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1 Introduction

The total variation of a real valued function is a measure of its oscillation. A function is
said to be of bounded variation if its total variation is finite. While functions of bounded
variation are well-behaved in the sense that they are both a.e. differentiable and form a
Banach algebra under the so-called variation norm, they can be difficult to study com-
putationally since the space of bounded variation functions is not separable. A classical
result due to Camille Jordan in 1881 states that any function of bounded variation is
the difference of a pair of non-decreasing functions, called a Jordan decomposition [14].
With the development of measure theory and functional analysis in the early 20th cen-
tury, the concepts of variation and decomposition were extended. Hans Hahn showed
that any signed and bounded Borel measure can be decomposed as the difference of
two non-negative Borel measures, and similarly it was shown that a functional from the
dual space of C[0, 1] could be decomposed as the difference of two non-negative linear
functionals.

This dissertation is an exposition on the metamathematics of variation and Jor-
dan decomposition. We provide a detailed logical analysis of the class of functions of
bounded variation using insights from active programmes in mathematical logic such
as computable analysis, reverse mathematics, and algorithmic randomness. Our goal is
to uncover effective aspects of classical results from analysis and measure theory con-
cerning functions of bounded variation by addressing a number of questions discussed
below.

(1) If f is computable, can one always find an effective Jordan decomposition?

The computational content of classical analysis has been studied since Turing’s se-
mantics for computation. Computable analysis is an approach to mathematics which
enforces effectivity requirements on its objects of concern and determines whether clas-
sical theorems still hold. That is, computable analysis is the theory of computable real
numbers, real functions, metric spaces, etc. For instance, the monotone convergence
theorem is not computably true, in the sense that there is a bounded computable mono-
tone sequence of real numbers whose limit is not a computable real. Using the methods
of Zheng and Rettinger [30], we show that the Jordan decomposition theorem is not
computably true: there is a computable function of bounded variation which is not the
difference of two non-decreasing computable functions by Theorem 3.4. The result can
even be strengthened to the case of polynomial time computability.

(2) What is the complexity of the operator which maps a function of bounded variation
to its (canonical) Jordan decomposition?

With Weihrauch’s type two theory of effectivity, we shift to a more general analytic
setting. We describe elements of dual spaces and spaces of Borel measures by infinite
binary sequences that are processed by generalised Turing machines. Using this more
general framework we study the computational difficulty of decomposing these more
complex objects. Theorems 7.1, 7.9, and 7.10 show that, under suitable representa-
tions, the Jordan decomposition operator is computable on the three Banach spaces
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consisting of functions of bounded variation, continuous linear functionals, and signed
Borel measures.

(3) How difficult is Jordan’s theorem to prove?

In light of the impossibility theorems which obstruct foundational programmes in math-
ematics, much research into the foundations of mathematics has shifted towards reveal-
ing complexity in the existing foundation. Sufficiently powerful systems of arithmetic
are capable of capturing fundamental theorems in analysis, combinatorics, and algebra,
among other areas. Varying the strength of such systems influences what theorems
can be proven within them, and thereby provide calculi for fragments of mathematical
deduction that enable us to study and measure the complexity of different theorems.
For instance, the Bolzano-Weierstraß theorem (hereafter BW) states that any bounded
sequence of real numbers has a convergent subsequence. The system of second-order
arithmetic ACA0 is capable of proving BW, whereas the weaker system RCA0 is not. On
the other hand, the intermediate value theorem (IV, which states that the continuous
image of an interval is again an interval) can be proven in RCA0. This indicates a
difference in complexity between the two theorems: the statement BW is of a higher
complexity than IV because it requires a stronger calculus for its proof.

Reverse mathematics is a programme in the foundations of mathematics which expli-
cates the complexity of theorems in the way so described. Given a statement formulated
in the appropriate formal language, which axioms are needed to prove that statement?
For BW one needs arithmetical comprehension, while for IV recursive comprehension
is enough. A proof-theoretic analysis undertaken by mathematical logicians over past
decades has revealed that just five particular subsystems of second-order arithmetic are
enough to capture almost all of the theorems in non-set-theoretic mathematics which
are considered important. These systems actually define complexity classes for the-
orems. In many cases a theorem is not only provable within a system, but is in fact
equivalent to that system over RCA0. For example, BW and the principle of arithmetical
comprehension are equivalent over RCA0. In this way we demonstrate that arithmetical
comprehension is not just sufficient to prove BW, but is indeed essential to proving it.

The large scale characterisation of theorems into just five systems has been a major
triumph of the reverse mathematics programme. Traditionally these theorems have
been mined from pre-20th century mathematics, but in recent years the scope of reverse
mathematical investigation has broadened. For example, the complexity of a number of
recurrence theorems in topological dynamics [7], and of convergence theorems in measure
theory [1] have been characterised. The negative answer to Question (1) actually shows
that the Jordan decomposition theorem cannot be proven in RCA0. This motivates the
investigation into a characterisation of its complexity in Section 5.

(4) How strong is the principle asserting the differentiability of functions of bounded
variation?

The work of the Czech constructivist Osvald Demuth [8] in the 1970s has recently led to
new interactions between computable analysis and the theory of algorithmic randomness
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[11, 22, 20, 5]. Effective analogues of theorems which assert the differentiability of
a class of functions almost everywhere allow one to characterise the points of non-
differentiability for those functions in terms of effective null-sets. Certain varieties of
these effective null-sets turn out to correspond precisely to the null-sets used to define
randomness notions. This realization has led to a number of principles that fit within
the following form: for a class of computable functions C and a real z ∈ [0, 1],

z satisfies a certain randomness notion ⇔ every function in C is differentiable at z.

For instance, by Theorem 4.9 below, a real z is Martin-Löf random if and only if
every computable function of bounded variation is differentiable at z. We will prove and
then use results of this kind in Section 6 to study the reverse mathematical complexity
of statements which assert that functions of bounded variation have a point of differ-
entiability. This allows us to formulate a precise theorem in second-order arithmetic
which captures the idea that randomness is essential to differentiability.

2 Preliminaries on classical theory and computable
analysis

We develop some of the classical theory of bounded variation functions. These notions
will be appropriately modified for reverse mathematical analysis in Section 5. Unless
otherwise mentioned all real-valued functions will have domain [0, 1] and codomain R.

Definition 2.1. Let f : [0, 1] → R. The variation function for f is the function
vf : [0, 1]→ R ∪ {∞} defined by

vf (x) = sup
n−1∑
i=0

|f(ti+1)− f(ti)|

where the supremum is taken over all collections t0 < · · · < tn in [0, x]. Let V(f) =
vf (1). The function f is said to be of bounded variation if V(f) < ∞. The set of all
functions of bounded variation is denoted by BV.

Theorem 2.2 (The Jordan decomposition theorem). For any function f : [0, 1] → R
of bounded variation, there are non-decreasing functions f+, f− : [0, 1] → R such that
f = f+ − f−.

For any function f of bounded variation, vf and (vf−f) are non-decreasing functions
whose difference is f . Note that the expression f+ − f− is not unique, but the pair
((vf + f)/2, (vf − f)/2) is the unique minimal decomposition for such an f . That
is, for any other pair (g+, g−) of non-decreasing functions with f = g+ − g− one has
(vf + f)/2 ≤ g+ and (vf − f)/2 ≤ g−.

If I ⊆ [0, 1] is an interval we write V(f, I) for the variation of f on the interval I,

V(f, I) = sup

n−1∑
i=0

|f(ti+1)− f(ti)|,
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where the supremum is taken over all collections t0 < · · · < tn in I. There is an
associated norm || · ||BV : BV→ [0,∞) on the set BV given by

||f ||BV = |f(0)|+ V(f).

We call || · ||BV the variation norm. Note that ||f ||BV ≥ ||f ||∞, and therefore conver-
gence under the variation norm implies uniform convergence. In fact, BV is a Banach
space under the variation norm.

Recall that a function f : [0, 1] → R is absolutely continuous if for any ε > 0 there
is δ > 0 such that

n−1∑
i=0

|f(ti+1)− f(ti)| < ε,

for any partition t0 < · · · < tn of [0, 1] with
∑n−1

i=0 |ti+1−ti| < δ. It is not difficult to show
that any absolutely continuous function is of bounded variation, and thus the vector
space of absolutely continuous functions (AC, || · ||BV) is a subspace of (BV, || · ||BV).
Let L1 be the space of all integrable functions on [0, 1] with respect to the Lebesgue
measure. Let L1 be the usual quotient structure of L1 modulo a.e. equality. Then
the map f 7→ f ′ is an isometry from (AC, || · ||BV) to (L1, || · ||1) whose inverse is
the integration map. We will use this fact in Section 4.2 to construct a computable
function of bounded variation whose points of differentiability are precisely the Martin-
Löf random reals.

For an interval A ⊆ [0, 1], h ∈ Q, and r ∈ N, let

MA(h, r)

denote a sawtooth function on the interval A with r-many teeth of height h; so

MA(h, r)(x) = 0

whenever x 6∈ A. Note that V(MA(h, r), A) = 2hr. We will often use such sawtooth
functions to construct functions which encode computationally useful information in
their variation. For instance, in Section 3 we show how to build a computable function
whose total variation computes the halting problem.

There are results similar to Theorem 2.2 for continuous linear functionals and signed
Borel measures. Let (C∗[0, 1], || · ||) be the space of continuous linear functionals F :
C[0, 1]→ R with the norm ||F || = sup{F (h) : h ∈ C[0, 1], ||h||∞ ≤ 1}.

Theorem 2.3 (Lemma 8.13 [2]). For every functional F ∈ C∗[0, 1] there are non-
negative functionals F+, F− : C[0, 1]→ R such that F = F+ − F−.

Let B be the Borel σ-algebra on [0, 1], and let BM be the set of all signed Borel
measures µ : B → R. We define the variation norm || · ||m : BM → [0,∞) by ||µ||m =
sup

∑
I∈π |µ(I)|, where the supremum is taken over all partitions π of [0, 1] into finitely

many intervals. Note that if µ is non-negative, then ||µ||m = µ([0, 1]) by σ-additivity.
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Theorem 2.4 (Corollary 3.1.2 [3]). For any µ ∈ BM there are non-negative Borel
measures µ+, µ− : B[0, 1]→ R such that µ = µ+ − µ−.

The spaces (C∗[0, 1], || · ||) and (BM, || · ||m) are Banach spaces, and as in Theorem
2.2, for Theorem 2.3 and Theorem 2.4 there are minimal decompositions. Hence we
make the following specifications.

1. For each functional F ∈ C∗[0, 1], the minimal Jordan decomposition of F is the pair
(F+, F−) such that F+, F− ∈ C∗[0, 1] are non-negative and F = F+−F−, and for any
other pair (G+, G−) with G+, G− ∈ C∗[0, 1] non-negative and F = G+ − G− one has
F+ ≤ G+ and F− ≤ G−.

2. For each µ ∈ BM, the minimal Jordan decomposition of µ is the pair (µ+, µ−) such
that µ+, µ− ∈ BM are non-negative and µ = µ+ − µ−, and for any other pair (ν+, ν−)
with ν+, ν− ∈ BM non-negative and µ = ν+ − ν− one has µ+ ≤ ν+ and µ− ≤ ν−.

