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1 Introduction

The contrast between set theory and categories is instructive for the different
motivations they provide. Set theory says encouragingly that it’s what’s inside
that counts. By contrast, category theory proclaims that it’s what you do that
really matters.

Category theory is the study of mathematical structures by means of the re-
lationships between them. It provides a framework for considering the diverse
contents of mathematics from the logical to the topological. Consequently we
present numerous examples to explicate and contextualize the abstract notions
in category theory.

Category theory was developed by Saunders Mac Lane and Samuel Eilenberg in
the 1940s. Initially it was associated with algebraic topology and geometry and
proved particularly fertile for the Grothendieck school. In recent years category
theory has been associated with areas as diverse as computability, algebra and
quantum mechanics.

Sections 2 to 3 outline the basic grammar of category theory. The major refer-
ence is the expository essay [Sch01]. The basic material was studied and written
jointly with Helen Broome.

In Sections 4 to 6, the focus turns to the abelian categories, a broad family of
categories which satisfy a set of axioms similar to the category of modules. The
aim of these sections is to illustrate the use of categorical methods in algebra.

The example explored is the classical Krull-Schmidt theorem for modules sat-
isfying mild finiteness conditions, which guarantees the existence of a unique
decomposition as a sum of indecomposable modules. We gradually develop the
tools needed to re-formulate the Krull-Schmidt theorem and its proof in the
language of abelian categories, its natural, more general setting.

The exposition of the elementary theory of abelian categories follows [Fre64].
The treatment of Grothendieck categories and the categorical Krull-Schmidt
theorem is based on those in [Par70] and [BD68]. Lang’s algebra text [Lan80]
was used as a reference for the classical Krull-Schmidt theorem.
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2 Fundamental concepts

2.1 Categories

Definition 1. A category A comprises

(i) a class of objects Ob(A);

(ii) for any pair A,A′ ∈ Ob(A), a set Hom(A,A′) of morphisms;

(iii) for any triple A,A′, A′′ ∈ Ob(A), a composition map

Hom(A′, A′′)×Hom(A,A′) → Hom(A,A′′),

denoted (f, g) 7→ f ◦ g,

which satisfy the following axioms:

1. The sets Hom(A,A′) are disjoint.

2. Composition is associative where defined. That is, for any quadruple
A,A′, A′′, A′′′ ∈ Ob(A), and any triple

(f, g, h) ∈ Hom(A,A′)×Hom(A′, A′′)×Hom(A′′, A′′′),

we demand that
(h ◦ g) ◦ f = h ◦ (g ◦ f).

3. For each object A ∈ Ob(A), there exists an identity morphism

idA ∈ Hom(A,A)

with the obvious composition properties.

We often write A ∈ A for objects of A rather than A ∈ Ob(A), and f : A → A′

for morphisms rather than f ∈ Hom(A,A′).

The categories typically studied are standard classes of mathematical structure,
together with the appropriate structure-preserving functions.

Example 2. The following are categories.

1. The category Set has sets as objects and functions as morphisms.

2. Define a pointed set to be an ordered pair (X, p), where X is a set and
p ∈ X – as objects. Define a point-preserving function f : (X, p) → (Y, q)
to be a function f : X → Y such that f(p) = q. The category pSet has
pointed sets as objects and point-preserving functions as morphisms.

3. Let G be a group. Define a (left) group action on a set X to be a function
G × X → X given by (g, x) 7−→ g · x satisfying the obvious composition
and identity properties. A set X equipped with an action of G on X is
said to be a G-set. Given two G-sets X and Y , call a function f : X → Y
a G-map, if f(g · x) = g · f(x). The category G-Set has G-sets as objects
and G-maps as morphisms.
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4. The categories Grp, Ring, and (for any fixed ring unitary R) R-Mod
have, respectively, groups, rings, and unitary R-modules as objects, and
group homomorphisms, ring homomorphisms, and module homomorphisms
as morphisms.

5. The category Top has topological spaces as objects and continuous maps as
morphisms. The category Met has metric spaces as objects and uniformly
continuous maps as morphisms.

Definition 3. The category B is a subcategory of the category A, if the fol-
lowing conditions are satisfied:

1. Ob(B) is a subclass of Ob(A).

2. For each pair B,B′ ∈ Ob(B), the set HomB(B,B′) of B-morphisms
from B to B′ is a subset of the set HomA(B,B′) of A-morphisms from
B to B′.

3. The composition operation in B, where defined, is the restriction of the
composition operation in A.

A subcategory B of A is full, if for each pair B, B′ of objects in B, the set
HomB(B,B′) is equal to all of the set HomA(B,B′).

Example 4. The category Ab of abelian groups is a full subcategory of Grp.
The category Met of metric spaces is a subcategory, not full, of Top.

It must be stressed that a category depends as much on its objects as its mor-
phisms; morphisms usually form the basis of definitions of categorical notions.
Quite different categories can therefore be constructed whose underlying classes
of objects are the same. For instance, the category hTop, with topological
spaces as objects and homotopy equivalence classes of continuous maps as mor-
phisms, differs from the category Top.

By contrast, families of categories ‘extremal’ in some way often reduce to well-
studied classes of mathematical object.

Example 5. A category with one object is essentially a monoid. The elements
of the monoid are the morphisms from the unique object to itself, and monoid
multiplication is composition of morphisms.

