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1. Introduction

“Scientists use chance, or randomness, to mean that when physical causes

can result in any of several outcomes, we cannot predict what the outcome

will be in any particular case.”

-Douglas Futuyma

1.1. Algorithmic randomness.

The area of algorithmic randomness has been widely studied in past
decades amongst recursion theorists. The area revolves around studying
infinite strings and determining which class, if any, of randomness notions
they belong to.

There were some remarkable but unsuccessful attempts to define algo-
rithmic randomness during the early to mid 20th century. The original
approaches were later found to be not quite strong enough to capture the
notion. Researchers like Richard von Mises tried to characterise randomness
in [30] with statistical tests like the law of large numbers. However, observe
the following sequence:

101010101010101010101010101010101010101010.....

This passes the law of large numbers, since in the limit, the number of 0s
and 1s will be equal. However, one does not need to get into mathematical
definitions to realise that the sequence is far from random.

Following the initial attempt, Von Mises included numerous more rules in
his characterization. These were all later proven to be void by Wald in his
paper [1]. He showed that having a countable set of rules is not sufficient.
Its only later with the rise of computability theory did the choice of selection
rules become more clear.

The key breakthrough came from mathematician Per Martin-Löf, he com-
bined the idea of tests with the theory of computation in the 1960s [18]. This
contrasts with the idea of randomness in probability theory. He proposed
that a sequence is random if it passes a infinite number of tests. Each of
these tests being a property that a non-random set would have. Hence, if it
exhibits none of these properties, it must be random.

If a sequence is random in this way, we can conclude that it does not
exhibit any special properties. For example, the binary representation of
the irrational constant e will not be in the set of elements that is Martin-Löf
random, nor will any sequence where there is always a run of 0s after a run
of 1s.

There are two other equivalent approaches to defining Martin-Löf ran-
domness, the incompressibility approach and the martingale approach. A
sequence is incompressible if it can not be represented by a shorter sequence
in the system. The martingale approach uses a series of betting strategies,
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and can be thought of as a game where no matter how you bet, the outcome
will always be that you break even in the limit.

Since both of these notion are not used in the thesis, we shall mostly
ignore them and instead refer solely to the testing approach.

After the first formulation, many other notions of randomness arose, how-
ever, Martin-Löf randomness still remains the most recognised notion. To
the extent that sometimes, the term “random” referring to a sequence with-
out clarification is automatically taken to mean Martin-Löf randomness.

1.2. Traceability.

The group of combinatorial properties known as the class of tracing no-
tions, is a relatively more intuitive notion. Little work was done in this area
until the late 1990s. Ishmukhametov, Terwijn and Zambella were the first
to truly study the notion in [29]. They discovered its importance in clas-
sical recursion theory as well as algorithmic randomness. One of the main
motivation for studying the area during the early stages was its strong link
to array computability and hyperimmune-freeness [25].

Intuitively speaking, the basic traceability property on a function f dic-
tates that f(x) is somewhat effectively recoverable from a bounded finite set
Tx, called its trace. The bounds imposed on Tx is to ensure we do not just
“wildly guess”, so that there is some form of logic in enumerating into Tx

and we are concerned with “resource placement”. For one would agree that
without the bound, we can simply allow Tx to contain the enumeration of
the entire natural numbers, and eventually, no matter what f is, f(x) will
be included. However, sometimes the bound may be varied. We will see
later, for total functions, the bound is interchangeable as long as it exhibits
some specific property (namely, being an order function).

This idea of tracing discrete functions is similar to the idea of estimating
continuous functions in analysis. Instead of a � that bounds the error, we
have a set of possibilities contained in Tx. Just like how the error can not
exceed �, our f(x) has to definitely be in Tx.

One major difference between the two is that, in analysis, the estimates
are usually in a sense “close” to each other, but Tx can contain elements
that are no where near each other in terms of size. For example, when
enumerating Tx, we may simulate f(x) with multiple functions, h1, h2, h3, ....
Now Tx will contains values from each hn(x), it could be that h1 is the
function 2x, h2 the function xx and so on. The end result will be that
Tx contains some values that are extremely large, and some very small. If
this were a real life prediction, it would be not very good, even though the
truth is in Tx somewhere, the variation is way too much. However, from
a mathematical sense, that does not matter, since we only care about if
we used our resource properly and not overloaded Tx with elements, the
variation is unimportant.

Although the concept may seem intuitive, there are many different trace-
ability classes that have been introduced since its discovery. These notions
include c.e. traceability [28], jump traceability [20], computable traceabil-
ity [29] and strong jump traceability [13]. We focus our study on the first
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two in this thesis, and investigate some of their variants in relation to ran-
domness. Of all the traceability notions, c.e. traceability was arguable the
first to be introduced. It is also the most simple: the only condition for
a function to be c.e. traceable is that it can be traced by some bounded
uniformly computably enumerable {Tx}x∈N. Later, it is also shown that c.e.
traceability is the same as array computability (every function computable
from a set A is dominated by some ω-c.a. function) for c.e. sets. This
sparked a lot of researcher’s interest in the field, since array computability
was a well studied subject back then.

Some other ways of looking at traceability that had recently been included
are ω-c.e. traceability and ∆0

2 traceability [11]. They are essentially the sets
that are powerful enough to trace all ω-c.a. and ∆0

2 functions respectively
when used as an oracle. Both these variants are focal points in section 3
and section 6.

In this thesis, we employ several highness principles to build a bridge be-
tween traceability and its relations to randomness. On the surface, one can
argue that algorithmic randomness, a notion that deals with randomness
of strings, and traceability, a notion of generating approximations, seem to
have no real deep interplay. However, this thesis makes multiple advances
on the relationship of the two.

1.3. Outline.

In Section 2, we first give formal definitions for ideas that are vaguely
defined here and offer some motivation for the rest of the thesis. We lay
down groundwork by showing elementary results that are going to be useful
throughout the thesis.

In Section 3 we get to work on demonstrating what exactly ω-c.e.-tracing
sets are capable of. There we show even though being ω-c.a. is a highness
property, they can still be low in the usual sense. Furthermore, they are
not all high for that matter. We ask questions like “can they be close to
computable? How far are they from ∅�?”.

The short Section 4 is there to lay some ground work for Schnorr random-
ness relative to ∅�. We explore equivalences between Schnorr randomness,
the relatively new notion of limit random and Martin-Löf random sets. We
characterize Schnorr randomness relative to ∅� via Martin-Löf and limit ran-
domness, then use this ground work in Section 6 to give simpler alternate
proofs to theorems regarding highness.

Section 5 revolves around interactions between K-triviality (a set is K-
trivial if it is computable from ∅ in a Kolmogorov way), Demuth randomness
and super-lowness. We demonstrate which of the three notions is the most
powerful and give a short display of the usefulness of the High(C, D) prop-
erty.

Then, we start making some links between randomness and traceability in
section 6. We first connect ∆0

2 and ω-c.a.-tracing with Demuth and Schnorr
randomness respectively. In the latter half of the section, a new traceability
notion was introduced: Demuth traceability. We ask how much cupability
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power it has and how closely related is it to ω-c.e. traceable sets. The an-
swer was somewhat surprising to me, but after moments thought, it became
natural.

At last, in chapter 7 we ask some questions about the interchangeability
of the trace bound. Can anything other than c.e.-traceable sets have this
property? How many conditions do we have to apply to our function to
be able to achieve this result? Can the techniques in Section 6 be used
in any other traceability variants? Though not all these questions are fully
answered, we give at least some satisfactory results. We conclude this section
by summing up anything unanswered and leave it for future brave researchers
that wished to tackle the problems that bested myself.
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2. Preliminaries

In this section, we give some frequently used definitions and notations.
Most of these are standard computability theory definitions. Readers with
experience in recursion theory should be fairly familiar with them. To make
sure we do not deviate too much from the norm when choosing the symbols
for our notations, this thesis will closely follow a similar style of writing as
Nies book [21].

2.1. Notation and conventions.

Most of our notations, conventions and terminologies will be introduced
when needed. Here we give a few non-technical terms and ideas that are
frequently referred to throughout the thesis.

The model of computation, as always, is a Turing Machine. Though not
frequently referred to, we view computability as based on the acceptance of
the Church-Turing Thesis.

As usual we mostly use the Greek letter ϕ and Φ to denote functions
for construction proofs. Likewise We will represent the domain of the eth
computable function, we also use the subscript notation to denote a function
or set during stage s, i.e. We,s will mean We during the sth stage of the
construction.

The capital letters A, Z and U , V are usually used to represent sets.
A and U will be used the most often and Z and V is used only if we are
attempting to build two sets in the same proof. A and Z will mostly be
used in constructive proofs representing generic sets while U and V are used
in proofs that revolves around building tests for randomness notions. The
alternate styled C and D will also be used to refer to a class of notions or
sets.

Naturally, there will be cases where we would like to view all relevant
computations at some stage s. Instead of using the subscript notation on
everything, we denote [s] to mean all computation is at stage s. For example,
ΦA
e [s] = ΦAs

e,s and WA
e [s] = WAs

e,s .
All computations are assumed to be discrete, therefore all computations

yield natural numbers unless stated otherwise. The topological space we
will refer to throughout the thesis is Cantor space, i.e. the topological space
that is homeomorphic to the cantor set, denoted 2ω or 2N.

All strings are defined to be binary strings. We denote the set of finite
binary strings by 2<ω, the empty string by λ or ∅, the length of a string τ

by |τ |, the open cylinder generated by a σ in 2<ω by [σ]. We usually refer to
cylinders when we are dealing with a binary tree. The concatenation of two
strings τ and σ will be denoted by τ�σ and we will write τ(n) to represent
the nth value of a string τ .

For the lack of a better symbol, we shall abuse mathematical notations
and denote the uniform measure on Cantor space by λ as well. This should
not cause any confusion as if both empty strings and the uniform measure
are required, the context should be clear as to which one we mean. In the
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worst case scenario when disguising the two is impossible, we denote the
empty string by the alternative notation, ∅.

The lexicographic ordering on 2<ω, <Lex is an binary relation between
two strings τ and σ. We say that τ <Lex σ if either |τ | < |σ| or |τ | = |σ| but
τ(n) = 0 for the least n such that τ(n) �= σ(n). This will be the primary
ordering used in the thesis, since it is a great way to present an ordering
system on a binary tree.

All encoding, unless stated otherwise, are recognised to be some form
of prime factorization. Gödel encoding would make sense most of the time.
That is, given a sequence of n-tuples (x1, x2, x3, x4..., xn) of positive integers,
the Gödel encoding of the sequnece is the product of the first n primes raised
to their corresponding values in the sequence:

enc(x1, x2, x3, x4..., xn) = 2x1 × 3x2 × 5x3 ....pxn
n .

This encoding system is used to ensure the uniqueness of our encryp-
tion: by the fundamental theorem of arithmetic, every positive integer has
a unique prime factorization.

We shorthand the phrases computably enumerable with c.e., the phrase
recursively enumerable with r.e. and computably approximation by c.a.
Note that computable enumerable and computably approximation are dif-
ferent terms: c.e. is used when referring to sets and classes while c.a. is
used when we are referring to functions.

2.2. Basic definitions.

We assume familiarity with most of the following definitions, all but a few
were introduced during the early development stages of recursion theory.
Hence they will not be explained in too much details.

Definition 2.1. Given A ⊆ ω, the Turing jump of A is defined to be the
set

A� = {e ∈ ω : ΦA
e (e) ↓},

we will also denote the in computable halting problem by:

∅� = {x : Φx(x) ↓},
or if one prefers the Turing equivalent two variable version:

∅� = {�x, y� : Φx(y) ↓}
Definition 2.2. [16, Kolmogorov, 1965]. Let f : 2<ω → 2<ω be a partial
computable function. We call the Kolmogorov complexity of a string σ with
respect to f

Cf (σ)=min{|τ | : f(τ) = σ},
If the set is empty, for convention sake, we will define the minimum string

length to be infinite, i.e. ∞ . We say that a string σ is random relative to f
if Cf (σ) ≥ |σ|.

The function f that one chooses is not very important. As Kolmogorov
showed that there is a universal function f for the descriptive system C.
This is in the sense that f can act as any other function within C for a
increase in constant lengths.
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Furthermore, we define the prefix-free Kolmogorov complexity of a string
σ to be:

Kτ (σ) = CU (σ)

where U is the universal prefix-free machine, that is, it has a prefix-free
domain.

Definition 2.3. [18, Martin-Löf, 1966]. A Martin-Löf test is a uniform
sequence {Un}n∈N of c.e. classes such that for each n ∈ N, λ(Un) ≤ 2−n.
A set A ⊆ N fails the test if A ∈

�
n Un and we call A a Martin-Löf null,

otherwise, we say Z passes the test. Furthermore, A is Martin-Löf random
if it passes all Martin-Löf tests. The class of all Martin-Löf random sets are
denoted by MLR.

