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Abstract

The duality between geometry and commutative algebra is pervasive
throughout mathematics. However, the commutativity of the algebra re-
stricts the range of geometries we can study and prohibits the geometrical
interpretation of noncommutative algebras such as those present in quantum
physics. Here we give a gentle introduction to the study of noncommutative
geometry, with an overview of some of the main concepts and constructions.
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1. Introduction

The study of non-commutative geometry began with the development of
quantum mechanics in the early 20th century where noncommutative oper-
ator algebras replaced the typically commutative setting of classical physics.
Techniques studying the geometry of commutative algebras existed - alge-
braic geometry studies the space of prime ideals of a ring and can reason
geometrically about algebraic structures. However, a noncommutative alge-
bra may have no two-sided prime ideals and so the extension is non-trivial.

The main approach is outlined in the authoritative text on the subject
Noncommutative Geometry by Alain Connes [4]. The approach is as follows:
firstly associate to a geometrical space a not-necessarily commutative alge-
bra. Secondly extend a geometrical concept so that the geometrical prop-
erties of the underlying space can be recovered from the algebra. Thirdly
use these techniques to recover geometrical properties of an abstract space
represented by some algebra. The significance (and difficulty) of this process
rests on the potential noncommutativity of the algebra.

In his text, Connes extends several notions to noncommutative algebras
including:

I. Measure Theory;
II. Topology and K-Theory;
III. Differential Geometry;

IV. Metric Spaces.

After Connes’ theory was published, another approach to noncommuta-
tive geometry arose as the theory of quantum groups. This theory made use
of Hopf algebras to generalise the notion of symmetry to noncommutative
spaces by deforming Lie groups and Lie algebras into Hopf algebras.

In Section 2 we discuss the geometry of the quotients of topological spaces
and construct a more general notion of a quotient which is achieved through
the use of groupoids. The last portion of that section is then spent discussing
an equivalence of this new quotient.

Section 3 describes two approaches to the differential geometry of non-
commutative algebras. We describe briefly, the de Rham cohomology of
smooth manifolds and then the construction of a cohomology for associative
algebras that serves as the first steps towards an algebraic analogue. We
then shift to another approach which makes use of differential algebras.

Finally in Section 4 we use the more recent quantum groups approach to
noncommutative geometry in order to introduce some results in the theory
of Hopf algebras and provide some examples of where quantum groups arise.

Noncommutative geometry is a relatively new field. However, it spans
a wide range of mathematics and different approaches. Here we collate
some approaches and palatable examples to convey an understanding of the
general direction of the field.

2. Noncommutative Quotients

One can associate to a locally compact Hausdorff space X, a commu-
tative C∗-algebra that allows one to recover X. However, it is not always
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reasonable to assume that a quotient of X even be Hausdorff. The canonical
example is the line with two origins:

Example 2.1. Consider the space of two copies of the real line X = R×{0, 1}
with the standard topology on R. Now consider the equivalence relation ∼
that equates (x, 0) ∼ (x, 1) ⇐⇒ x 6= 0. The space X is the product of
two Hausdorff spaces and is thus Hausdorff. However the quotient X/ ∼,
visualised as the line with two origins, is not Hausdorff as the two origins
cannot be separated by disjoint open sets.

As a result, quotients of topological spaces that can no longer be de-
scribed by commutative C*-algebras provide a large source of noncommu-
tative spaces. The goal is to associate to such quotients a not necessarily
commutative algebra that agrees in some sense with the classical algebra-
geometry correspondence, and construct some topological tools. In this
chapter we describe the machinery to define a non-commutative quotient,
and define a notion of equivalence between algebras that agrees with the
geometric structure they describe. We approach the subject as done by
both Connes in Chapter 2 of [4] and by Khalkhali in Chapter 3 of [6, 7].

The classical way to approach the algebra of the quotient space is to apply
a quotient construction to the corresponding C∗ algebra. Suppose that X is
a locally compact Hausdorff space with equivalence relation ∼. The space
X has the corresponding C∗-algebra C(X) = {f : X → C} and the classical
quotient is

{f : X → C | ∀a ∼ b f(a) = f(b)}
The classical quotient construction allows us to apply topological tools when
the quotient is “nice” i.e remains Hausdorff etc. If not, the classical quotient
becomes too small and only constant functions remain. Thus we wish to
define a noncommutative quotient whose K-theory and cohomology agrees
with the classical quotient in the nice case. The noncommutative quotient
will be larger, allowing us to obtain information from spaces even if the
classical quotient becomes trivial.

The construction of a noncommutative quotient requires the notions of a
groupoid and a groupoid algebra, which we define in the following subsec-
tions.

2.1. Groupoids.

Definition 2.1. A groupoid is a small category where all the morphisms are
isomorphisms.

By small category we mean a category in which the objects form a set.
We refer to the objects of a groupoid G by Obj G and the morphisms simply
by G. One can think of a groupoid as a generalisation of a group. By
Cayley’s theorem, every group is isomorphic to a subgroup of a symmetric
group: the group of permutations on a set. Thus a groupoid with one object
- as a single object and a set of isomorphisms - forms a group. The set of
isomorphisms under composition form the group and thus we refer to the
isomorphisms by G.

Example 2.2. A natural occurrence of a groupoid is the fundamental groupoid
G of a topological space X. The objects of the fundamental groupoid are
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the points of X, and the morphisms between two points are the equivalence
classes of paths between the points where two paths are equivalent if they are
homotopic. The restriction of the fundamental groupoid to a point x ∈ X
is the fundamental group at that point.

The canonical way to form an algebra from a group is to construct its
group algebra by taking a vector space with group elements as basis ele-
ments and define a product by group multiplication. To extend this notion
we take the basis elements to be the morphisms of the groupoid and the
multiplication defined by composition of morphisms.

Definition 2.2. The groupoid algebra CG of a groupoid G over C is a gen-
eralisation of a group algebra defined by

CG =
⊕
γ∈G

Cγ,

that is the finite sums of elements of the form λγ where λ ∈ C and γ ∈ G.
We define multiplication between the basis elements as the composition of
morphisms if they exist, and 0 if they don’t.

