
Algorithmic Complexity and Triviality

Marcus Anthony Triplett
Supervisor: André Nies

October 27, 2014

Contents

1 Introduction 2
1.1 The complexity of sets of natural numbers 3
1.2 Sources . 4
1.3 Preliminaries . 4

2 Computably enumerable sets 5
2.1 Creative sets . 6
2.2 Simple sets . 9
2.3 Lattice-theoretic properties of c.e. sets 10

3 Structure of the Turing degrees 15
3.1 Turing reducibility . 15
3.2 Post’s problem . 18
3.3 The finite extension method . 18
3.4 The finite injury priority method 21

4 Absolute complexity 23
4.1 The arithmetical hierarchy . 23
4.2 Lowness notions . 26
4.3 Hyperimmune degrees . 29

5 K-triviality 31
5.1 Lowness and triviality . 32
5.2 The cost function method . 33
5.3 Incompleteness . 36

References 38

1

1 Introduction

“By ratiocination, I mean computation. Now to compute, is either
to collect the sum of many things that are added together, or to know
what remains when one thing is taken out of another. Ratiocination,
therefore, is the same with Addition or Substraction; and if any man
adde Multiplication and Division, I will not be against it, seeing
Multiplication is nothing but Addition of equals one to another, and
Division nothing but a Substraction of equals one from another, as
often as is possible. So that all ratiocination is comprehended in
these two operations of the minde, Addition and Substraction.”

- Hobbes, 1651

This report consists of a systematic study of some topics in both traditional
and modern aspects of computability theory. Computability theory grew out of
the foundational crisis at the turn of the 20th century in attempts to formalise
the notion of an algorithm. A number of formalisations were created, most no-
table among them the lambda calculus of Alonzo Church, Kurt Gödel’s recursive
function theory, and the logical computing machines of Alan Turing; the latter
now being known as Turing machines. These formalisations were constructed
for different purposes, but in general were motivated by David Hilbert’s pro-
gram for the foundations of mathematics. In 1931 [8] Gödel was able to show
using his recursive functions that the theory of Peano arithmetic is incomplete,
and Turing in 1936 [29] used his machines to prove the unsolvability of the
Entscheidungsproblem.

Following Church, Gödel, and Turing, two major figures emerged as leaders
in computability. Stephen Kleene, a student of Church, proved many funda-
mental results for partial recursive functions and recursively enumerable sets,
including the recursion theorem and various normal form theorems. It is largely
due to Kleene that the field of computability was known as recursion theory
during the 20th century [26]. Meanwhile Emile Post, already having discov-
ered independently of Gödel the completeness theorem for first-order logic and
undecidability in Principia Mathematica (see [28]), began research into degree
theory. His work in this area established computability as an independent math-
ematical enterprise. Post also demonstrated some connections between classical
mathematics and computability in his well known result establishing the unde-
cidability of the word problem for semi-groups.

Historically, the theory of computation is full of limitative results, and com-
putability theory is concerned specifically with the limits of computation. This
is a theory of what is computable. By the Church-Turing thesis, it is a theory
of what can and cannot be calculated by algorithm in principle. We do not
consider constraints on time or space, so that what is proven incomputable is
in fact incalculable by any known device, regardless of its processing power or
memory. The division between computable and incomputable is too coarse,
however. The difficulty of computational tasks is much more complex than a

2

mere dichotomy between ‘possible’ and ‘impossible’. For instance, we will see
that despite the incomputability of two sets A and B by Turing machine, the
set A can be more incomputable than B. By this we mean that one set can
be reduced to the other, while the other cannot be reduced to the one. This
reveals an alternative motivation for the theory of computability. How does one
understand and classify in some kind of hierarchical structure the difficulty of
calculating sets of numbers, and of computing functions? More generally, how
does one characterise the complexity of sets of natural numbers?

1.1 The complexity of sets of natural numbers

We will study a variety of complexity notions. Nies in [19] divides these into
the following classes.

Descriptive complexity. We wish to understand how difficult a set is to de-
scribe. Section 2.3 contains some theorems regarding the first-order definability
of properties of c.e. sets. For instance, by Theorem 2.25 effective inseparability is
characterised by a Σ0

3 formula over E , the lattice of computably enumerable sets
under inclusion. The representability of a class of sets in a first-order language
reveals that the defining attribute common among them, such as effective insep-
arability or creativity, cannot be too complicated to describe. The arithmetical
hierarchy (see Section 4.1) similarly calibrates the difficulty of describing sets,
now in terms of the quantifier complexity. Although most sets are not arith-
metical, the hierarchy provides a useful tool for the classification of sets and
predicates one may study in formal arithmetic.

In a much broader sense, there are objects which are easy to describe and
objects which are difficult to describe. In case the objects in question are finite
strings one may define a complexity measure given by the length of the shortest
description for the string. By a description we mean some input to a machine
which generates the desired string accordingly. The strings capable of being
described by short inputs can be viewed as simpler than those which cannot.
This idea, whose origins lie with Kolmogorov [17], Chaitin [1], and Solomonoff
[27], admits a formal definition for the randomness of finite strings. Namely
that a string is random if it does not have a description shorter than the length
of the string itself.

We may encode a set of natural numbers as an infinite binary string. Now
we perform the same analysis on the initial segments of the infinite string,
whereupon a set is trivial if each of its initial segments are easy to describe, and
random if they are difficult to describe. By Corollary 5.14 there are trivial sets
which are still incomputable, but by Theorem 5.15 no trivial set could be weak
truth-table complete. In fact, no trivial set could be Turing complete.

Relative computational complexity. We wish to understand which of two sets
is more useful. By this we mean how can we reduce one set to another, under
which reducibilites is this possible, and is the reducibility necessarily strict? The
modern concept of reducibility first arose in Turing’s analysis of computation
by means of oracle machines. Taking a set A as an oracle, one asks what can
be computed by a machine Φ with access to it. If a set B may be computed by

3

such a machine with oracle A, then B is said to be Turing reducible to A. Many
variations of this kind of reduction exist, and each induces a partial order on
2N. By considering the equivalence classes of 2N modulo some reducibility, one
obtains a degree structure formally defining classes of computational complexity.
In terms of information content, the sets of minimum degree have none. On the
other hand, ∅n is Σ0

n-complete by Post’s Theorem 4.9, and thus contains the
maximum possible information content in the universe of Σ0

n sets. Restricting
our reduction to a computable function gives rise to the many-one degrees,
wherein Post’s notion of a creative set captures Σ0

1-completeness by Theorem
2.13.

Absolute computational complexity. We wish to understand the computa-
tional strength or weakness of a set in an absolute sense. That is, without
emphasising reductions between arbitrary sets, but perhaps by fixing some par-
ticular class of sets and using this as a measure for the information content of
others. This is precisely what the notion of lowness captures. By Theorem 4.14
low sets exist. This gives a second solution to Post’s problem, as discussed in
Section 3.2. The absolute computational complexity of a set can also be cali-
brated by various other notions, such as computable domination. Now we ask
does an oracle help to compute quickly growing functions? By Theorem 4.25
the ∆0

2 degrees are hyperimmune, indicating that no incomputable ∆0
2 set is

capable of being computably dominated. On the other hand, by Theorem 4.26
any computably dominated set is already generalised low2.

1.2 Sources

Much of the content of this report comes from Odifreddi’s Classical Recursion
Theory [20], Soare’s Recursively Enumerable Sets and Degrees [25], Nies’ Com-
putability and Randomness [19], and Cooper’s Computability Theory [2]. For
an overview of the history of computability up to the year 1979 the pre-eminent
source is Kleene himself in Origins of Recursive Function Theory [15]. Soare in
The history and concept of computability [26] also provides an excellent account,
especially regarding nomenclature.

1.3 Preliminaries

We assume a fixed enumeration of Turing Machines {Φi}i∈N given by some
effective Gödel numbering. If a Turing Machine Φi halts on input x we write
Φi(x) ↓, otherwise we write Φi(x) ↑. Similarly if a function f is defined on input
x we write f(x) ↓, otherwise f(x) ↑. We denote by Wi the domain of the i-th
Turing Machine; i.e., Wi = {x : Φi(x) ↓}. Let K ⊆ N. By a partial computable
function we mean a function f : K → N such that there is a Turing Machine
Φi with f(x) = Φi(x) for all x ∈ K. If f is total we say f is a computable
function. We say that a set A is computably enumerable (briefly, c.e.) if A is
the domain of some partial computable function f . Equivalently A is c.e. if A
is the range of a partial computable function. If the characteristic function χA

4

for A is computable we say that the set A is computable. The following lemma
is used extensively:

Lemma 1.1 (Kleene [14]). Let A be a set. Then A is computable iff A and A
are computably enumerable.

The following fundamental result was proven by Kleene in [13]. It may be
extended in a number of ways, as in the two succeeding theorems.

Theorem 1.2 (The recursion theorem). For any computable function f : N→
N there is e ∈ N such that Φf(e) = Φe.

Theorem 1.3 (The double recursion theorem). For any two computable func-
tions f, g : N × N → N there exist a, b ∈ N such that Φa = Φf(a,b) and
Φb = Φg(a,b).

Theorem 1.4 (The recursion theorem with parameters). For any computable
function f : N × N → N there is a computable function k : N → N such that
Φk(y) = Φf(k(y),y).

It is useful to specify how far along a computation may be. We write Φi(x)[s]
for the Turing Machine Φi performing a computation with input x, limited to
s computational steps. If Φi(x) halts in no more than s steps then Φi(x)[s] ↓.

During constructions, such as those done in Section 3.3 we often use the
Cantor pairing function to encode tuples of natural numbers.

Definition 1.5. The Cantor pairing function is a bijection 〈·, ·〉 : N2 → N given
by

〈x, y〉 =
1

2
(x+ y)(x+ y + 1) + y.

This may be extended to larger tuples by setting

〈x1, . . . , xn, xn+1〉 = 〈x1, . . . , 〈xn, xn+1〉〉.

We also use a notational device used to define recursive functions.

Definition 1.6 (Minimisation). The µ operator is defined by µx.Fx = the least
x such that Fx, where F is some unary predicate over N.

2 Computably enumerable sets

In 1928 David Hilbert posed the Entscheidungsproblem – the decision problem
– asking for an algorithm which determines in a finite number of steps, given
as input a formula from first-order logic, whether that formula is valid or not.
Alan Turing resolved this challenge negatively by reducing what became known
as the halting problem to the Entscheidungsproblem. The halting problem is a
decision problem asking whether, given an input consisting of a Turing machine

5

Φ and an input x for Φ, the machine Φ halts on x. The set of all pairs 〈Φ, x〉 such
that Φ(x) ↓ can easily be seen to be computably enumerable. We may simply
simulate in parallel each 〈Φi, xi〉, and take note of whenever such a pair halts.
It is now common place to restrict the halting problem to deciding whether a
machine Φ halts on its own code.

Definition 2.1. We denote by ∅′ the halting problem. That is

∅′ = {x : Φx(x) ↓}.

It was shown in Turing’s seminal 1936 paper On Computable Numbers, with
an application to the Entscheidungsproblem [29] that this set is not computable.

Theorem 2.2. ∅′ is incomputable.

Proof. Assume for contradiction that ∅′ is computable. Then ∅′ is c.e., and
hence ∅′ = Wk for some k ∈ N. If k ∈ Wk then k ∈ ∅′ and k ∈ ∅′, which is
impossible. Similarly if k 6∈Wk then k 6∈ ∅′ and k ∈ ∅′. In either case we arrive
at a contradiction, so no such k can exist.