Example 6. Let J be a small category; that is, a category whose class of objects
is a set. Suppose that there is at most one morphism f : J → J ′ between any
pair of objects in J, and that Hom(J, J ′) and Hom(J ′, J) are both nonempty
only if A = A′.

Such a category is essentially a partially ordered set. The elements of the poset
are the objects of J. The order relation on J is defined by

J ≤ J ′ iff Hom(J, J ′) is nonempty.

Reflexivity and transitivity are proved respectively by the existence of identity
morphisms and of morphism composition.
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Example 7. There is a unique category 1 with one object and one morphism.

Example 8. A directed graph G gives rise to a small category, whose objects
are G’s vertices and whose morphisms are G’s paths.

Duality pervades category theory and for any concept there is a dual notion.
Given a category A the dual category Aop consists of the same objects as A but
HomAop(A,A′) = HomA(A′, A). The dual notion is always found by simply
reversing all the morphisms.

2.2 Morphisms

Definition 9. A morphism m : A → A′ in A is monic if for any object K and
any pair of morphisms f, g : K → A, the equality m ◦ f = m ◦ g implies that
f = g.

K
f //

g
// A

m // A′

Dual to monic morphisms are the epic morphisms.

Definition 10. A morphism e : A′ → A in A is epic if for any object K and
any pair of morphisms f, g : A → K, the equality f ◦e = g◦e implies that f = g.

A′ e // A
f //

g
// K

Example 11. In Set and in Grp, the monic and epic morphisms are the
injective and surjective functions respectively.

For Grp this is not entirely obvious. For instance, in the epic case, the proof
consists of the construction, for each subgroup H of a group G, of a group K
and nontrivial homomorphism f : G → K, such that f is trivial outside H.

Example 12. In the category Haus of Hausdorff spaces and continuous maps,
a morphism is epic precisely if its image is dense in its range.

Definition 13. A morphism f : A → A′ is an isomorphism if there exists a
morphism f ′ : A′ → A such that f ◦ f ′ = idA′ and f ′ ◦ f = idA.

In many common categories, such as Set, Grp and R-Mod, all morphisms
which are monic and epic are isomorphisms. A general explanation for this
phenomenon develops in Section 5. On the other hand, the example of the
category Haus shows that this need not always be the case.

2.3 Functors

In a given category a morphism acts between objects of that category. This
concept of a morphism can be expanded beyond the context of one category to
talk about an operation between categories.
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Definition 14. Let A and B be arbitrary categories. A functor F : A → B is
an operation which acts as follows;

1. An object A ∈ A is assigned to FA ∈ B;

2. If f : A → A′ is a morphism in A then F (f) : FA → FA′ is a morphism
in B;

3. For any A ∈ A, F (idA) = idFA;

4. If g ◦ f is defined in A then F (g ◦ f) = F (g) ◦ F (f) in B.

Example 15. The diagonal functor ∆ : A → A×A sends each object A ∈ A to
(A,A) ∈ A× A.

Example 16. The forgetful functor For : Grp → Set sends each group to the
underlying set. By comparison the free functor Free : Set → Grp sends each
set to the free group on that set.

2.4 Subobjects

The useful concept of a subset or subgroup is traditionally defined in terms of
element membership. As category theory is based on morphisms rather than
elements, the categorical definition of a subobject is instead based on the idea
of an inclusion morphism.

For instance, consider the category Set and objects X and S where S ⊆ X.
The image of the inclusion function ι : S → X is S. While ι is monic, there
are many other monics m : S′ → X whose image is S. All such monics define
the subset S in a way equivalent to ι. We can define the subobjects of X by
formalising the notion of equivalent monics.

Definition 17. A monomorphisms f : A → X dominates a monomorphism
g : B → X, if there exists a morphism h : B → A such that g = f ◦ h.