The elements of CG are finite linear combinations of morphisms over C.
Thus a useful alternative definition is the set of complex-valued functions
from G with finite support

CG ' {f : G → C | f has finite support}
endowed with the convolution product

f ∗ g =
∑

γ=γ1◦γ2

f(γ1)g(γ2).

2.2. Quotients. With the description of a groupoid algebra, the noncom-
mutative quotient will be the groupoid algebra of a space given some equiv-
alence relation. To construct this groupoid, suppose we have space X with
equivalence relation ∼. We define the corresponding groupoid G by taking
the objects to be the elements of X, i.e Obj G = X. For all x, y ∈ X we
define an isomorphism from x to y if and only if x ∼ y.

Definition 2.3. The noncommutative quotient of X with equivalence rela-
tion ∼ is the groupoid algebra CG.

We wish to see what similarities this definition has with the classical
quotient construction.

Example 2.3. Consider the set X = {x1, x2, x3} with equivalence relation ∼
equating every point. The objects of the groupoid G are the elements of X,
i.e Obj G = X. The isomorphisms are given by the following graph.

x1

x2x3
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Thus taking the groupoid algebra we find

CG 'M3(C)

by associating to the morphism taking xi 7→ xj the matrix Eij . Whereas
the equivalence relation equates every element, the classical quotient is

C(X/ ∼) = {f : X → C | f(x1) = f(x2) = f(x3)} ' C.

For a slightly less trivial example, we keep the set X but take the equiv-
alence relation generated by the action of S3.

Example 2.4. Let S3 act on X = {x1, x2, x3} by σ ·xi = xσ(i) for all 1 ≤ i ≤ 3
and σ ∈ S3. This induces the equivalence relation xi ∼ xj if there exists
σ ∈ S3 such that σ · xi = xj . Clearly this equates every element of X and
induces the same equivalence relation as in the previous example. Now to
generate the groupoid G we take Obj G = X and

HomG(xi, xj) = {σ ∈ S3 | σ(i) = j}.

Here the equivalence relation equates each pair of points by two distinct
elements of S3 and this is reflected in the construction of the groupoid.
Therefore the classical quotient remains the same as the equivalence relation
hasn’t changed but the groupoid encodes the entirety of the equivalence.

The groupoid algebra in this case is

CG ' CZ2 ⊗M3(C).

To show this we denote

HomG(xi, xi) = {γ0
ii = ε, γ1

ii = (j k)},
HomG(xi, xj) = {γ0

ij = (i j k), γ1
ij = (i j)},

Then we construct a map from CG to CZ2 ⊗M3(C) by

γ0
ij 7→ 0⊗ Eij , γ1

ij 7→ 1⊗ Eij .

In both examples the two quotients are not isomorphic and moreover
share neither commutativity nor dimension.

2.3. Morita Equivalence. To describe the relation between the two quo-
tients we define a weaker notion of equivalence which we do with the notion
of an equivalence of categories.

Definition 2.4. Two categories C and D are equivalent if there exist func-
tors F : C → D and G : D → C such that their compositions are isomorphic
to the identity functors:

F ◦ G ' 1D, G ◦ F ' 1C

in the sense that there is a natural transformation from one to the other.

We now define the equivalence between two quotients:

Definition 2.5. Algebras A and B over a field are Morita equivalent if they
have equivalent bimodule categories. That is

AMA ' BMB.
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To construct a more computationally convenient definition of Morita
equivalence we first need to describe the tensor products of bimodules .
Suppose A and B are algebras, X is a (A,B)-bimodule and Y is a (B,A)-
bimodule. Thus X is an abelian group on which A acts on the left and B
acts on the right. Moreover the actions of A and B on X agree so for all
x ∈ X, a ∈ A, b ∈ B we have (a · x) · b = a · (x · b). The tensor product of X
and Y over A

X ⊗B Y
is the tensor product of X as a right B-module and Y as a left B-module.
One can then place a (A,A)-bimodule structure on X⊗B Y by a ·(x⊗B y) =
(a ·x)⊗B y and (x⊗B y) ·a = x⊗B (y ·a) for all a ∈ A and x⊗B y ∈ X⊗B Y
and then extend the structure linearly.

With this we can provide an equivalent definition of Morita equivalence.

Definition 2.6. Two algebras A and B are Morita equivalent if there exists
an (A,B)-bimodule X and (B,A)-bimodule Y such that

X ⊗B Y ' A, Y ⊗A X ' B.

where A and B are taken to be bimodules over themselves and the equivalence
is module isomorphism.

With this definition we can immediately verify some Morita equivalences.

Lemma 2.1. Let A be a unital algebra. The algebra of A-valued n × n
matrices B = Mn(A) is Morita equivalent to A.

Proof. Take X = An as an (A,B)-bimodule by the canonical multiplication
on either side. Similarly take Y = An to be a (B,A)-bimodule. Now define
a map ϕ from X ⊗B Y to A by

(a1, . . . , an)T ⊗B (b1, . . . , bn)T 7→
n∑
i=1

aibi = aT b.

The mapping is surjective as for all x ∈ A we have

(x, 0, . . . , 0)⊗ (1A, 0, . . . , 0) 7→ x.

To show that the mapping is injective suppose a ⊗ b 7→ 0 for some a ⊗ b ∈
X ⊗B Y . Then aT b = 0. Thus the two elements of An are orthogonal so

take the projection matrix P = bbT

bT b
onto the subspace generated by b. We

show that P will fix b and annihilate a. Thus

a⊗ b = a⊗ P · b = a · P ⊗ b = aT
bbT

bT b
⊗ b = 0⊗ b = 0.

