∗1 ≡ 1 mod 4.

We can now show that pn2 + 2d2 cannot be written as kS2, where k ≡ p ≡ 3 mod 4.
We begin by pointing out that if S ∈ Q \Z, then kS2 ∈ Q \Z. But since p, n, and d are
all integers, S ∈ Q\Z would imply that pn2 +2d2 6= kS2. Ergo we treat S as an element
of Q ∩ Z. Without loss of generality, we note that S ≡ 0, 1, 2, or 3 mod 4, and ergo
S2 ≡ 0 or 1 mod 4. But this means that, since k ≡ p ≡ 3 mod 4, that kS2 ≡ 0 or 3
mod 4. Clearly, we have pn2+2d2 6= kS2. Ergo in all cases we have shown that pn2+2d2

cannot be written as kS2, and consequently doesn’t satisfy condition b of Lemma 3.1.

Which means that, by aforementioned lemma, we have it that X2+Y 2−pZ2 represents
pn2 + 2d2. This is enough to prove Lemma 2.3.

�

Proof of Lemma 2.4. Similarly to the above proof, we note that the statement ‘2 +
pqM2 + pZ2 = X2 + qY 2 has a solution for X, Y , and Z’ is equivalent to:
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(9) X2 + qY 2 − pZ2 represents 2 + pqM2

And, if we rewrite M as n/d, where d is the denominator in lowest terms, then (9) is
equivalent to :

(10) X2 + qY 2 − pZ2 represents pqn2 + 2d2

The rationale here is identical to the one that justifies teh equivalence of (7) and (8).

We consider 2 cases, and in doing that we show that X2 + qY 2 − pZ2 represents
pqn2 + 2d2 if and only if d is co-prime to both q and p.

Case 1: (p - d and q - d)
We note that both p and q don’t divide 2d2, as both of them are odd primes. Hence,
they don’t divide pqn2 + 2d2. But that means that pqn2 + 2d2 can’t be written as
pkS2 or qkS2, and thus does not satisfy conditions (a) and (b) of Lemma 3.2. Thus by
the same lemma, we conclude that X2+qY 2−pZ2 represents pqn2+2d2 in the rationals.

Case 2: (p | d or q | d)
Without loosing generality, we can consider 2 sub-cases here, treating each of the dis-
juncts of the assumption, however the cases are identical, with q and p being inter-
changeable, and so we only treat p | d.

Suppose p | d. We write d as pa, and consequently pqn2 + 2d2 = p(qn2 + 2pa2). We
note that p - n, as otherwise d would not be the smallest denominator of M . Thus p - qn2
and ergo p - (qn2 + 2pa2). We now show that ((qn2 + 2pa2)/p) = −1. First, we recall
that by assumption, (q/p) = −11. Then we observe that ((qn2 + 2pa2)/p) = (qn2/p) =
(q/p) = −1. We call (qn2 + 2pa2) k, and set S = 1. Then pqn2 + 2d2 = pkS2 where
(k/p) = −1, but this means that by Lemma 3.2, X2 + qY 2 − pZ2 does not represent
pqn2 + 2d2.

This suffices to prove Lemma 2.4.
�

4. Undecidability of Q

One of the consequences of first order definability of Z in Q, is that the theory of
rationals, referred to here as Th(Q) can now be proven to be undecidable. To do this
we need the concept of mapping reducibility. We say that some set A ⊆ N is mapping
reducible to set B ⊆ N if there is a computable function f : N → N such that ∀x, x ∈
A⇔ f(x) ∈ B. We denote this by A ≤m B. Sometimes the domain and codomain of f
may be things other than numbers, such as wff in predicate logic. This is fine because
these object can be effectively encoded by numbers.