A

f   @
@@

@@
@@

B
hoo

g
~~~~

~~
~~

~

X

Two monomorphisms are equivalent, if each dominates the other.

Example 18. The above analysis shows that for an inclusion function ι : S →
X in Set, the equivalence class [ι] is precisely the set of all injective functions
into the set X whose image is the subset S.

Definition 19. A subobject of an object A in A is an equivalence class of
monomorphisms.

The domination relation bestows a natural partial order on an object’s class of
subobjects.

Dually, a quotient object of an object A in A is defined to be an equivalence
class of epimorphisms out of A, under the appropriate equivalence relation.
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2.5 Products, equalizers, limits

Let A1 and A2 be objects in a category A.

Definition 20. A product of A1 and A2 is an object P in A along with a
pair of morphisms pi : P → Ai for i = 1, 2 such that for any object M and
pair of morphisms mi : M → Ai for i = 1, 2, there exists a unique morphism
u : M → A1 ×A2 making pi ◦ u = mi.

M

m1





u

�� m2

��

P
p1

~~||
||

||
|| p2

  B
BB

BB
BB

B

A1 A2

A product of A1 and A2, should it exist, is unique up to isomorphism. We
denote the product of A1 and A2 by A1 ×A2.

A categorical product captures the notion of cartesian products in Set and
direct products in Grp.

Example 21. Consider a partially ordered set as a category with the order
relation as the morphisms, then the product of two elements is their greatest
lower bound.

The dual notion is that of coproduct. In Set the coproduct is the disjoint union
with the usual inclusion maps. The coproduct is sometimes referred to as the
sum but while a coproduct in Ab is a direct sum, a coproduct in Grp is not.

Example 22. Given S3 and Z2 in Grp, the direct sum S3 ⊕Z2 with inclusion
maps ι1, ι2 is not a coproduct. This can be seen by looking at the group S4 and
maps s1 : S3 → S4 and s2 : Z2 → S4.

S3

ι1 ##H
HHHHHHHH

s1

��

Z2

ι2{{vvvvvvvvv

s2

��

S3 ⊕ Z2

X
��

S4

If we assume the existence of a unique map u : S3⊕Z2 → S4 such that u◦ιi = si

for i=1,2 then we get the contradiction that the image of u has order 24 while
the domain of u has order 12. Hence the direct sum is not a coproduct in Grp.

Definition 23. Given two morphisms f, g : A → B an equalizer is an object
E together with a morphism e : E → A such that f ◦ e = g ◦ e with the property
that for any other morphism m : M → A where f ◦ m = g ◦ m there exists a
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unique morphism u : M → E such that e ◦ u = m.

E
e // A

f //
g
// B

M

m

>>}}}}}}}}
u

OO

Example 24. In Set an equalizer for f, g is the set E = {x : f(x) = g(x)}
with inclusion map.

For algebraic categories such as groups, rings and vector spaces the equalizer is
constructed in the same way as in Set.

The dual notion, coequalizer, is not as simple.

Example 25. In Set a coequalizer of f, g is a quotient of the set B by the
smallest equivalence relation ∼ such that f(a) ∼ g(a) for all a ∈ A.

Example 26. In the category of small categories let 1 be the one object category
with only the identity morphism and let 2 be the two object category with exactly
one non identity morphism. The coequalizer of the only two unique functors
F,G : 1 → 2 is the monoid of natural numbers under addition, N.

•

��

•

F

==

G
!!

// • dd ...

•

Lemma 27. Equalizers are monic. Coequalizers are epic.

There are obvious analogies in the definitions of products and equalizers. We can
generalize to the notion of a limit as a suitable object and family of morphisms
defined over a collection of objects and morphisms.

To make this precise, we first formalise the notion of a collection of objects
and morphisms, secondly we give the criteria for being a suitable object with
morphisms over this collection and lastly the conditions that make this suitable
object and morphism a limit.

We call a collection of objects and morphisms a diagram which is like an indexed
set that also accounts for the arrangement of the morphisms.

Definition 28. A diagram into the category A is a functor D : J → A, such
that the index category J is small.

Example 29. An ordered pair in A is a diagram into A from the index category

• •

Let D : J → A be a diagram into A.
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Definition 30. A cone over D is an object C ∈ A, together with morphisms
pi : C → Di for each object i in the index category J, such that for any morphism
D(f) : Di → Dj in the diagram D(f) ◦ pi = pj.

C
pi

��

pj

��
Di

D(f)
// Dj

Definition 31. A limit of D is a cone L over D with morphisms (pi)i∈J,
such that for any other cone M with morphisms (mi)i∈J, there exists a unique
morphism u : M → L such that for all i ∈ J, we have mi = pi ◦ u.

M

mi

��

mj

��

u

��
L

pi

��
pj

��
Di

D(f)
// Dj

A limit of D, should it exist, is unique up to isomorphism.

Example 32. An equalizer is a limit over a diagram whose index category is

• ⇒ •

Example 33. A product is a limit over a diagram whose index category is

• •

Like any category the index category of a diagram must have identiy morphisms.
For the purpose of establishing a limit over a diagram the identity morphisms
are irrelevant as they commute with every morphism. For simplicity we ignore
the identity morphisms in an index category.

A terminal object is a limit over the empty diagram. Suppose A has a terminal