Therefore ϕ is injective on elements of the form a ⊗ b ∈ X ⊗B Y . Now
suppose x =

∑m
i=1 ai ⊗ bi ∈ X ⊗B Y such that x 7→ 0. Without loss of

generality we can assume that no ai or bi is 0. Now for each i 6= 1 there is
an invertible matrix Pi such that Pi · bi = b1. We then have

x =
m∑
i=1

ai ⊗ P−1
i Pi · bi =

m∑
i=1

ai · P−1
i ⊗ b1 =

(
m∑
i=1

ai · P−1
i

)
⊗ b1

By the previous part we have that x = 0. Hence ϕ is injective on X ⊗B Y .
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To show ϕ is a (A,A)-bimodule isomorphism, suppose x ∈ A and a⊗ b ∈
X ⊗B Y .

x · ϕ(a⊗ b) = x

n∑
i=1

aibi =

n∑
i=1

(xai)bi = ϕ(x · a⊗ b).

and similarly for the right action. Therefore since ϕ is a linear map, it is an
(A,A)-bimodule isomorphism.

Similarly define a linear map ψ from Y ⊗A X to Mn(A) by

(a1, . . . , an)T ⊗A (b1, . . . , bn)T 7→ (aibj)ij = abT .

First for all 1 ≤ i ≤ n define ei ∈ An to be zero everywhere except for in
the i-th position where it is 1A.

To show ψ is surjective, suppose M = (mij)ij ∈Mn(A). Then

n∑
i=1

ei ⊗ (mi1, . . . ,min)T 7→M

For injectivity, suppose
∑m

α=1 aα⊗bα 7→ 0 for some
∑m

α=1 aα⊗bα ∈ Y ⊗AX.
Then

∑m
α=1 aαibαj = 0 for all 1 ≤ i, j ≤ n. Thus

m∑
α=1

aα ⊗ bα =

m∑
α=1

(
n∑
i=1

ei · aαi

)
⊗ bα

=
m∑
α=1

(
n∑
i=1

ei · aαi ⊗ bα

)

=
m∑
α=1

(
n∑
i=1

ei ⊗ aαi · bα

)

=

n∑
i=1

ei ⊗

(
m∑
α=1

aαi · bα

)
= 0

To see that ψ is a homomorphism, note that for all M ∈Mn(A)

M · ψ(a⊗ b) = M · abt = Ma · bT = ψ(Ma⊗ b).
by the same reasoning, ψ is a homomorphism on the right as well.

Therefore both ϕ and ψ are bimodule isomorphisms and thus A is Morita
equivalent to Mn(A) for any unital algebra A. �

Looking back at example 2.3 we see now that the two quotients are Morita
equivalent. Thus we can note that commutativity is not preserved under
Morita equivalence.

However, what is preserved under Morita equivalence is important to the
study of noncommutative geometry. If two algebras are Morita equivalent
then they have isomorphic Hochschild cohomology groups. We define these
notions in section 3.

A Morita equivalence describes an equivalence of geometry and in the
commutative case isomorphic algebras yield the same geometry. We show
that commutative algebras are isomorphic if and only if they are Morita
equivalent. To do this we first need an important result from category
theory
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Lemma 2.2 (Yoneda Lemma). Let C be a category, X an object of C, and
consider the contravariant functor hX := HomC(X, ). For every functor
F : C → Set whose domain is locally small, there is a bijection between FX
and the natural transformations from HomC(X, ) to FX

Nat(HomC(X, ),F) ∼= FX
that associates a natural transformation α ∈ Nat(HomC(X, ),F) to the el-
ement αX(idX).

We present it here without proof but the interested reader can find a proof
in Section 2.2 of [14].

We use the Yoneda lemma to first prove a more general result about the
center of algebras.

Lemma 2.3. Suppose A is a unital algebra. Then the endomorphism ring
of the hom functor Nat

AMA
(hA, hA) is isomorphic to Z(A) as algebras.

Proof. We first note that AMA is a small category as the collection of module
homomorphisms from one module to another form a set. Thus from the
Yoneda lemma we obtain

Nat(hA, hA) ' Hom(A,A).

Now define a function f : Z(A) → Hom(A,A) for all a ∈ Z(A) by a 7→ ϕa
where ϕa(x) = ax for all x ∈ A. Now note that for any ϕ ∈ Hom(A,A) we
have

aϕ(1) = ϕ(a) = ϕ(1)a

for all a ∈ A. Thus ϕ(1) is central. Moreover since ϕ is uniquely determined
by ϕ(1) we see that f is a bijection. Moreover f is linear as

f(λ(a+b))(x) = ϕλ(a+b) = λ(a+b)x = (λa)x+(λb)x = λf(a)(x)+λf(b)(x)

for all λ ∈ C, a, b ∈ Z(A), and x ∈ A. And finally f is multiplicative as

f(ab)(x) = ϕab(x) = abx = a(bx) = ϕa ◦ ϕb(x) = f(a)f(b)(x).

�

Theorem 2.1. If A and B are commutative unital algebras then A and B
are Morita equivalent if and only if they are isomorphic.

Proof. Suppose that A ' B and ϕ : A → B is an isomorphism. Define an
A-action on B by a · b = ϕ(a)b for all a ∈ A and b ∈ B. Note that this
defines both a left and a right action on B and they agree. Similarly define
a B-action on A with ϕ−1. Define f : A⊗A B → B by

a⊗ b 7→ ϕ(a)b

for all a⊗ b ∈ A⊗AB. The mapping is surjective as 1⊗ b 7→ b for all b ∈ B.
And f is injective as if a⊗ b 7→ 0 then ϕ(a)b = 0 and thus

a⊗ b = 1A · a⊗ b = 1A ⊗ a · b = 1A ⊗ ϕ(a)b = 0.

Moreover f is linear by the linearity of ϕ and f is a homomorphism as if
a ∈ A and x⊗ y ∈ A⊗A B

a · f(x⊗ y) = ϕ(a)ϕ(x)y = ϕ(ax)y = f(ax⊗ y) = f(a · x⊗ y).
11



Therefore A ⊗A B ' B and by symmetry B ⊗B A ' A. Thus A is Morita
equivalent to B.