We begin by studying two varieties of computably enumerable sets which
are incomputable: the creative sets, and the simple sets.

2.1 Creative sets

Emile Post introduced in [22] the notion of a creative set, intended to capture the
underlying feature which gives rise to impossibility phenomena such as Gödel’s
incompleteness theorems and Theorem 2.2:

“The conclusion is unescapable that even for such a fixed, well de-
fined body of mathematical propositions, mathematical thinking is,
and must remain, essentially creative. To the writer’s mind, this
conclusion must inevitably result in at least a partial reversal of the
entire axiomatic trend of the late nineteenth and early twentieth cen-
turies, with a return to meaning and truth as being of the essence
of mathematics.” ([22] p. 295)

Definition 2.3. A set S is productive if there is a computable function p such
that for any c.e. set We

We ⊆ S ⇒ p(e) ∈ S −We.

A set is creative if it is c.e. and coproductive.

Creative sets are those which can be shown effectively (using their productive
functions) to be incomputable. The productive function p(e) guarantees that C
cannot have a c.e. index.

Proposition 2.4. ∅′ is creative via p(x) = x.

6

Proof. Suppose We ⊆ ∅′. If p(e) ∈ ∅′ then e ∈ We and hence p(e) 6∈ ∅′ −We.
On the other hand if p(e) 6∈ ∅′ then p(e) 6∈ ∅′ −We.

Here we give the first definition of a reduction. Broadly speaking, a reduction
of one set, A, to another, B, is some method of deciding membership for A by
appealing to answers from the set B. If the method can be carried out by
Turing machines then we have an algorithm for converting A-problems in to
B-problems. Since we are only interested in computability, we do not consider
whether the reduction can, for instance, be computed in polynomial time, or
can be computed subject to some memory constraint.

Definition 2.5. Let A and B be sets. A is many-one reducible to B, written
A ≤m B, if there is a computable function f such that x ∈ A ⇔ f(x) ∈ B. If
we can choose the reduction f to be injective we say that A is one-one reducible
to B and write A ≤1 B.

Many-one reduction is a strong reducibility notion, preserving computability
and enumerability. In subsequent sections we will study weaker reducibility
notions which don’t require a reduction to come from a computable function.
In these cases a set A being weakly reducible to a c.e. set does not guarantee
that A will be c.e.

Proposition 2.6. If A ≤m B and B is c.e., then A is c.e. Moreover if B is
computable, then A is computable.

Proof. Suppose A ≤m B via f , and that B is c.e. Then B = We for some e ∈ N,
so A = {f(w) : w ∈We} and hence is c.e. Now if B is computable then B = Wr

for some r ∈ N. Thus A is c.e., and so A is computable.

Proposition 2.7. Let B be c.e. If A ≤m B and A is creative, then B is
creative.

Proof. We show that B is coproductive. Let p be the productive function for A,
and suppose A ≤m B via f computable. We can effectively find an index i(e)
such that Wi(e) = f−1(We), uniformly in e. Thus if We ⊆ B then Wi(e) ⊆ A.

Since A is creative one has p(i(e)) ∈ A −Wi(e). Then f(p(i(e))) ∈ B −We.
Hence f ◦ p ◦ i is a productive function for B.

Definition 2.8. Let K0 = {(x, y) : Φy(x) ↓}.

By Proposition 2.7 K0 is also creative, for x ∈ ∅′ iff (x, x) ∈ K0. Hence the
map x 7→ (x, x) is a many-one reduction.

Example 2.9. K0 ≤m Tot := {x : Φx(y) ↓ for all y ∈ N}.

Proof. Let ψ be the partial computable function which on input (x, y) first
simulates the computation Φy(x) and, if it converges, returns 1. Then

(x, y) ∈ K0 ⇒ Φy(x) ↓ ⇒ Φψ((x,y))(z) = 1 for all z ∈ N⇒ ψ((x, y)) ∈ Tot
(x, y) 6∈ K0 ⇒ Φy(x) ↑ ⇒ Φψ((x,y))((x, y)) ↑ ⇒ ψ((x, y)) 6∈ Tot

and the proposition holds.

7

Remark 2.10. That a productive function is computable allows us to devise an
algorithm for generating an infinite c.e. set in the complement of any creative
set. Let C be creative via p. The process is as follows.

• Compute an index e0 ∈ N such that We0 = ∅. Since We0 = ∅ ⊆ C one has
p(e0) ∈ C.

• Given a finite set {c1, . . . , cn} ⊆ C compute an index en ∈ N such that
Wen = {c1, . . . , cn}. Note that for any finite set one can effectively deter-
mine a c.e. index for it. Hence Wen ⊆ C and thus via the creativity of C
one has {c1, . . . , cn, p(en)} ⊆ C, where p(en) 6= ci for i = 1, . . . , n.

This construction computably enumerates an infinite subset

{p(e0), p(e1), p(e2), . . . }

of C. By the following proposition this method may be strengthened to finding
an infinite computable subset of C.

Proposition 2.11. Every infinite c.e. set S contains an infinite computable
subset.

Proof. Let ψ be the computable function such that ran(ψ) = S. Define f by
the following recursive scheme:

f(0) = ψ(0)

f(n+ 1) = ψ(x), where x is least s.t. ψ(x) > f(n).

Let V = ran(f). Note that V is infinite since S is infinite. To compute whether
x ∈ V it suffices to check if x ∈ {f(0), f(1), . . . , f(x)}.

Every reducibility notion induces a corresponding completeness notion for
computably enumerable sets. Sets which are complete for a reducibility are
maximally incomputable c.e. sets, in the sense that (i) they are c.e. and in-
computable, and (ii) they are above any other c.e. sets with respect to that
reducibility. For now will restrict our consideration to m-completeness.

Definition 2.12. Say that a c.e. set A is m-complete if for every c.e. set B
one has B ≤m A.

Thus should one be capable of computing an m-complete set, one could
further compute every (incomputable) c.e. set. Clearly then, m-complete sets
are incomputable themselves. Post’s notion of a creative set in fact captures
precisely the m-complete sets.

Theorem 2.13. A set is creative iff it is m-complete.

Proof. “⇒” Let C be creative via f , and let A be c.e. Let g be a partial
computable function such that

8

Wg(x,y) =

{
{f(x)} if y ∈ A
∅ otherwise.

By the recursion theorem with parameters 1.4 there is a computable function k
with Wg(k(y),y) = Wk(y). Then

y ∈ A⇒Wk(y) = {f(k(y))} ⇒Wk(y) 6⊆ C ⇒ f(k(y)) ∈ C, and

y 6∈ A⇒Wk(y) = ∅ ⇒Wk(y) ⊆ C ⇒ f(k(y)) ∈ C −Wk(y) ⇒ f(k(y)) 6∈ C.

Hence A ≤m C.
“⇐” Suppose C is m-complete. Then ∅′ ≤m C. By Proposition 2.4 ∅′ is

creative, and so C is creative by Proposition 2.7.

As a corollary of Theorem 2.13 we learn that the halting problem ∅′ is m-
complete, and thus maximally unsolvable relative to c.e. sets.

Let r ∈ {1,m}. Say that sets A and B are r-equivalent if A ≤r B and B ≤r
A. In this case we write A ≡r B. We note the following useful theorem, asserting
that for any two 1-equivalent sets there is a computable function permuting one
into the other. This allows us to prove many results about creative sets in
general by considering just one creative set (we do precisely this in Section 2.3).
A proof can be found in [25] I.5.4.

Theorem 2.14 (Myhill’s Isomorphism Theorem). Let A,B ⊆ N. If A ≡1 B
then there exists a computable permutation π such that π(A) = B.

2.2 Simple sets

Another class of incomputable c.e. sets distinct from the creative sets are the
simple sets.

Definition 2.15. An infinite set S is immune if it does not contain an infinite
c.e. subset. A set S is simple if it is c.e. and co-immune.

In other words, simple sets are so large that they intersect every c.e. set. Any
simple set S cannot be computable, otherwise S would intersect its complement.

Proposition 2.16. No simple set is creative.

Proof. Let C be creative. By Remark 2.10 C contains an infinite c.e. subset
We. But then if C were simple C ∩We 6= ∅, which is absurd.

As an example we give an easy recharacterisation of simple sets.

Example 2.17. A co-infinite c.e. set S is simple iff it has no co-infinite com-
putable superset.

Proof. “⇒” Assume for contradiction that S has a co-infinite computable su-
perset H. Then H is infinite and c.e., and so by Proposition 2.11 contains an
infinite computable subset. But as S ⊆ H, one has H ⊆ S, so that S has an

9

infinite computable subset - contradicting the fact is S was co-immune.

“⇐” Assume S is not simple. Then S contains an infinite c.e. subset. In
fact S contains an infinite computable subset H. But then H ⊆ S, so S ⊆ H
with H computable and co-infinite.

We present in this report a number of proofs for the existence of simple sets.
The first is Post’s original construction. In Section 4.2 we build a low simple
set in order to resolve Post’s problem, and in Section 5 we give a construction
of a simple set due to Kolmogorov (the set of compressible strings is simple),
and another using a cost function construction.

Theorem 2.18 (Post [22]). There is a simple set.

Proof. Let ψ be the partial computable function which, on input x, returns the
first element no less than 2x enumerated into Wx. Let S be the range of ψ.
Then S is c.e., so it remains to check that S is co-infinite. But this follows by
construction since the number of elements in S less than 2x is at most x.

2.3 Lattice-theoretic properties of c.e. sets

We denote by E the lattice of computably enumerable sets under inclusion:

E = 〈{We}e∈N,∪,∩,⊆, ∅,N〉.

A property P of sets is definable in E if there is some first-order formula ϕ over
the signature 〈∪,∩,⊆, ∅,N〉 with one free variable such that a set X ∈ E has
property P iff E |= ϕ(X). We say that a property is lattice theoretic if it is
definable in E .

It was shown by Leo Harrington that creativity is lattice-theoretic. It seems
that the first published proof of this was in [25, p. 399]. Soare and Harrington
together in a series of papers (e.g. [9–12]) in the 1990’s developed a significant
body of work regarding automorphisms and definability in the lattice. For
instance, it is shown in [9] that there is a lattice-theoretic property guaranteeing
that a set is both incomputable and Turing incomplete (this term will be defined
and explored from Section 3.2 onwards). It is also shown in [12] that there is
a lattice-theoretic property implying simplicity and Turing completeness. Here
we will recreate the proof of Harrington’s theorem about creative sets, and then
modify it to give a lattice-theoretic characterisation of another property, namely
effective inseparability.

Let X,Y be c.e. sets with X ⊆ Y . If Y −X is c.e. we write X @ Y . It is
important to note that if X 6@ Y , then there is an infinite stream of elements
which are first enumerated in Y , and then later appear also in X. This will act
as a resource in the upcoming construction.

Theorem 2.19 (Lattice-theoretic characterisation of creativity, Harrington).
Creativity is lattice-theoretic. In particular, if C is c.e. then C is creative iff

∃F ∀Z ∃R [R ∩ F 6@ R ∧R ∩ C = R ∩ Z] (1)

10

where quantification is over E.

Proof. “⇒” We show that Ĉ = {〈x, e〉 : 〈x, e〉 ∈ We} is creative, satisfies (1)
and hence obtain, via Myhill’s Isomorphism Theorem 2.14, that every creative
set satisfies (1). Indeed, if Ĉ satisfies (1) and C is any other creative set, there

is a computable permutation π such that π(Ĉ) = C. Applying the permutation
across N shows that C satisfies (1) also.