By the Riesz representation theorem, every functional F ∈ C∗[0, 1] can be written as
the Riemann-Stieltjes integral with respect to a unique function g ∈ BV. The effective
aspects of Riesz’s theorem have been explored by Jafarikhah and Weihrauch in [17, 12].
This work was necessary to establish their results concerning the type two computability
of the Jordan decomposition operator for linear functionals and signed Borel measures.
We present these results in Section 7.

There are further analogues of the Jordan decomposition theorem, such as the Doob
decomposition theorem, which states that any submartingale can be decomposed into
the sum of a martingale and an increasing stochastic process. The effective content of
this result will not be considered in this dissertation, though we do study computable
martingales in Section 4.1.

Definition 2.5. A real α is left-c.e. (also called left computable and left semicom-
putable) if there is a computable strictly increasing sequence of rationals (qs)s∈N such
that lims qs = α. One says that α is computable if there is a computable sequence of
rationals (qs)s∈N, called a Cauchy name, such that |qn − α| < 2−n for all n ∈ N. A
function f : R→ R is computable if

1. f(q) is a computable real uniformly in a rational q, and

2. f is effectively uniformly continuous; i.e., there is a computable function
h : N→ N such that |f(x)− f(y)| < 2−n whenever |x− y| < 2−h(n).

A classic result in computable analysis asserts that computability in the sense of
Definition 2.5 is equivalent to the effective Weierstraß condition, which states that
there is a computable sequence (ps)s∈N of rational polynomials or polygonal functions
such that ||f − ps||∞ < 2−s for all s.

Finally, we define the slope of f at a pair a, b of distinct rationals as the quotient

Sf (a, b) =
f(a)− f(b)

a− b
.
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In Section 7 we proceed to the type two theory of effectivity, where the previous
notions are situated in a more general framework.

3 Effective Jordan decomposability

The principal concern of this section is the effective status of the Jordan decomposition
theorem. Given a computable real-valued function f , is it always possible to decompose
it into two non-decreasing computable functions? This question is important because
an affirmative answer immediately characterises the complexity of the theorem in terms
of reverse mathematics. On the other hand, a negative answer may prompt the rejection
of Jordan’s theorem by various constructively inclined schools of mathematics, such as
the Markov school or followers of Bishop’s programme.

Indeed, Bridges [6] has shown that the statement the difference of two non-decreasing
functions on [0, 1] has a variation entails the limited principle of omniscience, which
does not hold when restricted to an intuitionistic logic. Thus, intuitionistically at least,
one may construct a function of bounded variation with no (constructible) variation
function. We study the computable analogue of this phenomenon after characterising
the left-c.e. reals as the variation functions of computable functions.

Theorem 3.1 (Zheng and Rettinger [30]). For any left-c.e. real α ∈ [0, 1], there is a
computable function f such that V(f) = α.

Proof. We define f as the sum of sawtooth functions. Let (qn)n∈N be a computable
sequence of rationals converging to α such that q0 = 0 and qn+1 > qn. On each
interval [qn, qn+1] we will specify f to be a sawtooth function such that V(f, [qn, qn+1]) =
qn+1 − qn.

Define a computable function r : N→ N by

r(n) = µm > 0

[
qn+1 − qn

2m
< 2−n

]
.

Let (hn)n∈N be the sequence in R given by hn = [(qn+1 − qn)/2r(n)]. For all n ∈ N put
In = [qn, qn+1]. Recall that a sawtooth function MA(h, r) has r-many teeth of height h.
Define f : [0, 1]→ R by

f =

∞∑
n=0

MIn(hn, 2r(n)).

Then f(x) = 0 for all x ∈ [α, 1]. Each interval In contributes precisely qn+1 − qn to the
variation of f . Hence

V(f) =

∞∑
n=0

V(f, In) + V(f, [α, 1]) =

∞∑
n=0

(qn+1 − qn) = α.
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So f has total variation α. It remains to show that f is computable. To see this,
consider the sequence of polygonal functions pn : [0, 1]→ R defined by

pn(x) =

{
f(x) if x ∈ [0, qn+1],

0 otherwise.

Then for any n ∈ N one has ||f − pn||∞ ≤ hn < 2−n, as required by the effective
Weierstraß condition.

The construction works by coding the real α into the variation of f . Thus we may
put, for instance, α =

∑
n∈∅′ 2

−n and obtain via Theorem 3.1 a computable function f
such that V(f) ≡T ∅′.

Definition 3.2. Let f : [0, 1] → R be a computable function. An effective Jordan
decomposition of f is a pair of non-decreasing computable functions (f+, f−) such that
f = f+ − f−. The function f is effectively Jordan decomposable if it has an effective
Jordan decomposition.

The notion of effective Jordan decomposability is the effectivisation of regular de-
composability: we now require that any function which contributes to the decompo-
sition must be computable. The result of Theorem 3.4 below shows that not every
computable function of bounded variation has an effective Jordan decomposition. Thus
Jordan’s theorem cannot hold in the minimal ω-model of RCA0, which consists entirely
of computable sets and functions. This leads us to the investigation of the reverse
mathematical complexity of Jordan’s theorem in Section 5.

Lemma 3.3. Let f be an effectively Jordan decomposable function. Then vf has a
computable modulus of uniform continuity.

Proof. Let (f+, f−) be an effective Jordan decomposition of f , and let h1 and h2 be their
respective computable moduli of uniform continuity. Then the computable function
h : N → N defined by h(n) = max(h1(n + 1), h2(n + 1)) is a modulus of uniform
continuity for f . To see this, observe that for any x < y with |x− y| < 2−h(n) one has

|vf (y)− vf (x)| = V(f, [x, y])

= V(f+ − f−, [x, y])

≤ V(f+, [x, y]) + V(f−, [x, y])

= (f+(y)− f+(x)) + (f−(y)− f−(x))

≤ 2−n.

Theorem 3.4 (Zheng and Rettinger [30]). There is a computable function f of bounded
variation which is not effectively Jordan decomposable.
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Proof. Let A be an incomputable c.e. set. Fix an effective enumeration (as)s∈N of A
without repetitions, and let (ms)s∈N and (ts)s∈N be defined by ms = max{at+s+1 : t ≤
s} and ts = ms − (as + 1), respectively. Then for all s one has ts ≥ 0 and ms < ms+1.
Now take f to be the sawtooth function of type [0, 1]→ R defined by

f =

∞∑
s=0

M[2−(s+1),2−s](2
−ms , 2ts). (1)

We will show that f is a computable function of bounded variation, but that vf does not
have a computable modulus of uniform continuity, and hence by Lemma 3.3 f cannot
be effectively Jordan decomposable.

Define a sequence (ps)s∈N of polygonal functions by putting ps(x) = f(x) if x ∈
[2−(s+1), 1], and ps(x) = 0 otherwise. Then, since ms > s,

sup{|f(x)− ps(x)| : x ∈ [0, 1]} = sup{|f(x)− ps(x)| : x ∈ [0, 2−(s+1)]}
≤ 2−ms

≤ 2−s.

Hence ||f − ps||∞ ≤ 2−s, so f is computable by the effective Weierstraß condition. Now
we verify that f is of bounded variation. Note that on the interval [2−s, 2−(s+1)] the
function f is equal to the sawtooth function with 2ts-many teeth of height 2−ms . Thus

V(f) =
∞∑
s=0

V(f, [2−s, 2−(s+1)]) =
∞∑
s=0

2ts2−ms2 =
∞∑
s=0

2−as <∞.

Finally, assume for contradiction that h : N→ N is a computable modulus of uniform
continuity for vf . Then∑

t≥h(s)

2−at = V(f, [0, 2−h(s)]) = |vf (0)− vf (2−h(s))| ≤ 2−s.

Hence if t ≥ h(s) then at < s. In particular, n ∈ A⇔ n ∈ Ah(n), which contradicts
the assumption that A is not computable.

Our choice of notation in equation (1) greatly simplifies the construction of Zheng
and Rettinger, and enables the subsequent verification to proceed easily.

The subrecursive case of Jordan decomposition was explored in Ko [15]. A function is
said to be polynomial time Jordan decomposable if it is effectively Jordan decomposable
and the functions comprising the decomposition are polynomial time computable. In line
with the results of this section, Ko has shown that there is a polynomial time computable
function of bounded variation which is not polynomial time Jordan decomposable [15].
Zheng and Rettinger were able to strengthen this by constructing a polynomial time
computable function which is not the difference of two computable functions, and even
has a polynomial time computable modulus of absolute continuity.
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4 Characterising points of differentiability with
randomness

In this section our efforts are devoted to characterising the reals which are simultane-
ously points of differentiability for all computable functions of bounded variation. We
begin with the subclass consisting of Lipschitz functions before proceeding to the general
case. The table in Section 4.3 below summarises the known correspondences between
points of differentiability and the randomness notions they characterise, which extend
the presented results. On our way to the result for Lipschitz functions, in Theorem
4.3 we provide a characterisation of their variation functions in terms of interval-c.e.
functions.

4.1 Differentiability of computable Lipschitz functions

Computable martingales. We note some preliminaries on martingales and com-
putable randomness. See [19, Chapter 7] or [10, Section 6.3] for a comprehensive expo-
sition.

Definition 4.1. A function M : 2<N → [0,∞) is a martingale if it satisfies the fairness
condition M(σ0) + M(σ1) = 2M(σ) for all σ ∈ 2<N. M is computable if M(σ) is a
computable real uniformly in σ. We say that M succeeds on a sequence Z ∈ 2<N if
sup
n

M(Z|n) =∞.

Classically, a martingale is defined as a stochastic process with respect to a decreas-
ing sequence of σ-algebras, and is intended to model the fortune of a gambler playing
a fair game. By the optional stopping theorem, discrete-time martingales have the
property that, on average, the expected fortune of a gambler is no more than when
the gambler began playing. In the context of algorithmic randomness we use martin-
gales to formalize the notion of a betting strategy, see the introduction to computable
randomness below. With a martingale M we may construct a Borel measure µM by
specifying

µM[0.σ, 0.σ + 2−|σ|) = M(σ)2−|σ|.

Since the set of all intervals of the form [0.σ, 0.σ + 2−|σ|) is a semiring on [0,1], by an
application of Carathéodory’s extension theorem we can assume that µM is unique and
complete.

Given a martingale M, we define the associated cumulative distribution function
cdfM : [0, 1]→ R by

cdfM(x) = µM[0, x).

Definition 4.2. A function L : 2<N → R is a signed martingale if it satisfies the fairness
condition of Definition 4.1.

From a signed martingale L we define the variation martingale VL : 2<N → [0,∞]
by

VL(σ) = sup
k

2−k
∑
|η|=k

|L(ση)|.
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This is an analogue of the variation of a real valued function, and itself defines a mar-
tingale.

The variation of a computable Lipschitz function. We say that a non decreasing
function f : [0, 1] → R is interval-c.e. if f(0) = 0 and f(y) − f(x) is a left-c.e. real
uniformly in rationals x < y. Theorem 4.3 below shows that interval-c.e. functions are
essentially the variation functions of computable Lipschitz functions.

Theorem 4.3 (Freer et al. [11]). Let f be an interval-c.e. function with Lipschitz con-
stant κ. Then there is a computable κ-Lipschitz function g such that f = vg.