Now suppose AMA and BMB are equivalent categories. Note that hA =
1
AMA

as Hom(A,M) = M for any A-bimodule. Similarly for hB. Since
the endomorphism rings of the identity functors of equivalent categories are
isomorphic, the centers of A and B are isomorphic by Lemma 2.3. Because
both A and B are commutative we have

A = Z(A) ' Z(B) = B.

�

3. Noncommutative Homology and Cohomology

Homology and cohomology are a wide class of mathematical tools that
associate to mathematical objects, a sequence of abelian groups. Famously
in algebraic topology, simplicial and singular homology theories are used to
reason algebraically about topological properties. The de Rham cohomol-
ogy is another such theory used in the study of smooth manifolds and is a
topological and smooth invariant. To describe the differential geometry of
algebras we wish to generalise the de Rham cohomology.

3.1. De Rham Cohomology. Before we discuss the Hochschild cohomol-
ogy, to appreciate the similarities to the de Rham cohomology, we give a
brief summary of the construction which we take from [12].

To describe the de Rham cohomology, we first need the notion of an
alternating map.

Definition 3.1. Let V and W be vector spaces and let Sn denote the
symmetric group on n elements. An alternating map is a k-linear map
f : V k →W such that for all (v1, . . . , vk) ∈ V k and σ ∈ Sk

f(vσ(1) × · · · × vσ(k)) = sign(σ)f(v1 × · · · × vk).

We denote the set of alternating functions into R by

Altk(V ) = {f : V k → R | f is alternating}.
which forms a R-vector space under pointwise addition and scalar multipli-
cation by R.

Example 3.1. The canonical example is the determinant viewed as a function
det : (Rn)n → R that takes n elements v1, . . . , vn of Rn to the determinant
of the matrix [v1, . . . , vn]. Since the determinant is n-linear and alternating
under permutation of the columns, det ∈ Alt(Rn).

However, we wish to be able to combine arbitrary alternating functions.
We achieve this by specific permutations of the inputs of the products of
alternating functions. Such permutations are called shuffles. They are de-
scribed as follows:

Definition 3.2. Let k, l ≥ 1. A (k, l)-shuffle is a permutation σ ∈ Sk+l

such that

σ(1) < σ(2) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + l).

We denote the set of all (k.l)-shuffles by S(k, l).
12



We combine alternating functions with the notion of an exterior product.

Definition 3.3. Let k, l ≥ 1 and ω ∈ Altk(V ), τ ∈ Altl(V ). The exterior

product is a map ∧ : Altk ⊕Altl → Altk+l defined by

ω ∧ τ =
∑

σ∈S(k,l)

sign(σ)ω(vσ(1), . . . , vσ(k))τ(vσ(k+1), . . . , vσ(k+l))

We now shift our attention towards functions that map into the set of
alternating functions and these will ultimately be the objects of our attention
- forms. But we require that such functions be smooth.

Definition 3.4. Let U be an open subset of Rn. A function f : U →
Altk(Rn) is said to be C∞-smooth if for all k ≤ n and σ ∈ S(k, n − k) the
mapping from U to R given by

x 7→ (f(x))(eσ(1), . . . , eσ(k))

is smooth.

And finally we can define the notion of a differential form.

Definition 3.5. Let U be an open subset of Rn and k ≥ 0. A differential k-
form on U is a C∞-smooth function f : U → Altk(Rn). The set of k-forms
on U is denoted by Ωk(U).

Note in particular that, since Alt0(U) = R, 0-forms are smooth functions
from U to R.

In the de Rham cohomology the spaces of k-forms will form the sequence
of modules. The homomorphism between them will be the exterior derivative
that takes a k-form to a (k + 1)-form. The exterior derivative of a 0-form
f : U → R is the 1-form df : U → Alt1(U) given by

(df)(x)(v) = lim
t→0

f(x+ tv)− f(x)

t

for all x, v ∈ U . Note here that (df)(x) ∈ Alt1(U). The exterior derivative
of a k-form is as follows:

Definition 3.6. Suppose ω ∈ Ωk(U) for some open set U ⊆ Rn. Let xi :
Rn → R denote the projection onto the i-th coordinate and let ωσ : U → R
be defined by

ωσ(x) = w(x)(eσ(1), . . . , eσ(k)).

for all σ ∈ S(k, n− k). The exterior derivative dω of ω is given by

dω =
∑

σ∈S(k,n−k)

dωσ ∧ dxσ(1) ∧ · · · ∧ dxσ(k).

Example 3.2. Let U ⊆ R and f : U → R be the smooth function taking
x 7→ x2. Then the exterior derivative is given by

(df)(x)(v) = 2xv

for all x, v ∈ R. Now to compute the second exterior derivative of f we
want so sum over all (n, n − k)-shuffles but since n = k = 1 we only have
the trivial permutation. Thus

d2f = dω ∧ dx
13



where x is the identity function on U and ω(x) = df(x)(1) = 2x. Thus we
obtain

(d2f)(x)(v1, v2) =
∑

σ∈S(1,1)

2(vσ(1)) · 1(vσ(2)) = 2(v1) · 1(v2)− 2(v2) · 1(v1) = 0

for all x ∈ R and (v1, v2) ∈ R2.

With the definition of k-forms and the exterior derivative, we can now
construct the de Rham complex and cohomology.

Definition 3.7. The de Rham cohomology of an open subset U of Rn is the
cohomology of the cochain complex

Ω0(U)
d−→ Ω1(U)

d−→ · · ·

where we denote the k-th cohomology group at U by

Hk(U) =
ker(d : Ωk(U)→ Ωk+1(U))

Im(d : Ωk−1(U)→ Ωk(U))

We summarise an example given in Section 15.10 of [1].

Example 3.3. To compute the de Rham cohomology of S1 we require the
Mayer-Vietoris sequence as described in Section 15.8 of [1] which allows us to
compute the higher order cohomology groups of a space M by decomposing
M into a union of open sets. Suppose M is the union of two open sets U and
V . The Mayer-Vietoris sequence is the long exact sequence of cohomology
groups given by:

H0(M)→ H0(U)⊕H0(V )→ H0(U ∩ V )→ H1(M)→ · · · .