1this can also be proven by the Law of Quadratic Reciprocity from the other properties that p and q
are assumed to have



8 YAN KOLEZHITSKIY

We recall that Th(N) is undecidable in accord with Gödel’s results shown in [4]. We
prove that Th(N) ≤m Th(Z) and Th(Z) ≤m Th(Q). We then use the properties of
≤m to show that Th(Q) must be undecidable. An introductory discussion of mapping
reducibility and its properties can be found in [11].

4.1. Defining N in Z. We first consider the following formula:

(11) C(n) ≡ ∃x1∃x2∃x3∃x4(x21 + x22 + x23 + x24 = n)

We claim2 that Z � C(n) iff n ∈ N, (Lagrange’s four-square theorem) and consequently
we get:

Theorem 4.1. The natural numbers are first order definable in the integers by C(n).

4.2. Th(N) ≤m Th(Z). We show this by inductively defining a function fN→Z . The
induction is done on the complexity of φ ∈ Th(N).

If φ is a predicate form with free variables x1...xn, then fN→Z(φ) = C(x1) ∧ ... ∧
C(xn) ∧ φ.

If φ is of the form ∀x ψ, then fN→Z(φ) = ∀x(C(x)→ (fN→Z(ψ)))
If φ is of the form ψ ∧ χ, then fN→Z(φ) = fN→Z(ψ) ∧ fN→Z(χ)
If φ is of the form ¬ψ, then fN→Z(φ) = ¬fN→Z(ψ)
All the other cases can be reduced to these. Clearly f is computable.

Claim 4.2. For all wff φ we have φ ∈ Th(N)⇔ fN→Z(φ) ∈ Th(Z).

Thus, by the definition of mapping reducibility, Th(N) ≤m Th(Z).

4.3. Th(Z) ≤m Th(Q). Similarly to what we did in 4.2, we inductively define fZ→Q by
considering the first order definition of Z in Q, (4) instead of C(n) as above. Thus we
have the following claim:

Claim 4.3. For all wff φ we have φ ∈ Th(Z)⇔ fZ→Q(φ) ∈ Th(Q).

And again, by the definition of mapping reducibility, we get Th(Z) ≤m Th(Q).

4.4. Undecidability of Q. By the results obtained in 4.2 and 4.3, paired with the
transitive nature of ≤m, it is easily shown that Th(N) ≤m Th(Q). This is equivalent
to taking the composition of the two functions fN→Z and fZ→Q. It has already been
established that Th(N) is undecidable. So all we need now is the following theorem
taken from [11], (Corollary 5.23) :

Theorem 4.4. If A ≤m B and A is undecidable, then B must also be undecidable.

Ergo Th(Q) is undecidable.

2The proof for this can be found in [5], section 20.5
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5. First Order Definability and Hilbert’s Tenth

5.1. H10 and History. Hilbert’s Tenth, referred to as H10, was the 10th problem laid
out by Hilbert in his talk at the International Congress of Mathematics in Paris, at the
start of the 20th century. He hypothesized that these problems will determine the course
of mathematics over the next century.

The problem asks as to whether or not there exists an algorithm that can determine
if a solution exists in Z for some Diophantine equation with integer coefficients.

This can be rephrased using first order logic into the following question: does there
exist an algorithm that can determine whether or not

Z � ∃x1...∃xnP (x1, . . . , xn) = 0,

where P is a polynomial in variables x1, . . . , xn with integer coefficients. Clearly, we can
see that if Th(Z) was decidable, then the answer to H10 will be a positive one. However
as seen in Section 4, Th(Z) is not decidable. This in itself is not enough to determine
an answer to H10, as there still exist subsets of Th(Z) that are decidable.

5.2. The solution. Robinson, among other mathematicians, dedicated a lot of time in
the pursuit of an answer to H10. In fact, in 1961 Putnam, Davis, and Robinson proved
that there is no algorithm that can decide an exponential Diophantine equation over N,
ie an equation such as 5x + zy = 0. In 1970, a Russian mathematician called Matiasevic
was able to use this to prove a negative result for H10. He did this by using various
number theoretic notions and Pell’s equation to get rid of the variables in the exponents.