Proof. Define the martingale M by M(σ) = Sf (0.σ, 0.σ+ 2−|σ|). There is a computable
signed martingale L such that VL = M and |L| ≤ M (see [11], Lemma 3.3). Thus
|L| ≤ Sf (0.σ, 0.σ + 2−|σ|) ≤ κ.

We define a Lipschitz function g : [0, 1] → R by specifying its values at dyadic
rationals, which is sufficient since the set of dyadic rationals is dense in [0, 1]. For
σ ∈ 2<N define

g(0.σ) = 2−|σ|
∑
{L(τ) : 0.τ < 0.σ ∧ |τ | = |σ|}.

Let σ, η ∈ 2<N be of length n with 0.η < 0.σ. Then

|g(0.σ)− g(0.η)| = 2−n|
∑
|τ |=n

{L(τ) : 0.τ < 0.σ} −
∑
|τ |=n

{L(τ) : 0.τ < 0.η}|

≤ 2−n
∑
|τ |=n

{|L(τ)| : 0.η ≤ 0.τ < 0.σ}

≤ κ|0.σ − 0.η|,

the last inequality holding since there are as many as 2n binary strings of length n.
Thus g is κ-Lipschitz on the set of dyadic rationals, and so defines a total computable
κ-Lipschitz function ĝ(x) = sup{g(0.σ) : σ ∈ 2<N ∧ 0.σ ≤ x}. For ease of notation we
will suppress the hat overscript and simply write g.

Next we show that f = vg. Since f and g are continuous it suffices to show this for
dyadic rationals. For σ ∈ 2<N of length n we have

vg(0.σ) = 2−n
∑
{VL(τ) : 0.τ < 0.σ ∧ |τ | = n}

= 2−n
∑
{M(τ) : 0.τ < 0.σ ∧ |τ | = n}

= 2−n
∑
{Sf (0.τ, 0.τ + 2−|τ |) : 0.τ < 0.σ ∧ |τ | = n}

= f(0.σ).

With Rute, Freer et al. [11] extended Theorem 4.3 to continuous interval-c.e. func-
tions. In particular, they showed that every continuous interval-c.e. function is the
variation function of a computable function.
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Lipschitz functions and computable randomness. Recall that a sequence Z ∈ 2N

is computably random if no computable martingale succeeds on Z, and a real z ∈ [0, 1] is
computably random if its binary expansion is computably random. Schnorr introduced
this randomness notion to capture the unpredictability paradigm in randomness; i.e.,
that a random sequence should have unpredictable bits, so that betting on which bits
occur in such a sequence cannot yield unbounded profit.

There is an effective analogue to Lebesgue’s differentiation theorem: a real z is
computably random iff every computable non-decreasing function is differentiable at z
[5]. A crucial component of the proof, the following theorem asserts that for functions
computable on the rational unit interval, just being non-decreasing on the rationals is
sufficient to be differentiable at computably randoms.

Theorem 4.4 (Brattka et al. [5]). Let f : [0, 1] → R be a function computable on
[0, 1]Q. If f is non-decreasing on [0, 1]Q, then f is differentiable at each computably
random real z.

Theorem 4.4 allows us to extend the effective Lebesgue differentiation theorem to
Lipschitz functions. The characterisation of reals which are simultaneously points of
differentiability for all computable Lipschitz functions aligns with the characterisation
for non-decreasing functions.

Theorem 4.5 (Freer et al. [11]). Let z ∈ [0, 1]. Then z is computably random iff every
computable Lipschitz function is differentiable at z.

Proof. ⇒: Let f be a computable function with Lipschitz constant κ. Then the function
g : [0, 1] → R defined by g(x) = f(x) + κx is computable and non-decreasing. Hence,
by Theorem 4.4, g is differentiable at z. Thus f is differentiable at z.

⇐: By contrapositive. Let M be a computable martingale which succeeds on (the
binary expansion of) z. We will construct a bounded computable Lipschitz martingale
B such that cdfB is not differentiable at z.

By a result of Schnorr [24] we may assume that M takes only rational values, and
by [5, Proposition 3.4] we may also assume that M has the savings property; i.e., that
M(στ) ≥M(σ)− 1 for all strings σ, τ . We will construct B inductively by considering
its value at each string σ, and defining B(σ0) and B(σ1) accordingly. For every σ, the
martingale B will be in either the up phase or the down phase. In the up phase we will
ensure that B(σ) < 3, and in down phase we will ensure that B(σ) > 2. This property
will be the inductive condition.

Construction 4.6. Put B(∅) = 2 and declare B(∅) to be in the up phase. Then B(∅)
satisfies the inductive condition. Now assume that B(σ) has been defined.

Case 1. B(σ) is in the up phase. For k ∈ {0, 1} let rk = B(σ) + M(σk) −M(σ). If
r0, r1 < 3 let B(σk) = rk; declare B(σk) to be in the up phase.

If not, then there is a unique k such that rk ≥ 3. To see this, notice that otherwise
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one has

B(σ) + M(σ0)−M(σ) ≥ 3, and

B(σ) + M(σ1)−M(σ) ≥ 3,

so that M(σ) < M(σ0) and M(σ) < M(σ1). Hence 2M(σ) < M(σ0) + M(σ1), which
contradicts the fairness condition for martingales.

For this k let B(σk) = 3 and declare B(σk) to be in the down phase. Let B(σ(1−
k)) = 2B(σ)− 3 and declare B(σ(1− k)) to be in the up phase. Clearly the inductive
condition holds for both B(σ0) and B(σ1).

Case 2. B(σ) is in the down phase. For k ∈ {0, 1} let rk = B(σ)− (M(σk)−M(σ)).
If r0, r1 > 2 let B(σk) = rk and declare B(σk) to stay in the down phase. Otherwise,
by an argument similar to the first case, there is a unique k such that rk ≤ 2. Let
B(σk) = 2 and declare B(σk) to be in the up phase. Let B(σ(1− k)) = 2B(σ)− 2 and
stay in the down phase. The construction preserves the inductive condition for σ0 and
σ1. This completes the construction.

∅∅∅

0

00

000 001

0010 0011

01

1

up

up

down

down

up down

up

up

down

Z|n

Figure 1: An illustration of the inductive construction of the martingale B. There is
unbounded capital to use on the construction of B(Z|n) since M succeeds on the binary
expansion of z.

Claim 4.7. cdfB is Lipschitz.

Proof. We first show that for each string η we have 1 ≤ B(η) ≤ 4. Suppose that B is
in the up phase at η. Then our inductive condition ensures that B(η) < 3. Moreover,
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if B entered the up phase from σ ≺ η with |σ| greatest, then B(σ) = 2. By the savings
property M(η)−M(σ) ≥ −1. Thus B(η) = B(σ) + M(η)−M(σ) ≥ 1.

Now suppose that B is in the down phase at η. Again, the inductive condition
ensures that B(η) > 2. If B entered the up phase from σ ≺ η with |σ| greatest, then
B(σ) = 3. An application of the savings property shows that B(η) = B(σ)− (M(η)−
M(σ)) ≤ 4.

Next we show that cdfB has Lipschitz constant 4. Let x, y ∈ [0, 1] with x < y. Let
n ∈ N. Put i = bx2nc and j = dy2ne. Then i2−n ≤ x < (i + 1)2−n and (j − 1)2−n <
y ≤ j2−n. Hence,

cdfB(y)− cdfB(x) = µB[x, y) ≤
j−1∑
r=i

µB[r2−n, (r + 1)2−n)

≤ 4((j − 1)− i)2−n

= 4((j − 1)2−n − (i+ 1)2−n + 2−n)

< 4(y − x+ 2−n).

A similar proof shows that cdfB(y)− cdfB(x) ≥ 1. This proves the claim. ♦

Claim 4.8. cdfB is not differentiable at z.

Proof. Let Z be the binary expansion of z. For any σ ∈ 2<N, one has B(σ) =
ScdfB(0.σ, 0.σ + 2−|σ|). Since M succeeds on Z, there is unbounded capital to spend
in the construction of B for prefixes of Z. Thus as n → ∞, B(Z|n) oscillates between
up phases and down phases; i.e., between values ≤ 2 and ≥ 3. Hence cdfB cannot be
differentiable at z. ♦

4.2 Differentiability of computable functions of bounded variation

For an interval A ⊆ [0, 1] with endpoints a and b, we denote by |A| the length b − a
of A. If p ∈ N, let ΛA,p denote the sawtooth function which is 0 outside of A, reaches
p|A|/2 at the middle point of A, and is linearly interpolated elsewhere.

We work with the usual topology on Cantor space 2N generated by the collection of
basic open cylinders

[σ] = {Z ∈ 2N : σ ≺ Z}

for each σ ∈ 2<N. Let λ denote the product measure on 2N; i.e., for basic cylinders
λ[σ] = 2−|σ|, and if U =

⋃∞
i=0[σi] where {σi : i ∈ N} is prefix-free, then

λU =

∞∑
i=0

λ[σi].

If U ⊆ 2<N we also define JUK = {Z ∈ 2N : σ ≺ Z for some σ ∈ U}.
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A Martin-Löf test is a uniformly computably enumerable sequence (Gm)m∈N of open
sets such that λGm ≤ 2−m for every m. A sequence Z ∈ 2N is Martin-Löf random if
Z 6∈

⋂
m Gm for every Martin-Löf test (Gm)m∈N. There is a universal Martin-Löf test

(Um)m∈N, whereby Z is Martin-Löf random if and only if Z 6∈
⋂
m Um.

In the proof of Theorem 4.4 we turned a martingale which succeeded on a sequence
into a Lipschitz function which could not be differentiated at the corresponding com-
putably random real; this showed that the differentiability of all computable Lipschitz
functions at some real z implies that z is computably random. Now, the existence of a
universal test allows the construction of a single function f whose points of differentia-
bility are exactly the Martin-Löf random reals.

The construction was first completed by Demuth [8] according to the construc-
tivist paradigm. We use the construction due to Brattka, Miller, and Nies [5], which
recasts Demuth’s result in the modern framework of computable analysis and algorith-
mic randomness. Given a universal Martin-Löf test (Gm)m∈N such that Gm+1 ⊆ Gm
and λGm ≤ 8−m for all m, one divides each Gm into a computable double sequence
(Cm,i)m,i∈N of disjoint open intervals. On each Gm, one defines the function fm as the
infinite sum of sawtooth functions, one tooth per Cm,i:

fm =

∞∑
i=0

ΛCm,i,4m .

The construction is illustrated in Figure 2. We take f =
∑∞

m=0 fm.

| |
Cm,1

ΛCm,1,4m−4m|Cm,1|/2

ΛCm,2,4m

|
Cm,2

−

ΛCm,3,4m

|
Cm,3

−

· · ·

Gm

Figure 2: Construction of fm on the open set Gm.

The measure λGm approaches 0 as m → ∞, and the intervals Cm,i are constructed
so that this fact ensures their length decreases to 0 at a rate which makes the sum of
the heights of the sawteeth ΛCm,i,4m converge. This guarantees that f(x) is defined for
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each x ∈ [0, 1]. A number of careful estimates shows also that one may compute f(q)
uniformly in a rational q.