To see that Ĉ is 1-complete, let e be an index such that We = ∅′ ×N. Then
x ∈ ∅′ ⇔ 〈x, e〉 ∈ We ⇔ 〈x, e〉 ∈ Ĉ. The map x 7→ 〈x, e〉 gives the required
1-reduction.

Next, let F = ∅′ × N. Given Z = Wk, take R to be the computable set
N× {k}. Then R− F = ∅′ × {k} which is not c.e., and so R ∩ F 6@ R.

For each 〈x, k〉 ∈ R

〈x, k〉 ∈ Ĉ ⇔ 〈x, k〉 ∈Wk ⇔ 〈x, k〉 ∈ Z.

Hence R ∩ Ĉ = R ∩ Z.

“⇐” Suppose C satisfies (1) via F . We construct Z in stages, giving an
infinite number of c.e candidate witnesses Ri for Z in expression (1). For each
such witness, we define a potential productive function pi. In the limit some Ri
will in fact be the correct witness, thereby yielding a total pi.

Construction. Stage s = 0. Fix a one-one enumeration of F , and for each e
an enumeration of We. Let Z0 = ∅ and declare pi,0(e) undefined for each i, e.

Stage s > 0. Let i be least such that

i. If t < s is the largest stage such that t = 0 or pi had a new value defined
at stage t then

(Ri ∩ C) �t [s] = (Ri ∩ Z) �t [s].

ii. There is an x ∈ Ri,s−1 ∩ Fat s
If i exists define pi,s(e) = x, where e = µy.pi,s−1(y) ↑. If x is enumerated into
We,u for some stage u ≥ s, put also x into Zu. This completes the construction.

Verification.

• There is some total pi

Let i be least such that Ri is the correct witness for Z in (1). If pk is
total for some k < i the claim holds. So suppose for each k < i that pk
is not total. Then there is some stage s0 such that we do not choose any
values of pk with k < i at a stage s ≥ s0, since only finitely many values
of pk are defined. There is an infinite flow of elements from Ri into F
since Ri ∩ F 6@ Ri. Hence at infinitely many stages s we choose x from
Ri,s−1 ∩ Fat s. This ensures that pi is total because we always define the
least element on which pi is undefined.

11

• C is creative via the above pi

Suppose pi(e) ∈ We ∪ C. We want to ensure that We ∩ C 6= ∅. We have
Ri ∩ C = Ri ∩ Z as we always confirm i in the construction. Given e, we
define pi(e) = x at some stage s. Now x is not defined as a value of any
pk(m) at stage s − 1 since x ∈ Fat s. Also x is not defined as a value of
any pk(m) at a stage s′ > s since we chose a one-one enumeration of F ,
so x cannot be an element of Fat s′ . Since x ∈ Ri, if x is enumerated into
We it is put into Z, and hence into C. Moreover this is the only way items
are enumerated into Z, so if x never enters We it never enters Z either.

There is an analogue of creativity for pairs of disjoint c.e. sets known as
effective inseparability. It should be no surprise following Theorem 2.19 such
analogous sets are also lattice-theoretic. This suggests that sets of this nature
have an inherently low descriptive complexity.

Definition 2.20. Disjoint c.e. sets A0 and A1 are effectively inseparable if
there is a computable function p such that for every x, y we have

[A0 ⊆Wx ∧ A1 ⊆Wy ∧ Wx ∩Wy = ∅] ⇒ p(x, y) 6∈Wx ∪Wy. (2)

We call p the productive function for (A0, A1).

Effectively inseparable sets (A0, A1) are incapable of having their disjointness
witnessed by computable sets. Similar to our definition of creativity (Definition
2.3) the productive function for effectively inseparable sets automatically gives a
counterexample to any possible computable B such that A0 ⊆ B and A1∩B = ∅.

Example 2.21. Let A0 = {e : Φe(e) = 0} and A1 = {e : Φe(e) = 1}. Then A0

and A1 are effectively inseparable.

Proof. For c.e. sets Wx,Wy write Wx\Wy for the elements which are enumerated
into Wx before Wy (if ever). Define a partial computable function p by

Φp(x,y)(z) =


1 if z ∈Wx \Wy

0 if z ∈Wy \Wx

↑ otherwise.

Suppose that A0 ⊆Wx, A1 ⊆Wy, and Wx ∩Wy = ∅. For contradiction, assume
that p(x, y) ∈ Wx ∪ Wy. If p(x, y) ∈ Wx then Φp(x,y)(p(x, y)) = 1, but also
p(x, y) 6∈ Wy and hence p(x, y) 6∈ A1 so that Φp(x,y)(p(x, y)) 6= 1. In case
p(x, y) ∈ Wy we obtain a similar contradiction. Hence p(x, y) 6∈ Wx ∪Wy, and
p is productive for (A0, A1).

To obtain a result similar to Theorem 2.19 for effectively inseparable sets we
must build a repertoire of similar tools. These include corresponding notions of
reducibility and completeness.

12

Definition 2.22. Let (A0, A1) and (B0, B1) be two pairs of disjoint c.e. sets.
We write (A0, A1) ≤m (B0, B1) if there is a computable function f such that
f(B0) ⊆ A0, f(B1) ⊆ A1, and f(B0 ∪B1) ⊆ A0 ∪A1. If we can choose f to be
one-one we write (A0, A1) ≤1 (B0, B1).

Lemma 2.23 (Smullyan). Assume that (A0, A1) is a pair of effectively insep-
arable c.e. sets with productive function p. If (B0, B1) is a pair of disjoint c.e.
sets then (B0, B1) ≤1 (A0, A1).

Proof. By the double recursion theorem 1.3 there are one-one computable func-
tions g and h with

Wg(z) =

{
A0 ∪ {p(〈g(z), h(z)〉)} if z ∈ B1

A0 otherwise,

and

Wh(z) =

{
A1 ∪ {p(〈g(z), h(z)〉)} if z ∈ B0

A1 otherwise.

Let f(z) = p(〈g(z), h(z)〉). We show that f gives the required reduction. Let
b ∈ B0. Then

f(b) = p(〈g(b), h(b)〉),
Wg(b) = A0, and

Wh(b) = A1 ∪ {p(〈g(b), h(b)〉)}.

We have f(b) ∈ Wg(b) ∪Wh(b). Then Wg(b) ∩Wh(b) 6= ∅ since A0 and A1 are
effectively inseparable. Thus f(b) ∈ A0, for otherwise A0 and A1 would not be
disjoint. By a symmetric argument, if b ∈ B1 then f(b) ∈ A1.

For the remaining details it suffices to check that if b 6∈ B0 ∪B1 then f(b) 6∈
A0 ∪A1. To this end suppose b 6∈ B0 ∪B1. Then

f(b) = p(〈g(b), h(b)〉),
Wg(b) = A0, and

Wh(b) = A1.

We know by assumption that A0∩A1 = ∅. Hence by the effective inseparability
of A0 and A1 we have that p(〈g(b), h(b)〉) 6∈Wg(b) ∪Wh(b); i.e., f(b) 6∈ A0 ∪A1,
as required.

Lemma 2.24. Let {(Ŵe0 , Ŵe1)}e∈N be an effective enumeration of the disjoint
pairs of c.e. sets.

A0 = {〈x, 〈e0, e1〉〉 : 〈x, 〈e0, e1〉〉 ∈ Ŵe0},

A1 = {〈x, 〈e0, e1〉〉 : 〈x, 〈e0, e1〉〉 ∈ Ŵe1}.

Then (A0, A1) is effectively inseparable.

13

Proof. Wem-reduce the effectively inseparable pair from Example 2.21 to (A0, A1).
Let B0 = {e : Φe(e) = 0}, B1 = {e : Φe(e) = 1}. Let (Wk0 ,Wk1) be the disjoint
pair of c.e. sets given by

Wk0 = {〈x, n〉 : x ∈ B0 ∧ n ∈ N}
Wk1 = {〈x, n〉 : x ∈ B1 ∧ n ∈ N}.

Then x ∈ Bi ↔ 〈x, 〈k0, k1〉〉 ∈ Ai, for i = {0, 1}. Let f be the computable
function such that f(x) = 〈x, 〈k0, k1〉〉. Then f(B0) ⊆ A0, f(B1) ⊆ A1, and if
x 6∈ B0 ∪B1 then we immediately have 〈x, 〈k0, k1〉〉 6∈ A0 ∪A1.

Theorem 2.25 (Lattice-theoretic characterisation of effective inseparability,
Nies). The following are equivalent for any pair of disjoint c.e. sets A0, A1:

1. A0 and A1 are effectively inseparable

2. ∃F ∀Z0, Z1 disjoint ∃R [R∩F 6@ R ∧ R∩A0 = R∩Z0 ∧ R∩A1 = R∩Z1].

Proof. “1 ⇒ 2” Let (A0, A1) be as in Lemma 2.24. Let F = ∅′ × N. Write

Z0 = Ŵe0 , Z1 = Ŵe1 , and take R = N×{〈e0, e1〉}. Then R−F = ∅′×{〈e0, e1〉},
which is not c.e. So R ∩ F 6@ R. As in Theorem 2.19 R ∩ Ai = R ∩Wei for
i = 0, 1. By Lemma 2.23 any other pair of disjoint c.e. sets is 1-equivalent to
(A0, A1), and so satisfy 2 by Myhill’s Isomorphism Theorem 2.14.

“2⇒ 1” Suppose A0, A1 satisfy 2 via F . We proceed in a similar fashion to
the proof of Theorem 2.19. We construct disjoint c.e. sets Z0, Z1 which gener-
ate a number of candidate witnesses Ri to the second criterion in the original
statement, each of which allows us to define a potential function pi to satisfy
the effective inseparability of A0 and A1.

Construction. Stage s = 0. Fix a one-one enumeration of F , and an enumer-
ation of the pairs of disjoint c.e. sets (Wx,Wy). Let Z0,0, Z1,0 = ∅, and declare
pi,0(e) undefined for each i, e.

Stage s > 0. Let i be least such that

i. If t < s is the largest stage such that t = 0 or pi had a new value defined
at stage t then

(Ri ∩A0) �t [s] = (Ri ∩ Z0) �t [s], and

(Ri ∩A1) �t [s] = (Ri ∩ Z1) �t [s].

ii. There is z ∈ Ri,s−1 ∩ Fat s
If i exists define pi,s(x, y) = z, where 〈x, y〉 is least such that pi,s−1(x, y) ↑. If
z is enumerated into either Wx,u or Wy,u at some stage u ≥ s, put also z into
both Z0,u and Z1,u. This completes the construction.

Verification.

14

• There is some total pi

As in Theorem 2.19.

• A0 and A1 are effectively inseparable via pi

Suppose that pi(x, y) ∈ Wx ∪Wy ∧ A0 ⊆ Wx ∧ A1 ⊆ Wy. We want to
ensure Wx ∩Wy 6= ∅. Given x, y, we define pi(x, y) = z at some stage s.
For the same reasons as in Theorem 2.19 z is not taken as a value for any
other pk at any other stage. Now since z ∈ Ri, if z is enumerated into
Wx ∪Wy then z is put into A0 ∩A1, and hence Wx ∩Wy 6= ∅.

3 Structure of the Turing degrees

3.1 Turing reducibility

The reducibility we saw in Section 2 was a strong reducibility, and in fact too
strong for some purposes. For instance, an incomputable set A does not in
general m-reduce to its complement. However, if we could compute A, then
certainly we could compute A by reversing the answer we get. This motivates
the following weaker reduction, introduced by Turing in [30].