5.3. From the Perspective of Computability Theory. Another way of talking
about H10 is through Computability Theory, and the recognizability of elements as the
members of a language [11]. Under this view, we would ask if there is a Turing Machine
(formalized algorithm) that can recognize a given Diophantine equation as a member
of the set of all Diophantine equations with a solution in Z. The result of Matiasevic’s
proof was that Diophantine sets are equivalent to recursively enumerable sets. If S is
such a set, there is a polynomial with integer coefficients Q such that for each natural
number n,

n ∈ S ⇔ Z � ∃x1...∃xnQ(n, x1, . . . , xn) = 0.

Recursively enumerable sets themselves are only recognizable and not necessarily decid-
able. That is to say there is an algorithm that will ultimately return ‘yes’ if a given
member is in a set, but isn’t guaranteed to return ‘no’ otherwise. In the case where a
set is undecidable and recognizable, the algorithm is blind to the difference between the
possibility that it simply hasn’t searched hard enough for the answer, and the possibility
that there is no answer. We know that there are recursively enumerable sets that are not
decidable 3. Thus, by this result, it is concluded that Diophantine sets are not decidable.

Since Diophantine sets are definable in this particularly simple way, Matiasevic’s result
provides another example of first-order definability: all recursively enumerable sets of
natural numbers are definable in the ring Z using only existential quantifiers, and no
connectives.

3The halting problem is proven by Alan Turing to define one such set
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6. Poonen’s Definition of Z in Q

As demonstrated in the previous sections, Robinson’s formula uses quadratic forms
to pick out the integers in the rationals. Although this is a proven approach, it is not
the only way to define the integers in the rationals. Nor is it necessarily the best.

In [9], Poonen presents yet another first order definition of integers in the field of
rationals. Before we present and discuss this definition, it is noteworthy to look at the
motivation behind this.

6.1. Positive Arithmetic Hierarchy. Poonen discusses a notion talked about by Za-
hidi and Cornelissen in [3], called ‘Positive Arithmetic Hierarchy’. Informally, it is the
number of quantifier changes that occur in a formula in Prenex Normal Form, with a
sensitivity to the main quantifier operator. More formally, we call the set of atomic
formulas, ie those without any quantifiers as of the form Σ+

0 , or equally of the form Π+
0 .

Then formulas of the form Σ+
n are inductively defined to be those with the main opera-

tor being an existential quantifier, followed by any number of existential quantifiers, and
then by a subformula of the form Π+

n−1. Formulas of the form Π+
n are defined similarly,

except for with the main operator being a universal quantifier. For example, we recall
(11). This clearly is of the form Σ+

1 .

6.2. Further on Undecidability. We recall that in the previous section it was demon-
strated that Robinson essentially proved that any first-order theory of rationals is unde-
cidable. In the light of this new notion of Positive Arithmetic Hierarchy, we can gauge
and talk about the type of undecidability entailed by Robinson’s formula.

(3) is of the form Π+
4 with one free variable. What this means is that the Σ+

5 -theory
of Q is undecidable.

Poonen proposes an alternative formula of the form Π+
2 with one free variable, which

means that by the same argument as encountered in Section (4), it can be proven that
the Σ+

3 -theory of Q is undecidable.
H10 also has a version in the rationals: is there an algorithm that determines whether a

given polynomial in several variables with integer coefficients have a zero in the rationals?
This is one of the big open problems at the interface of logic and number theory. Everyone
expects a negative solution, no one has been able to give a proof. This would of course
show that the set of Σ+

1 sentences that hold true in Q is undecidable.

6.3. Poonen’s Formula. Robinson’s formula relies on modifying the second order def-
inition of Z in Q by using quadratic forms to define inductive sets. Poonen does away
with this, and instead works with quaternion algebras.