This notion of randomness is used to help us distinguish random infinite
sequences from those that are not.

As mentioned in the introduction, there are two other equivalent ap-
proaches to defining Martin-Löf randomness, the incompressibility approach
and the martingale approach. We give a short formal description of the two
here, but do not go into too much details since we are working with the
above definition for the sake of this thesis.

The incompressibility approach measures was introduced by Levin and
Chaitin. They originally hoped that if A is random, then C(A � n) ≥
n−O(1). Sadly, this is impossible and no set satisfies this definition. They
then abandoned the idea of characterization via the plain complexity C and
instead used K, the prefix-free Kolmogorov complexity. This yielded a much
better result for Levin in his follow up paper [17]. There, he arrived at the
following definition:

Definition 2.4. [23, Schnorr 1971]. A set A is 1-random if K(A � n) ≥
n−O(1).

As the name suggests, there are more “levels” of randomness which we will
not go into. An informal way to look at this definition is that A considered
random if you can not represent it with a shorter sequence in the system. So
to retrieve the information that A holds in the first n bits, you have to have
at least n bits of information available, and nothing less. One can probably
now see in a non formal level that this is somewhat similar to Martin-Löf
randomness. Since exhibiting no special properties makes a sequence hard
to compress.

On the other hand, a martingale is similar to gambling against a casino
that is just trying to break even:

Definition 2.5. a function f : 2ω → R≤0 is a martingale if for all σ

f(σ) = f(σ0)+f(σ1)
2

A martingale f is successful on a set A if lim supnf(A � n) = ∞.

Schnorr [24] showed that a set is 1-random iff no c.e martingale is suc-
cessful on it. The idea of a martingale is that we have a starting amount
of capital (money) d(σ) and we are betting on the outcome of the nth bit
of σ with some strategy. The game itself is guaranteed to be fair (you can
think of it as betting odds or evens on a roulette table in a casino where the
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0s and 00s has been taken out). In other words, no matter what strategy
you choose to employ or what strategy is used again you, the expected value
after some observation is the same as the value before the observation.

There are many other notions of randomness used in this thesis, like
Schnorr randomness and Demuth randomness. We present their definitions
and unveil some interesting and useful facts about Schnorr randomness.

Definition 2.6. [7, Demuth,1988]. A Demuth test is a uniform sequence
{Un}n∈N of c.e. classes such that for each n ∈ N, λ(Un) ≤ 2−n, and there is
a function f ≤wtt ∅� such that Un = [Wf(m)]

≺. A set A passes the Demuth
test if A /∈ Un for all but finitely many n. Furthermore, A is Demuth random
if it passes all Demuth tests.

Definition 2.7. [23, Schnorr, 1971]. A Schnorr test is a uniform sequence
{Un}n∈N of c.e. classes such that for each n ∈ N, λ(Un) is uniformly com-
putable. A set A ⊆ N fails the test if A ∈

�
n Un, otherwise we say Z passes

the test. Furthermore, A is Schnorr random if it passes all Schnorr tests.
The class of all Schnorr random sets are denoted by SR.

We define “weaker” tests because sometimes the pass conditions on Martin-
Löf randomness is too strict, and we have to “losen” the pass conditions to
get to our desired result. In this thesis, we work with Schnorr tests as if they
were a Martin-Löf tests {Un}n∈N with λ(Un) = 2−n. In the next subsection,
we will show that these definitions indeed are interchangeable.

Definition 2.8. [27, Solovay, 1975] A Solovay test is a sequence {Sn}n∈N
of uniformly c.e. classes such that

�
λ(Sn) < ∞. A set A passes this test if

it is in only finitely many of the Sn.

In the next subsection, we will show that this notion is equivalent to
Martin-Löf randomness. Downey chose to extend this definition into a no-
tion that coincides with Schnorr randomness:
Definition 2.9. [9, Downey and Griffiths, Definition 6.1.9]. A total Solovay
test is a sequence {Sn}n∈N of uniformly c.e. classes such that

�
λ(Sn) < ∞

and is a computable real. A set A passes this test if it is in only finitely
many of the Sn.

Now we state the formal definition for the notion of traceability that this
thesis focuses on:

Definition 2.10. [32, Zambella,1990]. Let h be an order function, that is,
an unbounded, non-decreasing, non-negative, computable function. We say
that g is traceable with bound h if there is a sequence (Tn)n∈N of non-empty
sets such that g(n) ∈ Tn and |Tn| ≤ h(n) for each n. Furthermore, we call
f c.e. traceable if (Tn)n∈N is uniformly c.e. i.e. Tn = Wf(n) for all n.

The following (somewhat weak) highness property was introduced by
Greenberg and Nies [15]; it coincides with the class G in [21, Proof of 8.5.17].

Definition 2.11. A set A is ω-c.a.-tracing if each function f ≤wtt ∅� has a
A-c.e. trace (TA

x )x∈N such that |TA
x | ≤ 2x for each x.

A stronger condition is that every ∆0
2 function f must be traced:



RANDOMNESS, TRACEABILITY, AND HIGHNESS NOTIONS 11

Definition 2.12. A set A is ∆0
2-tracing if each ∆0

2 function f has a A-c.e.
trace (TA

x )x∈N such that |TA
x | ≤ 2x for each x. (One can also say that ∅� is

c.e. traceable by A. )

For more background on tracing see [21, Sections 8.2,8.4].

2.3. Important earlier results.

In this section we give a few earlier results. Some of these results will
be referred to frequently throughout the thesis, others are there to convince
us that there indeed is a very interesting connection between some of these
different notions. We first dive into proving the results promised in the last
section:

Theorem 2.13. [24, Schnorr, 1971]. Let {U}n∈N be a Schnorr test. There

exists a Schnorr test {Vn}n∈N such that λ(Vn) = 2−n
and

�
n Un ⊆

�
n Vn.

Proof. For each Un, we effectively enumerate a Vn as follows:
First, for each n, we compute a sequence of rationals ro < r1 < ... < λ(Un)

such that λ(Un) ≤ 2−i − ri.
Second, enumerate into Vn in stages:
At stage s, first check if Vn[s] ⊇ Un[s]. If not, put all elements in Un[s]−

Vn[s] into Vn[s].
Now, select i such that λ(Vn[s]) < 2−n − 2−i and λ(Un[s]) ≥ ri, add

open sets to Vn[s] to ensure its measure is equal to 2−n − 2−i. At the
end of the computation, we have Vn ⊇ Un since at each stage Vn[s] ⊇ Un[s],
λ(Vn) = 2−n as 2i must eventually shrink to 0 when ri approaches λ(Un). �

One of the most attractive properties of Martin-Löf randomness the exis-
tence of an universal machine, i.e. a test that contains all Martin-Löf nulls
set. This allows us to work with just one sequence of Martin-Löf test.

Theorem 2.14. [18, Martin-Löf, 1966]. There exists a universal Martin-Löf

test.

Proof. We build such a test via the method of selective listing.
First, effectively list each c.e. subsets of 2<ω, {S0

n}n∈N,{S1
n}n∈N..., we use

this to build a list of all Martin-Löf tests.
Next, we make sure that each {Si

n} contribute the correct amount of
measure:

Enumerate Si
n until the measure of [Si

n] is about to exceed 2−n, i.e. if at
some s stage of the enumeration λ([Si

n]) becomes greater than 2−n, cancel
all elements enumerated during stage s and stop the enumeration. We then
build {Ri

n}n∈N by setting Ri
n = Si

n. Note that {R0
n}n∈N,{R1

n}n∈N,{R2
n}n∈N...

is indeed an effective listing of all Martin-Löf tests.
Now, set Un =

�
i[R

i
n+1+i]. Since each Ri

n is a Martin-Löf test, the Un

are uniformly Σ0
1.

Lastly, we check if the measure is correct. As by our enumeration:

λ(Un) =
�

i λ([R
i
n+1+i]) ≤

�
i 2

−(n+i+1) = 2−n.

So {Un}n∈N is a Martin-Löf test and for any other Martin-Löf test {Vn}n∈N
we have an i such that Vn = [Ri

n] for each n. Then Vn+1+i ∈ Un and
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so Vn is in some member of {Un}n∈N for all but finitely many n. Hence�
n Vn ∈

�
n Un.

�
Another important property of Martin-Löf’s definition is its equivalent

characterization via Solovay tests.

Theorem 2.15. [27, Solovay, 1975]. A set is Solovay random iff it is

Martin-Löf random.

Proof. Each individual Un in a Martin-Löf test has measure 2−n and the sum�
n λ(Un) equals

�
n 2

−n is a geometric sequence that converges absolutely
to 1. So a Martin-Löf test is a Solovay test.

Now suppose that A is Martin-Löf random and {Sn}n∈N is a Solovay test.
Since

�
n λ(Sn) < ∞, there exists m such that

�
n>m λ(Sn) < 1.

Define Uk = [{σ : ∃≤2kn > m and [σ] ∈ Sn}]. Each Uk has at most
measure 2−k ×

�
n>m λ(Sn), and since

�
n>m λ(Sn) < 1 we have λ(Uk) <

2−k. Thus (Uk)k∈N is indeed a Martin-Löf test.
Since A is Martin-Löf random there must a a Uk such that A /∈ Uk. Since

there are only m Solovay test components unaccounted for by (Uk)k∈N, A is
in at most 2k +m many Sn. Hence, A is Solovay random. �

Schnorr randomness also have an attractive parallel property, in the sense
that it can be characterized via total Solovay tests.

Theorem 2.16. [8, Downey, R. and Griffiths, E, 2004]. A set is Schnorr

random iff it passes all total Solovay tests.

Similar to the idea of a Universal Turing Machine, one would ask if there
is some form of similar function that in a way is interchangeable between dif-
ferent traceable sets. In fact, one of the earliest results in the field was that,
if we trace only total functions, the Tewijn-Zambella construction (see [21,
Thm. 8.2.3]) allows us to change the bound 2x to any order function without
changing the tracing property.

Theorem 2.17. A c.e. traceable set is c.e. traceable via every order func-

tion.

Proof. Let A be c.e. traceable with some order function h and we are given
some other order function q.

First define a computable function r(n) in terms of inputs in q that is
strictly less than h(n+ 1):

r(n) = 1 +max{i : q(i) < h(n+ 1)}

For example, if we have h(n) = n + 1 and q(i) = i2, then r(n) =
√
n+ 1.

You can recognise r as an indirect bound function represented by the order
functions h and q.

Next we provide a trace (Ti)i∈N with bound q for f . The idea is to remove
some of the “guess work” required while building these trace sets.

Suppose f is total and f ≤T A. Instead of working directly with f we
instead encode it, let g(n)=f �r(n)= enc(0, 1, 2...r(n)) as defined in section
2.2. Notice g and f are Turing equivalent since the encoding preserves
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reducibility. Now, we can modify (Ti)i∈N accordingly to generate a c.e.
trace (Tn)n∈N for g with bound h. We can also assume that for each α ∈ Tn

α ∈ g and |g−1(α)| = r(n)

or else the encoding does not properly define f �r(n).
For each i, let Ti = {α(i) : α ∈ Tni}, where ni is the least n such that

i : q(i) < h(n + 1). By definition, we have r(ni) > i, and since |g−1(α)| =
r(n) > i, we have f(i) ∈ Ti as well. Moreover, |Ti| ≤ |Tni | and |Tni | ≤ h(ni).
Since ni is the least n such that i : q(i) < h(n + 1), we have |Ti| ≤ |Tni | ≤
h(ni) ≤ q(i) for each i. �

It is also shown that the preceding argument can be adopted to a wide
range of contexts where only total functions are traced in [21] section (8.2.29)
and (8.2.15). Further, in section 6 of this thesis, we investigate this property
in relations to some different functions.

One of the other remarkable theorems that this thesis will refer to is the
characterization of K-trivial sets via Martin-Löf random sets.

Definition 2.18. We say A is K-trivial if K(A � n) ≤ K(n) + c for some
constant c. Where K is, again, the prefix-free Kolmogorov complexity.

It was proved by Nies using the “Golden Run” method. In [21, Section
5.4] he formally showed that:

Theorem 2.19. The following are equivalent:

(i) A is K-trivial.

(ii) A is low for Martin-Löf randomness.

(iii) There exists X ≤T A such that X is Martin-Löf random relative

to A.

The proof also used work done by Downey, Hirschfeldt, Nies and Stephan
in 2003 which showed that each K-trivial set is Turing incomplete. This
result is crucial for proving the Day/Miller theorem in section 5.
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3. Traceability

In this section, we focus our attention on ω-c.a.-tracing sets and their
interaction with lowness. We prove multiple separation results that paints
a clearer picture of where the ω-c.a.-tracing sets are in the arithmetical
hierarchy. Since we are trying to build infinite sets that satisfies one or
more condition, the main mathematical machinery used here will be injury
arguments. Most of the questions answered in this section were originally set
as open questions in the 2012 Logic Blog. The relationship between the two
was first investigated in the 2010 paper [11]. The following result, Theorem
3.1 was one of the areas explored in the paper regarding the subject. It was
shown that:

Fact 3.1. No superlow set is ω-c.a.-tracing.