To determine cohomology groups of S1 we need two observations. The first
is that the 0-th cohomology group of a manifold M is given by H0(M) = Rn
where n is the number of connected components of n. This is because the 0-
th cohomology group is the set of smooth functions that are locally constant.
The second observation is that S1 is a 1-dimensional manifold and thus the
higher order cohomology groups will be 0. We now decompose S1 into two
open intervals U and V such that the intersection of U and V is a pair of
disjoint open intervals. Since S1, U , and V are connected, they each have
0-th cohomology group R. However U ∩ V has two connected components.
Thus the Mayer-Vietoris sequence for S1 is

0→ R→ R⊕ R→ R2 → H1(S1)→ 0.

Since the sequence is long exact we obtain

H1(S1) = R

and therefore

Hn(S1) =

{
R n ≤ 1

0 n > 1
14



3.2. Hochschild Cohomology. With the classical description of the de
Rham cohomology done we now wish to associate an analogue cohomology
to a not necessarily commutative algebra. We can begin to do this with the
Hochschild cohomology of associative algebras.

Definition 3.8. Let A be an algebra and M an A-bimodule. The Hochschild
cohomology of an algebra A with coefficients in M is the cohomology of the
cochain complex

C0(A,M)
δ0−→ C1(A,M)

δ1−→ · · ·
where C0(A,M) = M and Cn(A,M) = HomA(A⊗n,M) for n > 0. And δ0

takes elements to the ring commutator of A.

δ0(m) = [m, ·] ∀f ∈ A

and otherwise

δn(f)(a1, . . . an+1) = a1f(a2, . . . , an+1) + (−1)n+1f(a1, . . . , an)an+1

+

n∑
i=1

(−1)if(a1, . . . , aiai+1, . . . , an+1).

for f ∈ Cn(A,M), n > 0. We denote the n-th Hochschild cohomology group
by Hn(A,M).

As an example we compute first two cohomology groups of C over itself.

Example 3.4. The cochain complex is defined to be

0→ C δ0−→ Hom(C,C)
δ1−→ Hom(C2,C)

δ2−→ · · ·

The 0-th cohomology group is then the kernel of δ0. However, since the
image of δ0 takes an element of C to is commutator with another element,
we know that ker(δ0) = C by the commutativity of C and therefore.

H0(C,C) = C.

To compute the first cohomology group now suppose f ∈ ker(δ1) and a1, a2 ∈
C. Then

δ1(f)(a1, a2) = a1f(a2) + f(a1)a2 − f(a1a2) = 0.

and therefore

f(a1a2) = a1f(a2) + f(a1)a2.

We now take a2 = 1 and note that the C acts on C by multiplication to
obtain

f(a1) = a1f(1) + f(a1) = 2f(a1)

for all a1 ∈ C. Therefore f = 0 and ker(δ1) = 0. Thus the first cohomology
group is

H1(C,C) = 0.

We now consider the Hochschild cohomology groups of a noncommutative
algebra.
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Example 3.5. Let A = Mn(C). The 0-th cohomology group of A over A is
given by

H0(A,A) = ker(δ0) = {M ∈ A | ∀N ∈ A [M,N ] = 0}.

The only such elements of A are scalar multiples of the identity and thus we
obtain

H0(A,A) = C.
The first cohomology group of A is given by

H1(A,A) =
ker(δ1)

Im(δ0)
.

As in Example 3.4 ker(δ1) is the set of all derivations on A. The image of
δ0 is given by

Im(δ0) = {f ∈ Hom(A,A) | f = [M, ·] for some M ∈ A}.

Such maps are called inner. It is well known that all derivations on Mn(C)
are inner and the interested reader may see [5] by Dirac for a proof. Thus
the first cohomology group is trivial.

H1(A,A) = 0.

3.3. Differential Algebras. Another approach to a noncommutative dif-
ferential geometry is outlined in [3] by Beggs and Majid where a differential
structure is placed on arbitrary algebras in the form of modules acting as
n-forms.

Definition 3.9. If A is an algebra and Ω1 an A-bimodule then a map d :
A→ Ω1 is a derivation if it is linear and satisfies the Leibniz rule:

d(ab) = ad(b) + d(a)b

for all a, b ∈ A.

Definition 3.10. Let A be an algebra and Ω1 an A-bimodule. A first order
differential calculus is a 3-tuple (A,Ω1, d) where d is a derivation

d : A→ Ω1

satisfying Ω1 = span{ad(b) | a, b ∈ A}.

Here Ω1 generalises the notion of 1-forms. We say that a differential
calculus is inner if there is some element θ ∈ Ω1 such that d(a) = θa − aθ
for all a ∈ A.

We present an example from [3] with the details filled in.

Example 3.6. Let A = C[x]/〈x2〉 with

Ω1 =

{
n∑
i=1

ai ⊗ bi ∈ A⊗A |
n∑
i=1

aibi = 0

}
and derivation d : A→ Ω1 given by

d(a) = 1⊗ a− a⊗ 1
16



for all a ∈ A. Here Ω1 inherits the canonical bimodule structure of A ⊗ A.
Then (A,Ω1, d) forms a first order differential calculus that is not inner. We
can see that d is a derivation because if a, b ∈ A then

ad(b) + d(a)b = a(1⊗ b− b⊗ 1) + (1⊗ a− a⊗ b)a
= a⊗ b− ab⊗ 1 + 1⊗ ab− a⊗ b
= 1⊗ ab− ab⊗ 1

= d(ab)

It is easy to see that as a vector space we have

A⊗A = 〈1⊗ 1, 1⊗ x, x⊗ 1, x⊗ x〉
Now to find a basis for Ω1 suppose

a(1⊗ 1) + b(1⊗ x) + c(x⊗ 1) + d(x⊗ x) ∈ Ω1

Then a + bx + cx + dx2 = a + bx + cx = 0 so a = 0 and b = −c. We then
obtain a basis

Ω1 = 〈1⊗ x− x⊗ 1, x⊗ x〉
Now notice that

d(x) = 1⊗x−x⊗1 and xd(x) = x(1⊗x−x⊗1) = x⊗x−x2⊗1 = x⊗x
so in fact {d(x), xd(x)} forms a basis for Ω1. In this basis the left module
structure is obvious and the right module structure is given by

d(x)x = (1⊗ x− x⊗ 1)x = 1⊗ x2 − x⊗ x = −x⊗ x = −xd(x)

and

xd(x)x = (x⊗ x)x = x⊗ x2 = 0.