object T . Then any other object A ∈ A is a cone over the empty diagram, and
therefore there exists a unique map u : A → T .

Example 34. In Set the terminal objects are the singleton sets. There is only
one function from any set A into a singleton set {x}.
(On the other hand, there may be many functions f : {x} → A; these have the
useful property of picking out elements of A.)

3 Universal properties

3.1 Natural transformations

Just as a functor is like a morphism between two categories, a natural trans-
formation is like a morphism between two functors. Let A,B be two categories
and F,G : A → B be two functors between the categories.
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If h : X → Y is a morphism in A then F (h) and G(h) are morphisms in B.

FX

F (h)

��

GX

G(h)

��
FY GY

A natural transformation between the functors F,G guarantees a way to connect
the two B morphisms F (h) and G(h).

Definition 35. A natural transformation η between the functors F and G is
a family of B morphism ηX : FX → GX, one for each X in A called the
component at X. The family of morphisms ηX satisfy the condition that for
any h : X → Y in A the following square commutes,

FX

F (h)

��

ηX // GX

G(h)

��
FY ηY

// GY

Let V be a vector space over the field K, and V ∗∗ its double dual. Both V and
V ∗∗ are objects in the category VK of vector spaces over K.

Example 36. There is a natural transformation η from the identity functor
I : VK → VK to the double dual functor −∗∗ : VK → VK. The components of
the natural transformation are defined as ηU : U → U∗∗ for each U ∈ VK.

Let ηU (x) = σx for any x ∈ U . As σx is in U∗∗ it is a linear function from U∗

to K which we define as σx(ϕ) = ϕ(x) for any ϕ ∈ U∗.

To show that η is a natural transformation from I to −∗∗ we will show that
for vector spaces U, V and a linear function f : U → V the following square
commutes,

U

f

��

ηU // U∗∗

f∗∗

��
V ηV

// V ∗∗

Given f : U → V define f∗ : V ∗ → U∗ then f∗∗ : U∗∗ → V ∗∗ as follows,

U
f //

ϕ◦f ��?
??

??
??

? V

ϕ

��

for ϕ ∈ V ∗

f∗(ϕ) = ϕ ◦ f

U∗

φ

��

V ∗f∗
oo

φ◦f∗
}}{{

{{
{{

{{
for φ ∈ U∗∗

f∗∗(φ) = φ ◦ f∗

K K

To check that the natural transformation square commutes for all x ∈ U we
need f∗∗ ◦ ηU (x) = ηV ◦ f(x).
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LHS = f∗∗ ◦ ηU (x)
= f∗∗ ◦ σx by definition of η

= σx ◦ f∗ by definition of f∗∗

RHS = ηV ◦ f(x)
= σf(x) by definition of η

To see that σx ◦ f∗ is the same as σf(x) notice that both are linear functions
from V ∗ to K. Hence we need to check that they act the same on any ϕ ∈ V ∗.

σx ◦ f∗(ϕ) = σx ◦ ϕ ◦ f by definition of f∗

= ϕ ◦ f(x) by definition of σx

= σf(x)(ϕ) by definition of σf(x)

Let A,B be two categories with functors F,G : A → B and a natural transfor-
mation η from F to G.

Definition 37. If for all X ∈ A the component of that natural transformation
ηX is an isomorphism then η is a natural isomorphism from F to G.

In the category SetA, where A is some small category, the objects are func-
tors F : A → Set and the morphisms are natural transformations. A natural
isomorphism in SetA is an isomorphism in that category.

3.2 Adjoint functors

Let A and B be categories with functors F : A → B and G : B → A. We define
the functor HomAG : Aop ×B → Set as follows:

1. Let (A,B) be an object in Aop ×B. Then

HomAG (A,B) = HomA(A,GB).

2. Let (f, g) : (A,B) → (A′, B′) be a morphism in Aop×B, where f : A′ → A
and g : B → B′. Then HomAG sends (f, g) to the morphism

HomAG (f, g) : HomA(A,GB) → HomA(A′, GB′)

in Set defined by, for each a ∈ HomA(A,GB),

[HomAG (f, g)] (a) = Gg ◦ a ◦ f.

Then define a second functor HomBF : Aop × B → Set similarly, so that for
any object (A,B) in Aop ×B,

HomBF (A,B) = HomB(FA,B).
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Definition 38. The functor G is adjoint to F , and the functor F is coadjoint
to G, if the functors HomAG and HomBF are naturally isomorphic.

Lemma 39. The adjoint of a functor, if it exists, is unique up to natural
isomorphism.

The same is true of the coadjoint.

Lemma 40. The functor F is adjoint to G precisely if there are natural trans-
formations

η : IdB → FG

ε : GF → IdA

which satisfy the two triangle conditions Fε ◦ ηF = IdF and εG ◦Gη = IdG,

F

ηF

��

IdF

""E
EE

EE
EE

EE G
Gη //

IdG ""E
EE

EE
EE

EE GFG

εG

��
FGF

Fε
// F G

We call η the unit, and ε the co-unit, of the adjunction.

The triangle conditions, as stated in natural transformations, are shorthand for
two more concrete families of identities in morphisms between objects. For any
objects A ∈ A and B ∈ B, we must have FεA ◦ ηFA = idFA and εGB ◦GηB =
idGB :

FA

ηF A

��

FidA

$$I
IIIIIIII GB

GηB //

idGB $$I
IIIIIIII GFGB

εGB

��
FGFA εF A

// FA GB

Example 41. Let Free : Set → Grp be the functor mapping a set to the free
group on that set. Then Free is coadjoint to the forgetful functor For : Grp →
Set.

That is, there is a natural isomorphism between the functors

HomSet(For) and HomGrp(Free).

The component morphisms of this natural isomorphism are, for each set X and
each group G, the canonical bijection

Hom(X, For(G)) → Hom(Free(X), G),

which arises since a homomorphism into G from Free(X) is uniquely determined
by a function into G from Free(X)’s generating set X.

Example 42. An isomorphism is adjoint to its inverse.