Proof. The main idea of the proof is that we diagonalize against all the
possible trace sets. Let Z be superlow, effectively list all Z-c.e. traces such
that |TZ

e,s| ≤ 2x for each e, x. Since Z � ≤wtt ∅�, n ∈ TZ
e,x iff there exists some

ternary relation p such that p(n, e, x) /∈ Z �. This relation is weak truth-table
below ∅�. Now let f(x) be the least number not in

�
e≤x T

Z
e,x. Since each TZ

e,x
has a computable bound 2x, the number of changes in f is also bounded by
a computable function, say 2x. Then f ≤wtt Z � ≤tt ∅�, and f is not traced
by any Z-c.e. trace (TZ

x )x∈N such that |TZ
x | ≤ 2x for each x.

�

With some thought one can come to the conclusion that the above result
comes very natural, since being ω-c.a.-tracing is a highness property. On the
other hand, one can show that lowness is in fact possible. By [11, Journal
version Cor. 25] we can see that:

Corollary 3.2. There is an ω-c.a.-tracing low ML-random set.

The result was derived directly from combining Theorem 11 and Theorem 23
of the same paper. Here, we use a construction method and build a low c.e.

set instead.

Theorem 3.3. Some low c.e. set A is ω-c.a.-tracing.

Proof. We can not jump in straight away as we need to first obtain (fe)e∈N,
a list of all ω-c.a. functions to be traced. We do this by giving an approxi-
mation with reduction procedures and take the limit of (fe) with respect to
each procedure, here is a sketch of the procedure:

Let �e� be the e-th wtt reduction procedure (namely, e0 indicates a Tur-
ing functional and e1 is a computable bound on the use). At stage any
s, we have an approximation fe(x)[s] = �e�∅�(x)[s] and define this value
to be 0 if this approximation is undefined. The function fe is given by
fe(x) = lims�e�∅

�
(x)[s].
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The construction itself is similar to [26, Chapter 7, Theorem 1.1] on build-
ing low simple sets. We retain the same negative requirement and use a
different approach to dealing with the issue of making our set ω-c.a.-tracing.

First we build a c.e. oracle trace (TA
x )x∈N with a fixed computable bound

h(x). We meet the postive requirement:

Pe,x : fe(x) ∈ TA
x (e ≤ x).

We also meet the usual lowness requirements Ne.

Ne : (∃∞s ΦA
e (e)[s] ↓) ⇒ ΦA

e (e) ↓.

Fix an effective priority ordering of the requirements:
N0, P0,0, N1, P1,0, P1,1, N2, P2,0, P2,1, P2,2, N3.......

Strategy for Pe,x at stage s: when there is a new value y = fe(x)[s], change
A to remove the previous value (if any), unless its A-use is restrained by a
stronger priority N -type requirement. Put y ∈ TA

x with large use on A.

Strategy for Ne at stage s: given As, set up restraint function for all e:

r(e, s) = ϕA
e (e)[s].

Where ϕA
e is the relative use function of ΦA

e . If ΦA
e (e) converges newly (by

convention with use ≤ s), restrain all weaker P requirements from changing
A�s.

Construction of A
Stage s = 0 and A is empty.
Stage s+1. Given As, we have r(e, s) for all e. We say Pi,x requires

attention if fi(x)[s− 1] �= fi(x)[s] ↓= y.
Find the least i requiring attention. If such a i exists, pick a fresh large

number k, put y ∈ TA
x with use k ∈ A, i.e A[k] = 1. Then attempt to

remove fi(x)[s − 1] = y� from TA
x (if it exists). As y� ∈ TA

x , it must have a
use k�. Set A[k�] = 0 if its not restrained by some stronger L requirement.
We say that Pi,x receives attention.

If no such i exists, do nothing, let As = As+1

Let A =
�

sAs. This ends the construction.
We say x injures Ne at stage s+ 1 if x ∈ As+1 −As and x ≤ r(e, s).

Define the injury set for Ne,

Ie={x : x injures requirement Ne at some stage s+ 1}.

= {x : (∃s)[x ∈ As+1 −As and x ≤ r(e, s)]}.

(The positive requirement are of course never injured.)

Claim 3.4. (∀e)[Ie is bounded by some computable function g(x)].

Proof. Since each fi is a ω-c.a. function, its number of changes is bounded by
some computable function bi. Hence each Pe,x can change A at at most some
bi(x) times. There are also only ((e+1)e)/2 stronger P requirements that can
injureNe. Let g(x) = max{bi(x) : i ≤ x}×(e(e+1))/2. Then |Ie| ≤ g(x). �
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Claim 3.5. For every e, requirement Ne is met and r(e) = limsr(e, s) exists.

Proof. Fix e, by our first claim, choose a stage se such that Ne is not injured
after stage se. If ΦAs

e,s(e) converges for s > se, then by induction on t ≥ s,

r(e, s) = r(e, t) and ΦAt
e,t(e) = ΦAs

e,s(e) for all t ≥ s. So A � r = As � r. Hence
ΦA
e (e) is defined by the use principle. �

Claim 3.6. For each e, x requirement Pe,x is met.

Proof. Fix i such that fi is an ω-c.a. function. To meet Pi,x we need to
satisfy fi(x) ∈ TA

x . Claim 3.4, there is a stage s such that

(∀t ≥ s)(∀e ≤ i) [r(e, t) = r(e)].

Choose a stage s� ≥ s such that no stronger P requirements receives atten-
tion after stage s�. At stage s�, assume fi(x)[s�] = y (if it has never received
attention, assume y = 0), then y ∈ TA

x . If fi(x)[s�] = fi(x)[t] for all t > s�,
we are done and Pe,x is satisfied.

If not, fi(x)[s�] �= fi(x)[t] = y� for some t. We remove y from TA
x (if

allowed) and put y� ∈ TA
x with large use. Hence Pe,x receives attentions at

stage t, since fi(x) can only receive attention finitely often, as fi is a ω-c.a
function. Eventually at some stage Pe,x will no longer receive attention and
becomes met.

�

Claim 3.7. There is a computable bound for |TA
x |.

Proof. Each time we put fe(x) ∈ TA
x a fresh large number is used to impose

a use on A. We may not remove fe(x) from TA
x if a new restraint is raised

by one of the stronger negative requirement Ni before fe has changed its
mind. Once a negative requirement raises a restraint, it may not change it
until it is injured.

TA
x contains f1(x), f2(x).....fx(x) as well as every approximated value

leading up to each fi(x). Assuming each time a negative requirement raises
a new restraint, each fi(x) can not leave TA

x . By Claim 3.4 there is a com-
putable bound g(i) on how many times a Ni can be injured and there are
only x many stronger N -type requirements. So |TA

x | is bounded by

x2×max{g(i) : i ≤ x}.

�

By Claim 3.7 we have a computable bound for TA
x , and the result of

Terwijn and Zambella allows us to instead replace h(x) with any other order
function. Take this order function to be 2x, then we have that A is ω-c.a.-
tracing. �
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3.1. The ω-c.a.-tracing sets can be close to computable.

We give another formal explication of the idea that an ω-c.e. set A can
be high in one sense and low in another. Recall in the introduction section
we described array computable degrees as degrees dominated by ω − c.a.
functions, here we formally define the idea:
Definition 3.8. [10, 1996] A degree a is array computable if there exists a
function f ≤wtt ∅� which dominates all functions f ≤T a.

From here one could weaken the function f and arrive at the following:
Definition 3.9. [2, Definition 1.2] A degree a is weakly array computable
if there exists a function f ≤T ∅� which dominates all functions f ≤T a.

First note that A cannot be both ∆0
2 and ω-c.a-tracing: in [2, Corollary

1.1], Barmpalias discovered that if a set is ω-c.a.-tracing then its not weakly
array computable. We know that for c.e. sets, array computable was the
same as as c.e. traceable. Relativising the corollary we can derive the
following result:

Corollary 3.10. ω-c.a.-tracing sets can be not ∆0
2 tracing.

This shows that being ω-c.a. and ∆0
2 are indeed separate tracing notions.

Furthermore, in [12, Rmk. 31] a question was asked in regards to array
computability. In the paper, they questioned if there even exists an array
computable ω-c.a.-tracing set. The following should answer the question
very nicely. (Also note that the class of c.e. traceable sets contains all the
superlow c.e. sets, but not all low c.e. sets. Thus this result and the previous
result are independent.)

Theorem 3.11. Some ω-c.a.-tracing c.e. set A is c.e. traceable.

Proof. We will use a ∅�� tree construction. To make A c.e. traceable we meet
requirements

Se : ΦA
e total ⇒ build c.e. trace (Vy)y∈N for ΦA

e ,

To make A ω-c.a.-tracing, meet requirements Pe,x as Proposition 3.3

Pe,x : fe(x) ∈ TA
x (e ≤ x).

We also use the same P strategies as Theorem 3.3 for Pe but on a tree.
Each of the nodes will guess if Φe is total or partial.

To aid us in meeting the S requirements, we introduce a few new defini-
tions. Following standard conventions, in particular assuming that all uses
at stage s are bounded by s. Define the agreement function

l(e, s) = max{n : ∀k < n(ΦA
e (k)[s] ↓)}

a maximum length of agreement function

m(e, s)= max{l(e, t) : t ≤ s}
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We say that a stage s is e-expansionary if l(e, s) > m(e, s− 1). That is ΦAs
e,s

has converged for a longer initial segment n of N than all previous stages.

The key idea for meeting Se is as quite simple: wait until an e-expansionary
stage s, allow Se to act by tracing each newly converged ΦA

e (n)[s] values into
the appropriate trace set Vn, then initialize all weaker requirements.

Notice that we can not guarantee that the length of agreement associated
with a given requirement is finite. It may well be the case that limsl(e, s) =
∞, and Se initializes a weaker requirement infinitely often. Therefore not
giving a weaker P requirement a chance to act.

To aid weaker P requirements to deal with this, we use a tree of strategies.
Consider a Pi,x below Se, we have two strategies for Pi,x, one guess that Φe

is partial, i.e. there are only finitely many e-expansionary stages. This
strategy puts fi(x) into TA

x with large use each time fi(x) changes its mind
and attempts to remove the previous value. Since it believes that Φe is
partial, Se will not attempt to trace anything and will not initialize any
requirements, therefore Pi,x can freely remove its previous value by a A
change.

The strategy guessing total is a little trickier to deal with. The idea is
we ask a strategy β : Pi,x below the infinitary outcome of a strategy α : Se

to wait. Give ΦA
e enough time to converge for large enough y, then trace

z = fe(x) values, if fe changes, remove z from the trace with an A-change.
This allows fe to change up to y times. Notice that each time it changes,
it will only effect the values of ΦA

e (x) for x ≥ y. Therefore these A changes
won’t make |Vy| too large.

Since fe is a ω-c.a. function, we have in advance a computable function
he such that fe(x) can change its mind at most he(x) times. If we were
dealing with just one β, we would naturally let y = he(x) as if it were just
a single β � α�∞, for each i β : Pe,x can not change ΦA

i �y where y is the
computable function he(x) bounding the number of mind changes of fe(x).
So we get at most y enumerations into Vy.

Notice that there are multiple β below α that could potentially make an
A-change. So with an eye to the more complicated case, we set our y to
not only consider the mind changes that fe(x) can make but also specifying
the strategy β and the number of stages it was initialized, as each initializa-
tion may cause an A-changes. We denote by kinit(β) the number of stages
at which β has been initialized. We let y be the encoding of the triplet
�he(x),β,kinit(β)�

We now turn to the formal details of the construction.
The Priority Tree. We use the tree T = {∞, f}<ω. ∞,f denote the total

and finite outcomes respectively. To each node σ ∈ T , we assign strategies
Nσ and Pσ,x for N|σ| and P|σ|,x respectively. Using a lexicographic ordering,
with ∞ to the left of f .

We also define the notion of σ-stage, m(σ, s) and σ-expansionary stage by
induction on |σ|.

i) Every stage is a null-stage.
ii) Suppose that s is a τ -stage. Let e=|τ |. Let
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m(τ, s)= max{l(e, t) : t < s is a τ -stage}

If l(e, s) > m(τ, s) then we declare s to be τ -expansionary and declare s to
be a τ�∞-stage. Otherwise, we declare s to be a τ�f -stage.

Let the true path at stage s, TPs, be the unique σ of length s such that
s is a σ-stage.