Definition 3.1 (Oracle Machines). By an oracle machine ΦAi we mean a Turing
machine Φi with access to an oracle for A. The oracle machine can query the
oracle for A by posing a finite but unbounded number of questions of the form
“x ∈ A?” to the oracle – to which the oracle replies truthfully. We define
WA
i = {x : ΦAi (x) ↓} the domain of the oracle machine ΦAi . We denote by

use ΦAi (x) the use of the computation ΦAi (x); that is, 1+ the largest oracle
question made to A.

Definition 3.2 (Turing Reduction). We say that a function f is Turing re-
ducible to a set B, written f ≤T B if there is an oracle machine ΦBi with an
oracle for B such that f(x) = ΦBi (x) for all x. We say that a set A is Turing
reducible to B, A ≤T B, if the characteristic function for A is Turing reducible
to B.

Although this definition may seem ethereal, oracle machines are simply
mathematical devices for gauging the information content of a set. Turing re-
marked:

“We shall not go any further into the nature of this oracle apart
from saying that it cannot be a machine.” ([30, pp. 172-173])

Definition 3.3.

• For sets A and B, if A ≤T B and B ≤T A we write A ≡T B. Note that
≡T is an equivalence relation.

15

• We denote the equivalence class of a set A modulo ≡T by deg(A), the
Turing degree of A.

• If A ≤T B we write deg(A) ≤ deg(B).

• The collection of all Turing degrees is denoted by D.

The Turing degrees were the first example of a degree structure. Initially
they were known as the degrees of unsolvability, introduced by Post in 1948 [21].
This was followed by significant work done by Kleene and Post [16], Sacks [23],
and Shoenfield [24].

We will tend to use boldface lowercase letters a,b, . . . for Turing degrees.
Thus deg(∅) is just the class of computable sets – using an ∅-oracle does not
provide us with any new information, for anything we could compute with the
help of an ∅-oracle we could already do. To see that ≤T really is a weaker
reducibility notion, consider the following proposition.

Proposition 3.4. Let A and B be sets. If A ≤m B then A ≤T B.

Proof. Let A ≤m B via f . To determine whether x ∈ A simply ask a B-oracle
whether f(x) ∈ B.

Of course the converse does not hold. If ∅′ ≤m ∅′ then by Proposition 2.6 ∅′
would be c.e., and hence ∅′ would be computable.

Before the preceding proposition it was stated that using ∅ as an oracle does
not provide any extra information. Indeed, deg(∅) is minimal in D. We denote
deg(∅) by 0.

Proposition 3.5. Let a be a Turing degree. Then 0 ≤T a.

Proof. Write a = deg(A), and 0 = deg(B). Since B is computable its character-
istic function is given by some Φi. Hence there is an oracle machine ΦAj which
computes the characteristic function for B without querying its oracle.

Definition 3.6. We say that a Turing degree is computably enumerable (c.e.)
if it contains a c.e. set.

Kleene and Post in [16] introduced the jump operator on sets of numbers,
relativising the halting problem to oracle machines. By the jump theorem below,
the jump operator is invariant under Turing equivalence. This ensures we obtain
a well-defined definition for the jump of a Turing degree.

Definition 3.7. Let A be a set. We define the jump of A, written A′, by
A′ = {x : ΦAx (x) ↓}. The (n + 1)-th jump of A, A(n+1), is defined to be (An)′.
The n-th jump of a Turing degree a = deg(A) is given by an = deg(An).

If a set A is the domain of an oracle machine ΦBi we say that A is c.e.
in B. Intuitively, with a B-oracle we can enumerate A which was perhaps not
computably enumerable. If the characteristic function of A is given by an oracle
machine ΦBi , we say that A is computable in B.

16

Proposition 3.8. Define KA
0 = {(x, y) : ΦAy (x) ↓}. Then A′ ≡m KA

0

Proof. Relativise the notions in Section 2.1

Theorem 3.9 (The Jump Theorem). Let A,B ⊆ N.

1. A′ is c.e. in A

2. B is c.e. in A iff B ≤m A′

3. A′ 6≤T A

4. If A ≡T B then A′ ≡T B′

Proof. 1. Consider the partial A-computable function ψ which, on input x
simulates ΦAx (x) and returns 1 if ΦAx (x) ↓. Then A′ = dom(ψ).

2. If B is c.e. in A then B = dom(ΦAi) for some index i. Thus

x ∈ B ⇔ ΦAi (x) ↓⇔ (i, x) ∈ KA
0 (3)

So B ≤m KA
0 ≤m A′, the second inequality given by Proposition 3.8.

Conversely if B ≤m A′ via f we set ψ to be the oracle machine which
takes as input x and simulates ΦAf(x)(f(x)). Then dom(ψ) = B, whence
B is c.e. in A.

3. Assume for contradiction that A′ ≤T A. Then A′ is c.e. in A, and hence
A = WA

k for some index k. Now if k ∈ WA
k then k ∈ A′ and k ∈ A′.

Similarly if k 6∈WA
k then k 6∈ A′ and k 6∈ A′.

4. If A ≡T B then A is c.e. in B. Now A′ is c.e. in A, so A′ is c.e. in B. By
item 2 A′ ≤m B′, and so by Proposition 3.4 A′ ≤T B′. Symmetrically one
has B′ ≤T A′.

Definition 3.10. Let A,B ⊆ N. Define the computable join of A and B by

A⊕B = {2x : x ∈ A} ∪ {2x+ 1 : x ∈ B}.

It is not difficult to see that (D,≤) is a partial order. The following fact
shows that D is in fact an upper semi-lattice.

Proposition 3.11. Let a = deg(A) and b = deg(B) be Turing degrees. Then
the least upper bound of a and b exists and is given by a ∨ b = deg(A⊕B).

Proof. The maps x 7→ 2x and x 7→ 2x + 1 are m-reductions from A and B
to A ⊕ B, so A,B ≤T A ⊕ B. Now suppose that A,B ≤T C. Then the
characteristic functions χA and χB are given by some oracle machines ΦCm and
ΦCk respectively. The characteristic function χA⊕B may then be given by ΦCp ,

where ΦCp (2x) = ΦCm(x) and ΦCp (2x+ 1) = ΦCk (x). Hence A⊕B ≤T C.

17

3.2 Post’s problem

In 1944 [22] Post asked whether it was possible for a computably enumerable
set to be both incomputable and incapable of solving ∅′, or if instead any in-
computable c.e. set automatically solves every other c.e. set. Let us formally
introduce this notion.

Definition 3.12. Let A ⊆ N. We say that A is Turing complete if A is c.e.,
and for every c.e. set B one has B ≤T A.

By Proposition 3.4 and Theorem 2.13 the halting problem ∅′ is Turing com-
plete. Thus Post’s problem asks whether there is a c.e. set which is both Turing
incomplete and incomputable. We will often write suppress the Turing prefix
and simply say incomplete.

We have already solved a parallel of Post’s problem with respect to m-
completeness: ∅′ is m-complete, and by Proposition 2.18 there exists a (c.e.)
simple set A which, by Proposition 2.16, is neither m-complete nor computable.

In the next section 3.3 we will visit the attempt made by Kleene and Post
to solve this problem. They got as far as constructing Turing incomparable sets
below ∅′ which are not c.e. We show how to resolve Post’s problem definitively
in Section 3.4, and discuss other approaches to solving Post’s problem using
K-triviality in Section 5.

3.3 The finite extension method

The method of finite extensions was introduced in [16] by Kleene and Post
resolving a weaker statement of Post’s problem. They constructed Turing in-
comparable sets A0 and A1 below ∅′ in stages. The strategy is as follows. At
each stage s one uses a ∅′-oracle to determine whether there is an extension τ to
the set Ai for which Φτn(x) ↓ (note that at every stage Ai is finite), whence we
extend Aj to ensure that the characteristic function for Aj on input x returns
the opposite value. This is a requirement which must be met at all stages for
the construction to be successful. In the limit one has constructed two infi-
nite sets which, when used as oracles, cannot be used to compute each others’
characteristic functions.

Theorem 3.13 (Kleene-Post [16]). The Turing degrees are not linearly ordered.
In particular, there are incomputable sets A0, A1 ≤T ∅′ such that A0|TA1.

We present a proof of a stronger theorem using a modification of the method
by Kleene and Post. It is indicative of rich structure in the sets below ∅′. First
we need some notation for strings.

A string is a (possibly infinite) sequence of 0s and 1s. Given strings σ, τ , we
write σ ≺ τ if σ is a prefix of τ . We write σˆτ for the concatenation of σ and
τ . If σ is finite we write |σ| for the length of σ. For n ∈ N we write σ(n) for the
nth digit of σ.

Theorem 3.14. There exists an infinite sequence a0,a1,a2, . . . of degrees ≤ 0′

such that ai and aj are incomparable whenever i 6= j.

18

Proof. We construct sets A0, A1, A2, . . . by defining sequences of strings τ i0 ≺
τ i1 ≺ . . . and setting Ai =

⋃
j≥0

τ ij for each i. We can think of the resulting infinite

string as describing a set of natural numbers: a natural number i is in the set
A if the ith digit of the string A is 1. Otherwise i 6∈ A. For each n,m, e we aim
to meet the requirement

Rn,m,e : ∃k[An(k) 6= ΦAm
e (k)].

Construction. Stage 0. Declare τk0 = ∅ for each k.

Stage i + 1 = 〈n,m, e〉. Let k = |τmi |. Using a ∅′-oracle check whether
there is τ � τmi such that y = Φτe (k) ↓. If such a τ exists let τmi+1 = τ and
τni+1 = τni ˆ(1− y). Otherwise let τni+1 = τni ˆ0, τmi+1 = τmi ˆ0.

Verification. Let n,m ∈ N. Clearly An, Am ≤T ∅′ as our construction is
computable relative to ∅′. We claim that An 6≤T Am. Consider any e ∈ N - we
show that An 6= ΦAm

e . At stage i+ 1 = 〈n,m, e〉 if we can find τ extending τmi
then

ΦAm
e (|τmi |) ↓= Φ

τm
i+1
e (|τmi |) = y 6= 1− y = τni+1(|τmi |) = An(|τmi |). (4)

Otherwise there is no τ extending τmi such that Φτe (|τmi |) ↓. Hence we meet
requirement R since Am is an extension of τmi :

ΦAm
e (|τmi |) ↑6= An(|τmi |); (5)

proving our claim. Similarly we obtain Am 6≤T An at stage 〈m,n, e〉, so that
An|TAm indeed.

We can think of a construction as an inductive definition. The base case
initiates our various sets, and at each stage we contribute a finite amount of
information to each of these, subject to any requirements we might enforce.

By the cone above a Turing degree a we mean the set {b : a ≤ b}. We
can use the method of finite extensions to show that any degree in the cone
above 0′ is the image of a degree under the jump operator. This is known as
the Friedberg jump inversion theorem. Originally this result was known as the
Friedberg completeness criterion, since it gives a criterion for a degree to above
0′ (and hence Turing complete); namely that it is the least upper bound of two
degrees, one of them being 0′.

Theorem 3.15 (Friedberg Jump Inversion Theorem [6]). For any b ∈ D, if
b > 0′ then there exists a ∈ D such that a′ = b.

Proof. Write b = deg(B). We construct A =
⋃
i∈N

τi such that A′ ≡T B via finite

extension.

19

Construction. Stage 0. Set τ0 = ∅.

Stage s+ 1 = 2e+ 2. We aim to meet the requirement

Re : ∃σ � A [Φσe (e) ↓ ∨ (∀σ′ � σ Φσ
′

e (e) ↑)].