Example 43. Let Poly : Ring → pRing be the functor mapping a commu-
tative ring R with unity to the pointed commutative ring with unity (R[X], X)
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of polynomials over R. Then Poly is coadjoint to the forgetful functor For :
Ring → pRing.

That is, there is a natural isomorphism between the functors

HomRing(For) and HompRing(Poly).

The component morphisms of this natural isomorphism are, for each ring R and
each pointed ring (S, s), the canonical bijection

Hom(R,For(S, s)) → Hom(Poly(R), (S, s)),

which arises since a point-preserving ring homomorphism from (R[X], X) into
(S, s) is uniquely determined by a ring homomorphism from R into S.

Example 44. Let CMet be the category of complete metric spaces. (It is a
subcategory of the category Met of metric spaces.) Let Fill : Met → CMet
be the functor mapping a metric space X to its completion X. Then Fill is
coadjoint to the inclusion functor ι : CMet → Met.

The component morphisms of this natural isomorphism between the functors

HomMet(ι) and HomCMet(Fill).

are, for each metric space X and each complete metric space Y , the canonical
bijection

Hom(X, Y ) → Hom(X,Y ),

which arises since a uniformly continuous function from X into Y is uniquely
determined by its (also uniformly continuous) restriction to X.

Example 45. Let A be a category. Let ∆ : A → A×A be the diagonal functor
mapping an object A to its self-pairing (A,A). Then ∆ is coadjoint precisely if
A has finite products; if it does, the product functor Prod : A × A → A is ∆’s
adjoint.

The component morphisms of this natural isomorphism between the functors

HomA(Prod) and HomA×A(∆).

are, for each triple A, A1, A2 of objects in A, the canonical bijection

Hom(A,A1 ×A2) → Hom((A,A), (A1, A2)),

which arises since a morphism from A into A1 × A2 is uniquely determined by
its two component morphisms from A into A1 and A2 respectively.

Example 46. Let A be a category, and let 1 be the category with one object
and one morphism. Consider the unique functor ! : A → 1. The functor ! is
coadjoint precisely if A has a terminal object; if it does, then the adjoint of ! is
the functor T : 1 → A which maps 1’s one object onto A’s terminal object.

Example 47. The preceding two examples can be generalized to a statement
for limits generally. Let A be a category, J be a small category, and DiagJA
the category of diagrams from J into A. Consider the diagonal functor

∆ : A → DiagJA,
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where ∆ sends an object A ∈ A to the diagram ∆A : J → A, which sends each
object in J to A and each morphism in J to idA.

Then ∆ is coadjoint precisely if A has finite J-limits. If it does, the J-limit
functor J− Lim : DiagJA → A is ∆’s adjoint.

Lemma 48. Adjoint functors preserve limits. Coadjoint functors preserve col-
imits.

Example 49. From Example 41, the free functor F : Set → Grp is coadjoint.
It therefore preserves colimits. For this reason the coproduct of two free groups
Free(X),Free(Y ) ∈ Grp is their free product; that is, the free group generated
by the disjoint union (coproduct in Set) of their generating sets X and Y .

3.3 Reflections

The adjointness of the completion functor from Example 44 can also be consid-
erably generalized.

Definition 50. A subcategory A of a category B is reflective, if the inclusion
functor ι : A → B is adjoint. It is coreflective, if the inclusion functor is
coadjoint.

Let A be a reflective subcategory of B. We call the functor R : B → A coadjoint
to ι the reflector, and the image of an object B ∈ B under R its reflection in A.

Example 51. The category Ab of abelian groups is a reflective subcategory of
the category Grp of groups. The reflector is the functor Q : Grp → Ab which
sends a group to its quotient by its commutator subgroup.

To see this, observe that there is a canonical bijection, for each group G and
abelian group A, between the sets of group homomorphisms

Hom(G, A) and Hom(G/[G, G], A),

given since a homomorphism of G into the abelian group A must send each of
G’s commutators to 1A.

Example 52. The fields (with morphisms the field embeddings) are a reflective
subcategory of the category of integral domains. The reflector sends each integral
domain to its field of fractions.

4 Zero objects

Definition 53. A zero object of a category G is an object O ∈ G such that, for
each object A ∈ G, there is precisely one morphism in Hom(A, 0) and precisely
one morphism in Hom(0, A).

Equivalently, a zero object of G is an object that is both terminal and initial.
A zero object of G is unique up to isomorphism.
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Suppose that G has a zero object O. For any pair of objects A and B in
G, composing the unique morphisms f : A → O and g : O → B yields a
distinguished morphism g ◦ f : A → B. We call this the zero morphism from
A to B, and denote it 0AB . It is clear that the zero morphism is well-defined,
independent of the choice of zero object.

For the rest of this section, we work in a category G with zero object O (and
hence with zero morphisms).

Lemma 54 (Composition with zero gives zero). Let A and B be objects in G.
Then for any morphism f : B → D,

f ◦ 0AB = 0AD.

Likewise, for any morphism f : D → A,

0AB ◦ g = 0BD.

Definition 55. Let f : A → B be a morphism in G. A kernel (respectively,