Definition 3.12. Let the true path TP be the leftmost path of T visited
infinitely often. I.e. let TP be the unique path of T such that

σ ≺ TP iff ∃∞s(σ ≺ TPs) ∧ ∃∞s(TPs <lex σ), and s is a σ stage

where <lex is the lexicographical ordering.

Definition 3.13. We say that Pσ,x requires attention at a σ-stage s > |σ|
if f|σ|(x)[s− 1] �= f|σ|(x)[s] ↓= y.

Construction. At stage s, proceed as follows.
Step 1. Compute the current true path TPs, then initialize all strategies

nodes attached to nodes to the right of TPs.
To initialize a α : Pe,x node, stop the computation of fe(x), remove the

current value (if any) from TAs
z and reset fe(x) = 0.

To initialize a β : Ne node, halt on tracing ΦAs
e . The next time it is

eligible to act, at say stage k, restart tracing ΦAk
e from 0.

Step 2. Check if any nodes is eligible to act. A strategy τ of length t be
eligible to act at substage t of stage s ≥ t if τ has the correct guess about
the current outcomes of all σ ⊂ τ . in addition:

A α : Pe,x strategy node is eligible to act if it either believes that ΦA
e is

partial or ΦAs
e has converged for large enough y. That is, ΦAs

e has converged
for each x ≤ y, where y is an encoding of the triplet �he(x),α, kint(α)�

A β : Ne strategy is eligible to act if it is an e-expansionary stage.
If no strategy is eligible to act, continue to stage s+ 1.

Step 3. For each strategy that is eligible to act, they act depending on
the type of strategy:

A α : Pe,x strategy will begin computing fe(x). Whenever it requires
attention, remove its previously converged value with an A-change and enu-
merate y ∈ TA

x with high use on A. In other words, α : Pe,x acts each time
it requires attention. Once α : Pe,x has acted, initialize all nodes properly
extending α

A β : Ne strategy will trace each new value ΦAs
e (x) that converged during

the e-expansionary stage into Vx.
End of Construction.

Verification. We first show that all values has been traced and that the
traces are bounded.

Claim 3.14. Each P -requirement has been met.

Proof. For an arbitrary α : Pe,x node, we assume that ΦA
e is total. Choose

a stage s such that ΦAs
e has converged for large enough y and TPt is not

to the left of α for all t > s. We can assume that we are on the true path
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and it has had the correct guess about ΦA
e up until now. Hence such a stage

must exist.
Now, since both requirements for eligibility have been met, α : Pe,x is now

eligible to act. By the minimality of s, this is the first time α : Pe,x has been
visited. So it will begin computing fe(x). As fe is an ω-c.a. function, it has
only finitely many mind changes.

Consider the true path in the limit, the function fe(x) will make its final
mind change, yield a value, and α : Pe,x will require attention. The value
will be traced into TA

x and the previous value removed. Thus satisfying
α : Pe,x.

Claim 3.15. Each |TA
x | ≤ x× 2x.

To calculate the bound we count the number of nodes capable of con-
tributing elements.

There are at most x functions f enumerating elements into TA
x as we are

only tracing fe(x) for e ≤ x. A P strategy node not on the eventual true
path may have started its computation, enumerated an element into TA

x ,
and was never visited again. There are at most 2x number of these nodes on
a binary tree. Since at most x functions needs to be traced, we can conclude
that:

|TA
x | ≤ x× 2x

�
Claim 3.16. Each N -requirement is met, each |Vy| ≤ y2 × 2y.

Proof. Consider Ne. Let β = TP�e. If β�0 ≺ TP then there are only finitely
many e-expansionary stages, so ΦA

e is not total, it need not be traced and
Ne is met.

The only interesting case is when β�∞ ≺ TP and ΦA
e is total. We show

that each ΦA
e (y) has been traced with a computable bound. Let s be the

least stage such that no P -strategy node attached to a prefix of β acts after
stage s and TPt is not to the left of σ for all t > s. This stage exists as each
positive strategy node acts finitely often.

At this stage, if ΦAs
e (y) has been traced then we are done, as no P -

strategy nodes will initialize the requirement. If not, we wait until the next

e-expansionary stage s� such that Φ
As�
e (y) ↓, this must exist as ΦA

e is total, at

this stage β : Ne becomes eligible to act and acts by tracing Φ
As�
e (x). Since

β will no longer get initialized, we have ΦA
e (y) = Φ

As�
e (y). Thus ΦA

e (y) ∈ Vy

for each y and Ne is met.
For the bound on Vy we count the maximum number of initializations on

the negative requirements.
By the construction, β : Pe,x can not change ΦA

i �y where y is encoding
of the triplet �he(x),β, kinit(β)�. β is allowed to make a contribution when
it makes a mind change. For each initialization there is at most he(x) mind
changes. Both kinit(β) and he(x) is at most y, the contribution can be no
greater than 2y. Since we are using a binary tree, there are at most 2y such
β. Hence we have the desired bound

|Vy| ≤ y2 × 2y.
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�
As shown above, the requirements have all been met, and both |TA

x | and
|Vy| are computably bounded, which concludes the proof of the theorem. �

3.2. Non-ω-c.a.-tracing can be close to ∅�.

In [21, 8.4.27], Nies showed that for any ∆0
2 set A, superhighness is equiv-

alent to jump traceable hardness, which implies ω-c.a.-tracing. Thus we can
conclude that every superhigh ∆0

2 set is ω-c.a.-tracing. This, however, does
not translate to high c.e. sets. The following is in some way the dual of
Theorem 3.1.

Theorem 3.17. Some high c.e. set A is not ω-c.a.-tracing.

Proof. This is similar to tree construction for building a high minimal pair.
Define an ω-c.a. function g. We meet the requirements

Ne : ∃x g(x) �∈ TA
e,x,

where (TA
e,x)e,x∈N is uniform listing of all oracle c.e. traces with bound x.

We also meet the usual highness requirements

Pr : Inf(r) = lims Γ(A; r, s),

where Inf = {r : |Wr| infinite} is the canonical Π2-complete set.
Use methods from the tree construction of a high minimal pair as in [26].

Guess on the tree whether ∅��(r) = 0. This yields a notion of α-correct A-
computations, where α is a string.

Strategy for α : Pr. Enumerate the r.e. setWr and keep defining Γ(A; r, s)
to equal 0 for larger and larger s, with some use u(r, s) bigger than any
number mentioned thus far in the construction. Then

Step 1. Define a parameter n.

Step 2. Wait for a new number ≥ n to appear in Wr at some stage s, then
for each s� ≤ s, we enumerate the current use u(r, s�) into A (if currently
the function Γ(A; r, s�) ↓= 0) and redefine Γ(A; r, s�) = 1 with the same use
as before.

Step 3. Increment n by +1 and go back to Step 2.

Notice that the axiom defining Γ(A; r, s�) does not depend on A. As long
as the strategy is prevented from redefining Γ(A; r, s�) from 0 to 1 at most
finitely often, it will ensure the requirement.

We say that the outcome of a Pr-strategy is finitary, denoted as the 1
strategy node, if the strategy resets Γ(A; e, s�) = 1 only for s� ≤ some fixed
v, and the parameter n reaches a finite limit n0. Note that this means
n0 − 1= max(Wr) and Wr is finite. Similarly, we say that the outcome of
a Pr strategy is infinitary, denoted as the 0 strategy node, if the strategy
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resets Γ(A; e, s�) = 1 for all s�. Note that this will mean the set Wr contains
arbitrarily large numbers and is thus infinite.

In either case, we have Inf(r) = lims Γ(A; r, s) as required.

We let the current outcome of the P -strategy at stage s be finitary if the
parameter n remains unchanged at n0 during stage s. Otherwise, we say
it is the infinitary outcome, denoted ∞. So a true finitary outcome of a
strategy is the current outcome of the strategy at co-finitely many stages
whereas a true infinitary outcome of the strategy is the current outcome
only at infinitely many stages.

Strategy for α : Ne. Pick large x. Define g(x) to be a fresh large number
y. Whenever g(x) = y ∈ TA

e,x via an α-correct computation, we believe that

y can not leave TA
e,x. Hence we can increase g(x) and initialize all weaker

requirements as follows:
To initialize a β : Ne strategy, force g to choose a fresh large number x,

define g(x) = 0.
We denote sα at stage s to be the least stage s� ≤ s such that α is on the

true paths at stage s� and α has not been initialized since stage s.

Construction. Our tree of strategies T will be a subtree of the binary tree
2<ω, where 0 and 1 will denote the infinite and finite outcomes respectively.
At stage s, we define a stage sσ = sσ[s] to be the least stage s� ≤ s such
that σ ⊆ δs� and σ hasn’t been initialized since stage s�.

Stage s = 0. For each r, let the parameter n = 0 for all Pr, Γ(A, r, 0) = 0
with use 0 and g(x) = 0 for all x.

Stage s+1. First define the current true path δs ∈ T . Let a strategy σ of
length t be eligible to act at a sub-stage t of stage s ≥ t iff σ has the correct
guess about the current outcomes of all τ ⊂ σ. In addition:

A β : Ne strategy is eligible to act if an α-correct computation g(x) =
y ∈ TA

e,x.
Search for the strategy of the least length that is eligible to act. Then

perform actions depending on the strategy type:
An α : Pr strategy acts by performing step 1 to 3 as described in the

strategy as follows:
Let s0 be the greatest stage t ≤ s such that α ⊆ δs0 , if no such stage

exists, then move on to stage s + 1. Suppose α was first eligible to act
at stage s, we set the parameter n to be the last stage it was initialized,
denoted sinit(α). If no elements enters Wx,s0 , we set Γ(A;x, s�) = 0 with
the previous use (for all s� ≤ s such that Γ(A;x, s�) is currently undefined)
unless Γ(A;x, s�) = 0 has not been defined before stage s, in which case we
select a fresh large number u(r, s�) as its use and let α��1� be eligible to act

next.
Otherwise, if some n enters Wx,s0 , enumerate the use u(x, s�) into A for

all s� ≥ sα such that Γ(A;x, s�) = 0. Then define Γ(A; , x, s) = 1 with use
−1 for all Γ(A;x, s) that is now undefined and let α��0� be eligible to act

next.
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In addition, as a protection procedure, at the end of any stage, we force
the strategy to redefine Γ(A; r, s) to its previous value with the same use if
it is now undefined due to an A-change.

A β : Ne strategy acts by redefining g(x), since the computation for
g(x) = y ∈ TA

e,x is α -correct, the strategy believes in the computation.
Select a fresh large number y�, set g(x) = y� and initialize all weaker re-
quirements.
End of Construction.

Verification. Define the true path f ∈ [T ] of the construction by:
f(n) = µk ≤ 1 such that f �n��k�, k ∈ {0, 1}, is eligible to act infinitely

often.

Lemma 3.18. (True Path Lemma).
(i)The true path f is well-defined.

(ii) For all strategies σ ⊂ f , it is initialized finitely often and thus sσ[s]
eventually reaches a finite limit.

Proof. (i) Our tree T is finitely branching, and lims|δs| = ∞.
(ii) Apply induction procedure on |σ|. Assuming a stage where no τ ⊂ σ

is initialized by any stronger strategies. σ can only be initialized in a future
stage s only if δs < σ. This can only happen at finitely many stages by the
definition of f . �
Lemma 3.19. For each r, Inf(r) = limsΓ(A; r, s), and hence A is high.

Proof. Fix r and the Pr strategy α ⊂ f ,
First assume that Wr is finite. Choose a stage s0 ≥ sα such that α ⊂ δs0

and Wr = Wr,s0 . At this point, no more Γ(A; r, s) will be defined to = 1 by
any Pr strategy.

Now assume that Wr is finite. By step 2 of the construction, Γ(A; r, s) = 1
for all s ≥ sα with use −1. �
Claim 3.20. The function g is ω-c.a.

First notice that as long as α : Ne is not initialized, all relevant compu-
tations y ∈ TA

e,x are α-correct. The size of TA
e,x is bounded by the order

function 2x. So the α-correct computations will increase g(x) at most 2x

times.
However, we need to take into account the interaction between strategies.

Consider a β : Ne strategy below the 0 outcome of an α : Pr strategy. Let s
be the least stage where β becomes eligible to act for the first time or when
g(x) = y enters TA

e,x.
Since each α strategy is sinit(α)[s�] at some stage s�, and sinit(α) ≤ s.

The use that Pr strategies puts into A are numbers too small to affect the
membership of any elements in TA

e,x that interacts with g(x).
Also, β strategies always force g(x) to redefines itself large, at stage s, β

chooses a new value for g(x) larger than all numbers seen in the computation
so far, which by definition is larger than any already defined use value for
all α strategies above.