He first defines a Π+
2 formula with one free variable, that begins with two universal

quantifiers followed by seventeen existential quantifiers:

Ψ1(t) = ∀a∀b∃a1∃a2∃a3∃a4∃b1∃b2∃b3∃b4∃x1∃x2∃x3∃x4∃y1∃y2∃y3∃y4∃n
[(a+ a21 + a22 + a23 + a24)(b+ b21 + b22 + b23 + b24)

[(x21 − ax22 − bx23 + abx24 − 1)2 + (y21 − ay22 − by23 + aby24 − 1)2

+n2(n− 1)2 · ... · (n− 2309)2 + (2x1 + 2y1 + n− t)2] = 0]
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Poonen points out that even though he can’t see how to get rid of the universal quan-
tifiers, the number of existential quantifiers can be reduced to seven, obtaining:

Ψ2(t) = ∀a∀b∃x1∃x2∃x3∃x4∃y2∃y3∃y4
(a+ x21 + x22 + x23 + x24)(b+ x21 + x22 + x23 + x24)

·[(x21 − ax22 − bx23 + abx24 − 1)2 +
2309∏
n=0

((n− t− 2x1)
2 − 4ay22 − 4by23 + 4aby24 − 4)2]

As discussed by Carol Wood in her talk 4, the top two lines are designed to allow
one to ignore negative values of a and b. The two universal quantifiers come from some
application of the Local-Global principle. Wood also agrees with Poonen that it is hard
to see how one could do away with the universal quantifiers. Nonetheless this is a first
reduction in the alterations of quantifiers since Robinson’s definition.

6.4. Kenigsmann’s Results. In his work [7], Kenigsmann presents another Π+
2 for-

mula for defining Z in Q using only one universal quantifier, as opposed to two.

7. Appendix

Below is presented a variant of the proof of 5 in the style of natural deduction. We only
prove the left to right direction, as arguably it is the only interesting direction. Natural
deduction is a formal proof system that revolves around identifying and formalizing
various intuitive leaps in logic often used in mathematical proofs. It is primarily design
to prove various sentences in the language of first order logic, however in principle it
can be used when proving concepts found beyond the object language. A brief guide
to natural deduction can be found in [1]. Note, in some places we skip on detail, for
example in the construction of Φ(1, p, 0) from Lemma 2.3, as constructing sentences such
as this can be quite tedious in the style of natural deduction, despite the fact that they
follow trivially from the Lemma. We also take for granted the use of induction, which
would normally require Peano axioms when done in the object language. Further, as
mentioned this isn’t, strictly speaking, natural deduction as the statement ‘k ∈ Z’ is
not written in first order logic. But nonetheless the principles and mechanics of natural
deduction are applicable.

Proof. Our local assumption is that A(n) holds. The primary and secondary operators
are universal quantifiers, and the ternary operator is an implication. We use double
universal instantiation (Universal Elimination) on this premise, instantiating a = 1 and
b = p, for some p with the property p ≡ 3 mod 4. Thus we get as resource, the state-
ment B(1, p) → Φ(1, p, n). By using Lemma 2.3, we show that we can construct the
statement Φ(1, p, 0). Further, since it is provable that M and M + 1 have the same
denominator, we can prove by induction that ∀m〈Φ(a, b,m)→ Φ(a, b,m+ 1)〉. Alterna-
tively this can be proven just with universal instantiation. By conjunction introduction,
we then get the proposition B(1, p). Then we use modus ponens to show that indeed we
have Φ(1, p, n). From this, given the denominator d of n in its lowest terms, it is not the
case that 2 - d, and p - d.