Now suppose for a contradiction that (A,Ω1, d) is inner with some element
θ = λd(x) + µxd(x) for some λ, µ ∈ C. Then

d(x) = θx− xθ
= (λd(x) + µxd(x))x− x(λd(x) + µxd(x))

= −λxd(x)− λxd(x)

= −2λxd(x).

However since d(x) and xd(x) are linearly independent we have a contradic-
tion. Therefore (A,Ω1, d) is not inner.

3.3.1. Differential Calculus of Finite Sets. To ground the notion of differen-
tial calculi we describe the first order differential calculus of the algebra of
functions on a finite set. Let X be a finite set of size n. The algebra is given
by the set of complex valued functions on X so we set A = C(X) and let
Ω1 be an A-bimodule with derivation d : A → Ω1 such that (A,Ω1, d) is a
first order differential calculus. Proposition 1.24 from Beggs and Majid [3],
which we state without proof, describes all such differential calculi

Proposition 3.1. The differential calculus (A,Ω1, d) is inner and corre-
sponds to a directed graph G on X. Here we denote a directed edge from x
to y by ωx→y. The correspondence is given by

Ω1 = spanC{ωx→y}
17



with left and right actions given by

f · ωx→y = f(x)ωx→y, ωx→y · f = f(y)ωx→y

for all f ∈ A and differential operator given by

d(f) =
∑
x→y

(f(x)− f(y))ωx→y

where f ∈ A and the summation runs over all directed edges in G.

In this case by setting θ =
∑

x→y ωx→y we see that the calculus is inner
as

d(f) =
∑
x→y

(f(x)− f(y))ωx→y =
∑
x→y

f · ωx→y − ωx→y · f = f · θ − θ · f

for all f ∈ A.
Consider, for example, the first order calculus on a set of three elements.

Example 3.7. Let X = {a, b, c} with first order differential calculus described
by the following directed graph:

a

b

c

Here Ω1 is a four-dimensional vector space given by

Ω1 = spanC{ωa→b, ωb→c, ωa→c, ωc→a}.
Let f be the function that is 1 on a and 0 on b and c. The differential of f
is then given by

d(f) =
∑
x→y

f · ωx→y − ωx→y · f

= (f(a)− f(b))ωa→b + (f(b)− f(c))ωb→c

+ (f(a)− f(c))ωa→c + (f(c)− f(a))ωc→a

= ωa→b + ωa→c + ωc→a.

3.3.2. Differential Graded Algebras. To extend d to the notion of an exterior
derivative, Beggs and Majid construct an algebra as a sum of A-modules Ωi

for i ∈ N with Ω0 = A. In this setting A serves as the generalisation of
0-forms - the set of smooth functions on some abstract space and Ωk as the
space of k-forms.

Definition 3.11. A differential graded algebra of an algebra A is a graded
algebra Ω = ⊕∞i=0Ωi with product ∧. Here Ω0 = A and Ω is equipped with
derivation d : Ωn → Ωn+1 for all n ∈ N such that d2 = 0 and

d(ω ∧ ρ) = d(ω) ∧ ρ+ (−1)nω ∧ d(ρ)

for all ρ ∈ Ω, ω ∈ Ωn.
18



The noncommutative analogue of the de Rham complex is the complex

Ω0 δ−→ Ω1 δ−→ Ω2 δ−→ · · ·
with cohomology groups

Hn
dR(A) =

ker(d|Ωn)

d(Ωn−1)

4. Quantum Groups

The universal enveloping algebra of a Lie group, and the set of functions
on a group can both be shown to have the structure of a Hopf algebra.
A quantum group is a class of (generally non-commutative) Hopf algebra
parameterised by some value q that recovers the structure of a well-known
algebra in the limit q → 1. In this sense a quantum group can be seen as a
deformation of some algebras. It also explains the name “Quantum group”
where q → 1 approaches a “classical” case in the same way a quantum
system approaches a classical one in the limit ~→ 0.

4.1. Hopf Algebras. Hopf algebras combine the algebraic structure of
both algebras and co-algebras. Thus they result in algebraic objects with
a lot of structure. This means that Hopf algebras become useful in gener-
alising some structures such as groups and Lie algebras. We describe some
explicit constructions in later sections. Note that we consider only finite
dimensional Hopf algebras.

Firstly, a Hopf algebra has the structure of an unital associative algebra.
We give the definition but note that that unital condition is enforced by the
construction of unit map. This allows us to more neatly construct a counit
when we define a coalgebra.

Definition 4.1. A unital associative algebra (H,∇, η) over C is a vector
space H with linear product and unit maps

∇ : H ⊗H → H

η : C→ H

satisfying associativity and the commutativity of field elements:

∇ ◦ (∇⊗ idH) = ∇ ◦ (idH ⊗∇)(1)

∇ ◦ (η ⊗ idH) = ∇ ◦ (idH ⊗ η) = idH(2)

with η(1C) = 1H an identity element.

We can represent the associativity as satisfying the following commuting
diagram:

H ⊗H ⊗H

H ⊗H H ⊗H

H

∇⊗idH idH⊗∇

∇ ∇

Figure 1. Associativity of Algebra Product.
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And the commutativity of the unit map as satisfying:

H

H ⊗H H ⊗H

C⊗H ' H ' H ⊗ C

∇ ∇

idH⊗ηη⊗idH

idH

Figure 2. Commutativity of Algebra Unit Map.

These diagrams serve little purpose when describing solely an algebra.
However, they help illustrate the natural construction of a coalgebra which
we describe next.