Hence, by the argument above, the relevant A computations are protected,
if a new value g(x) were to enter TA

e,x, it can not leave allowing us to redefine
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g(x) and not worry about the bound on the number of changes as it will
remain ≤ |TA

e,x|. �

An alternative way to the proof was suggested by Nies in the 2012 Logic
Blog, instead of using a tree of strategies, one could set:

Pr : ∅��(r) = limnA[r](n),

and use an α-correct approach on g(x). However, the above method has the
advantage of being more intuitive, and hence was chosen to be presented in
this thesis.
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4. Schnorr randomness relative to ∅�

The main focus of this section of the thesis is Schnorr randomness. It is
a notion proposed by German mathematician Claus P. Schnorr. He first in-
troduced it as an alternative approach to the definition of an algorithmically
random sequence. Recall that a Schnorr test is the same as a Martin-Löf
test with λ(Un) = 2−n with the same pass condition. We also define the
concept of full relativization for a randomness notion C to an oracle A. This
is denoted by C[A] and indicated with the phrase “relative to A”.

Here we will show that with a full relativization approach, we can find
some equivalences between Martin-löf randomness, Schnorr randomness and
limit randomness. Limit randomness s a notion derived from Demuth ran-
domness, similar to the underlying idea in the limit lemma, we decide that
the tests should not be fixed, but allowed to change some amount of times:

Definition 4.1. A limit test is a uniform sequence {Un}n∈N of c.e. classes
such that for each n ∈ N, λ(Un) ≤ 2−n, and there is a function f ≤T ∅� such
that Un = [Wh(m)]

≺.
A set A passes the limit test if it passes in the Solovay sense: A /∈ Un for

all but finitely many n.

We shall denote the class of sets that is Schnorr random relative to ∅� as
SR[∅�].

The main goal here is to demonstrate that for all low A, MLRA, SR[∅�]
and limit random are the same notions. As mentioned in the introduction,
the first result here will be quite useful later in section 6.

Theorem 4.2. A is limit random if and only if A is Schnorr random relative

to ∅�.

Proof. (⇐) :Given a limit test {Un}n∈N, for each Un, we can find a h ≤T ∅�
such that Wh(n) = Un. Now, construct a SR[∅�] test as follows:

Let Rm =
�

k>mWh(k) .

Since h ≤T ∅�, this is a Σ0
1(∅�) set. So all that is left is to ensure that

λRm is computable in ∅�. In other words, we need to find a sequence of ∅�
computable rationals q0, q1, q2, q3, ... → Rm such that | Rm − qn |< 2−n for
all n.

Notice that for λ(
�

m<k<nWh(k)):

λRm − λ(
�

m<k<nWh(k))=λ(Rm −
�

m<k<nWh(k)) ≤ λ(
�

p>nWh(p))

Since Wh(m) is a limit test λ(
�

p>nWh(p)) ≤ 2−n.
However, λ(

�
m<k<nWh(k)) may not be a rational, but we will approx-

imate it by letting qn = λ(
�

m<k<nWh(k)) � n, that is, qn is given by
the first n bits of λ(

�
m<k<nWh(k)). λ(

�
m<k<nWh(k) − qn ≤ 2−n). So

λRm − qn ≤ 2−n + 2−n = 2−n+1.
Hence (Rm)m∈N is a SR[∅�] test.
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For the other direction we use the Schnorr version of the Solovay test and
prove the contrapositive;

(⇒): Let A be not SR[∅�] random, so it does not pass all ∅� total Solovay
tests. Therefore there is a ∅�-computable c.e. open sets (σi)(i∈N)such that

the sum
�∞

i=0 λ(σi) is finite, a computable real and
�

2−|σi| is computable
in ∅�. For A to fail the test it has to extend infinitely many σi.

Hence, we will use ∅� to find a sequence n0 < n1 < n2.... such that
�nk+1

i=nk
2−|σi| ≤ 2−k.

We let:

Gk = [{σi : nk ≤ i < nk+1}]≺

So for each k, λ(Gk) ≤ 2−k and (Gk)k∈N is a limit test. Since A extends
infinitely many σi, there exist a k such that A ∈ Gk. Hence, A is not limit
random. �

Further in Yu Liang’s paper [31, Thm 4.1], he showed that the equivalence
does not stop there. In fact, if a set A is low, then we can construct a MLRA

test that covers all SR[∅�] tests.

Theorem 4.3. Z ∈ SR[∅�] iff Z ∈ MLRA
for all low A.

The following is a modified version of the finite injury argument used by
Yu in the original construction. We do not change the main approach but
add more details to the construction and verification.

Proof. We first start with the easier direction:
(⇒:) A is low, A� ≤ ∅�, so each λ(V A

n ) is computable from ∅�.
Suppose we have a low A and a MLRA test {V A

n }n∈N, we build a SR[∅�]
{UA

n�}n�∈N test as follows:
For each V A

n ask if “λ(V A
n ) > 2n

�
” for each n� ∈ N, this process is Σ0

1.
Next, assign V A

n ⊆ UA
n� where λ(V A

n ) > 2n
�
and n� is maximal.

Lastly, enumerate arbitrary elements into UA
n� to ensure that λ(UA

n�) = 2n
�
.

We can now see that (Un�)n�∈N is a ∅�-computable Σ0
1 sequence with each

λ(UA
n�) = 2n

�
. Hence, a SR[∅�] test.

Each V A
n ⊆ UA

n� for some n�, thus the proof is complete.

The reverse direction is proved using a finite injury argument:
(⇐:)For every ∅�-Schnorr test {U∅�

n }n∈N, we construct a low A and aMLRA

test {V A
n }n∈N such that

�
n∈N U∅�

n ⊆
�

n∈N V A
n .

Without loss of generality, we force each λ(U∅�
n ) to equal 2−2n and U∅�

n+1 ⊆
U∅�
n . The following requirement is sufficient:

Pe : U∅�
e ⊆ V A

e ;

We also meet the usual lowness requirement as in Theorem [3.3]:

Ne : (∃∞s ΦA
e (e)[s] ↓) ⇒ ΦA

e (e) ↓.
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The idea is that we first decompose Pe into infinitely many sub-requirements
P�e,n�. At each P�e,n�, define the subset

U∅�
e � n = {σ ∈ 2ω : |σ| ≤ le,n ∧ σ ∈ U∅�

e }

where le,n is the least l such that λ(U∅�
e ∩2≤l) > 2−e(1− 2−2n). This measure

converges to the true measure of U∅�
e as n → ∞. At stage s, we can now

define the relative ∅�-Schnorr test:

U∅�
e [s] � n = {σ ∈ 2ω : |σ| ≤ le,n[s] ∧ σ ∈ U∅�

e [s]}.

Therefore each sub-requirement is of the form:

P�e,n� : U
∅�
e � n ⊆ V A

e

Notice that, in the limit, it’s sufficient to just satisfy those P�e,n�’s such that
e ≥ n.

With the above set up, we now construct a function f to aid the positive
requirements as follows:

f(e,σ, s, n) =

�
1 if σ ∈ U∅�

e [s] � n
0 otherwise

The function serves as a tracker to help to build the set V A
e accordingly

whenever a σ enters or leaves U∅�
e . Next, we move on to setting up the

negative requirements. As per usual in finite injury arguments, we set up
the restraint function r(e, s) > ϕZs

e (e) where ϕZs
e (e) is the use function of

ΦZ
e (e)[s]. Now define:

R(e, s) =
�

i≤e r(i, s).

This will serve as a restraint to protect the computation Φe(e)[s].
Strategy for Ne: Use the same strategy as Theorem 3.3 except with the

restraint function R(e, s).
Strategy for Pe: We use a similar method used in the Friedberg and

Muchnik solution to Post’s Problem. Define our function with input of the
form �e,σ, ts�. At any stage s, instead of attaching a single σ as a follower, we
attach a triplet �e,σ, ts� to σ. The ts acts as a tracker for whenever we need
to attribute a new follower. Whenever f(e,σ, s, n) = 1 and f(e,σ, s, n�) = 0
for all n� < n, set zs(�e,σ, ts�) = 1 and zs(�e,σ, ts�) = 0 if σ exists. Our
Martin-Löf test would then be defined as the set of triplets that yields 1
in A.

Construction At stage s, proceed as follows: For any σ with le,n[s] ≥
|σ| > le,n−1[s], if either it has no follower at stage s or the follower has been
initialized in stage s− 1, we allocate a new follower �e,σ, ts� to σ with fresh
large number ts; otherwise, let the old follower stay unchanged by setting
ts = ts−1.

Next, find the requirement with the highest priority requiring attention.
A P�e,n�-type strategy requires attention if one of the following holds:

1) σ enters U∅�
e [s] � n− U∅�

e [s] � (n− 1) but zs(�e,σ, ts�) = 0.
The action is to set zs+1(�e,σ, ts�) = 1; or
2) σ leaves U∅�

e [s] � n but zs(�e,σ, ts�) = 1.
The action is to set zs+1(�e,σ, ts�) = 0.
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We say that P�e,n� has received attention. To avoid conflict between P�e,n�
and a weaker P�e�,n��, once P�e,n� has received attention, initialize all the
parameters for P�e�,n��.

A Ne-type strategy requires attention at stage s if ΦA
e (e)[s] ↓ but Ne has

not received attention after it has been initialized before stage s. Restrain all
weaker P -type strategies from changing A by initializing all weaker strate-
gies. This way, since we assume that the use of the computation at stage s
can not exceed s, all relevant computations of As are protected. We then
say that Ne receives attention.

To initialize a Pe,x-type strategy, reset its follower by setting zs+1(�e,σ, ts�) =
0. Then, select a fresh large number k, let ts+1 = k.

To initialize a Ne-type strategy, cancel its computations on ΦA
e (e) (this

includes resetting the using function) and restart the computation during
stage s+ 1 with R(e, s) = 0.

If no requirement needs attention, do nothing, proceed with next stage
with zs = zs+1 and ts = ts+1.

Finally, define: V A
e = {σ | ∃s[zs(�e,σ, ts� = 1)]}.

End of Construction.

Verification. We first show that the injury set is finite, then show each
requirement has indeed been met. Define the injury set Ie for Ne in the
same way as in Theorem 3.3.

Claim 4.4. The injury set Ie is finite for all e.

Proof. We argue by looking at the injuries caused by each P�e,n�. Suppose
P�e,n� is a stronger requirement than Ne. P�e,n� injures Ne each time �e,σ, ts�
changes membership in U∅�

e � n. Since U∅�
e , is a ∅�-Schnorr test, this happens

finitely often. As there are only finitely stronger P�e,n� requirements, the
injury set must be finite.

Also, notice that if P�e,n� ever becomes initialized at some stage s, it would
choose a fresh large number ts+1, this number will ensure it can not injure
any computation in Ne up to stage s as they are less than ts+1. �
Claim 4.5. For every e, requirement Ne is met and r(e) = limsr(e, s) exists.

Proof. The argument is the same as in Theorem 3.3: fix e, by our first
claim, choose a stage se such that Ne is not injured after stage se. If ΦAs

e,s(e)
converges for s > se, then by induction on t ≥ s, r(e, s) = r(e, t) and
ΦAt
e,t(e) = ΦAs

e,s(e) for all t ≥ s. So A � r = As � r. Hence ΦA
e (e) is defined by

the use principle. �
Claim 4.6. Each positive requirement is satisfied and {V A

e }e∈N is a A-

Martin-löf test.

Proof. U∅�
e ⊆ V A

e for every e by definition. So all that is left to check is that
{V A

e }e∈N has the appropriate measure.
First not that each P�e,n� contributes no more than 2−2e−(2n−1) measure

of clopen sets into V A
e for any pair �e, n�.

Secondly, by Claim 4.4, each Ne is injured finitely often. For each P�e,n�
with e ≥ n, there are e many negative requirements with higher prior-
ity. Once a stronger requirement set up a restraint function, P�e,n� can not
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change its parameters less than the restraint. So P�e,n� can make at most
2n mistakes. Thus for e > 1 we have:

λ(V A
e ) ≤

�
n∈N(2

n)× 2−2e−(2n−1) ≤
�

n∈N 2−2e−n+1 = 2−2e+2 ≤ 2−e.

�
We have shown that {V A

e }e∈N is a ML-test for e ≥ 2, the requirements
are satisfied and

�
n∈N U∅�

n ⊆
�

n∈N V A
n . This, with the previous direction

gives us the theorem.
�
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5. Randomness and cuppablity

We begin this section with the necessary definitions:

Definition 5.1. We say A is (weak) Demuth cuppable if there is a (weak)
Demuth random set Z such that A ⊕ Z ≥T ∅�. If one can choose Z <T ∅�,
then A is Demuth cuppable.

Definition 5.2. A set A is weakly ML-cuppable if there is an incomplete
Martin-Löf random set Z such that A⊕Z ≥T ∅�. If one can choose Z <T ∅�,
then A is ML-cuppable.