4 “Defining the integers in the rationals”, NYWIMN Conference, May 2, 2008. Slides can be found
at http://websupport1.citytech.cuny.edu/faculty/vgitman/nywimn/nywimn2/files/carolslides.pdf
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Then, going back to the original premise, A(n), we again use universal instantiation
twice such that a = q and b = p, where both are primes, p ≡ 1 mod 4, and q is
determined based on p by Claim 2.5, so (q/p) = −1. We get a premise of the form
B(q, p)→ Φ(q, p, n). By Lemma 2.4 we show that q and p are of the form that Φ(q, p, 0)
holds. Again, like in the case above, by induction (or differently, with Universal In-
stantiation) we prove that ∀m〈Φ(q, p,m) → Φ(q, p,m + 1)〉. So again, by conjunction
introduction we get B(q, p). Thus by modus ponens, we get Φ(q, b, n). But this implies
that the denominator of n, d is such that p - d.

Combining the last premise of each of the above derivations, we get it that whatever
n ∈ Q is, it has to be of the form where its denominator d, in its lowest terms, is not
divisible by 2, p, or q. But p and q are arbitrary primes of said properties. It is easy to
prove that these 3 properties are necessary and sufficient to conclude that for all primes
p p - n. We prove this by contradiction, assuming that n is not an integer, from which
we derive falsum. Thus, we get n ∈ Z. �
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8. Glossary

Undecidability A set is undecidable if there is no algorithm that, upon input, deter-
mine whether or not it is a member of the given set.

Decidability Consequently, we say that a set is decidable iff it is not the case that it is
undecidable.

Recursively Enumerable Set A set who’s members can be determined to be members
of the set by some algorithm, but not necessarily the other way around.

Prenex Normal Form a first order formula is in PNF, when all the quantifiers are
prefix to a quantifier-free formula. Every formula has a PNF equivalent.

Law of Quadratic Reciprocity A theorem to do with modular arithmetic that gives
conditions for the solvability of quadratic equations modulo prime numbers.

Legendre Symbol (K/P) is a function that returns 1 if k is a quadratic residue
mod p, 0 if k is 0, and −1 otherwise.

Quadratic Residue we say that k is a quadratic residue mod p iff there exists some
i ∈ mathbbZp s.t. k = i2.

Residue Class given a ring of integers mod p, Zp, each element thereof is a residue
class.

Quadratic Form a homogenous polynomial over the field K, with degree 2 , and coef-
ficients in K.

A quadratic form is said to represent 0 in K iff there exist values a1....an ∈ K s.t.
f(a1.....an) = 0 and some of these values are not 0.

A quadratic form is said to represent γ in K iff there exist values a1....an ∈ K s.t.
f(a1.....an) = γ).

Diophantine Equation An equation with solutions in Z or Q.

Hasse-Minkowski Theorem This states that two quadratic forms over some field F
are equivalent iff they are equivalent over every completion of F.

Local-Global Principle Also known as the Hasse principle, it is related to the Hasse-
Minkowski theorem, and states that one can find an integer solution to an equation by
using various concepts of number theory, such as the Chinese remainder theorem. A
typical way to handle this is via the examination of the rational and p-adic completions
of the rationals.
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P-adic Numbers The p-adic numbers are a different completion of the rationals to the
reals. Instead of using cauchy sequences based on the standard valuation of absolute
value, p-adics are based on the p-adic absolute value.

P-adic Absolute Value Given x ∈ Q, x = pa11 .....p
an
n , we can rewrite it as x = paii

n
m ,

where pi - n and pi - m. We note that if pi, doesn’t appear in the firstly presented
representation of x, then ai = 0. A p-adic absolute value is given as |x|pi = p−aii . This
is a valuation.



FIRST ORDER DEFINABILITY OF THE INTEGERS IN THE FIELD OF RATIONALS 15

References

[1] Merrie Bergmann, James Moor, and Jack Nelson. The logic book, 1998.
[2] JWS Cassels. Lectures on elliptic curves, volume 24 of London Mathematical Society student texts.

Cambridge University Press, Cambridge, 19(20):334, 1991.
[3] Gunther Cornelissen and Karim Zahidi. Elliptic divisibility sequences and undecidable prob-

lems about rational points. Journal für die reine und angewandte Mathematik (Crelles Journal),
2007(613):1–33, 2007.
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