To this end use a ∅′-oracle to determine whether

∃σ∃t [τs � σ ∧ Φσe (e)[t] ↓]. (6)

If such a σ and t exist, set τs+1 = σ. Otherwise set τs+1 = τs.

Stage s + 1 = 2e + 1. We code B(e) into A. With a B-oracle set τs+1 =
τsˆB(e). This completes the construction.

Verification. We show that A′ ≡T A⊕ ∅′ ≡T B.

• A⊕ ∅′ ≤T A′

This is obvious since A, ∅′ ≤T A′.

• A′ ≤T B
We compute whether e ∈ A′ using a B-oracle to determine if (6) holds
for e. If it does then ΦAe (e) ↓ and so e ∈ A′. Otherwise Φσe (e) ↑ for every
σ � τ2e, giving ΦAe (e) ↑ so that e 6∈ A′.

• B ≤T A⊕ ∅′

By induction we show that the sequence {τi}i∈N is computable in A⊕ ∅′.
Given {τ0, . . . , τ2e} we compute τ2e+1 using ∅′ as in the construction, and
then τ2e+2 = τ2e+1ˆA(|τ2e+1|).
Now to compute B(e) we can use A ⊕ ∅′ to determine τ2e+2, whose last
digit is precisely B(e).

The set which we constructed actually belongs to a class of sets called the
generalised low sets (see Definition 4.16 below). Theorem 3.15 gives us some
additional perspective on the Turing degrees, namely that the jump operator is
onto the cone above 0′:

20

a′ = b

0′

a

0

On the other hand, the jump operator is not injective on the degrees. Should
we choose b = 0′′ then by Theorem 3.15 there is a degree a such that a′ = 0′′,
but a 6= 0′ by construction (otherwise ∅′′ ≤T ∅′, which is impossible by Theorem
3.9). Thus there are sets which are Turing incomparable, but determine the
same halting sets for their respective oracle machines.

3.4 The finite injury priority method

It took 12 years following the publication of Post’s problem in 1944 [22] for
a solution to emerge. Friedberg and Muchnik independently resolved Post’s
problem positively using a novel construction called a priority argument with
finite injury. In these arguments one constructs sets, say A and B, in stages
to meet a number of requirements. These requirements are ordered according
to priority. Meeting a requirement amounts to enumerating particular elements
into A (or B). At the same time, what has so far been constructed of A is being
used as an oracle in the construction of B. Hence enumerating an element into
A changes A as an oracle, and could potentially injure one of B’s requirements.
All is not lost, so long as we return at a later stage and repair any possible injury.
Priority is in place to ensure that one can satisfy a particular requirement R
at a stage s only if doing so does not injure a requirement of greater priority.
Ultimately one shows that each requirement is injured at most finitely many
times, thereby ensuring that in the limit every requirement will be met.

Theorem 3.16 (Friedberg [7]-Muchnik [18]). There exist c.e. Turing degrees
a, b > 0 such that a|b.

Proof. We build A =
⋃
i∈N

Ai and B =
⋃
i∈N

Bi by computable enumeration such

21

that the following requirements are met:

R2e : ∃n[A(n) 6= ΦBe (n)]

R2e+1 : ∃n[B(n) 6= ΦAe (n)],

subject to the priorities R0 > R1 > R2 > . . . To meet R2e and R2e+1 we
require witnesses to the inequalities. We choose witnesses for R2e and R2e+1

from N × N × {0} and N × N × {1} respectively. Intuitively, the even and
odd requirements have their own planes of natural numbers at their disposal.
This is to ensure that the witnesses don’t conflict, and damage our construction.

Construction. Stage s = 0. Let A0 = B0 = ∅. Set initial witnesses to R2e

and R2e+1 by defining a0e = 〈e, 0, 0〉, b0e = 〈e, 0, 1〉.

Stage s+ 1 = 2e+ 2. We aim to satisfy R2e. Given Bs and witness ase

1. For each e ≤ s, if ΦBs
e (ase)[s] = 0 and ase 6∈ As, enumerate ase into A.

2. Define the restraint functions rA(e, s) and rB(e, s) by

rA(e, s) = use ΦAs
e (bse)[s]

rB(e, s) = use ΦBs
e (ase)[s].

We say that requirement R2e (respectively R2e+1) has been injured if
there is some x ∈ Bs+1 − Bs (x ∈ As+1 − As) such that x ≤ rA(e, s)
(x ≤ rB(e, s)).

The restraint function establishes a wall for our witnesses. Once we have
calculated how much a computation uses an oracle the wall is erected.
We then only choose witnesses beyond the wall, so as to avoid infinitely
recurring injury. Over time the wall is pushed further and further back
so that each requirement may be injured at most finitely many times. We
update the witness as follows

as+1
e =


µx > ase [∀i ≤ e (x > rB(i, s)) if R2e+1 has been injured

∧ ∃z ≤ x (〈e, z, 0〉 = x)]

ase otherwise.

Stage s+ 1 = 2e+ 1. We aim to satisfy R2e+1. Given As and witness bse

1. For each e ≤ s, if ΦAs
e (bse)[s] = 0 and bse 6∈ Bs, enumerate bse into B.

2. We update the witness for R2e+1.

bs+1
e =


µx > bse [∀i ≤ e (x > rA(i, s)) if R2e has been injured

∧ ∃z ≤ x (〈e, z, 1〉 = x)]

bse otherwise.

22

This completes the construction.

Verification. There exists s0 such that at any stage s > s0 the requirement
R2e is not injured. To see this observe that R2e can only be injured if Φi(a

s
i)[s] =

0 for some i < e, so that asi is enumerated into As+1. Hence R2e can be injured
at most e times, and in particular only finitely many times. Since our witness ase
only changes in case R2e is injured, ae := lim

s→∞
ase exists. Now if ΦBe (ae) ↑ then

R2e is met. Otherwise ae ∈ A ⇔ ΦBe (ae) = 0, so R2e is again met. Similarly
R2e+1 is met.

We will use the finite injury priority method later in Section 4.2 to construct
a low simple set. This provides another (arguably more perspicuous) solution
to Post’s problem which makes use of this kind of argument.

4 Absolute complexity

Recall from Section 1.1 that we understand an absolute complexity notion as
one which gauges the complexity of a set by appealing to some fixed measure. In
this section we will focus on three such notions: quantifier complexity, lowness,
and hyperimmunity.

4.1 The arithmetical hierarchy

We have seen in Section 2 that some properties of computably enumerable sets
may be definable in the first-order language of E . We will now study definability
in a different context, and investigate which relations are definable in (N,+, ·).
It is known that the computable relations are definable in (N,+, ·), and hence
any sentence obtained by stacking quantifiers in front of a computable relation
is also definable in (N,+, ·). The number of (alternating) quantifiers in front
of such a relation gives some notion of descriptive complexity, or of distance to
computability. The relations definable in this way are called arithmetical, and
exist in some level of the arithmetical hierarchy. Kleene introduced the hierarchy
in [14] in order to give a classification of the predicates used in elementary
number theory. Consider the following expressions, where R is a computable
relation.

∃x [Rax] ∀x∃y [Raxy] ∃x∀y∃z [Raxyz] . . .
∀x [Rax] ∃x∀y [Raxy] ∀x∃y∀z [Raxyz] . . .

(7)

For each expression from the first row of (7) Kleene was able to show that there
is a relation expressible in that form, but not in the corresponding form in the
row below using the same number of quantifiers, or in any of the forms with
fewer quantifiers. According to Kleene:

“this result (obtained in 1940) marks the beginning of the use of
applications and adaptions of recursive function theory to reveal

23

structure in parts of classical mathematics where effectiveness does
not in general obtain.” ([15, p. 63])

Definition 4.1 (The arithmetical hierarchy). Let A ⊆ N.

• A ∈ Σ0
0,Π

0
0,∆

0
0 iff A is computable.

• A ∈ Σ0
n+1 iff there exists B ∈ Π0

n such that for all x ∈ N,

x ∈ A↔ ∃y[(x, y) ∈ B].

• A ∈ Π0
n+1 iff there exists B ∈ Σ0

n such that for all x ∈ N,

x ∈ A↔ ∀y[(x, y) ∈ B].

• A ∈ ∆0
n+1 iff A ∈ Σ0

n+1 ∩Π0
n+1.

With the machinery of the arithmetical hierarchy we can calibrate the com-
plexity of some incomputable sets. For instance, any c.e. set is Σ0

1 and hence is
low down on the hierarchy. Such sets are almost computable.

Proposition 4.2. Let A ⊆ N. Then A is c.e. iff A ∈ Σ0
1.

Proof. “⇒” Write A = We for some index e. Then x ∈ A↔ ∃s[Φe(x)[s] ↓], and
hence A ∈ Σ0

1.
“⇐” There is a computable set B such that x ∈ A↔ ∃y[(x, y) ∈ B]. Define

the partial computable function ψ by

ψ(x) =

{
1 if ∃y[(x, y) ∈ B]

↑ otherwise.

Intuitively, ψ searches B (possibly forever) for a witness y to x ∈ A. Now since ψ
is partial computable, there is a code i with ψ = Φi. Then A = dom(Φi) = Wi.
So A is c.e.

Example 4.3. Tot ∈ Π0
2.

Proof. Observe that i ∈ Tot ↔ ∀xΦi(x) ↓ ↔ ∀x∃y[Φi(x)[y] ↓].

Example 4.4. Cof := {e : We is cofinite} ∈ Σ0
3.

Proof. e ∈ Cof ↔ We is finite ↔ ∃x∀y∃z[y ∈We,z ∨ y ≤ x].

Notice that if A ∈ Σ0
n for some n, then A ∈ Π0

n. For any first-order relation
R, if R is computable, then so is ¬R. Thus if x ∈ A↔ ∃y1∀y2∃ . . . [(y1, . . . , yn) ∈
B] we can push negations through the quantifiers, obtaining an equivalent sen-
tence: x 6∈ A↔ ∀y1∃y2∀ . . . [(y1, . . . , yn) 6∈ B]. One also notices that if A ∈ Σ0

n

then A ∈ Π0
n+1, since we could add dummy quantifiers to the front of the

first-order description of A. In fact we have the following inclusions:

Σ0
0,Π

0
0 ⊆ ∆0

1 ⊆ Σ0
1,Π

0
1 ⊆ ∆0

2 ⊆ · · · ⊆ Σ0
n,Π

0
n ⊆ ∆0

n+1 ⊆ . . .

24

The inclusions are strict for n ≥ 1, so the hierarchy never reaches a plateau.
There is an identical structure obtainable by relativising the arithmetical

hierarchy.

Definition 4.5 (Relativised arithmetical hierarchy). Let A,B ⊆ N.

• A ∈ Σ0,B
0 ,Π0,B

0 ,∆0,B
0 iff A is computable in B.

• A ∈ Σ0,B
n+1 iff there exists C ∈ Π0,B

n such that for all x ∈ N,

x ∈ A↔ ∃y[(x, y) ∈ C].

• A ∈ Π0,B
n+1 iff there exists C ∈ Σ0,B

n such that for all x ∈ N,

x ∈ A↔ ∀y[(x, y) ∈ C].

• A ∈ ∆0,B
n+1 iff A ∈ Σ0,B

n+1 ∩Π0,B
n+1.

Proposition 4.6. Let A,B ⊆ N. Then A is c.e. in B iff A ∈ Σ0,B
1 .

Proof. Relativise Proposition 4.2.