In this section, we study in to the relationship between Demuth random
sets, superlow sets and the K-trivials. We work towards the following result,
that for any c.e. set:

K-trivial ⇒ weak Demuth noncuppable ⇒ superlow,

Recall that A is K-trivial if K(A � n) ≤ K(n) + c for some constant c.
Where K is the prefix-free Kolmogorov complexity. For the sake of this
section, it is easier to think of the K-trivials as the sets that contain no
random content. Kuĉera originally hypothesised that the notion of Demuth
noncuppable can be used to characterize K-triviality. However the first
formal proposition of the idea was posed as an open question in Nies and
Miller’s paper [19]. The question was then investigated by Adam Day and
Joel miller, in their paper [6]. There, the first implication was proved, how-
ever, the result they arrived was stronger than originally expected. They
showed that K-trivial even implies Martin Löf-noncuppablility:

Theorem 5.3. [6, Day/Miller, Theorem 3] No K-trivial set is weakly ML-

cuppable.

The proof of the theorem builds on work of Franklin and Ng, and Bienvenu
[14], Hölzl, Miller and Nies [5]. These are some of the tools that were used
in the Day/Miller result:

Definition 5.4. We define the lower (Lebesgue) density of ρ of a effectively
closed set D in the unit interval at a point x to be the quantity:

ρ(x | D):= lim infδ→0+
λ([x− δ, x+ δ] ∩D)

λ([x− δ, x+ δ)

This notion measures what fraction of the space is filled by D around x if
we zoom in in the limit. Note that the density of a set at a point is always
between 0 and 1.

We say that x is a point of positive lower density in D if ρ(x | D) �= 0.

Theorem 5.5. (Bienvenu, Hölzl, Miller, Nies). Suppose x is Martin-Löf

random, then x is Turing complete iff x has lower density zero inside some

effectively closed class D.

Proof. The idea is to show that, given rational �, we can construct an effec-
tively closed class D� such that x ∈ D� and λ(D� | x �n) < � for some n. It
then suffice to let D:= ∩�D� for an effective list of � that tends to 0.
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Fix � > 0, in this construction, to build the list of D�, we first build an
auxiliary c.e set W . By the recursion theorem, since x is complete, we can
assume to know in advance a Turing reduction such that Γx = W.

The idea of the construction is that we want to lower the density of D�

around x, to do this we need to remove reals from D� without inadvertently
removing x itself. Using the fact that W is controllable, we keep observing
the results of the reduction until we see a certain type of behaviour (reduc-
tion outputs 0) on all oracles except a fraction of �. Since x computes W
it certainly cannot among the 1-� fraction of oracles with the special be-
haviour. So we can safely remove them from D�.

Formal construction. Instead of a direct construction, we give an effective
procedure P (σ, k, �) that enumerates the complement of D�.

Step 1 Pick a fresh number n = (σ, k)
Step 2 Enumerate the set V of reals y that extends σ and satisfies Γy = 0.

By the use principle, this will always happen on whole open cylinders of y’s.
Therefore we can represent V by a prefix free enumeration of finite strings.
As long as the conditional measure of V above σ does not exceed 1−�, put
every enumerated string into Uk and for each of them, start the procedure
P (τ, k + 1, �).

Step 3 At stage s, if some new τ is found such that Γτ (n) = 0 but the
conditional measure Uk[s]∪{τ} above σ exceeds 1−�, then enumerate n into
W , enumerate all of Uk[s] ∪ {τ} into the complement of D�, and terminate
the whole tree of procedures.

Verification. We show that the procedure yields the desired result. Claim
1 guarantees the safety of x while Claim 2 ensures that we will not wait
forever, since in that case the measure of D� would forever remain equal
to 1. The idea of the argument is that if we do not eventually observe the
behaviour, there is a descending chain of Martin-Löf tests {Uk}k∈N covering
x. This of course contradicts that x is Martin-Löf random.

Claim 1. x remains in D� at all times during the construction: when we
put a string τ into the complement of D� during a procedure in step 3, this
τ has to satisfy Γτ (n) = 0, and we precisely make sure at that point that
n ∈ W . Since Γx=W , this shows that τ � x.

Claim 2. The conditions for step 3 will eventually be met: (note that this
is required as if for some prefix σ of x and some k, the procedure P (σ, k, �)
gets executed and reaches step 3, then we are done since step 3 ensures that
λ(D� | σ) < �).

If P (σ, k, �) is a procedure that is executed but never reached step 3, then
n = n(σ, k) never gets enumerated into W , therefore Γx(n) = W (n) = 0.
Hence by step 2 it must be the case that some prefix σ� of x is put into Uk

and procedure P (σ�, k + 1, �) is executed.
Observe that (Uk)k∈N is a Martin-Löf test, as each time a string σ is

enumerated in Uk, some extensions are enumerated into Uk+1 by step 2
during procedure P (σ, k+1, �). Each of the strings above σ weighs at most
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1−�, therefore we have λ(Uk+1) ≤ (1− �)λ(Uk) for all k. By induction this
shows that λ(Uk+1) ≤ (1− �)k+1 for all k.

We have shown that if step 3 is never reached in any of the executed
procedures P (σ, k, �) with σ � x, the x ∈ [Uk] for all k. However this is a
contradiction as x is Martin-Löf random.

�
Relativization of Theorem 5.5 gives the following corollary:

Corollary 5.6. Fix A. If X is a set Martin-Löf random relative to A and

A ⊕ X ≥T A�
, then there exists a Π0

1(A) class P such that X ∈ P and X
has lower density zero in P .

We need one more result in order to prove Theorem 5.3.

Definition 5.7. (Nies 2002) Let A and B be Turing oracles. We say that
A is LR-reducible to B, written A ≤LR B, if

∀X(X is B-random ⇒ X is A-random).

Lemma 5.8. Assume A ≤LR B. Let f : ω → ω be recursive. For all A-r.e

sets I such that
�

i∈I 1/2
f(i) < ∞, there exists a B-r.e set J ⊇ I such that�

j∈J 1/2
f(j) < ∞.

Proof. We use the following fact from analysis. Given 0 < ai < 1, i =
0, 1, ..... we have

�∞
i=0 ai < ∞ if and only if

�∞
i=0(1− ai) > 0.

Let A,B, f, I be as in the hypotheses of the lemma. Without loss of
generality we assume that f(i) �= 0 for all i. Let g(i) =

�i−1
k=0 f(k), define a

set Di of strings as follows:

Di={X ∈ 2ω | ∃n(X(n) = 1 and g(i) ≤ n < g(i+ 1) }

Note that the function g(i) is strictly increasing so the Dis are mutually
independent and each Di is clopen as Di = [Y ]≺ for some finite set Y ⊆
{0, 1}∗.

Now we represent a set P Π0
1 in A by defining P =

�
i∈I Di, by the original

hypothesis, we assumed that
�

i∈I 2
−f(i) < ∞, hence λ(P ) =

�
i∈I λ(Di).

Since each the weight of each Di only depends on the depth of f(i) on 2ω

we have λ(Di) = 1− 1/2f(i), and so λ(P ) =
�

i∈I(1− 1/2f(i)).
Choose Q ⊆ P be Π0

1 in B, choose strings with non-zero weight so λ(Q) >
0. Let J = {i | Di ⊇ Q}, J is B-r.e. and each i ∈ I ⇒ i ∈ J . Its easy to see
that

�
j∈J Dj ⊇ Q, so we have

�
j∈J(1 − 1/2f(j)) =

�
j∈J λ(Dj). Since the

Dis are measurable sets,
�

j∈J λ(Dj) = λ(
�

j∈J Dj).
We defined Q ⊆ P =

�
i∈I Di so we have λ(

�
j∈J Dj) ≥ λ(Q) and we also

chose λ(Q) to be always positive, hence λ(
�

j∈J Dj) > 0.

By our earlier fact, we can conclude that
�

j∈J(1 − 1/2f(j)) > 0 iff
�

j∈J 1/2
f(j) < ∞. �

With Lemma 5.8 and the following definition, we can arrive at Corollary
5.10 by taking f to be the identity function and set B as the halting problem.

Definition 5.9. Let I be a set of finite strings. We call I bounded if:
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�
i∈I 2

−|i| < ∞.

Corollary 5.10. Let A be a K-trivial set and WA be a bounded set of strings

that is c.e in A, then there exists a bounded c.e. set of strings W such that

WA ⊆ W .

Now we finally have the tools needed to prove Theorem 5.3.

Proof. Nies showed that all K-trivial sets are low, so we define a K-trivial
set A and a Martin-Löf random set R such that A⊕R ≥T ∅�. Then we show
any such set R must be complete. By Theorem 2.19, all K-trivial sets are
low for Martin-Löf randomness. Hence R is Martin-Löf random relative to
A. By Corollary 5.5, there exists a Π0

1(A) class PA such that R ∈ P and R
has lower density zero in PA.

Let WA be an A-c.e. prefix-free set. Construct a set PA by taking all
strings that do not properly extend any σ ∈ WA, i.e. PA = {X ∈ 2ω : (∀σ ∈
WA)σ ⊀ X}. Since WA is prefix-free, its easy to see that it has bounded
weight. So by Corollary 5.10, we can find a bounded c.e set of strings W
such that WA ⊆ W .

R is Martin-Löf random, so it passes all Solovay tests. Since W has
bounded weight, its must be a Solocay test. Hence there must be finitely
many initial segments of R in W . We defined PA to force R and WA to be
disjoint, so no initial segment of R is in WA.

Now, begin by removing from W all initial segments of R. (Notice that
W is still a bounded weight c.e. superset of WA.) Then define a P ⊆ PA to
be all strings that do not properly extend any σ ∈ W , i.e. P = {X ∈ 2ω :
(∀σ ∈ W )σ ⊀ X}. Since R ∈ P and R has lower density zero in PA, R has
lower density zero in P . So by Theorem 5.5, R is a complete Martin-Löf
random set.

As R is chosen arbitrarily, A K-trivial, we can conclude that any R such
that A⊕R ≥T ∅� is complete, hence A can not be weakly ML-cuppable. �

The second implication that weak Demuth noncuppable ⇒ superlow is
shown in [12]. They use that for c.e. sets A, superlow = ω-c.a. jump domi-
nated.

Definition 5.11. A set A is ω-c.a.-jump dominated if there is an ω-c.a.
function f(x) and ΦA

x (x) ≤ f(x) for each x that ΦA
x (x) ↓.

Proposition 5.12.
(i) Every superlow set is ω-c.a.-jump dominated.

(ii) For c.e. sets, the converse implication holds as well.

Proof. (i) Suppose {As}s∈N is a computable approximation of a superlow set
A, and f is a computable function such that limsf(x, s) = A�(x) for every
x, with computably bounded number of mind changes. Let ϕe be the e-th
partial computable function. We define uniformly c.e sets Ui,x,e as follows.
For each s such that

1. ϕe(x)[s] ↓,
2. f(ϕe(x), s)=0, (ϕe(x) /∈ A� at stage s)
3. |{t < s : f(ϕe(x), t) �= f(ϕe(x), t + 1)}| ≤ 2i, (the number of mind

changes at stage s for f is bounded by 2i) and
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4. JAs(x)[s] ↓,
we enumerate the shortest initial segment σ of As such that Jσ(x)[s] ↓

into Ui,x,e. Now define r(e, x) to halt and output x iff 1. 2. 3. holds. This
way Φσ

e (r(x, e)) ↓ iff some τ � σ is in
�

i Ui,x,e. By the recursion theorem,
we will fix e such that r(x, e)=ϕe(x) for all x.

Define a function g as follows. If r(x, e) /∈ A� then let g(x) = 0. Otherwise,
there is an i such that there are exactly 2i+1 (i.e. odd) many f(r(x, e),−)
changes. Let g(x) be the maximum of all Jσ(x) such that σ ∈ Ui,x,e. g(x)
may only make mind changes if Ui,x,e has not been stabilized yet. That is,
f(r(x, e), s) reached the least stage t such that it has changed exactly 2i+1
many times. Hence, the number of mind changes g can make is bounded by
a computable function. Therefore it is ω-c.e.

Now we prove that each Jσ(x) ≤ g(x). Suppose that JA(x) ↓, let σ be the
shortest initial segment in which JA halts on. Then r(x, e) ∈ A�, as if not,
we have f(ϕe(x), s)=f(r(x, e), s) = 0 at some stage s, so we put σ into Ui,x,e

for some i. But then JA(r(x, e)) ↓ so r(x, e) ∈ A�, which is a contradiction.