Our constructed function f is absolutely continuous: for an interval A ⊆ [0, 1] and
p ∈ N, let ΘA,p be the function that is undefined at the endpoints and middle points of
A, takes the value p on the left half of A, and takes the value −p on the right half of
A. Then ∫ x

0
ΘA,pdλ = ΛA,p(x).

For each m ∈ N define gm : [0, 1]→ R by gm =
∑∞

i=0 ΘCm,i,4m . The construction of gm
is illustrated in Figure 3.

−4m

−−4m

| |

ΘCm,1,4m

|

ΘCm,2,4m

|

ΘCm,3,4m

· · ·

Gm

Figure 3: Construction of gm on the open set Gm.

We show that gm is integrable. Note that |gm| = 4m1Gm a.e. since
⊔
iCm,i = Gm, so∫

|gm|dλ = 4mλGm ≤ 4m8−m ≤ 2−m.

Hence
∑∞

m=0

∫
|gm|dλ ≤ 2. By the Lebesgue dominated convergence theorem

∑∞
m=0 gm

is finite almost everywhere [3, Theorem 2.8.1]. Define g : [0, 1] → R ∪ {∞} by
g(x) =

∑∞
m=0 gm(x). Then g is integrable and

∫ x
0 gdλ =

∑
m

∫ x
0 gmdλ. Thus since

fm(x) =
∫ x

0 gmdλ, one has f(x) =
∫ x

0 gdλ. Hence, by [3, Theorem 5.3.6], f is absolutely
continuous. In particular, f is of bounded variation.

Theorem 4.9 (Brattka et al. [5]). Let z ∈ [0, 1]. Then z is Martin-Löf random iff every
computable function of bounded variation is differentiable at z.

Proof. ⇐: Any real which is not Martin-Löf random is not a point of differentiability
for the function f that we constructed above.
⇒: Let f : [0, 1] → R be a computable function of bounded variation. By the

uniform computability condition for computable real functions, there is a computable
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function ϕ : Q × N → Q such that for all n, |f(q) − ϕ(q, n)| ≤ 2−n. Without loss of
generality we may assume that both f and V(f |Q) are bounded by 1.

Let Σ = {−1, 0, 1}, and let (xn)n∈N be an effective listing of [0, 1]Q. There is a
surjective function δ from Σω to the set of all functions of type [0, 1]Q → [0, 1], called a
representation, such that δ(ζ) = h iff ζ〈xk, n〉 is the nth term in a Cauchy name of h(xk).
In this case we call ζ a name of h. This system of representations underlies the type
two theory of effectivity, which we develop in detail in Section 7; for now this remark
will suffice. Let ζ̂ = {〈ζ0, ζ1〉 : ζi names a non-decreasing function fi : [0, 1]Q → [0, 1]
for i = 0, 1, and f(q) = f0(q) − f1(q) for all q ∈ [0, 1]Q}. Then to determine whether
〈ζ0, ζ1〉 ∈ ζ̂, one must verify that

∀k, l, n
[
xk < xl → (ζ0〈xk, n〉 ≤ ζ0〈xl, n〉+ 2−n ∧ ζ1〈xk, n〉 ≤ ζ1〈xl, n〉+ 2−n)

]
,

and

∀k, n
∣∣ϕ(xk, n)− (ζ0〈xk, n〉 − ζ1〈xk, n〉)

∣∣ ≤ 2−n.

Hence ζ̂ is a Π0
1 class.

By the low for z basis theorem [9, Proposition 7.4], z is Martin-Löf random (and
therefore computably random) relative to some z-c.e. pair of names 〈ζ0, ζ1〉 ∈ ζ̂. Rela-
tivizing Theorem 4.4 to δ(ζ0)⊕ δ(ζ1) we have that δ(ζ0) and δ(ζ1) are differentiable at
z. Thus since f = δ(ζ0)− δ(ζ1), f is also differentiable at z.

The proof of Theorem 4.9 used the language of representations. In Section 5.3 we
prove once more that the set of Jordan decompositions for a function is a Π0

1 class,
though in the framework of second-order arithmetic. As we will see, the differences
between the proofs are conspicuous, and quite a lot more work must be done to achieve
a similar outcome. For instance, we must explicitly construct an infinite computable
binary tree corresponding to the desired Π0

1 class, whose paths encode the components
of a Jordan decomposition.

4.3 Other classes of a.e. differentiable functions

Table 1 lists known correspondences between randomness notions and classes of effective
functions. Two such correspondences rely on a generalisation of variation. For a real
p > 1, the p-variation Vp(f, I) of f in the interval I is

Vp(f, I) = sup

n−1∑
i=0

|f(ti+1)− f(ti)|p

|ti+1 − ti|p−1
,

where the supremum is taken over all collections t0 < · · · < tn in I. Similar to the
variation norm from Section 2, one defines the p-variation norm || · ||BVp by

||f ||BVp = |f(0)|+ (Vp(f, [0, 1]))
1
p .
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Class of effective functions Randomness notion

polynomial time computable polynomial time randomness [20]

computable and non-decreasing

computable and Lipschitz
computable randomness [11]

interval c.e. density randomness [18]

Lipschitz and p-variation computable

p-variation computable with finite p-variation norm
Schnorr randomness [11]

computable and bounded variation

computable and absolutely continuous
Martin-Löf randomness [5]

computable and a.e. differentiable in [0, 1]n weak 2-randomness in [0, 1]n [5]

Table 1: Correspondences between effective functions and randomness notions. A real
satisfies a given randomness notion iff it is a point of differentiability for every function
in the corresponding class.

Using the p-variation norm one can obtain a characterisation of Schnorr randoms in
terms of differentiability. By [11, Corollary 5.2], a real z is Schnorr random iff every
Lipschitz function computable in the p-variation norm is differentiable at z.

It was also shown recently by Nies in [20] that a real z is a point of differentiabil-
ity for every polynomial-time computable function iff no polynomial-time computable
martingale succeeds on the binary expansion of z. This is a refinement of the effective
Lebesgue differentiation theorem for the case of feasible analysis. Rute in [23] has given
several other pertinent characterisations. Among other things, he showed that if g is a
computable function of bounded variation, V(g) is a computable real, and g′ is com-
putable in the L1 norm, then g is differentiable at all Schnorr randoms [23, Corollary
9.20].

A set X is said to be high if X ′ ≥T ∅′′. By [19, Theorem 7.5.9], for any high set C
there is a computably random real z such that z ≡T C. Thus any high set computes
a real which is simultaneously a point of differentiability for every non-decreasing com-
putable function. Similarly, for any high set C there is a Schnorr random real z ≡T C
such that z is not computably random [19, Theorem 7.5.10]. Thus any high set also
computes a point of differentiability for every Lipschitz function which is computable
in the p-variation norm.

The results suggest a certain kind of equivalence in computational complexity be-
tween differentiating computable functions and asserting that random reals exist. We
use this idea in Section 6 to establish a principle in reverse mathematics stating just
this equivalence, relating functions of bounded variation and Martin-Löf randomness.
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5 Reverse mathematics of the Jordan decomposition
theorem

The content of this section, together with the content of Section 6, was initiated by
the preliminary results in the 2013 Logic Blog [21]. This dissertation completes and
elaborates on some of these preliminary results, which we present momentarily. We
first proceed quickly through the necessary background on second-order arithmetic.

5.1 Subsystems of second-order arithmetic

We shall introduce the reverse mathematics framework, using mostly the conventions
due to Simpson [25]. The language L2 of second-order arithmetic is a two-sorted first-
order language. The variables are divided into (i) number variables i, j, k,m, n, p, . . .
which are intended to range over N; and (ii) set variables X,Y, Z, . . . which are intended
to range over subsets of N. Numerical terms are number variables, constant variables
from the set {0, 1}, and t1 + t2 and t1 · t2 whenever t1 and t2 are numerical terms.
The atomic formulas are all expressions t1 = t2, t1 < t2, t1 ∈ X, where t1 and t2 are
numerical terms and X is any set variable. L2-formulas (often simply called formulas)
are generated from atomic formulas in the usual way with the connectives ¬,∧,∨,→,↔,
the number quantifiers ∀n, ∃n, and set quantifiers ∀X,∃X.

The language L2 is interpreted by L2-models, which are 7-tuples

M = (|M|,S,+, ·, 0, 1, <),

where |M| is a set acting as the number variables, and S ⊆ P(|M|) acts as the set
variables. We assume that |M| and S are always disjoint, and we will often denote such
a model by the pair (M,S). Formulas in L2-models are interpreted in the standard
way.

For each k ∈ N, the scheme of Σ0
k induction consists of all axioms of the form

[ϕ(0) ∧ ∀n[ϕ(n)→ ϕ(n+ 1)]]→ ∀nϕ(n)

where ϕ(n) is any Σ0
k L2-formula. Similarly one defines the scheme of Π0

k induction.
We also define, for each k ∈ N, the scheme of ∆0

k comprehension. The scheme
consists of all axioms of the form

∀n[ϕ(n)↔ ψ(n)]→ ∃X∀n[n ∈ X ↔ ϕ(n)]

where ϕ(n) is any Σ0
k formula and ψ(n) is any Π0

k formula.

Definition 5.1. The recursive comprehension axiom system, denoted RCA0, is the for-
mal system in the language L2 whose axioms consist of the schemes of Σ0

1 induction and
∆0

1 comprehension, together with the universal closures of the following basic axioms:

1. n+ 1 6= 0

2. m+ 1 = n+ 1→ m = n
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3. m+ 0 = m

4. m+ (n+ 1) = (m+ n) + 1

5. m · 0 = 0

6. m · (n+ 1) = (m · n) +m

7. ¬m < 0

8. m < n+ 1↔ (m < n ∨m = n)

A binary tree T is a subset of 2<N such that for every τ ∈ T , if τ ′ � τ then τ ∈ T .
A path through T is a binary sequence Z such that for each n ∈ N, one has Z|n ∈ T .

Definition 5.2. Weak König’s lemma (WKL) is the statement that every infinite binary
tree has a path. The formal system WKL0 in the language L2 consists of RCA0 plus
WKL.

An L2-formula ϕ is arithmetical if it contains no set quantifiers.

Definition 5.3. The formal system ACA0 in the language L2 consists of RCA0 together
with the induction axiom

[0 ∈ X ∧ ∀n[n ∈ X → n+ 1 ∈ X]]→ ∀n[n ∈ X]

and the comprehension axioms

∃X∀n[n ∈ X ↔ ϕ(n)]

for every arithmetical formula ϕ(n) in which X does not occur free.

Definition 5.4. Weak weak König’s lemma (WWKL) is the statement that for any
binary tree T , if

lim
n→∞

|{τ ∈ T : |τ | = n}|
2n

> 0

then T has a path. WWKL0 is the formal system in L2 consisting of RCA0 and WWKL.

As with the case of the Church-Turing thesis in computability theory, in reverse
mathematics one tends to move past the rigid architecture of axiomatic systems. In-
stead, definitions and proofs are presented in an informal way, but one takes great care
to avoid using principles of comprehension and induction that are not accessible in the
system one is working with. Whenever one does use such a principle, one must make
sure to explicitly communicate that one is doing so.