cokernel) of f is an equalizer (respectively, coequalizer) of f with 0AB.

From our earlier work on equalizers, a morphism’s kernel, if it exists, is unique
up to equivalence of subobjects. Likewise a cokernel is unique up to equivalence
of quotient objects.

Lemma 56. A morphism f : A → B is monic, precisely if it has kernel the
unique morphism 0 : O → A. It is epic, precisely if it has cokernel the unique
morphism 0 : B → O.

Lemma 57. Let A be an object in G. Then idA : A → A is a kernel of the
unique morphism 0 : A → O, and a cokernel of the unique morphism 0 : O → A.

Lemma 58. Let f : A → B be a morphism in G. Suppose that k : K → A is
a kernel of f , l : A → L is a cokernel of k, and m : M → A is a kernel of l.
Then m is a kernel of f .

Proof. Repeated applications of the definition of kernel and cokernel.

5 Abelian categories

5.1 Axioms

Definition 59. An abelian category is a category G satisfying the following
conditions.

1. G has a zero object.

2. (i) Each pair of objects in G has a product.

(ii) Each pair of objects in G has a coproduct.

3. (i) Each morphism in G has a kernel.
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(ii) Each morphism in G has a cokernel.

4. (i) Each monomorphism in G is some morphism’s kernel.

(ii) Each epimorphism in G is some morphism’s cokernel.

Example 60. The category Ab of abelian groups and group homomorphisms
is abelian. More generally, for any unitary ring R, the category R-Mod of
unitary R-modules and module homomorphisms is abelian. The zero object is
the module (0).

Example 61. The category Grp of groups and group homomorphisms is not
abelian. It satisfies all axioms except for 4(i): Not all its monomorphisms are
kernels, since not all subgroups are normal.

Example 62. The category pCompHaus of pointed compact Hausdorff spaces
and point-preserving continuous maps is not abelian. It satisfies all axioms
except for 4(ii).

Example 63. Consider the category whose objects are the smooth vector bundles
on a manifold M , and whose morphisms are smoothly varying families of linear
maps between fibres. This category is not abelian; it satisfies all axioms except
for 4(i).

Indeed, the monomorphisms of this category are the morphisms which restrict to
injective linear maps on a dense subset of M . The kernels are a strict subclass
of this: they are the morphisms which restrict everywhere to injective linear
maps.

Example 64. The category CompHausAb of compact Hausdorff abelian topo-
logical groups and continuous group homomorphisms is an abelian category. Ob-
jects in this category include, for instance,

• The finite abelian groups, equipped with the discrete topology.

• The torus groups. That is, the circle S = R/Z, and more generally the
products of arbitrarily many copies of S.

• For each prime p, the p-adic integers.

Example 65. The category of sheaves of abelian groups on a topological space
X is an abelian category.

5.2 Elementary properties

In this section we explore the properties of a fixed abelian category G.

Theorem 66. A monic, epic morphism is an isomorphism.

Proof. Let f : A → B be both monic and epic. Since f is a monomorphism,
Axiom 4(i) implies that it is the kernel of some morphism g : B → C. Since
f is an epimorphism, it has cokernel the unique morphism 0 : B → O, and, as
observed in the section on zero objects, the morphism 0 : B → O has kernel
idB : B → B.
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Since idB is a kernel of 0 is a cokernel of f is a kernel of g, it follows (by Lemma
58) that idB is a kernel of g.

The uniqueness of kernels therefore implies that idB and f are equivalent sub-
objects of B. That is, there exists a pair of mutually inverse isomorphisms
x : A → B and y : B → A, such that idB ◦ x = f and f ◦ y = idB . From the
former we conclude that x = f . Hence f is an isomorphism.

This proof uses only Axioms 1 and 4(i). (A dual proof using only Axioms 1 and
4(ii) works equally well.) Theorem 66 is therefore also valid in, for instance, the
categories Grp and pCompHaus.

Let us single out one idea from the above proof for future use.

Lemma 67 (Ker-Coker duality). g : B → C is a cokernel of a monomorphism
f : A → B, then f is a kernel of g. If f : A → B is a kernel of an epimorphism
g : B → C, then g is a cokernel of f .

Proof. Suppose g : B → C is a cokernel of a monomorphism f : A → B. By
Axiom 4(i), there is some morphism r : B → R of which f is a kernel. By
Axiom 3(i), the morphism g has some kernel k : K → B.

We therefore have that k is a kernel of g is a cokernel of f is a kernel of r. Hence
(Lemma 58) k is a kernel of r. So k and f are equivalent as subobjects of B,
and so f is a kernel of g.

The proof of the dual statement is similar.

Rather suggestively, we call a pair (f, g) of morphisms satisfying either of the
two (equivalent) conditions in Lemma 67 an exact sequence. (However, the
concept will not be pursued any further in this report.)

Definition 68. An intersection (respectively, union) of two subobjects of an
object A, is a greatest lower bound (respectively, least upper bound) on them in
the canonical partial order on the subobjects of A.

An intersection (respectively, union) of two quotient objects of an object A, is a
greatest lower bound (respectively, least upper bound) on them in the canonical
partial order on the quotient objects of A.