(ii) Suppose that A is a c.e. set, g(x) a ω-c.a. function that dominates
JA(x) for all x such that JA(x) ↓. So g(x) can be approximated by some
g(x, s) with a computably bounded number of mind changes. Let c be a
computable function such that c(x) is the least y such that JA(y) ↓ and
JA(y) greater than the least s such that JA(x)[s] ↓. We aim to build a
function p such that A�(x) = limsp(x, s) and has a computably bounded
number of mind changes. Define p as follows:

p(x, s) =

�
1 if JA(x)[g(c(x), s)] ↓
0 otherwise

Notice that s = JA(c(x)) ≤ g(c(x), s). So x ∈ A� iff there is some s such
that JA(x)[g(c(x), s)] ↓. Hence A�(x)=limsp(x, s). It is also easy to see that
the number of p(x, s) changes can not exceed that of g(c(x), s), since p(x, s)
may make a mind change only if g(c(x), s) has made a mind change and it
is greater than all g(c(x), t), t < s. So A is superlow. �

The negation of this second property implies High(MLR,weak Demuth).
Thus if a c.e. set A is not superlow, ΩA is weakly Demuth random (a set
is weakly Demuth random if it passes all Demuth tests such that [Wh(0)] ⊇
[Wh(1)] ⊇ [Wh(2)]....) and cups A above ∅�. Therefore the following should
be enough to complete the second implication:

Proposition 5.13. If A is not ω-c.a.-jump dominated then A is High(ML-

random,weakly Demuth random).

Proof. Suppose A is not High(ML random, weakly Demuth random). Let
Z be a ML-random set relative to A and fix a weak Demuth test (Gm)m∈N.
Since Z is not weakly Demuth random, Z ∈ Gm for every m. Let f be the
ω-c.a. function such that [Wf(m)]

≺ = Gm for all m. The idea to show that

there is a ω-c.a. function g that dominates each JA.
Fix m. Let 0 = s0 < s1... < sN list all s such that f(m, s) �= f(m, s− 1).

To construct g, first define a oracle A-Solovay test (Sm)m∈NN as follows:
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At stage t, let i be the largest stage si such that si ≤ t. For each initial
segment σ of A such that Jσ(m) converges for the first time at stage t, put
σ into an auxiliary set Ci and put each [τ ] ⊆ [Wf(m,si)]

≺ into SA
m. The total

weight of the strings enumerated into SA
m is at most 2−m for each m. Thus

for almost all m, we have Z /∈ SA
m.

Let g(m) = max{Jσ(m) : σ ∈ Ci ∧ i < N}. Clearly this is a ω-c.a.
function, as the number of mind changes may not exceed N . For any m, if
JA(m) ↓, then the first stage at which JA(m) converges must be less than sN ,
where N is as above, as otherwise we would have Z ∈ Gm=[Wf(m,sN )]

≺ =

[Wf(m)]
≺ ⊆ SA

m. Which is a contradiction. So it follows that JA(m) ≤ g(m).
�

Proposition 5.12 shows that if a c.e set A is not superlow then it is not
ω-c.a. jump dominated. The above implication shows that A would also
be High(ML-random,weakly Demuth Random). For every set A, we have
∅� ≤T A⊕ΩA. So every none superlow c.e. set A is weak Demuth cuppable.
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6. Connecting randomness and tracing

The two tracing classes defined in definition 2.12 and 2.11 relate nicely to
highness for pairs of randomness notions by results in [11, 3]. Recall that
for randomness notions C ⊃ D, we let High(C,D) be the class of oracles A
such CA ⊆ D (A is strong enough to push C inside D). These are said to be
the double highness properties.

In this section we investigate the strength of being ω-c.a. and ∆0
2 tracing.

The work done in [12, 4] gave us a good idea of how these properties can be
characterized in terms of randomness notions. The following is one of the
discoveries made in the paper:

Theorem 6.1. Let A be an oracle.

(a) A ∈ High(MLR,Demuth) ⇔ A is ω-c.a.-tracing.

(b) A ∈ High(MLR, SR[∅�]) ⇔ A is ∆0
2 tracing.

Before we begin to give a proof we need to establish the following lemma:

Lemma 6.2. Suppose {Z | ∃∞n, Z ∈ Un} ⊆ R for open sets Un,R with

λ(R) < q < 1. Then there is a string τ and d ∈ N such that

λτ (R) < q and ∀n > d[λτ (Un −R) = 0]

Proof. Assume for a contradiction the conclusion fails. Define inductively a
sequence of strings (τd)d∈N such that τ0 ≺ τ1 ≺ .... and ∀d λ(R | τd) < q.

Without loss of generality we may start with τ0 being the empty string.
Suppose τd has been defined and λ(R | τd) < q. If the lemma fails, there is a
n > d such that λ(Un−R). So we choose y such that [y]⊆ Un and λ([y]−R
| τd) > 0; in particular, y � τd. By the Lebsegue density theorem we may
choose τd+1 ≺ y such that λ(R | τd+1) < q.

Now let Z =
�

d τd; then ∃∞n such that Z ∈ Un and Z /∈ R, contradiction.
This establishes the lemma. �

The proof for (a) and (b) are very similar, we give the Demuth case first
then show how the idea can be translated to the SR[∅�] case.

Proof. (⇐): Suppose A is ω-c.a.-tracing. Fix a Demuth test (Gm)m∈N. We
aim to cover this test with an A-Solovay test. Let (TA

m)m∈N be a c.e trace
relative to A that traces f . By the Terwijn and Zambella result, the trace
bound can be replaced with any arbitrary order function. Hence choose our
order function to be m, and force |TA

m| ≤ m.
Next, for each m, let the components of TA

m contain the least s such that
f(m)=f(m, s) i.e. the least stage that the function f stabilizes on input m.
Note that since (Gm)m∈N is a Demuth test, by definition Gm = [Wf(m)]

≺

for some ω-c.a. function f for all m.
Build an A-Solovay test (SA

m)m∈N as follows: for each s ∈ TA
m, enu-

merate [Wf(m,s)]
≺ into SA

m, eventually f(m, s) stabilizes and [Wf(m,s)]
≺ =

[Wf(m)]
≺. Gm is a Demuth test, so each [Wf(m)]

≺ has measure at most 2−m,



RANDOMNESS, TRACEABILITY, AND HIGHNESS NOTIONS 37

�
m λ(SA

m) ≤
�

mm2−m < ∞, hence we conclude that SA
m satisfies the con-

ditions for being a Solovay test. By this construction, we have defined a Solo-
vay test that covers all arbitrary Demuth tests. No set that is in infinitely
many Sm is ML-random relative to A. Therefore A ∈ High(MLR,Demuth).

(⇒): Given an arbitrary ω-c.a. function f , we will define a A-c.e. trace
(TA

n )n∈N for f with bound 2n.
It suffices to build an A-c.e. trace for the function given by g(n) :=

nf(n) + n, as if (TA
n )n∈N traces g(n), and we would like to trace f(n),

simply define a new A-c.e trace (TA
x )x∈N by dividing each element in TA

x
by x then taking away 1 from it. (TA

n )n∈N will retain the same bound,
and traces f(x). (Notice that g(n) is divisible by n, this will become very
important later on).

Next we provide detail on how to code information about g into a Demuth
test relative to A. For each n, k ∈ N, let

Bk,n = [{x0n : |x| = k}]≺

Thus Bn,k is the set of reals that have n consecutive 0s starting at the k-th
digit and λ(Bk,n) = 2−n for all k,n ∈ N.

Let Un =
�

n>dBg(n),n. This is a Demuth test as λUn =
�

n>d λBg(n),n ≤
2−n. As Un =

�
n>d[{x0n : |x| = g(n)}]≺ and g(n) is a ω-c.a. function,

Un = [Wg�(n)]
≺ for some ω-c.a. function g�.

Now let R be the second member of the universal ML test relative to A, so
that λ(R)< 2−2. Since MLR[A] ⊆ Demuth,

�
d Ud ⊆ R. By Lemma 6.2 there

is a string τ and d ∈ N such that λτ (R) < 2−2 and λτ (Bg(n),n − R) = 0 for
all n > d. Now let nN denote the multiples of n and consider the following
trace:

Tn = {k ∈ nN | λτ (Bk,n −R) < 2−k−3}.

Since Bk,n is clopen and R is Σ0
1[A], the sequence (Tn) is uniformly c.e. in

A. On the other hand, g is defined to be divisible by n, hence g(n) ∈ Tn for
all but (finitely) at most d many n, by the choice of d, τ .

It remains to show that |Tn| is computably bounded for all n. Note that

λτ (
�

k∈Tn
Bk,n −R) ≤

�
k∈Tn

λτ (Bn,k −R) < 2−2

which implies that

λτ (2ω −
�

k∈Tn
Bk,n) + λτ (R) ≥ 1− 2−2.

Since λτ (R) < 2−2, λτ (2ω −
�

k∈Tn
Bk,n) > 2−1. On the other hand,

λτ (Bk,n) = 2−n for n > |τ |. Since Tn consists of multiples of n, the
sets Bk,n, k ∈ Tn are independent. (Suppose N ∈ N ∪ {∞}, and let Sk

⊆ 2N be measurable for k < N . In probability theory, the events Sk

are called independent if for each finite set Y ⊆ {k : k < N}, we have
λ
�

k∈Y Sk =
�

k∈Y λ(Sk)). Which allows us to conclude that:

1/2 < λτ (2ω −
�

k∈Tn
Bk,n) = λτ

�
k∈Tn

(2ω −Bn,k) = (1− 2−n)|Tn|

for n > |τ |. With some algebraic manipulation, set r = 2n − 1, we get
(1 − 2−n)|Tn| = (r/r + 1)|Tn|, and 2 > (r + 1/r)|Tn|. But (r + 1/r)x ≥ 2 for
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all x > r as (r + 1)r ≥ rr + rr−1(r1) = 2rr. Therefore |Tn| < r < 2n for
n > |τ |. �
Proof. (⇐): By Lemma 4.2 it suffices to cover every limit test with a A-
Solovay test. Fix a limit test (Vm)m∈N. Now each Vm = [Wf(m)]

≺ for some

f <T ∅�. As before, we build the same trace (TA
m)m∈N and A Solovay test

(SA
m)m∈N as part (a) but with a ∆0

2 function f instead of a ω-c.e. one. Again,
each [Wf(m)]

≺ has measure at most 2−m, so
�

m λ(SA
m) ≤

�
mm2−m < ∞

(Vm)m∈N.
By the construction of the Solovay test, it contains all arbitrary limit

tests, and the result follows.

Since we showed that SR[∅�] is in fact the same as limit random, we shall
give the proof for (b) in a different way. Instead of the original proof, which
used ∅� as an oracle to identify components during the construction, we use
the fact that a limit test is just a Demuth test where the function h used
to determine its members is not ω-c.e. but ∆0

2. This allows us to slightly
modify the above proof to reach the desired result:

(⇒): Suppose f is an ∆0
2 function and we wish to build an A-c.e trace

for f with bound 2n. As before, we instead build an A-c.e. trace for the
function by g(n) = nf(n)+n. Let Un = Bg(n),n. Since g is ∆0

2, the sequence
(Un)n∈N forms a limit test. As before, let R be the second member of the
universal ML test relative to A, so that λ(R) < 2−2. By our assumption we
have MLR[A] ⊆ LR, we may pick τ ,d according to Lemma 6.2 where q = 2−2.
Define the same A-c.e. trace:

Tn = {k ∈ nN | λτ (Bk,n −R) < 2−k−3}.

By the lemma we have λτ (R) < q and ∀n > d[λτ (Un −R=0]. Hence , as
before, |Tn| < 2n and (Tn)n∈N is a trace for g. �

6.1. Variations on traceability notions.

We again begin this section with the necessary definitions:

Definition 6.3. Let A be an oracle in 2ω, we say that a function f is
bounded limit recursive by A (abbreviated to BLR�A�) if there is a uni-
formly A-computable sequence of functions fs converging to f , such that
the number of mind changes #{s : fs+1(n) �= fs(n)} is bounded by a com-
putable function.

Its also easy to see that f is BLR�A� iff its computable in A� with un-
bounded A-use but computably bounded A� use.

Definition 6.4. Let A be an oracle, a DemuthBLR�A�-test is a sequence of
{UA

n }n∈N A-c.e. subsets of 2ω such that for each n, λ(UA
n ) ≤ 2−n, and there

is a BLR�A�-function taking n to a A-c.e.-index for UA
n .

We say that a set is DemuthBLR�A� random if it passes all DemuthBLR�A�-
tests.
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Notice that the difference between DemuthBLR�A�-tests and DemuthA

tests is that, for the former, the number of changes that a component UA
n can

make is no longer bounded by an A-computable function but a computable
one. Furthermore, if we set A = ∅�, we obtain the Demuth random sets.

Definition 6.5. An oracle A is Demuth traceable if there is an order function
h, such that every BLR�A� function has an trace Tn bounded by h and there
is an ω-c.a. function taking n to a c.e. index for Tn.

R. Downey, N. Greenberg and A. Nies investigated Demuth traceability
in [4]. For instance, superlow c.e. sets sets are Demuth traceabile.