Note that we take for granted the effective coding of various mathematical objects,
such as rational and real numbers, sequences, functions, etc. The explicit encodings can
be found in [25].

We make the following definitions within RCA0. A uniformly continuous function
f : [0, 1] → R is presented by a Cauchy name; i.e., a sequence (fs)s∈N of rational
polynomials or polygonal functions with rational breakpoints such that ||ps−pr||∞ ≤ 2−s

for all r > s. The sequence (fs)s∈N is intended to describe f = lims→∞ fs.
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If Π = {t0, . . . , tn} is a partition of a set A (i.e., ti < ti+1 for each i), let

S(f,Π) =

n−1∑
i=0

|f(ti+1)− f(ti)|.

We say that f is of bounded variation if there is k ∈ N such that S(f,Π) ≤ k for every
partition Π of [0, 1]. Note that our definition of bounded variation is chosen to avoid
having to declare that the supremum from Definition 2.1 exists.

In this section we work with the broader notion of Jordan decomposition, where
the components of the decomposition are not required to be minimal. For functions
f, g : [0, 1]→ R, write

f ≤slope g iff ∀x∀y[x < y → f(y)− f(x) ≤ g(y)− g(x)];

i.e., the slopes of g are at least as big as the slopes of f . It is not difficult to see that
finding a Jordan decomposition of f is equivalent to finding a non-decreasing function
g such that f ≤slope g and putting f = g − (g − f).

Note that we only work with uniformly continuous functions. In computable analysis
functions with domain [0, 1] are uniformly continuous by definition, so we can’t use
results from the previous sections to prove general theorems about functions which may
only be continuous.

5.2 Jordan decomposition for uniformly continuous functions

The Jordan decomposition theorem 2.2 can be strengthened: if f is uniformly con-
tinuous then the functions f+ and f− comprising its decomposition can be chosen to
be uniformly continuous too. We first study the complexity of Jordan’s theorem for
uniformly continuous functions whose decomposition constituents are required to be
uniformly continuous.

The principle Jordancont states that for every uniformly continuous function f of
bounded variation, there is a non-decreasing uniformly continuous function g : [0, 1]→ R
such that f ≤slope g.

Theorem 5.5. RCA0 ` Jordancont ↔ ACA0.

Proof. ⇐: Given a Cauchy name (fs)s∈N for f , we construct a Cauchy name for vf . By
[25, Theorem VIII.1.12], we may use ACA0 to declare that the jump {fs : s ∈ N}′ of
the representation of f exists. For each n ∈ N define gn : [0, 1] → R as follows. Using
{fs : s ∈ N}′, compute t such that ∀u > t[||vfu − vft ||∞ ≤ 2−n], and set gn = vft . Then
(gs)s∈N defines the desired function.

⇒: Fix a model of RCA0 + Jordancont. Let

qn = 1− 2−n−1, and qn,s = qn − 2−n−s−1.

Let h : N → N be an injective function. We will show that the range of h exists,
which is equivalent to ACA0 ([25, Lemma III.1.3]). Recall that we let MA(h, r) denote a
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sawtooth function on the interval A with r many teeth of height h. For each s ∈ N, define
a continuous function fs as follows. On each interval of the form Ik = [qh(k),k, qh(k),k+1]
put

fs =

{
MIk(2−s, 2s−h(k)) if s ≥ h(k),

0 otherwise.

Let fs = 0 elsewhere. This ensures that the range of h is encoded into the variation
of fs.

The sequence (fs)s∈N defines a continuous function f = lims→∞ fs, as ||ft− fs||∞ ≤
2−s for all t > s. We show that f is of bounded variation with bound 1. Note that we
only need to examine the variation of f on the disjoint intervals [qh(k),k, qh(k),k+1] since
f = 0 elsewhere.

Let m ∈ N. For k ∈ {0, . . . ,m}, let Πk partition Ik. We estimate the variation of f
on the interval

⋃
k≤m Ik. Without loss of generality we may assume that each partition

contains the midpoints and endpoints of the sawteeth defined on Ik.
1 This allows us

to easily compute the variation of f as the piece-wise combination of non-decreasing
functions. For all s ≥ max{h(k) : 0 ≤ k ≤ m} one has

m∑
k=0

S(f,Πk) =
m∑
k=0

S(fs,Πk) =
m∑
k=0

2−h(k)+1 < 1,

which establishes the desired bound.
By Jordancont, take g : [0, 1]→ R non-decreasing and continuous such that f ≤slope g.

Note that g is presented by a Cauchy name (gs)s∈N. Given that the range of h is encoded
in the variation of f , we will use the (easily computable) variation of g on the interval
[qn,k, qn,k+1] to bound to possible pre-images under of n under h.

Define a computable function γ : N → N such that g(qn) − g(qn,γ(n)) < 2−n as
follows. There is a Σ0

0 formula θ(n,m, k) such that

∃mθ(n,m, k)↔ g(qn)− g(qn,k) < 2−n.

Since g is continuous and lims→∞ qn,s = qn one has ∀n∃k∃mθ(n,m, k). As this sentence
is Π0

2, given any instance of the variable n one can effectively obtain a witness for the
Σ0

1 formula ∃k∃mθ(n,m, k) (see, e.g. [25, Theorem II.3.5]). Thus by minimization we
may put γ(n) = k, where 〈m, k〉 is least such that θ(n,m, k) holds.

Now if h(k) = n then by the monotonicity of g,

g(qn)− g(qn,k) ≥ g(qn,k+1)− g(qn,k).

Let Π be a partition of [qn,k, qn,k+1] containing the endpoints and midpoints of each
sawtooth defined on that interval. Then since g − f ≤ g and the variation of an
increasing function is the difference of its values at its endpoints one has

2−n+1 = S(f,Π) = S(g − (g − f),Π) ≤ S(g,Π) + S(g − f,Π) ≤ 2(g(qn,k+1)− g(qn,k)).

1Indeed, this only refines the partition and provides an improved estimate.
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Thus g(qn)− g(qn,k) ≥ 2−n, and then k < γ(n). Hence

n ∈ rng(h)↔ ∃k < γ(n)[h(k) = n],

so the range of h exists by ∆0
1 comprehension.

5.3 Jordan decomposition for functions of rational domain

We have shown that requiring a Jordan decomposition to consist of uniformly contin-
uous functions causes the complexity of the Jordan decomposition theorem to reach
ACA0. Working with complicated conditions like uniform continuity (a Π0

3 statement)
gives one more freedom to perform encodings of various objects. Above, we encoded the
range of an injective function h into the variation of a function of bounded variation f .
Decomposing f into uniformly continuous functions allowed us to recover enough infor-
mation to decide whether some number was the image of another under h. Working
with more primitive objects prevents the encoding of high complexity sets, however. We
now relax the requirements of the Jordan decomposition by only stipulating that the
decomposition is given by functions which are defined on the rationals. Such functions
can be represented by finite strings that cumulatively describe the behaviour of the
function at each rational.

Let [0, 1]Q := [0, 1] ∩Q. We present a function g : [0, 1]Q → R as a binary sequence
Zg in the following way. Fix an effective listing (pn, qn)n∈N of all rationals pn, qn ∈ Q
such that 0 ≤ pn ≤ 1. We let Zg(2n) = 1 iff g(pn) < qn, and Zg(2n + 1) = 1 iff
g(pn) > qn. Then Z defines the (total) function g : [0, 1] → R specified by g(p) =
inf{q ∈ Q : g(p) > q}.

We modify the≤slope notation for functions of rational domain. For f, g :⊆ [0, 1]→ R
we let

f ≤∗slope g iff ∀x, y ∈ [0, 1]Q[x < y → (f(y)− f(x) ≤ g(y)− g(x))].

The principle JordanQ is the statement that for every continuous function f of bounded
variation, there is a non-decreasing function g : [0, 1]Q → R such that f ≤∗slope g.

Theorem 5.6. RCA0 ` JordanQ ↔WKL0.

Proof. ⇐: Let f be a function of bounded variation, given by a Cauchy name (fs)s∈N.
We construct a binary tree T such that any path Z through T encodes a non-decreasing
function g : [0, 1]Q → R with f ≤∗slope g. To do this, we must ensure the following two
requirements at each stage k for every potential function g:

R1 : if ps < pr, qs = qr, and g(ps) > qs with r, s < k then g(pr) > qr;

R2 : if ps < pr with r, s < k then for any qj with j < k and g(pr)− g(ps) < qj

one has fk(pr)− fk(ps) < qj + 2−k.
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The first requirement guarantees that any g encoded by a path Zg through T is non-

decreasing. The second guarantees the slope condition. Formally, let `(τ) =
⌈
|τ |−1

2

⌉
.

By ∆0
1 comprehension take T to be the set of all τ ∈ 2<N such that

(i) ∀r, s < `(τ)
[
(ps < pr ∧ qs = qr ∧ τ(2s+ 1) = 1)→ τ(2r + 1) = 1

]
, and

(ii) ∀r, s < `(τ)
[
(ps < pr ∧ τ(2s) = 1 ∧ τ(2r + 1) = 1)

→ ∀j < |τ |(qs − qr < qj → |f|τ |(ps)− f|τ |(pr)| < qj + 2−(|τ |+1))
]
.

To see that T is infinite, notice that since f is of bounded variation, the string Zvfs |s
is an element of T for every s ∈ N. Thus by WKL, T has a path Z.

Let g be the unique function of type [0, 1]Q → R such that Z = Zg.

Claim 5.7. The function g is non-decreasing.

Proof. Take x, y ∈ [0, 1]Q with x < y. Let q ∈ Q. It suffices to show that if g(x) > q
then g(y) > q. There is r, s ∈ N such that ps = y, qs = q, pr = x, and qr = q. If
g(pr) > qr then by clause (i), g(ps) > qs. ♦

Claim 5.8. f ≤∗slope g.

Proof. Let x, y ∈ [0, 1]Q such that x < y. There is k ∈ N and r, s, j < k such that

1. pr ≤ x < y ≤ ps,

2. qr < g(pr) < g(ps) < qs, and

3. qj + 2−(k−2) < qs − qr < qj + 2−(k−3).

Since g is non-decreasing this implies that qj + 2−(k−2) < g(y) − g(x) < qj + 2−(k−3).
By the continuity of f one can ensure pr and ps are chosen so close to x and y that

4. |f(y)− f(x)| ≤ |f(ps)− f(pr)|+ 2−k.

Using clause (ii) one has

|f(y)− f(x)| ≤ |f(ps)− f(pr)|+ 2−k

= |f(ps)− fk(ps) + fk(ps)− fk(pr) + fk(pr)− f(pr)|+ 2−k

≤ |f(ps)− fk(ps)|+ |fk(ps)− fk(pr)|+ |fk(pr)− f(pr)|+ 2−k

< 2−k + qj + 2−(k+1) + 2−k + 2−k

< qj + 2−(k−2)

< g(y)− g(x).