Intersections and unions of subobjects (respectively, quotient objects) are unique
up to equivalence of subobjects (respectively, quotient objects).

Lemma 69. Let A be an object in G. Then each pair of subobjects of A, and
each pair of quotient objects of A, has an intersection.

Proof. Let b1 : B1 → A and b2 : B2 → A be monomorphisms. By Axiom 4(i),
the monomorphism b1 is the kernel of some morphism f : A → F . By Axiom
3(i), the morphism f ◦ b1 has some kernel k : K → B2. Applying repeatedly the
definition of a kernel, together with the fact that b2 is monic, we find that the
subobject b2 ◦ k : K → A of A is an intersection of B1 and B2.

A dual proof establishes the statement about quotient objects.
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Corollary 70. Let A be an object in G. Then each pair of subobjects of A, and
each pair of quotient objects of A, has a union.

Proof. Let b1 : B1 → A and b2 : B2 → A be monomorphisms. Axiom 3(ii)
ensures the existence of cokernels of B1 and B2. By the lemma just proved,
these cokernels – treated as a pair of quotient objects of A – have an intersection.
The kernel of this intersection (which exists by Axiom 3(i)) is a union of the
kernels of the cokernels of B1 and B2. But by Lemma 67 on Ker-Coker duality,
the kernels of the cokernels of B1 and B2 are just B1 and B2 themselves.

The proof of the dual statement is similar.

5.3 Direct sums

Let G be a category with zero objects and with finite products and coproducts.
That is, G satisfies the first two of the axioms for an abelian category. As well
as the abelian categories, the categories Grp and pCompHaus are for instance
of this kind.

We explore a number of constructions we can make for this family of categories.
Let A1 and A2 be objects of G. For each pair f1 : F → A1, f2 : F → A2

we denote by (f1 f2) the canonical morphism induced from F to A1 × A2.
Likewise, for each pair g1 : A1 → G, g2 : A2 → G, we denote by

(
g1
g2

)
the

canonical morphism induced from A1 + A2 to G.

In particular, along with the canonical injections and projections

ι1 : A1 → A1 + A2, ι2 : A2 → A1 + A2,
π1 : A1 ×A2 → A1, π2 : A1 ×A2 → A2,

we have distinguished morphisms(
1
0

)
: A1 + A2 → A1,

(
0
1

)
: A1 + A2 → A2,

(1 0) : A1 → A1 ×A2, (0 1) : A2 → A1 ×A2,

as well as a canonical morphism(
(1 0)
(0 1)

)
=
((

1
0

) (
0
1

))
: A1 + A2 → A1 ×A2,

which we henceforth denote by
(

1 0
0 1

)
.

Lemma 71. The morphism
(

0
1

)
is a cokernel of the canonical injection ι1.

Proof. By construction
(

0
1

)
◦ ι1 = 0. On the other hand, suppose that g :

A1 + A2 → G is such that g ◦ ι1 = 0. Then for some g2 : A2 → G, we have that
g =

(
0
g2

)
= g2 ◦

(
0
1

)
.

For the rest of this section, we further suppose that G is abelian.
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Corollary 72. The canonical injection ι1 is a kernel of the morphism
(

0
1

)
.

Proof. Certainly ι1 is a monomorphism, and by the preceding lemma, the mor-
phism

(
0
1

)
is ι1’s cokernel. The result follows by Lemma 67 on Ker-Coker

duality.

Corollary 72 (as well as the results to be established in the rest of this section)
can certainly fail in categories that satisfy only the first two abelian category
axioms. It is instructive, before going further, to consider a counterexample.

Example 73. In the category Grp of groups, the coproduct A1 + A2 of two
groups A1 and A2 is their free product. Here the kernel of the morphism(

0
1

)
: A1 + A2 → A2

is much larger than A1 + A2’s subgroup A1. Indeed, it is the set of all reduced
words on the elements of A1 and A2, for which the overall product of all the
elements on A1 involved is A1’s identity.

Lemma 74. The subobjects ι1 : A1 → A1 + A2 and ι2 : A2 → A1 + A2 of
A1 + A2 have intersection 0 : O → A1 + A2.

Proof. By the previous corollary, we know that ι1 is a kernel of
(

0
1

)
. Observe

that the unique morphism 0 : O → A2 is the kernel of(
0
1

)
◦ ι2 = idA2 : A2 → A2.

From the construction in the proof of existence of intersections in Lemma 69,
we deduce that the intersection of ι1 and ι2 is A1 + A2’s subobject

0 = ι2 ◦ 0 : O → A1 + A2.

Theorem 75. Suppose that G is abelian. Then the morphism(
1 0
0 1

)
: A1 + A2 → A1 ×A2

is an isomorphism.

Proof. We will prove that it is a monomorphism. It will follow by a dual ar-
gument that it is an epimorphism, and therefore by Theorem 66 that it is an
isomorphism.

Let k : K → A1 → A2 be a kernel of
(

1 0
0 1

)
. Then

0KA2 = π2 ◦
(

1 0
0 1

)
◦ k =

(
0
1

)
◦ k.

So in the canonical partial order on the subobjects of A1 + A2, the subobject k

is at most the kernel of
(

0
1

)
, which by Lemma 72 is ι1.
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Likewise k is at most ι2. So k is at most the intersection of ι1 and ι2, which by
Lemma 74 is the unique morphism 0 : O → A1 + A2.

The morphism 0 : O → A1 +A2 is therefore a kernel of
(

1 0
0 1

)
, and so

(
1 0
0 1

)
is a monomorphism.

In an abelian category, we can therefore define the direct sum (unique up to
isomorphism) of two objects A1 and A2 to be the object A1 + A2 ' A1 × A2.
We denote the direct sum of A1 and A2 by A1 ⊕A2.

We are therefore justified in using our previously-established notation as fol-
lows. With the direct sum of A1 and A2 are associated canonical injections and
projections

ι1 =
(

1
0

)
: A1 → A1 ⊕A2, ι2 =

(
0
1

)