We have seen that Tot ∈ Π0
2, and so Tot ∈ Π0

n for all n > 2. But how do
we know that Tot 6∈ Π0

1? Writing a first-order description for a set A only gives
an upper bound on its complexity relative to the arithmetical hierarchy. As we
will see, in some cases we can do better.

Definition 4.7. Say that a set A is Σ0
n-complete if A ∈ Σ0

n, and for every
B ∈ Σ0

n we have B ≤m A.

Theorem 4.8. ∅′ is Σ0
1-complete.

Proof. Let A ∈ Σ0
1. Then A is c.e. by Proposition 4.2. Now ∅′ is m-complete

by Theorem 2.13, so A ≤m ∅′ as required.

Post was able to show that the n-th jump of ∅ is Σ0
n-complete, for any n.

Theorem 4.9 (Post’s Theorem). Let A ⊆ N, n ∈ N. Then

1. A ∈ Σ0
n+1 iff A is c.e. in ∅n

2. ∅n is Σ0
n+1-complete

3. A ∈ ∆0
n+1 iff A ≤T ∅n.

Proof. 1. We induct on n. The base case is Proposition 4.2. Assume the
claim holds for all B ∈ Σ0

n. If A ∈ Σ0
n+1 then there is B ∈ Π0

n such

that x ∈ A ↔ ∃y[(x, y) ∈ B]. Hence A ∈ Σ0,B
1 . Now B ∈ Σ0

n, and so
c.e. in ∅n−1 by the inductive hypothesis. By Theorem 3.9 B ≤m ∅n, so
A ∈ Σ0,∅n

1 , whence A is c.e. in ∅n by Proposition 4.6. We obtain the
converse with a reverse argument.

25

2. If A ∈ Σ0
n+1 then A is c.e. in ∅n by item 1. Hence A ≤m ∅n+1 by Theorem

3.9.

3. The following statements are equivalent.

(a) A ∈ ∆0
n+1

(b) A ∈ Σ0
n+1 and A ∈ Σ0

n+1

(c) A and A are c.e. in ∅n

(d) A ≤T ∅n.

As a corollary of Post’s Theorem we obtain the following characterisation of
the ∆0

2 sets.

Theorem 4.10 (Shoenfield Limit Lemma). Let A ⊆ N. Then

A ∈ ∆0
2 iff A ≤T ∅′.

Shoenfield’s original approach to Theorem 4.10 involved computable approx-
imations.

Definition 4.11. Let A ⊆ N. If (As)s∈N is a sequence of finite sets such
that A(x) = lim

s→∞
As(x) for all x ∈ N, we say that (As)s∈N is a computable

approximation for A.

The simplest examples of computable approximations are computable enu-
merations (As)s∈N, where As ⊆ As+1. Any c.e. set A has a standard computable
approximation, namely its computable enumeration. The ∆0

2 sets turn out to
be precisely those sets A which have computable approximations. We will here-
after use this fact in establishing further results. A full proof in this spirit may
be found in [19] 1.4.2.

4.2 Lowness notions

There is an intermediate reducibility between Turing reducibility and many-one
reducibility known as truth-table reducibility. If one can bound the size of the
queries to an oracle in a Turing reduction one has a stronger reduction.

Definition 4.12 (Truth-table Reduction). Suppose f ≤T B via some oracle
machine ΦB.

• If there is a computable function r such that ∀n use ΦB(n) ≤ r(n) say
that f is weak truth-table reducible to B and write f ≤wtt B.

• If f is the characteristic function for B we write A ≤wtt B.

• If furthermore ΦZ is total for every oracle Z call such a reduction a truth-
table reduction and write ≤tt.

26

The machine Φ is called a (weak) truth-table reduction procedure.

These reducibilities induce lowness notions on the computational strength
of oracles.

Definition 4.13. Say that a set A is low if A′ ≡T ∅′. Call A superlow if
A′ ≡tt ∅′.

Intuitively, oracles which are low are computationally weak as an oracle,
and thus cannot be Turing complete. Although they may be incomputable,
they have minor information content in terms of decision problems. Indeed if
A is low but Turing complete then A ≡T ∅′ ≡T A′, which is impossible by
Theorem 3.9. Thus we can give an alternative solution to Post’s problem with
the construction of a low incomputable c.e. set.

Theorem 4.14. There is a low simple set.

Proof. We build A =
⋃
s∈N

As by finite injury to meet the simplicity requirements

Se, and the lowness requirements Le:

Se : |We| =∞⇒We ∩A 6= ∅
Le : ∃∞s ΦAs

e (e)[s] ↓ ⇒ ΦAe (e) ↓ .

We give priority S0 > L0 > S1 > L1 > . . . The lowness requirements ensure
that A′ ≡T ∅′ in the following way. Let g be defined by

g(e, s) =

{
1 if ΦAs

e (e)[s] ↓
0 otherwise.

If Le is met then A′(e) = lims g(e, s). Hence by the Limit Lemma ([25]
III.3.3) A′ ≤T ∅′.

Construction. Stage 0. Let A0 = ∅.

Stage s+ 1. Given As, choose the least i ≤ s such that

Wi,s ∩A = ∅ (8)

and

∃x[x ∈Wi,s ∧ x > 2i ∧ ∀e ≤ i[x > r(e, s)]]. (9)

If i exists, enumerate the least x satisfying (9) into A. Otherwise do nothing.
This completes the construction.

Verification. Say that x injures Le at stage s + 1 if x ∈ As+1 − As and
x ≤ r(e, s). Notice that Si contributes at most one element x to A via (8).
Hence Le can only be injured by Si if i < e. In particular, Le is injured at most
finitely many times.

27

• Le is met.

Choose s0 such that Le is not injured at any stage s > s0. If ΦAs
e (e) ↓ for

some s > s0 then ΦAt
e (e) ↓ = ΦAs

e (e) for all t ≥ s, and hence ΦAe (e) ↓.

• Se is met.

Let We be infinite. We stated above that for t ≥ s, ΦAt
e (e) = ΦAs

e (e).
Since these machines make the same queries we get r(e, s) = r(e, t), and
hence r(e) = lims r(e, s) exists. Let s′ ≥ s be any stage such that no
simplicity requirement of higher priority receives attention after s′, and
let t > s be any stage such that

∃x[x ∈We,t ∧ x > 2e ∧ ∀i ≤ e[x > r(i)]].

Note that t must exist since we chose We to be infinite. Now either
We,t ∩ A 6= ∅ in which case Se is met, or else We,t ∩ A = ∅ in which case
Se is met at stage t+ 1.

This completes the proof.

Corollary 4.15. There is a superlow simple set A.

The corollary requires a minor definition. Say that a function g is ω-c.e. if
there is a sequence of computable functions (gs)s∈N such that ∀x lims gs(x) =
g(x), and there is a computable bound b with b(x) ≥ |{s > x : gs−1(x) 6= gs(x)}|.
We may set gs(x) = g(x, s).1 If the characteristic function for a set is ω-c.e. we
say that the set itself is ω-c.e.

Proof of Corollary 4.15. Let A and g be as above. Since each requirement Le
can only be injured by Si if i ≤ e, the total number of stages causing injury
to Le is at most e + 1. At each stage the status of g(e, s) may change at most
twice. Hence |{s > e : g(e, s− 1) 6= g(e, s)}| ≤ 2e+ 2. By definition A′ is ω-c.e.,
and hence by [19] 1.4.4 we have A′ ≤tt ∅.

Definition 4.16. Let A ⊆ N. Say that A is generalised low if A′ ≡T A⊕ ∅′.

Generalised lowness is only slightly more refined than the preceding lowness
notions, but still captures an interesting understanding of being weak as an or-
acle; namely that ∅′ is complete in the universe of A-machines. Recall Theorem
3.15. The set A was constructed to be generalised low. It follows that any set
capable of solving the halting problem is the join of ∅′ with a generalised low
set. Moreover, by Proposition 3.11 any degree b > 0 is the least upper bound
of 0 and deg(A), for some generalised low set A.

When proving that a particular set is generalised low we will tend to only
show that A′ ≤T A ⊕ ∅′. This is sufficient because the jump theorem 3.9
guarantees that A, ∅′ ≤T A′.

1This is actually due to the enumeration theorem, see [25] 3.4

28

4.3 Hyperimmune degrees

A function f dominates a (possibly partial) function g if

∀∞x [g(x) ↓ → f(x) ≥ g(x)].

We introduce another lowness notion known as computable domination. The set
A can be seen as computationally weak if using A as an oracle does not enable
one to compute functions which grow faster than one could compute before.
That is, if using A as an oracle does not help one to dominate all computable
functions.

Definition 4.17. Let A ⊆ N. Say that A is computably dominated if every
function g ≤T A is dominated by some computable function.

We can use domination to strengthen the definition of simplicity in the fol-
lowing way. For a set A = {a0 < a1 < a2 < . . . }, denote by pA the principal
function for A, where pA(i) = ai.

Definition 4.18. Let A ⊆ N. Call A hyperimmune if A is infinite and pA is
not dominated by a computable function. If S is c.e. and S is hyperimmune we
say that S is hypersimple.

Theorem 4.19 (Dekker [3]). Every nonzero c.e. Turing degree a contains a
hypersimple set.

Proof. Let A ∈ a be computably enumerable, and let f be a computable one-one
enumeration of A. Define the stages of deficiency D of A by

D = {x : ∃y > x [f(y) < f(x)]} (10)

We claim that i. D is hypersimple, and ii. D ≡T A. Assume to the contrary of
i. that pD is dominated by a computable function g. Then there is x0 ∈ N such
that for all x > x0 we have g(x) ≥ pD(x). Now given x, let z = max{x, x0}.
Then g(z) ≥ pD(z). Now for all y > pD(z) we have f(y) > f(pD(z)). Hence
f(g(z)) > f(pD(z)). Notice that no element of A less than x can be enumerated
by f after f(g(z)), otherwise pD(z) ∈ D. Hence to determine if z ∈ A we need
only check to see if z is in the set {f(0), f(1), . . . , f(g(z))}. This contradicts A
being incomputable. We complete the proof of claim i. by observing that D is
Σ0

1, and hence c.e.
Now x ∈ A iff x ∈ {f(0), . . . , f(pD(x))} since no element of A less than x is

enumerated after f(pD(x)), and hence A ≤T D.
Finally we show that D ≤T A. Let (As)s∈N be the computable enumeration

of A given by As = {f(0), . . . , f(s)}. Given x, use an A-oracle to determine the
least t such that At �f(x)= A �f(x). If t > x then x ∈ D since f(t) < f(x). If

t ≤ x then x ∈ D since for every y > x we have f(y) 6∈ A �f(x).

Theorem 4.20 (Kuznecov, Medvedev, Uspenskii). A is not computably dom-
inated iff there is a hyperimmune set E such that A ≡T E.

29

Proof. “⇐” Notice that pE ≡T E. Hence A is not computably dominated since
pE ≤T A and pE is not dominated by any computable function.

“⇒” There is a function g ≤T A which is not dominated by any computable
function. We build a hyperimmune set E ≡T A using g in the following way.

e0 = g(0),

e2n+1 = e2n + g(n) + 1,

e2n+2 = e2n+1 + pA(n) + 1.

Set E = {ei : i ∈ N}. Clearly E ≡T A. Moreover E is hyperimmune since

e2n+2 > e2n+1 > g(n)

which by our hypothesis is not computably dominated.

Definition 4.21. Let d ∈ D. We say that d is hyperimmune if d contains a
hyperimmune set. If d contains no hyperimmune set say that d is computably
dominated.