We also wish the Hopf algebra to have the structure of a coalgebra. Where
an algebra is a vector space with product and unit map, a coalgebra is a
vector space with coproduct and counit.

Definition 4.2. A coalgebra (H,∆, ε) over C is a vector space H with co-
product ∆ and counit ε:

∆ : H → H ⊗H
ε : H → C

satisfying coassociativity and cocommutativity of the counit.:

(∆⊗ idH) ◦∆ = (idH ⊗∆) ◦∆(3)

(ε⊗ idH) ◦∆ = (idH ⊗ ε) ◦∆ = idH(4)

The coassosiativity of the coalgebra can be described with the following
commuting diagram. Notice that one can obtain this diagram by reversing
the arrows of the diagram describing associativity of algebras.

H ⊗H ⊗H

H ⊗H H ⊗H

H

∆⊗idH idH⊗∆

∆ ∆

Figure 3. Coassociativity of Coalgebra Coproduct.

Similarly we can reverse the arrows in figure 2 to obtain the diagram
describing the cocommutativity of the counit.
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H

H ⊗H H ⊗H

C⊗H ' H ' H ⊗ C

∆ ∆

idH

ε⊗idH idH⊗ε

Figure 4. Cocommutativity of Coalgebra Counit.

An algebraic object with the structure of both an algebra and a coalgebra
is known as a bialgebra, if one also ensures that the products and units from
both structures interact nicely.

Definition 4.3. A bialgebra (H,∇, η,∆, ε) is an algebra (H,∇, η) and coal-
gebra (H,∆, ε) satisfying:

∆ ◦ ∇ = (∇⊗∇) ◦ (idH ⊗ τ ⊗ idH) ◦ (∆⊗∆)(5)

ε⊗ ε = ε ◦ ∇(6)

η ⊗ η = ∆ ◦ η(7)

ε ◦ η = idC(8)

where τ : H ⊗H → H ⊗H is the flip function defined by τ(x⊗ y) = y ⊗ x
for all x, y ∈ H.

These properties are illustrated in the three following commuting dia-
grams. The first of which describes how the coproduct and product inter-
act. Composing the product with the coproduct does not immediately give
identity but instead a flip is introduced.

H ⊗H H H ⊗H

H ⊗H ⊗H ⊗H H ⊗H ⊗H ⊗H

∆⊗∆

∇ ∆

idH⊗τ⊗idH

∇⊗∇

Figure 5. Product and Coproduct Interaction in Bialgebras.

The second figure describes both properties (6) and (7) which relates how
the unit and counit interact with the coproduct and product respectively.

H C C H

H ⊗H H ⊗H

ε

η⊗η

η

∆∇
ε⊗ε

Figure 6. Unit and Product Interaction in Bialgebras.

And we also want the counit to be a left inverse of the unit.
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Finally, along with a bialgebra structure, a Hopf algebra also has an
antipode which serves as a generalised inverse. In Example 4.1 the antipode
serves to recover the inverse when embedding a group into the structure of
a Hopf algebra.

Definition 4.4. A Hopf algebra (H,∇, η,∆, ε, S) is a bialgebra with a linear
map S : H → H called the antipode, satisfying:∑

S(c(1))c(2) =
∑

c(1)S(c(2)) = ε(c)1H ∀c ∈ H,(9)

where ∆(c) =
∑
c(1) ⊗ c(2).

Note that here the indices of the coproduct are implied, allowing us to
trade superscripts and notational conciseness for readability. As before, the
properties of the antipode can be described with the following commuting
diagram:

H ⊗H H ⊗H

H C H

H ⊗H H ⊗H

S⊗idH

∇

ε

∆

∆

η

idH⊗S

∇

Figure 7. Properties of the Antipode.

The group algebra of a finite group canonically forms a Hopf algebra. In
Hopf theory such structures are considered trivial.

Example 4.1. Let G be a finite group. We construct a Hopf algebra H with
underlying set CG - the group algebra of G over C. We define the coproduct,
counit, and antipode on G ∈ CG by

∆(g) = g ⊗ g,
ε(g) = 1,

S(g) = g−1.

and extend it to CG by linearity.

Remark 4.1. If G is a finite group then H = CG is a Hopf algebra.

Proof. We first show that H has a coalgebra structure. Suppose g ∈ G.
Then

((∆⊗ idH) ◦∆)(g) = (g ⊗ g)⊗ g = g ⊗ (g ⊗ g) = ((idH ⊗∆) ◦∆)(g)

and

((ε⊗ idH) ◦∆)(g) = ε(g)⊗ g = g ⊗ ε(g) = ((ε⊗ idH) ◦∆)(g).

Therefore H has a coalgebra structure.
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To show that H is a bialgebra, suppose g, h ∈ G and e ∈ G is the identity.
Then the products agree with the units as

(ε ◦ ∇)(g ⊗ h) = ε(gh) = 1 = ε(g)ε(h) = (ε⊗ ε)(g ⊗ h)

and

(∆ ◦ η)(1) = ∆(η(1)) = ∆(e) = e⊗ e = (η ⊗ η)(1).

Moreover the product and coproduct agree as

(∇⊗∇) ◦ (idH ⊗ τ ⊗ idh) ◦ (∆⊗∆)(g ⊗ h)

=(∇⊗∇) ◦ (idH ⊗ τ ⊗ idh)(g ⊗ g ⊗ h⊗ h)

=(∇⊗∇)(g ⊗ h⊗ g ⊗ h)

=gh⊗ gh
=∆(gh)

=(∆⊗∇)(g ⊗ h)

and thus H is a bialgebra. Finally, for H to be a Hopf algebra, we have

∇ ◦ (S ⊗ idH) ◦∆(g) = ∇ ◦ (S ⊗ idH)(g ⊗ g)

= ∇(S(g)⊗ g)

= ∇(g−1 ⊗ g) = e

∇ ◦ (idH ⊗ S) ◦∆(g) = ∇ ◦ (idH ⊗ S)(g ⊗ g)

= ∇(g ⊗ S(g))

= ∇(g ⊗ g−1) = e

and

(η ◦ ε)(g) = η(ε(g)) = η(1) = e.