: A2 → A1 ⊕A2,

π1 = (1 0) : A1 ⊕A2 → A1, π2 = (0 1) : A1 ⊕A2 → A2.

For each pair f1 : F → A1, f2 : F → A2 we have a canonical morphism

(f1 f2) : F → A1 ⊕A2.

For each pair g1 : A1 → G, g2 : A2 → G, we have a canonical morphism(
g1
g2

)
: A1 ⊕A2 → G.

5.4 The abelian group structure on homomorphisms

Let G be an abelian category, and A and B two objects of G.

We define a binary operation + on Hom(A,B) as follows: if x, y ∈ Hom(A,B),
then

x + y = (x y) ◦
(

1
1

)
: A → B.

The following striking and fundamental theorem is then straightforward to de-
duce.

Theorem 76. The binary operation + defines an abelian group structure on
Hom(A,B), with the morphism 0AB as identity.

We will make considerable use of this abelian group structure on each Hom-set.
The following two consequences will be particularly useful.

Corollary 77. Let A be an object of G. The binary operations + and ◦ define
a (not necessarily commutative) ring structure on Hom(A,A), known as the
endomorphism ring of A and denoted End(A). This ring has additive identity
0AA and multiplicative identity idA.

Theorem 78 (Direct sum systems). Let A1 and A2 be objects of G. The
canonical injections and projections of S = A1 ⊕A2 satisfy

π1 ◦ ι1 = idA1 , π2 ◦ ι1 = 0A1A2

π1 ◦ ι2 = 0A2A1 π2 ◦ ι2 = idA2

ι1π1 + ι2π2 = 1S .
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Conversely, if for three objects A1, A2, S and four morphisms ι1, ι2, π1, π2 the
five conditions above are satisfied, then S is a direct sum of A1 and A2, with
those four morphisms as its canonical injections and projections.

All the remarks on direct sums thus far made extend directly to products and
coproducts of any finite number of objects.

6 Krull-Schmidt decomposition theorem

The aim of this section is to prove an analogue, in a general fixed abelian
category G, of the classical Krull-Scmidt decomposition theorem for modules.

Definition 79. An object A ∈ G is indecomposable, if, for any direct sum

A = B ⊕ C,

either B or C is the subobject idA : A → A.

Definition 80. An object A ∈ G has finite length, if for each set of subobjects
of A there is a maximal and a minimal subobject.

Example 81. Finite-dimensional vector spaces over a field k are finite-length
objects in the abelian category k-Mod of vector spaces over k.

Example 82. Finite abelian groups are finite-length objects in the category Ab
of abelian groups. The additive group Z of the integers, as an object of Ab, does
not have finite length: the set

n 7→ n, n 7→ 2n, n 7→ 4n, n 7→ 8n, . . .

of subobjects of Z each contains the last, and hence has no minimum.

Our work will concern the existence and uniqueness of decompositions of finite-
length objects A ∈ G as a direct sum of indecomposable modules. Our proof
will be to use the additive structure on the endomorphism ring of each object
involved. Why this is particularly promising as a strategy is shown by the
following lemma.

Lemma 83. Let A ∈ G. If End(A) is local, then A is indecomposable. Con-
versely, if A ∈ G is indecomposable and has finite length, then End(A) is local.

Proof. We prove here only the former direction. Suppose A = B ⊕ B′. Let
ι : B → A and π : A → B be the natural injection and projection respectively.
Consider the morphism f = ι ◦ π : A → A. Then f2 = f , so, since End(A) is
local, either f = 1A or f = 0A. If the former, then B = A and B′ = 0. If the
latter, then B = 0 and B′ = A.

Theorem 84 (Krull-Schmidt). Suppose that A ∈ G has finite length. Then it
has a decomposition

A =
⊕
i∈I

Ai,
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with I also finite, and such that each Ai is indecomposable. Moreover, if

A =
⊕
j∈J

Bj ,

is any other such decomposition, then |I| = |J |, and there exists a bijection
ϕ : I → J , such that for each i ∈ I, we have the isomorphism Ai ' Bϕ(i).

Proof. Existence.

Take a maximal decomposition. Then each part is indecomposable.

Uniqueness

Since A has finite length, so does each of the Ai. Using, as guaranteed by
Lemma 83, that each ring End(Ai) is local, we find by induction on |I| that:

Lemma 85. Let f ∈ End(A). Then there exist subobjects (ι′i : Bi → A)i∈I , and
isomorphisms (hi : Ai → Bi)i∈I , such that for each i ∈ I either ι′i ◦ hi = f ◦ ιi
or ι′i ◦ hi = (idA − f) ◦ ιi. Moreover,

A =
⊕
i∈I

Bi.

With some further finiteness assumptions (and some messy set theory), the
uniqueness part of theorem extends from direct products more generally to
coproducts, holding even when I and J are infinite.

Definition 86. An abelian category G is a Grothendieck category, if it has
colimits, and satisfies the following conditions:

1. The category G is locally small; that is, for each object A ∈ G, the class
of subobjects of A is a set.

2. Let A ∈ G. Let (I,≤) be an ordered set; let {ιi : Ai → A : i ∈ I} be a set
of subobjects of A, such that for each pair i, j ∈ I, we have i ≤ j precisely
if there is some morphism f : Aj → Ai such that ιi◦f = ιj. Let ι : B → A
be any subobject of A. Then

⋃
i∈I

(Ai ∩B) =

(⋃
i∈I

Ai

)
∩B.

Theorem 87. Let G be a Grothendieck category, and let A ∈ G. Suppose that
A decomposes into two coproducts

A =
⊔
i∈I

Ai =
⊔
j∈J

Bj ,

where all Bi are indecomposable, and the endomorphism rings of all Ai are
local. Then there exists a bijection ϕ : I → J , such that for all i ∈ I we have
Ai = Bϕ(i).
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