They also observed that for any set A:

Demuth traceable ⇒ Demuth noncuppable ⇒ not ω-c.a.-tracing.

The second implication follows from Theorem 6.1 by taking ΩA. Suppose
A is ω-c.a.-tracing, then A ∈ High(MLR,Demuth). So MLRA ⊆ Demuth, and
since Ω ∈ MLR, ΩA ∈ Demuth. We know that Ω is Turing-complete and so
∅� ≤T A⊕ ΩA for any set A. Hence A is Demuth cuppable.

The first implication was first proved in [4]. They used the fact shown
in [[21] Thm 3.6.26], the construction shows that if Z is a Demuth random
set, then there is a ω-c.a. function f dominating the jump of Z, hence Z
must be GL1, i.e. Z � ≤T Z ⊕ ∅�. Adding in the full details not present in
the original paper we obtain the following:

Theorem 6.6. Suppose A is Demuth traceable. Then A is not Demuth

cuppable.

Proof. Partially relativizing the result in [21, Thm 3.6.26] we aim to show
that A⊕Y �T ∅� for each Demuth random set Y . In [4] it is shown that each
Demuth random set is DemuthBLR�A� random. So we need to construct a
function f BLR�A� dominating ΓA⊕Y .

To do this first we need to define a Turing functional Γ by

ΓA⊕Y (m) � µs.ΦA⊕Y
m (m)[s] ↓

For f to dominate we require ∀∞m(ΓA⊕Y (m) ↓→ ΓA⊕Y (m) ≤ f(m)).
To build the function f we do so via a construction at stages. First we

let Pm be the set of ms the Turing functional halts on, i.e. Pm = {Y :
ΦA⊕Y
m (m) ↓} and Pm,s = {Y : ΦA⊕Y

m,s (m) ↓} be the approximation at stage
s.

The construction results in two items, the function f and an sequence of
auxiliary clopen sets Qm,s that contains all the oracles Y such that at every
stage of the construction, we have the desired domination.

Formal construction.

At stage 0, let Q0,0 = ∅ and f0(0) = 0
At stage s, reset both Qs,s and gs(s) to its value during stage 0. For each

m > s, let gm,s(m) and Qm,s be the same as stage s − 1, i.e. gm,s(m) =
gm,s−1(m) and Qm,s = Qm,s−1. Otherwise, first we check if the clopen set
Pm,s−Qm,s−1 exceeds 2−m. If λ(Pm,s−Qm,s) > 2−m set Pm,s = Qm,s, and
fs(m) = s (this number is sufficiently large enough to dominate ΓA⊕Y (m)
since all computation at stage s does not exceed s).

End of construction.
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This construction gives us a Demuths test (Um)m∈N for each Y that passes
Sm. If Y is Demuth random then Y /∈ Um for almost all m, so f dominates
ΓA⊕Y .

We can verify that f is indeed BLR�A� as whenever a new oracle is
added, we change the auxiliary set Qm and increase f . These increases to
f(m) can happen at most 2m times, and Q eventually stabilises. Therefore
our construction gives use the necessary Um = Pm −Qm to form a Demuth
test. Hence, if Y is Demuth random then Y /∈ Um for almost all m, so f
dominates ΓA⊕Y .

Lastly, since A is Demuth traceable, f has a ∆0
2 upper bound. Hence

A⊕ Y �T ∅�. �
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7. Tracing for variants of the class of ω − c.a. functions

The following definition is derived by generalizing Definitions 2.12 and
2.11. The intuition is that we will like to investigate traceability without
constantly referring to the Terwijn and Zambella result.

Definition 7.1. Let C be a countable class of total functions on N, f : N →
N.

• A C-Demuth test is a sequence of open cylinders [Wf(m)]
≺
m∈N where f

is in the class C.
•We say that Z is C-Demuth random if for each C-Demuth tests [Wf(m)]

≺
m∈N

we have Z ∈ [Wf(m)]
≺ for all but finitely many n.

• We call a set A C-tracing with bound h if each function in C has a A-c.e
trace (TA

x )x∈N such that |TA
x | ≤ h(x) for each x.

Notice that the trace bound 2x has been replaced with some arbitrary
order function h(x).

With these definitions in mind, its easy to imagine that Theorem 4.2 can
be generalised in some way in terms of C-Demuth randomness. This will be
shown to be true in this section, however, the trace bound is required to be
adjusted, to bounds like as 2mm−2, in order to achieve this double highness
notion.

Lemma 7.2. A is C tracing with a bound g such that
�

g(n)2−n < ∞ ⇒
A ∈ High(MLR, C − Demuth).

Proof. Fix a C-Demuth test [Wf(m)]
≺
m∈N. We build a Solovay test to cover

each Wf(m). Let (Tm)m∈N be a A-c.e. trace for f with bound g. Define an

A Solovay test (SA
m) as follows: for each k ∈ Tm, enumerate the open set

[Wf(k)]
≺ into SA

m as long as its measure is ≤ 2−k.
�

m λ(SA
m) ≤

�
m g(m) <

∞. Thus no set that is in infinitely many SA
m can be ML-random relative

to A. �

We now look at subclasses of ω-c.a., and also classes C containing ω-c.a.
For a computable order function g, let C be the class of functions f ≤wtt ∅�

such that some computable approximation for f(x) has at most g(x) changes.
Then A is C tracing with bound 2m if each function in C has an A-c.e. trace
(TA

x )x∈N such that |TA
x | ≤ 2x for each x. We also say that A is g-c.a.-tracing

with bound 2m. More generally, we could have a class D of computable
functions instead of a single g, and we say A is D-c.a.-tracing with the
obvious meaning.

Let Z be ML-random. By [12, Thm 23], Z is ω-c.a.-tracing iff Z is 2nh(n)-
c.a.-tracing, where h is an arbitrary (say, slowly growing) order function.

By the Terwijn Zambella argument and the first lemmas of the section,
we have:

Proposition 7.3. Let D be a class of computable functions (bounds) such

that for each function f ∈ D, the function

f̂(n) =
�

i≤n+3 logn f(i)
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is also in D. Let C be the class of D-c.a. functions. Then A ∈ High(MLR, C−
Demuth) ⇔ A is C-tracing with bound 2n.

Proof. (⇒:) The forward direction is another modification of the proof of
Theorem 4.2:

Suppose f is an C-c.a. function and we wish to build an A-c.e. trace for
f with bound 2n. Once again we may change the function we are tracing to
g(n) := nf(n) + n. Next, we let Un = Bg(n),n as in Theorem 6.2. Since g is
computable in C, the sequence of (Un)n∈N is a C-Demuth test. Again, let R
be the second universal Martin-Löf test relative to A, as before λ(R) < 2−2.
Since we have MLRA ⊆ C−Demuth, the conditions for applying 6.2 has been
met, and we choose τ and d accordingly.

Now, define the same trace (Tx)x∈N as in Theorem 4.2, since λτ (R) < q
and ∀n > d[λτ (Un−R) = 0]. As before, each Tn has the appropriate bound,
so (Tn)N∈N is a trace for g. Hence we can derive a trace for f with the same
technique mentioned in Theorem 4.2.

Unfortunately, we can not achieve the converse the a direction modifica-
tion. Instead we have to do use the fact shown in lemma 7.2 and do a little
more work:

(⇐): By 7.2 we just need to find a bound g that satisfies the conditions�
g(n)2−n < ∞. If A is C tracing with bound g, then A ∈ High(MLR, C −

Demuth) and we are done.
We use the same representation approach to constructing g as the Terwijn

Zambella argument in Theorem 2.17. Let q(n) = max{i : i+3 log i ≤ n} and
let g(n) = 2q(n)+1. For each function h ∈ D, the function ĥ(i) = h �i+3logi,
i.e. the function that maps i to the tuple of the first i+ 3 log i values of h,
is also in C.

Now we have to check that
�

g(n)2−n is indeed finite. Let

f(n) := n− 2logn,

notice that for any n we have:

q(n) = max{i : i+ 3 log i ≤ n} < n− 3log(i) < n− 3log(n).

Since 2r(n)−n = n−2 and q(n) ≤ r(n).
�

g(n)2−n <
�

n−2 < ∞. �

Note that (n+3) log n is not the lowest the bound could be, originally we
chose nlog2n for its attractive convergent property, this would have, however,
yielded a lesser result. Finding a lower bound is currently unknown.

An example of such a D is the class of computable functions bounded by
a function of type 2n · q(n) where q is a polynomial.

7.0.1. Classes C containing ω-c.a. Due to the lack of a better word, the
following shall be referred to as the (∗) property.

Definition 7.4. We say a class C is (∗) closed if for have any computable
function p and each f ∈ C, the mapping function f∗ : x → f �p(x) also in
the class C.

Its natural to ask what type of functions satisfies this property. Through
some rigorous investigation with Andre, we discovered that, if R = (N, <R)
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is a computable well-order of type ωn. Then the class of functions with ωn

approximations has this property.

Definition 7.5. An ωn-approximation is a computable function
g = �g0, g1� : N× N → N× N

such that for each input x and stage s > 0, we have
g(x, s) �= g(x, s− 1) → g1(x, s) <R g1(x, s− 1).

In this setting, if g0 is a computable approximation of a total ∆0
2 function

f , we say that g is an ωn-approximation of f .

We give a fine analysis of Theorem 6.1 in this more general setting. We
show the double highness notion A ∈ High(MLR, C − Demuth) implies A is
C-tracing at bound 2m. However, we need tracing at slightly better bound,
such as 2mm−2, to reobtain the double highness notion. Thus there is a gap
in the absence of condition (∗).

The second part is a modification of the proof of the corresponding result
[11, Prop. 32]; also see [3, Thm. 3.6].

Intuitively speaking, for an ωn approximation g = �g0, g1�, we may think
of g1 as an n-tuple of computable functions �g11, g12, g13, ...g1n�. At stage s,
g0(x, s) serves as the value approximation of g and g1(x, s) as a counter to
the number of possible changes.

Theorem 7.6. The class of ωn
-c.a. functions satisfies the (∗) condition.

The proof is an extension of [22] where n = 2. We expand it to the more
general ωn case.

Proof. Fix some computable function p, let �f (x) = f �p(x) i.e. the function
that maps x to the tuple of the first p(x) values of f , encoded by some
natural number.

If we can show that f has an ωn-approximation iff �f has an ωn-approximation
then we are done, as it would mean that ωn is closed under alterations on
initial segments by computable functions.
(⇒:) Let �g0, g1� be an ωn approximation of f . As we discussed before, we
view g1 as a n-tuple of computable functions �g11, g12, g13, ...g1n�.

Let h0(x, s) = g0(x, s) �p(x) and h1i(x, s) =
�

y<p(x) g1i(y, s)
Now we show that �h0, �h11, h11, h12, ....h1n�� is an ωn-approximation.
First notice that each h1i(x, s) is non-increasing in s. Suppose at stage s,

k < n is the least k such that ∃y < p(x)[g1k(y, s) �= g1k(y, s−1)]. Since g1 is a
ωn-approximation, we have g1k(y, s) < g1k(y, s−1)Ṅow consider y� such that
y� < p(x), by the minimality of k, we must have g1k(y�, s) ≤ g1k(y�, s − 1).
Thus h1k(x, s) < h1k(x, s − 1) and also h1i(x, s) = h1i(x, s − 1) for each
i < k.

If h0(x, s) �= h0(x, s − 1) then there must be a least k and y such that
g1k(y, s) �= g1k(y, s− 1). Whence h1(x, s) < h1(x, s− 1).
(⇐:)Let �h0, h1� be an ωn approximation of �f . Construct g0 as follows:

g0(x, s) =

�
h0(x, s) if h0(x, s) encodes a tuple of length x+ 1
0 otherwise

Let g1(x, s) = h1(x+ 1, s). If at stage s, g0(x, s) �= h0(x, s) then the length
of h0(x, s) must be wrong, hence we reset g0(x, s) = 0. The counter g1(x, s)
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is defined to be h1(x+ 1, s), which means it counts down in ω if and only if
h1(x+ 1, s) does. Hence, �g0, g1� is an ωn-approximation of f . �

We conclude the thesis with a conjecture, which I believe to be true, that
for c.e. sets A, one may ask if there is a proper hierarchy of being g-c.a.-
tracing, for faster and faster growing computable functions g:

Conjecture 7.7. Let g be computable. Is there a computable function h
and a c.e. set A that is g-c.a.-tracing, but not h-c.a.-tracing?

Sketch of the proof: Modify the proof of Proposition 3.3. Here we instead
build a g-c.a.-tracing c.e.-set A that is superlow. Hence this set is not h-
c.a.-tracing for an appropriate faster growing h. The positive requirement
will be adjusted so that (TA

x )x∈N will instead be a g-c.e. oracle trace and we
will have to make sure that the number of mind changes of ΦA

e (e) is always
bounded by some computable function.
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