♦
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⇒: We reason within RCA0. Let T ⊆ 2<N be an infinite binary tree. We will show that
T has a path. Let T̃ = {τ ∈ 2<N : τ 6∈ T ∧ τ |(|τ |−1) ∈ T}. Without loss of generality we

may assume that T̃ is infinite. Let h : N→ N be defined by

h(0) = min{σ ∈ T : ∀τ ∈ T [σ 6≺ τ ]},
h(n+ 1) = min{σ ∈ T \ {h(k) : k ≤ n} : ∀τ ∈ T \ {h(k) : k ≤ n}[σ 6≺ τ ]},

where the minimum is taken with respect to the usual integer encoding of binary strings.
Then T \ rng(h) = {τ ∈ T : τ has infinitely many extensions in T}. Let (σ̃k)k∈N be an
enumeration of T̃ such that |σ̃i| ≤ |σ̃i+1|. Note that for any k, ` ∈ N,

|σ̃k| ≤ `→ k ≤ 2`. (2)

For all σ ∈ 2<N put Iσ = [0.σ, 0.σ + 2−|σ|]. For each s ∈ N define a polygonal
function fs : [0, 1]→ R as follows. On the interval Iσ̃k set

fs =

{
MIσ̃k

(2−s, 2s−h(k)) if s ≥ h(k),

0 otherwise.

Let fs = 0 elsewhere. Then (fs)s∈N defines a continuous function f = lims fs. We show
that f is of bounded variation. As before, we need only consider the variation of f on
the disjoint intervals Iσ̃k . Let m ∈ N, and for each k ≤ m let Πk be a partition of Iσ̃k
containing the midpoints and endpoints of each sawtooth defined on that interval. For
all s ≥ max{h(k) : 0 ≤ k ≤ m} one has

m∑
k=0

S(f,Πk) =
m∑
k=0

S(fs,Πk) =
m∑
k=0

2−h(k)+1 < 1,

as required.
By JordanQ there exists g : [0, 1]Q → R non-decreasing such that f ≤∗slope g. Define

∆ : N → R by ∆(k) = max{g(0.σ + 2−|σ|) − g(0.σ) : σ ∈ T ∧ |σ| = k}. Then ∆ is
non-increasing.

There are two cases to consider. If limn→∞∆(n) = 0, then g behaves as a continuous
function. This provides a decomposition of f that allows us to use an argument similar
to the one in Theorem 5.5 to prove the existence of rng(h). One can then find a path
through T by avoiding this set.

Otherwise, there is a jump-type discontinuity of g. The intervals around this point
correspond to strings which form an infinite subtree T̂ of T . One can bound the size of
any prefix-free subset of T̂ using the size of the jump, and thus effectively find a path
through T̂ .

Case 1. limn→∞∆(n) = 0. Take γ : N → N such that ∆(γ(n)) < 2−n. This can
be done using the method in the left to right direction in the proof of Theorem 5.5. If
h(k) = n then

g(0.σ̃k + 2−|σ̃k|)− g(0.σ̃k) ≥ 2−n.
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Hence |σ̃k| ≤ γ(n), and then by (2) k ≤ 2γ(n). This gives

n ∈ rng(h)↔ ∃k ≤ 2γ(n)[h(k) = n],

so rng(h) exists by ∆0
1 comprehension. Then T \ rng(h) exists. Define Z : N → N by

primitive recursion by setting Z(0) = ∅ (the empty string), and Z(n+1) = µσ[Z(n)σ ∈
T \ rng(h)]. Then Z is a path through T .

Case 2. There exists q ∈ Q such that q > 0 ∧ ∀m∃n[n > m ∧∆(n) ≥ q]. There is a
Σ0

0 formula ϕ such that for all σ ∈ 2<N,

g(0.σ + 2−|σ|)− g(0.σ) < q ↔ ∃s ϕ(σ, s).

Recall that in Theorem 4.9 we defined a Π0
1 class ζ̂ containing the names of Jordan

decompositions of f as the set of paths on a Π0
1 tree, and could compute an element

of this class by the low for z basis theorem. Presently we cannot argue that this class
exists since Π0

1 comprehension is not available to us. To handle this we define a ∆0
1 tree

which has the same paths as ζ̂, but which we can assert to exist in our model.
By ∆0

1 comprehension, let T̂ = {σ ∈ T : ∀ρ[∃s < |σ| ϕ(ρ, s) → ρ 6� σ]}. Then T̂ is

an infinite subtree of T . To see that T̂ is infinite, notice that by the case assumption
there are infinitely many strings σ such that ∀s ϕ(σ, s). For any such σ, if ρ � σ then
g(0.ρ + 2−|ρ|) − g(0.ρ) ≥ q, so ¬∃s < |σ| ϕ(ρ, s), whereby σ ∈ T̂ . This argument also
shows that T̂ is closed under prefixes.

There is K ∈ N such that for any prefix-free P ⊆ T̂ one has |P | < K. For instance,
one may take K so that Kq > g(1)− g(0). Then for any prefix-free P ⊆ T̂ ,

|P |q <
∑
σ∈P

g(0.σ + 2−|σ|)− g(0.σ) ≤ g(1)− g(0) < Kq.

Claim 5.9. T̂ has a path.

Proof. By Σ0
1 induction, take

k = max{i ≤ K : there is a prefix-free set P ⊆ T̂ with |P | = i}. (3)

Let Pk ⊆ T̂ witness (3). Let σ = maxPk, where the max is taken with respect to the
usual integer encoding of binary strings. Let ` = max{|τ | : τ ∈ Pk}. Any τ ∈ T̂ with
|τ | > ` must extend an element of Pk, and must have at most one successor. The Π0

1

set
{τ ∈ Pk : ∀v∃ρ ∈ T̂ [|ρ| = v ∧ ∃τ ′ ∈ Pk(τ ′ ≤ τ ∧ τ ′ � ρ)]}

is non-empty because it contains σ. Thus, by Σ0
1 induction, it has a least element τ .

Then τ ∈ Ext(T̂ ). Since each extension of τ whose length exceeds ` has exactly one
successor, we can effectively find a path through T̂ extending τ . ♦

We thank Paul Shafer who provided useful comments on a previous instance of this
argument.
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6 Differentiability of functions of bounded variation in
WWKL0

In Section 3 we showed that proving decomposability of functions of bounded variation
could not be undertaken in RCA0, and in the previous section we showed that this
operation requires either WKL0 or ACA0. It is interesting that proving decomposability
requires systems of this strength: as we will see momentarily, functions of bounded
variation can be proven to be a.e. differentiable using just WWKL0. Despite the fact
that differentiation seems to be an operation of higher complexity (given that it involves,
for instance, the convergence of a sequence), the interaction between differentiability and
Martin-Löf randomness that we saw in Section 4.2 means that it suffices to guarantee
the existence of Martin-Löf random reals.

Definition 6.1. Let f : [0, 1] → R. The upper and lower pseudo-derivatives of f are
defined by

D̃f(x) = lim
h→0+

sup{Sf (a, b) : a, b ∈ [0, 1]Q ∧ a ≤ x ≤ b ∧ 0 < b− a < h}, and

˜Df(x) = lim
h→0+

inf{Sf (a, b) : a, b ∈ [0, 1]Q ∧ a ≤ x ≤ b ∧ 0 < b− a < h}.

A function f :⊆ [0, 1] → R with domain containing [0, 1]Q is pseudo-differentiable at

z ∈ (0, 1) if ˜Df(z) and D̃f(z) exist, are equal, and are both finite.
We say that f is pseudo-differentiable almost surely if for any family of open intervals

U = {(ui, vi)}i∈N there exists m ∈ N such that, if U covers every pseudo-differentiable
point of f , then

∑m
i=0(vi − ui) ≥ 1.

The property of being “pseudo-differentiable almost surely” is intended to capture
the notion of a.e. differentiability in a way that is appropriate for second-order arith-
metic.

Lemma 6.2 (Simpson and Yokoyama [26]). For any countable model (M,S) |= WWKL0

there is Ŝ ⊇ S satisfying

1. (M, Ŝ) |= WKL0, and

2. for any A ∈ Ŝ there is z ∈ S such that z is Martin-Löf random relative to A.

Theorem 6.3 (WWKL0). Every uniformly continuous function of bounded variation is
pseudo-differentiable at some point.

Proof. We show that the result holds in any countable model of WWKL0. Let (M,S)
be a countable model of WWKL0, and let f : [0, 1] → R be a continuous function of
bounded variation in (M,S). By Lemma 6.2, there is a model (M, Ŝ) |= WKL0 such
that S ⊆ Ŝ. By Theorem 5.6,

(M, Ŝ) |= JordanQ.

Hence Ŝ contains a non-decreasing function g : [0, 1]Q → R such that f ≤∗slope g.
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Within (M, Ŝ), define h : [0, 1]Q → R by h(x) = g(x)− f(x). By Lemma 6.2 again,
there is a real z ∈ (0, 1) such that z ∈ S and z ∈ MLRg⊕h. The functions g and h
are pseudo-differentiable at z in (M, Ŝ) by Theorem 4.4, and therefore f is pseudo-
differentiable at z in (M, Ŝ). Thus f is pseudo-differentiable at z in (M,S).

Theorem 6.4 (WWKL0). Every continuous function of bounded variation is pseudo-
differentiable almost surely.

Proof. Let (M,S) be a countable model of WWKL0. Let f : [0, 1]→ R be a continuous
function of bounded variation. As in the proof of Theorem 6.3, we obtain non-decreasing
functions g, h : [0, 1]Q → R such that f |Q = g − h, and a MLRg⊕h real z ∈ (0, 1) such
that z ∈ S. Reasoning within (M,S), let U = {(ui, vi)}i∈N be a family of open intervals
such that for some rational ε > 0 one has

∀m
m∑
i=0

(vi − ui) < 1− ε.

Let V = [0, 1] \
⋃
U . We will obtain a tail u ∈ V of z such that u is Martin-

Löf random, and therefore a point of (pseudo-) differentiability for f . Without loss of
generality we may assume that the endpoints of U are dyadic rationals. The family U
is then given by a sequence (σi)i∈N of strings; i.e., for all i ∈ N

(0.σi, 0.σi + 2−|σi|) = (ui, vi).

Thus λJUK < 1. For each i ∈ N, let

Si = J{σk1 · · ·σki : σkn ∈ {σj : j ∈ N} for each n ∈ {1, . . . , i}}K.

Note that S1 = JUK, hence λS1 < 1; and by Σ0
1 induction one has λSi = (λS1)i. There

is a computable function γ : N→ N which thins (Si)i∈N to a Martin-Löf test (Sγ(i))i∈N.
Since z is Martin-Löf random, there is j least such that z 6∈ Sγ(j). Thus there exists

σ ∈ 2<N and u ∈ 2N such that z = σu and u 6∈ JUK. Then u is the desired suffix.

Assume that u 6∈ MLRg⊕h. Then there is a Martin-Löf test (Gn)n∈N relative to g⊕h
such that u ∈

⋂
n Gn. For each n, put Ĝn = {σg : g ∈ Gn}. Then λ(Ĝn) ≤ λ(Gn) ≤ 2−n.

Hence (Ĝn)n∈N is a Martin-Löf test relative to g⊕h which captures z, a contradiction.

The proof of Theorem 6.4 makes use of Kučera’s argument [19, Proposition 3.2.24]
which proves, for any given Π0

1 class P of positive measure and Martin-Löf random
sequence Z, the existence of a tail of Z which lies in P .

We are close to a reversal of Theorem 6.3 and Theorem 6.4. The reversal would
assert that the following are equivalent over RCA0.