Theorem 4.19 tells us that every non-zero c.e. Turing degree is in fact hy-
perimmune. We extend this further, and show that the degree of any ∆0

2 set is
hyperimmune.

Definition 4.22. Let A ∈ ∆0
2, and let (As)s∈N be a computable approximation

for A. Define the computation function cA by

cA(x) = µs > x [As �x= A �x]. (11)

Theorem 4.23. The following hold for any set A ⊆ N and function g.

1. cA ≡T A

2. If g dominates cA then A ≤T g.

Proof. 1. A ≤T cA since for any x we have that x ∈ A iff x ∈ AcA(x).
Conversely, given x, enumerate (As)s∈N until condition 4.22 holds. Hence
cA ≤T A.

2. Without loss of generality suppose g(x) > cA(x) for all x. Define

h(x) = µz > x ∀t [z ≤ t ≤ g(z)→ At �x= Az �x]. (12)

Then the interval [z, g(z)] must contain some stage t with At �z= A �z
since cA(z) < g(z). Since t > x we also have At �x= A �x. Thus A(x) =
Ah(x)(x) by the consequent of (12). Since h may be obtained effectively
from g we have A ≤T g.

Corollary 4.24. If cA is dominated by a computable function then A is com-
putable.

30

Theorem 4.25. Suppose ∅ <T A ≤T ∅′. Then A is of hyperimmune degree.

Proof. By Corollary 4.24 cA is not dominated by any computable function, and
hence by Theorem 4.23 A is not computably dominated. Thus by Theorem 4.20
there is a hyperimmune set E ≡T A.

Definition 4.16 can be extended in the following way. Call a set A generalised
low2 if A′′ ≡T (A⊕∅′)′. Thus if A is generalised low then A is generalised low2

since A′′ = (A′)′ ≡T (A ⊕ ∅′)′. It happens that being generalised low2 is a
stronger lowness notion than being computably dominated.

Theorem 4.26. Let A ⊆ N be computably dominated. Then A′′ ≤T A′ ⊕ ∅′′.
In particular, A is generalised low2.

Proof. Note that A′′ ≡m TotA := {e : ΦAe is total}, and so A′′ ≡T TotA. Given
e, let g be the function given by

g(x) = µt.ΦAe (x)[t]. (13)

Then g is partial computable in A. We may effectively find an index e0 such
that g = ΦAe0 , and hence ΦAe is total iff ΦAe0 is. Using an A′ ⊕ ∅′′-oracle find the
least 〈i, n〉 such that i ∈ Tot and either

∃x < n ∀s[ΦAe0(x)[s] ↑] (14)

or

∀x ≥ n ∀s[ΦAe0(x)[s] ↓ ⇒ ΦAe0(x)[s] ≤ Φi(x)]. (15)

Such a pair 〈i, n〉 must exist, for if ΦAe0 is total then ΦAe0 is computably dom-
inated by the hypothesis; giving (15). If ΦAe0 is not total then ΦAe0 is undefined

on some input x irrespective of stage; giving (14). Finally, e ∈ TotA iff for all
x < n one has ΦAe (x) ↓, and for all x ≥ n there exists s ≤ Φi(x) such that
ΦAe (x)[s] ↓. The truth of conditions (14) and (15) can be computed relative to
A′, so the theorem follows.

5 K-triviality

The randomness of a string may be measured by the presence or absence of
structure. Intuitively, a string is random if it is not structured. Well structured
strings are highly compressible since their patterns can be exploited for short
descriptions, and thus are not random. If the structure is not algorithmic,
however, the string ‘looks’ random to any machine. This is a difference between
genuine randomness (should it exist) and effective randomness. On the other
hand, a string which lacks any definite structure appears very complicated and
will likely have no short description. Kolmogorov complexity allows us to be
formal about these notions.

31

Definition 5.1. Let K denote the prefix-free Kolmogorov complexity, i.e. for a
fixed optimal universal prefix-free machine U operating over the language {0, 1}∗,
we define K(x) = min{|σ| : U(σ) = x}. The K operator can be relativized for
an oracle A by setting KA(x) = min{|σ| : UA(σ) = x}.

If K(x) ≤ |x| − b, we say that x is b-compressible. If we can choose b = 1
then x is compressible, and if there is no such b then x is incompressible. It
is not difficult to see that there is at least one incompressible string of every
length. Indeed, for n > 1 there are 20 + 21 + · · ·+ 2n−1 = 2n − 1 binary strings
of length less than n, while there are 2n strings of length n.

Theorem 5.2 (Kolmogorov). The set A = {x : K(x) < |x|} of compressible
strings is simple.

Proof. By the preceding remark A is infinite. Moreover A is Σ0
1 (and hence c.e.)

since x ∈ A ↔ ∃σ∃s[|σ| < |x| ∧ Us(σ) = x]. Finally, assume for contradiction
that A contains some infinite c.e. subset B. Let M be the prefix-free machine
which, on input n waits until an element yn is enumerated into B such that
|yn| > n, and halts outputting yn. Let c be the length of the encoding of M
with doubled bits. Then K(yn) ≥ |yn| ≥ n since yn ∈ A. But M together with
n can describe yn, hence c+ log2(n) ≥ K(yn) ≥ n which is false for sufficiently
large n.

5.1 Lowness and triviality

We introduce another lowness notion in terms of Kolmogorov complexity.

Definition 5.3. Say that a set A is low for K if there is a constant b such that

∀x[KA(x) ≥ K(x)− b].

The intuition for sets A which are low for K is that using A as an oracle
doesn’t help to detect new regularities in strings which can then be exploited
for compression. Clearly computable sets are low for K since if A is computable
we can replace our queries to the oracle with a computation of χA, thereby
increasing the length of a description only by a fixed constant. This lowness
notion implies that A is computationally weak in the sense of Definition 4.13
and Definition 4.16.

Theorem 5.4. If A is low for K then A is generalised low.

Proof. Let A be low for K via b. We show how to compute A′ in A ⊕ ∅′.
Let Mc be the prefix-free machine such that MX

c (0e1) = µs.ΦXe (e)[s] ↓. Then
MX
c (0e1) = UX(0c−110e1). Hence

KA(MA
c (0e1)) ≤ KA(0c−110e1) ≤ c+ e+ 1. (16)

Since A is low for K via b we have

K(MA
c (0e1)) ≤ b+ c+ e+ 1. (17)

32

We use ∅′ to determine t such that t = max{U(σ) : |σ| < b + c + e + 1}. Then
ΦAe (e) ↓ iff ΦAe (e)[t] ↓. Hence A′ ≤T A⊕ ∅′.

We identify a set A ⊆ N with an infinite binary string x = x0x1x2 . . . by
xi = 1 if i ∈ A, and xi = 0 otherwise. Thus results about the randomness of
strings can carry over to sets. Of course, the work done so far has been using
finite objects and so we must introduce new notions for infinite strings.

Definition 5.5. Let Z be a set. We say that Z is 1-random if there is a constant
b ∈ N such that

∀n [K(Z �n) > n− b]

That is, the initial segments of 1-random sets are b-incompressible. On
the opposite end of the randomness spectrum is the notion of K-triviality. K-
triviality is in fact an anti-randomness notion. A set which is K-trivial is one
whose initial segments are no more complicated than their length, in terms of
algorithmic complexity. Intuitively K-trivials are sets whose initial segments are
easy to describe.

Definition 5.6. Say that A is K-trivial via b ∈ N if

∀n ∈ N [K(A �n) ≤ K(n) + b].

It is a striking phenomenon that the inability of an oracle A to detect reg-
ularities in strings (i.e. being low for K) in fact coincides with K-triviality, or
having slowly growing initial segment complexity. One side of this coincidence
is not difficult to prove.

Proposition 5.7. Every set A which is low for K is K-trivial.

Proof. Let M be the prefix-free oracle machine which, on input n with oracle X,
computes X �n. Let c be the coding constant for M . Then KA(A �n) ≤ K(n)+
c. If A is low for K via b then for every n we have K(A �n) ≤ K(n) + c+ b.

Chaitin proved that there are only O(2b) sets which are K-trivial via b.
As a consequence the K-trivials are ∆0

2 sets,2 and so by Theorem 4.10 have
computable approximations. We will use this fact in the following section to
prove the existence of incomputable K-trivial sets using cost functions.

5.2 The cost function method

The cost function method is an approach to building c.e. sets which satisfy
particular lowness properties. Given a ∆0

2 set, we assign a cost to the act of
changing items in its computable approximation at a stage s. That is, putting
x into (or taking x out of) As has a cost c(x, s). In this subsection we use the
cost function method to build our first example of an incomputable K-trivial
set.

2For each b there is a binary tree whose paths coincide with the sets which are K-trivial
via b. Each of these paths is isolated, and so computable in ∅′. See [19] 5.2.4 for details.

33

Definition 5.8. By a cost function c we mean a computable function

c : N× N→ {x ∈ Q : x ≥ 0}.

Let (As)s∈N be a computable approximation. If the sum

c(As) =
∑
x,s

c(x, s)Jx < s ∧ x is least s.t. As−1(x) 6= As(x)K (18)

is finite, we say that (As)s∈N obeys c and write (As) |= c. If A = lim
s→∞

As

we write A |= c and say that A obeys c. A cost function c is monotonic if
c(x+ 1, s) ≤ c(x, s) ≤ c(x, s+ 1) for all x < s. We say that c satisfies the limit
condition if

∀e∀∞x∀s > x[c(x, s) ≤ 2−e]. (19)

The limit condition guarantees the existence of obedient sets.

Theorem 5.9. For any cost function c satisfying the limit condition there is
an obedient simple set A.

Proof. We give a computable enumeration of A =
⋃
s≥0

As. We aim to meet the

simplicity requirements

Se : |We| =∞⇒ A ∩We 6= ∅.

Construction. At stage s = 0 declare A0 = ∅. At stage s > 0, for each e < s, if
Se has not yet been met and there is x ≥ 2e such that c(x, s) ≤ 2−e, enumerate
x into As.

Clearly A |= c since c(As) is bounded above by
∑
e∈N

2−e = 2. Since c satisfies

the limit condition, there is x0 such that for all x > x0 and s > x one has
c(x, s) ≤ 2−e. Suppose We is infinite. Then it must contain such an x0, and so
we choose x > x0 at some stage s > x and meet Se.

Proposition 5.10. If a computable approximation (As)s∈N for an incomputable
set A obeys a monotonic cost function c then c satisfies the limit condition.

Proof. We argue by contrapositive. Assume there is ε > 0 such that

∃∞x∃s > x[c(x, s) > 2−ε]. (20)

If A |= c then there is a stage s0 such that∑
x

∑
s>s0

c(x, s)Jx < s ∧ x is least s.t. As−1(x) 6= As(x)K ≤ 2−ε. (21)

We compute A as follows. On input w, search for a stage s such that s > s0,
s > w, and c(w, s) > 2−ε. Note that (20) guarantees such a stage: there is v > w
and s > s0 such that c(v, s) > 2−ε, while monotonicity gives c(w, s) ≥ c(v, s).
We claim that As(w) = A(w). Otherwise there is u ≤ w with As−1(u) 6= As(u)
and c(u, s) ≥ c(w, s) > 2−ε, contradicting (21).

34

A cost function can characterise a class of c.e. sets much in the same way a
formula ϕ may characterise a class of models. For instance, Löb’s modal formula
�(�p → p) → �p characterises the class of frames F = (W,R) such that R is
transitive and reverse well-founded. The following cost function characterises
the K-trivials.