1. WWKL0

2. Every uniformly continuous function of bounded variation is pseudo-differentiable
at some point.
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3. Every uniformly continuous function of bounded variation is pseudo-differentiable
almost surely.

The implications 1 ⇒ 2 and 1 ⇒ 3 are established by Theorem 6.3 and Theorem 6.4.
For the converses, let X be a set. Construct the function f of bounded variation from
Section 4.2 relative to X. Then the points of differentiability of f are precisely the reals
which are Martin-Löf random relative to X. Thus, since both clause 2 and clause 3
ensure the existence of a point of differentiability of f , this shows the existence of such
a real.

Some remarks must be made about the argument. One proves that f is absolutely
continuous (and hence of bounded variation) by showing that it can be written as an
integral, but to the author’s knowledge the equivalence

f absolutely continuous⇔ f(x) =

∫ x

0
gdλ for some g ∈ L1

has not yet been verified in WWKL0. Yu [29, Theorem 3.5] shows that a form of the
Lebesgue dominated convergence theorem (DCT) is equivalent to WWKL0 over RCA0,
but does not establish the a.e. finiteness requirement needed for our choice of g (which
we constructed in Section 4.2). By [1, Theorem 4.3], a weaker version of DCT (where
all functions are assumed to already be integrable) is equivalent over RCA0 to 2-WWKL,
the statement that any Π0

2 tree of positive measure has a path. Note that this is strictly
stronger than WWKL.

7 The Jordan decomposition operator in type two
computability

We now move to the setting of Weihrauch’s type 2 theory of effectivity (TTE). We study
recent work of Weihrauch and Jafarikhah [13] on the computability of the operator
x 7→ (x+,x−) which maps objects x (either continuous linear functionals, functions of
bounded variation, or signed measures) to their minimal Jordan decompositions.

We will briefly review TTE. Let Σ be a finite alphabet. Computability of functions
defined on Σω is defined via (type 2) Turing machines which map sequences to sequences;
the sequence being fed to the Turing machine symbol by symbol. We say that a function
F : Σω → Σω is computable if there is a Turing machine that, given p ∈ dom(F ) as a
stream on an input tape, produces F (p) on its output tape symbol by symbol, and that,
given p ∈ Σω \ dom(F ), does not write infinitely many symbols on its output tape.

A representation of a set X is a surjective function δ :⊆ Σω → X. If δ(p) = x,
we call p a δ-name of x. Let M0,M1 be two sets represented by δ0 :⊆ Σω → M0 and
δ1 :⊆ Σω → M1 respectively. A function h :⊆ Σω → Σω is a (δ0, δ1)-realisation of a
function f :⊆M0 →M1 if for all p ∈ dom(δ0),

δ0(p) ∈ dom(f) ⇒ δ1(h(p)) = f(δ0(p)).

The function f is called (δ0, δ1)-computable if it has a computable (δ0, δ1)-realiser, and
f is called (δ0, δ1)-continuous if it has a continuous (δ0, δ1)-realiser with respect to the
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usual topology on Cantor space. The intuition for computability is that from a δ0-name
of x ∈ dom(f), a type 2 Turing machine can compute a δ1-name of f(x).

For the set R we use the Cauchy representation ρ : Σω → R defined by ρ(p) = x iff
p encodes a sequence (αi)i∈N of rationals such that |x− αi| ≤ 2−i for all i. We also use
representations ρ< and ρ> defined by ρ<(p) = x iff p encodes a sequence of rationals
(αi)i such that x = supi αi, and ρ>(p) = x iff p encodes a sequence of rationals (βi)i
for which x = infi βi. A function f : R → R is computable in the sense of Definition
2.5 iff it is (ρ, ρ)-computable. That is, from a Cauchy name of x one may compute a
Cauchy name of f(x). A further example is given by the variation function vf , which is
(ρ, ρ<)-computable. Note that if f is (ρ, ρ<)-computable and (ρ, ρ>)-computable then
f is (ρ, ρ)-computable.

The canonical representation of the product space M0 ×M1 is the representation
[δ0, δ1] given by

[δ0, δ1]〈p, q〉 = (δ0(p), δ1(q)).

The canonical representation can be extended to a representation δ on the product space
Πk+1
i=1Mi by putting δ = [δk, δk+1], where δk is the canonical representation for Πk

i=1Mi,
and δk+1 is a representation of Mk+1.

The representation δ0 is reducible to δ1, written δ0 ≤ δ1, if there is a computable
function h :⊆ Σω → Σω where, for all p ∈ dom(δ0), one has δ0(p) = δ1(h(p)). Thus δ0 is
reducible to δ1 if there is a computable function which sends a δ0-name of an object p
to a δ1-name of p. The representations δ0 and δ1 are equivalent if δ0 ≤ δ1 and δ1 ≤ δ0.

By [4, Proposition 6.15] there is a representation [δ0 → δ1] of the set of all (δ0, δ1)-
continuous functions such that

• the function (f, x) 7→ f(x) is ([[δ0 → δ1], δ0], δ1)-computable;

• if γ is a representation of a set of (δ0, δ1)-continuous functions and (f, x) 7→ f(x)
is ([γ, δ0], δ1)-computable, then γ ≤ [δ0 → δ1].

Moreover, the representation [δ0 → δ1] is unique up to equivalence. Thus, from the
(canonical) representation of a pair (f, x), a type 2 Turing machine can compute a
representation of the image f(x).

Table 2 below can be used to track the representations needed to compute the
studied operators.

7.1 Decomposition of functions of bounded variation

Let BV0 ⊆ BV be the set of all left continuous functions g : [0, 1] → R of bounded
variation such that g(0) = 0. These requirements allow an identification to be made
between Borel measures and elements of BV0 which we will use for computation later.

We specify representations δV and δBV of BV0 in the following manner. Let
g ∈ BV0. We will require that δV encodes the image and pre-image of g on some
countable dense subset of [0, 1]. To this end, we define δV(p) = g iff p is a sequence
〈〈p0, q0〉, 〈p1, q1〉, . . . 〉 which meets the five requirements of the following table.
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1. pi, qi ∈ Σω for all i ∈ N
2. ρ(p0) = ρ(q0) = 0

3. ρ(p1) = 1

4. g(ρ(pi)) = ρ(qi) for all i ∈ N
5. Ap = {ρ(pi) : i ≥ 2} is a dense subset of (0, 1) on which g is continuous.

Let δBV〈p, q〉 = g iff δV(p) = g and ρ(q) = V(g). The representation δBV encodes both
the δV-name of the function g along with a Cauchy name of its total variation V(g).

Under these representations we can prove that the Jordan decomposition operator
on BV0 is computable, in the sense that from a representation of g ∈ BV0, one may
compute a representation of the minimal decomposition (g+, g−).

Theorem 7.1 (Jafarikhah and Weihrauch [13]). The Jordan decomposition operator
g 7→ (g+, g−) on BV0 is (δBV, [δV, δV])-computable.

Proof. Let 〈p, q〉 be a δBV-name of g with p = 〈〈p0, q0〉, 〈p1, q1〉, . . . 〉. The minimal
decomposition of g is given by g+ = (vg + g)/2, and g− = (vg − g)/2. We will compute
a sequence 〈〈p0, r0〉, 〈p1, r1〉, . . . 〉 such that ρ(rk) = vg(ρ(pk)) for each k.

Put r0 := q0. Then ρ(p0) = ρ(r0) = 0. Since we are given ρ(q) = V(g) we may also
put r1 = q. For each k, let xk := ρ(pk) and let

Π(k) = {σ ∈ N<N : σ(0) = 0, σ(|σ| − 1) = k, and xσ(0) < · · · < xσ(|σ|−1)}.

Then since Ap = {xk : k ∈ N} is a dense subset of (0, 1) on which g is continuous,

vg(xk) = sup
σ∈Π(k)

|σ|−1∑
i=0

|g(σ(i+ 1))− g(σ(i))|.

Note that Π(k) is c.e. relative to p ⊕ k, so it has some (p ⊕ k)-effective enumeration

(σi)i. Thus a ρ<-name of vg(xk) = supk
∑|σk|−1

i=0 |g(σk(i+ 1))− g(σk(i))| is computable
from p and k. One may similarly compute a ρ<-name of V(g, [xk, 1]). Thus both vg
and k 7→ V(g, [xk, 1]) are (ρ, ρ<)-computable.

It suffices now to show that vg is (ρ, ρ>)-computable. There are sequences of ra-
tionals (encoded by elements of Σω) (αi)i and (βi)i computable from p and k such
that

V(g) ≤ αi < V(g) + 2−i−1 and V(g, [xk, 1]) ≥ βi > V(g, [xk, 1])− 2−i−1.

Let γi = αi − βi. Then vg(xk) ≤ γi < vg(xk) + 2−i, and hence infi γi = vg(xk). Thus
vg(xk) has a ρ>-name computable from p and k, and so it has a ρ-name computable
from p and k. We take rk to be that name, which completes the construction of the
desired sequence.

Since we have shown that vg is (ρ, ρ)-computable from a δBV name of g, we may
complete the proof by observing that the minimal decomposition ((vg+g)/2, (vg−g)/2)
is subsequently computable from a ρ-name of vg.
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7.2 Decomposition of signed Borel measures

In what follows all measures will be over the Borel σ-algebra on [0, 1]. Let BM+ be
the set of all non-negative bounded measures. We first define a representation of BM+,
and then extend this to the encompassing space BM.

Let Int = {(a, b), [0, b), (a, 1], [0, 1] : a, b ∈ Q and 0 ≤ a ≤ b ≤ 1} be the set of all
open subintervals of [0, 1] which have rational endpoints. Define δm : Σω → BM+ by
δm〈p, q〉 = µ iff ρ(q) = µ([0, 1]) and p is an enumeration of all (a, I) ∈ Q × Int such
that a < µ(I). The intuition is that δm is the weakest representation from which one
can both compute the variation norm of a measure, and enumerate the corresponding
< relation.

Define a representation δBM of BM by

δBM〈p, q, r〉 = µ iff µ = δm(p)− δm(q) and ||µ||m = ρ(r).

Notice that, similar to the representation δBV, we explicitly encode the norm of the
object we are representing. Also note that while we encode µ as a difference of non-
negative measures µ+−µ−, the pair does not necessarily form the Jordan decomposition
(which we required to be minimal).

For a continuous function h ∈ C[0, 1] and a function of bounded variation g ∈ BV,
the Riemann-Stieltjes integral

∫
hdg of h with respect to g is the unique real I such

that for every ε > 0 there is δ > 0 for which∣∣∣∣∣I −
n−1∑
i=1

h(ti+1)(g(ti+1)− g(ti))

∣∣∣∣∣ < ε

whenever t0 < · · · < tn is a partition of [0, 1] with maxi(ti+1 − ti) < δ. The Riesz
representation theorem asserts that every bounded linear functional F ∈ C∗[0, 1] can
be represented by such a Riemann-Stieltjes integral (see, e.g., [16, Theorem 4.4.1]).
Jafarikhah and Weihrauch have shown that an effective analogue of this theorem holds.

Theorem 7.2 (Effective Riesz representation theorem [12]). The function (F, ||F ||) 7→ g
mapping every functional F ∈ C∗[0, 1] and its norm to the unique g ∈ BV such that
F (h) =

∫
hdg is ([δC → ρ], ρ, δV)-computable.

By the Riesz representation theorem there is a unique linear homeomorphism ΨVM :
BV0 → BM such that ΨVM(g) = µ implies, for every h ∈ C[0, 1], that

∫
hdg =

∫
hdµ.

Let Ψ+
VM be the restriction of ΨVM to non-decreasing functions. Given the appropriate

representations, we show that the operator is computable.

Theorem 7.3 (Jafarikhah and Weihrauch [13]). The operator Ψ+
VM is (δV, δm)-computable.

Proof. Let g = δV(p) be non-decreasing, and let Ap be its associated dense set. We
compute a name of the measure µ corresponding to g. Note that p encodes a list of all
pairs (x, g(x)) with x ∈ Ap. For a, b ∈ Q with 0 ≤ a < b ≤ 1, one may computably
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enumerate all c ∈ Q such that c < g(b′)−g(a′) for some a′, b′ ∈ Ap with a < a′ < b′ < b.
This determines the measure of the interval (a, b) since

µ((a, b)) = sup(g(b′)− g(a′)),

where the supremum is taken over all a′, b′ ∈ Q with a < a′ < b′ < b. Similarly, for
rationals a, b > 0 we may computably enumerate all c ∈ Q with c < µ([0, b)), and all
c ∈ Q with c < µ((a, 1]). Moreover, µ([0, 1]) is explicitly provided as g(1) = ρ(q1).
By printing q1 and then alternating between the three preceding enumerations, one
effectively enumerates all (c, I) ∈ Q× Int such that c < µ(I).

Operation Domain Complexity Theorem

Ψ+
VM BV0 (δV, δm) 7.2

Ψ+
FV C∗[0, 1] ([δC → ρ], δV) 7.5

Ψ+
MF BM (δm, [δC → ρ]) 7.6

g 7→ (g+, g−) BV0 (δBV, [δV, δV]) 7.1

F 7→ (F+, F−) C∗[0, 1] (δCF, [[δC → ρ], [δC → ρ]]) 7.9

µ 7→ (µ+, µ−) BM (δBM, [δm, δm]) 7.10

Table 2: Various operations and the representations by which they are computable.

The operator ΨVM preserves Jordan decompositions: if (g+, g−) is the Jordan de-
composition of g ∈ BV0, then

g+ =
vg + g

2
and g− =

vg − g
2

.

It follows that

ΨVM(g+) =
vΨVM(g) + ΨVM(g)

2
and ΨVM(g−) =

vΨVM(g) −ΨVM(g)

2
,

where for a signed measure µ, vµ is its variation function (i.e., vµ(x) = sup
∑

I∈π |µ(I)|,
with the supremum taken over all partitions π of [0, x] into finitely many intervals).
This shows the following result.

Theorem 7.4. If (g+, g−) is the (unique minimal) Jordan decomposition of g, then
(ΨVM(g+),ΨVM(g−)) is the Jordan decomposition of ΨVM(g).

Note that since a Jordan decomposition consists of non-decreasing functions, we may
replace ΨVM(g+) and ΨVM(g−) with the restrictions from Theorem 7.3. Thus if we can
compute a Jordan decomposition of g, we can also compute a Jordan decomposition of
ΨVM(g).
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7.3 Decomposition of continuous linear functionals

We introduce two representations for the space C∗[0, 1] of continuous linear functionals
on C[0, 1]. First note that there is a representation δC for the set C[0, 1], each function
being named by a sequence of polygonal functions satisfying the effective Weierstraß
condition. Then a functional F : C[0, 1] → R is continuous iff it is (δC , ρ)-continuous,
see e.g. [28]. It follows that [δC → ρ] is a representation of C∗[0, 1].

Recall that we equip C∗[0, 1] with the norm || · || defined by ||F || = sup{F (h) :
h ∈ C[0, 1], ||h||∞ ≤ 1}. This norm is known to be ([δC → ρ], ρ<)-computable, but not
([δC → ρ], ρ)-computable. This situation is analogous to what we studied in Section 3:
with the more general TTE framework we see that the variation norm is ([ρ→ ρ], ρ<)-
computable but not ([ρ→ ρ], ρ)-computable. Indeed, by Theorem 3.1 there is a (ρ, ρ)-
computable function whose total variation is not a computable real.

We proceed by defining a representation of C∗[0, 1] similar to the way that we defined
one for BV0. That is, since the norm of a computable functional is not necessarily
computable, we include it in the representation. Let δCF : Σω → C ′[0, 1] be defined by

δCF 〈p, q〉 = F iff [δC → ρ](p) = F and ρ(q) = ||F ||.

Hence 〈p, q〉 is a representation of F ∈ C∗[0, 1] if p is a [δC → ρ]-name of F , and q is a
ρ-name of its norm.

Other instances of the Riesz representation theorem (e.g., the Riesz-Markov-Kakutani
representation theorem) prove that there are linear homeomorphisms ΨFV : C∗[0, 1]→
BV0 and ΨMF : BM→ C∗[0, 1] such that

1. ΨFV(F ) = g implies, for all h ∈ C[0, 1], that F (h) =
∫
hdg, and

2. ΨMF(µ) = F implies, for all h ∈ C[0, 1], that
∫
hdµ = F (h).

Let Ψ+
FV and Ψ+

MF denote the restriction of the corresponding operators to non-
negative functionals and measures, respectively.

Theorem 7.5. The operator Ψ+
FV is ([δC → ρ], δV)-computable.

Proof. For any non-negative functional F one has ||F || = F (1). Hence we may apply
the effective Riesz representation theorem 7.2, which establishes the statement.

Theorem 7.6 (Weihrauch [27]). The operator Ψ+
MF is (δm, [δC → ρ])-computable.

We also have invariance theorems for ΨFV and ΨMF analogous to Theorem 7.4. As
we remarked earlier, this ensures that whenever we can effectively decompose an object,
we can also effectively decompose its image under Ψ.

Theorem 7.7. Let F ∈ C∗[0, 1].

1. If F+, F− ∈ C∗[0, 1] are non-negative and F = F+ − F−, then (F+, F−) is the
Jordan decomposition of F iff ||F || = ||F+||+ ||F−||.
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2. If (F+, F−) is the Jordan decomposition of F , then (ΨFV(F+),ΨFV(F−)) is the
Jordan decomposition of ΨFV(F ).

Note that item 2 follows directly from item 1 and the Riesz representation the-
orem: if (F+, F−) is the Jordan decomposition of F , then ||F || = ||F+|| + ||F−||, so
||ΨFV(F )||BV = ||Ψ+

FV(F+)||BV+ ||Ψ+
FV(F−)||BV, whereby (Ψ+

FV(F+),Ψ+
FV(F−)) is the

Jordan decomposition of ΨFV(F ). The following theorem is similar.

Theorem 7.8. Let µ ∈ BM.

1. If µ+, µ− ∈ BM+ and µ = µ+ − µ−, then (µ+, µ−) is the Jordan decomposition
of µ iff ||µ||m = ||µ+||m + ||µ−||m.

2. If (µ+, µ−) is the Jordan decomposition of µ, then (ΨMF(µ+),ΨMF(µ−)) is the
Jordan decomposition of ΨMF(µ).

Our aim now is to establish the relationships between the nodes in the following
diagram. The label g represents an element of BV0, µ an element of BM, and F an
element of C∗[0, 1]. The corresponding pairs (x+, x−) represent their respective Jordan
decompositions, and arrows (dashed or undashed) from x to y, indicate that from a
name of x, one can compute a name of y.

•g

•
µ

• F

• (g+, g−)

•
(µ+, µ−)

• (F+, F−)

Thm 7.1

Thm 7.10

Thm 7.9 Thm 7.3

Thm 7.6

Thm 7.2

Thm 7.4

Thm 7.10

Thm 7.2

Note that the converse arrows from the right triangle to the left triangle are trivial:
from a representation of a decomposition one may easily recover a representation of the
original function as the difference of the two components.

Theorem 7.9 (Jafarikhah and Weihrauch [13]). The Jordan decomposition operator
F 7→ (F+, F−) on C∗[0, 1] is (δCF, [[δC → ρ], [δC → ρ]])-computable.

Proof. Given a δCF-name of F , by Theorem 7.2 we may compute a δV-name of g ∈ BV0

such that F (h) =
∫
hdg. We may subsequently compute a (δV, δV)-name of its Jordan

decomposition (g+, g−) by Theorem 7.1.
By Theorem 7.3 we can compute a (δm, δm)-name of a pair of non-negative mea-

sures (µ+, µ−) such that
∫
hdµ± =

∫
hdg±. By Theorem 7.4, (µ+, µ−) is the Jordan

decomposition of a signed measure µ. Finally, by Theorem 7.6 we may compute a
([δC → ρ], [δC → ρ])-name of a pair (F+, F−) of non-negative functionals such that
F±(h) =

∫
hdµ±, and then by Theorem 7.7, (F+, F−) is the Jordan decomposition of

F .
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Finally we establish computability of the Jordan decomposition operator for signed
measures with respect to the representation δBM.

Theorem 7.10 (Jafarikhah and Weihrauch [13]). The Jordan decomposition operator
µ 7→ (µ+, µ−) on BM is (δBM, [δm, δm])-computable.

Proof. We first represent µ as a functional F , which will establish the arrow µ→ F in
the diagram above. Suppose δBM〈p, q, r〉 = µ. Then µ can be written as the difference
µ+−µ− for some µ+, µ− ∈ BM+ such that δm(p) = µ+, δm(q) = µ−, and ||µ||m = ρ(r).
By Theorem 7.6 we can compute names of F+ := ΨMF(µ+) and F− := ΨMF(µ−) which,
by Theorem 7.8, form the Jordan decomposition of the functional F := F+−F−. Since
||F || = ||F+|| + ||F−|| = F+(1) + F−(1) =

∫
1dµ+ +

∫
1dµ− = ||µ||m, we may also

compute a δCF-name of F . A succession of computations in the order µ 7→ F 7→ g 7→
(g+, g−) 7→ (µ+, µ−) then yields the desired Jordan decomposition.

We have shown that from a representation of an object which encodes its norm, we
may compute a representation of its Jordan decomposition. Jafarikhah and Weihrauch
also demonstrate that the converse holds: consider the following representations, where
g ranges over BV0, µ ranges over BM, and F ranges over C∗[0, 1].

• γVJ〈p, q〉 = g iff (δV(p), δV(q)) is the Jordan decomposition of g,

• γMJ〈p, q〉 = µ iff (δm(p), δm(q)) is the Jordan decomposition of µ,

• γFJ〈p, q〉 = F iff ([δC → ρ](p), [δC → ρ](q)) is the Jordan decomposition of F .

Then δCF ≡ γFJ, δBV ≡ γVJ, and δBM ≡ γMJ. It follows that representing an object
from one of the three Banach spaces via some countable description together with its
norm is effectively equivalent to representing it as its minimal Jordan decomposition.

Logic sometimes makes monsters.
Henri Poincaré (1854 - 1912)
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[21] André Nies (editor). Logic Blog 2013. arXiv:1403.5719, 2014.
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