Definition 5.11. The standard cost function cK is defined by

cK(x, s) =

s∑
w=x+1

2−Ks(w)

where Ks(w) = min{|σ| : Us(σ) = w}. By convention Ks(w) =∞ if there is no
such minimum.

Note that cK satisfies the limit condition. To see this, notice that
∑
w

2−K(w) ≤

1, so for any e there is x0 such that
∑
w≥x0

2−K(w) ≤ 2−e. Thus for any x > x0

and s > x one has

s∑
w≥x0

2−Ks(w) ≤
∑
w≥x0

2−K(w) ≤ 2−e.

We note the following theorem, known as the Machine Existence Theorem
or the Kraft-Chaitin Theorem, which we will use in the upcoming proof. By a
bounded request set we mean a set of requests W = {〈ri, xi〉 : i < N}, where
N ∈ N ∪ {∞}, ri ∈ N, xi ∈ {0, 1}∗, such that∑

〈ri,xi〉∈W

2−ri ≤ 1.

Intuitively, a request 〈r, x〉 asks for a description of the string x of length r.
The Machine Existence Theorem tells us that there is a machine which meets
exactly those requests.

Theorem 5.12 (The Machine Existence Theorem). Let W be a c.e. bounded
request set. Then one can effectively obtain a prefix-free machine M = Md,
d > 1, such that

∀r, x[〈r, x〉 ∈W ↔ ∃w (|w| = r ∧ M(w) = x)].

A proof can be found in [19] 2.2.17.

Theorem 5.13 ([5]). Let (As)s∈N be a computable approximation for a set A.
If A |= cK then A is K-trivial.

Proof. Let p be least such that c(A) ≤ 2p. We enumerate a bounded request
set W for A which ensures that A is K-trivial. At stage s enumerate the request
〈Ks(w) + p+ 1, As �w〉 into W whenever w ≤ s and

35

1. Ks(w) < Ks−1(w), or

2. Ks(w) <∞ ∧ As−1 �w 6= As �w.

Requests enumerated into W as a result of criterion 1 contribute no more than∑
s,w

2−(Ks(w)+p+1) ≤
∑
σ

2−(|σ|+p+1) ≤ 1

2p+1
(22)

to the weight of W . Given that (As)s∈N converges to A, for every w there are
a finite number of stages s such that As−1 �w 6= As �w. Hence there are a finite
number of requests 〈Ks(w) + p+ 1, As �w〉 enumerated into W , contributing at
most 1

2p+1 as in (22). Thus W is a bounded request set.
Let Md be the prefix-free machine for W obtained via Theorem 5.12. We

show that K(A �w) ≤ K(w) + d + p + 1. Given w, let s be greatest such that
s = 0 or As−1 �w 6= As �w. If s > 0 then there is a request 〈Ks(w)+p+1, As �w〉
enumerated into W . Hence there is t > s such that Kt(A �w) ≤ Ks(w) + d +
p + 1. If Ks(w) = K(w) we meet the claim. Otherwise there is j > s with
Kj(w) = K(w) such that 〈Kj(w) + p + 1, Aj �w〉 is enumerated into W as a
result of criterion 1. In this case Aj �w= A �w since we chose s greatest. Now
if s = 0 then Aj �w= A �w for all j. There will be some least t ≥ w such that
Kt(w) = K(w). At stage t we put 〈K(w) + p + 1, A �w〉 in to W , from which
we have K(A �w) ≤ K(w) + d+ p+ 1.

Combining Theorem 5.13 and Theorem 5.9 we have the following corollary.

Corollary 5.14. There is a simple K-trivial set.

5.3 Incompleteness

Let A be a simple K-trivial set. Then A is ∆0
2 and hence below ∅′. Also A is

incomputable and hence strictly above ∅. Thus, showing that K-trivial sets are
not Turing complete would provide an injury-free solution to Post’s problem.
Here we show that every K-trivial set is weak truth-table incomplete. The proof
that K-trivials are Turing incomplete requires a so-called decanter construction
and extends the following proof.

Theorem 5.15 ([19]). Every K-trivial set A is wtt-incomplete.

Proof. Assume for contradiction that A is K-trivial via b and wtt-complete. We
enumerate a c.e. set B. By the recursion theorem 1.2 we are given a c.e. index,
and therefore a many-one reduction f from B = We to ∅′. Since A is wtt-
complete, there is a fixed wtt-reduction from ∅′ to A. Combining this reduction
with f we have a Turing reduction Γ such that B = ΓA and computable use
g of Γ. We begin by enumerating a single element 〈0, n〉 into a set L. Then L
will be a bounded request set, and hence by Theorem 5.12 there is a prefix-free
machine Md meeting precisely that request. By the recursion theorem we may
assume we know the constant d in advance.

36

Construction. Let c = 2b+d, and let n = g(c). Fix a computable approxima-
tion (As)s∈N of A.

Stage t = 0. Put the request 〈0, n〉 into L.

Stage t > 0. If B �c [t] = ΓA �c [t] and Kt(At �n) ≤ b+ d then put x into B,
where x is greatest such that x < c and x 6∈ B. Otherwise do nothing.

Verification. Enumerating a fresh x < c into B at a stage t causes a change
in B. This change requires a change in the approximation At to ensure that
B �c= ΓA �c in the limit. Since the shortest description of At �n is at most b+d,
this change contributes a weight of at least 2−(b+d). As we build B, we put a
total of c such elements x into B, causing the total measure of the different
descriptions of A �n to be at least (c + 1)2−(b+d) = 1 + 2−(b+d) > 1, which is
impossible as no prefix-free machine can meet these requests.3

The preceding construction tries to overload the amount of measure needed
to describe A below some particular use n. If we don’t have a computable bound
g on the use of Γ, then after we force some At-change the use of Γ could exceed n.
Future changes in the description of A �n can now contribute less than 2−(b+d)

to the total measure, and we do not attain the desired contradiction.
Thus this approach does not work in case we only know that Γ is a Tur-

ing reduction. The decanter method was created to tolerate such difficulties.
Decanter constructions can be used to do what the argument in Theorem 5.15
tries to do for Turing reductions. Namely, they can be used to show that the
K-trivials are incomplete, and furthermore that the K-trivials are low for K. See
[4] Section 11.3 or [19] Section 5.4 for details.

We summarise some implications between lowness notions and completeness
in the following diagram. The implications with dashed lines are true, but not
proven in this report.

3Alternatively, the measure of the open set [A �n]≺ cannot exceed 1.

37

superlow

K-trivial low for K

low

generalised low1

generalised low2

Turing incompletewtt-incomplete

computably dominated

References

[1] Gregory J. Chaitin. On the length of programs for computing finite binary
sequences. Journal of the ACM (JACM), 13(4):547–569, 1966.

[2] S. Barry Cooper. Computability theory. CRC Press, 2003.

[3] J.C.E. Dekker. A theorem on hypersimple sets. Proceedings of the American
Mathematical Society, 5(5):791–796, 1954.

[4] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and
complexity. Springer, 2010.

[5] Rodney G. Downey, Denis R. Hirschfeldt, André Nies, and Frank Stephan.
Trivial reals. Electronic Notes in Theoretical Computer Science, 66(1):36–
52, 2002.

[6] Richard M. Friedberg. A criterion for completeness of degrees of unsolv-
ability. The Journal of Symbolic Logic, 22(02):159–160, 1957.

[7] Richard M. Friedberg. Two recursively enumerable sets of incomparable de-
grees of unsolvability (solution of post’s problem, 1944). Proceedings of the
National Academy of Sciences of the United States of America, 43(2):236,
1957.

38

[8] Kurt Gödel. Über formal unentscheidbare sätze der principia mathemat-
ica und verwandter systeme i. Monatshefte für mathematik und physik,
38(1):173–198, 1931.

[9] Leo Harrington and Robert I. Soare. Post’s program and incomplete recur-
sively enumerable sets. Proceedings of the National Academy of Sciences,
88(22):10242–10246, 1991.

[10] Leo Harrington and Robert I. Soare. Dynamic properties of computably
enumerable sets. LONDON MATHEMATICAL SOCIETY LECTURE
NOTE SERIES, pages 105–122, 1995.

[11] Leo Harrington and Robert I. Soare. Definability, automorphisms, and
dynamic properties of computably enumerable sets. Bulletin of Symbolic
Logic, 2(02):199–213, 1996.

[12] Leo Harrington and Robert I. Soare. Definable properties of the computably
enumerable sets. Annals of pure and applied logic, 94(1):97–125, 1998.

[13] Stephen C. Kleene. On notation for ordinal numbers. The Journal of
Symbolic Logic, 3(4):150–155, 1938.

[14] Stephen C. Kleene. Recursive predicates and quantifiers. Transactions of
the American Mathematical Society, 53(1):41–73, 1943.

[15] Stephen C. Kleene. Origins of recursive function theory. In Foundations
of Computer Science, 1979., 20th Annual Symposium on, pages 371–382.
IEEE, 1979.

[16] Stephen C. Kleene and Emil L. Post. The upper semi-lattice of degrees of
recursive unsolvability. Annals of mathematics, pages 379–407, 1954.

[17] Andrei N. Kolmogorov. Three approaches to the quantitative definition of
information. Problems of information transmission, 1(1):1–7, 1965.

[18] Albert A. Muchnik. On the unsolvability of the problem of reducibility in
the theory of algorithms. In Dokl. Akad. Nauk SSSR, volume 108, page 1,
1956.

[19] André Nies. Computability and randomness, volume 51. Oxford University
Press, 2009.

[20] Piergiorgio Odifreddi. Classical recursion theory: The theory of functions
and sets of natural numbers, vol. 1 (studies in logic and the foundations of
mathematics, vol. 125), 1992.

[21] Emil L. Post. Degrees of recursive unsolvability-preliminary report. In
Bulletin of the American Mathematical Society, volume 54, pages 641–642.
AMER MATHEMATICAL SOC 201 CHARLES ST, PROVIDENCE, RI
02940-2213, 1948.

39

[22] Emil L. Post. Recursively enumerable sets of positive integers and their
decision problems. Mathematical Logic in the 20th Century, page 352, 2003.

[23] Gerald E. Sacks. Degrees of unsolvability. Number 55. Princeton University
Press, 1963.

[24] J. Shoenfield. Degrees of unsolvability, volume 2. Mathematical Studies 2,
North-Holland, Amsterdam, 1971.

[25] Robert I. Soare. Recursively enumerable sets and degrees: A study of com-
putable functions and computably generated sets. Springer, 1987.

[26] Robert I. Soare. The history and concept of computability. 1999 Handbook
of Computability Theory, Elsevier, 1999.

[27] Ray J. Solomonoff. A formal theory of inductive inference. part i. Infor-
mation and control, 7(1):1–22, 1964.

[28] John Stillwell. Emil Post and his anticipation of Gödel and Turing. Math-
ematics Magazine, pages 3–14, 2004.

[29] Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. J. of Math, 58:345–363, 1936.

[30] Alan M. Turing. Systems of logic based on ordinals. Proceedings of the
London Mathematical Society, 2(1):161–228, 1939.

40

	Introduction
	The complexity of sets of natural numbers
	Sources
	Preliminaries

	Computably enumerable sets
	Creative sets
	Simple sets
	Lattice-theoretic properties of c.e. sets

	Structure of the Turing degrees
	Turing reducibility
	Post's problem
	The finite extension method
	The finite injury priority method

	Absolute complexity
	The arithmetical hierarchy
	Lowness notions
	Hyperimmune degrees

	K-triviality
	Lowness and triviality
	The cost function method
	Incompleteness

	References