�

By this construction, the group structure of G is not lost and is encoded
in the group-like elements.

Definition 4.5. If H is a Hopf algebra then g ∈ H is called group-like if

∆(g) = g ⊗ g.

The inverses of the group-like elements can be recovered from the an-
tipode. In fact for any Hopf algebra, the group-like elements form a group
with the inverses given by the antipode.

Lemma 4.1. Let H be a Hopf algebra and G = {h ∈ H | ∆(h) = h ⊗
h} be the set of group-like elements of H. Then G forms a group under
multiplication in H.

Proof. First note that 1H is clearly the identity element of G and the asso-
ciativity follows from the associativity of the product on H. Now suppose
g, h ∈ H. Then G is closed under multiplication as

∆(gh) = (∆ ◦ ∇)(g ⊗ h) = (∇⊗∇) ◦ (idH ⊗ τ ⊗ idH) ◦ (∆⊗∆)(g ⊗ h)

= ∇⊗∇(g ⊗ h⊗ g ⊗ h) = gh⊗ gh
so g · h ∈ G.
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First note that ((ε ◦ idH) ◦ ∆)(g) = ε(g)g = g and therefore ε(g) = 1.
Now to show that S(g) is an inverse for g we have that

S(g) ·g = ∇(S(g)⊗g) = (∇◦ (S⊗ idH)◦∆)(g) = (η ◦ε)(g) = η(1) = 1H = e

the same result holds for g · S(g) therefore S(g) = g−1. Hence G forms a
group. �

We can also describe the notion of a dual Hopf algebra. In finite dimen-
sions, the dual vector space of a Hopf algebra is naturally a Hopf algebra
itself.

Definition 4.6. Let H = (H,∇, η,∆, ε, S) be a Hopf algebra and H∗ be the
dual vector space of H.

Firstly H∗ forms an algebra with unit map η∗ : C→ H∗ that takes 1C to
idH and product map ∇∗ : H∗ ⊗H∗ → H∗ defined by

∇∗(f ⊗ g)(a) =
∑

f(a(1))g(a(2))

for all f, g ∈ H∗ and a ∈ H where ∆(a) =
∑
a(1) ⊗ a(2).

Now H∗ forms a coalgebra with counit ε∗ : H∗ → C defined by

ε∗(f) = f(1H)

for all f ∈ H∗. Moreover H∗ has coproduct ∆∗ : H∗ → H∗ ⊗H∗ defined by

∆∗(f)(a⊗ b) = f(ab).

for all f ∈ H∗ and a, b ∈ H.
Finally H∗ admits an antipode S∗ given by

S∗(f)(a) = S(f(a))

for all f ∈ H∗ and a ∈ H.

4.2. Hopf Algebras of Prime Dimension. It is well known that the only
finite groups of prime order are cyclic. Due to the large amount of structure
present, a similar characterisation applies to Hopf algebras. We present
the main theorem of the following paper [15] by Zhu. Here we omit some
lemmata but replicate the reasoning of the main proof with some steps filled
in.

Theorem 4.1 (Zhu, 1994). Let H be a Hopf algebra of prime dimension
p over C. Then H is isomorphic to the group algebra CZp of the integers
modulo p.

The case for p = 2 is trivial. In fact, low-dimensional associative algebras
over C have been classified [13] and there is only one unital associative alge-
bra of dimension 2. Thus all Hopf algebras of dimension two are isomorphic
to CZ2.

Now let H be a Hopf algebra of prime dimension p. For the rest of
the proof we assume that p 6= 2. We wish to reduce the problem to the
semisimple case. Here a Hopf algebra is semisimple if it is semisimple as an
associative algebra i.e. it has trivial Jacobson radical. Thus we have the
following lemma:

Lemma 4.2. Every Hopf algebra of prime dimension is semisimple.
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The approach is to first look at elements of H known as integrals. These
are elements of H that generate a one dimensional left H-module.

Definition 4.7. An element Λ ∈ H is a left integral if hΛ = ε(h)Λ for all
h ∈ H.

Similarly we can define a notion of right integral. Every Hopf algebra
has a left and right integral and they are unique up to scalar multiplication.
The canonical example is present in a group algebra.

Example 4.2. Let G be a finite group and A = CG the corresponding Hopf
algebra. Then the element Λ =

∑
g∈G g is a left and right integral.

Proof. This can be seen by the fact that left and right multiplication by
h ∈ G is a group endomorphism and thus the action of h is simply to
reorder the elements of G. Therefore

hΛ = h
∑
g∈G

g =
∑
g∈G

hg =
∑
g∈G

g = Λ = Λh.

�

When the left and right integrals of a Hopf algebra coincide, the Hopf
algebra is called unimodular.

Definition 4.8. A Hopf algebra is unimodular if the left integrals are the
right integrals.

In particular, by example 4.2 and the uniqueness of the integral, a group
algebra is unimodular.

We wish to show that a prime dimensional Hopf algebra H is unimodular.
To do this, suppose for a contradiction that H is not unimodular and let
Λ be the unique left integral of H. By the uniqueness of Λ, there is some
element f in the dual Hopf algebra H∗ such that Λh = f(h)Λ for all h ∈ H.
Since H is not unimodular, we know that f 6= ε as otherwise Λ would be
a right integral. Thus f is a non-trivial group-like element of H∗. Since f
generates a non-trivial subgroup of the group-like elements we have a sub
Hopf algebra C〈f〉 with dimension q dividing dim(H∗) = p. Thus we have
that H∗ = C〈f〉 = CZp and therefore H ' CZp. Therefore H is unimodular
- a contradiction. Thus both H and H∗ are unimodular.

We now show that H is semisimple. Since both H and H∗ are unimodular,
it can be shown, as in Corollary 5.7 of [8], that the order of the antipode S is
1,2, or 4. Now consider the eigenspaces H+ and H− of S2 with eigenvalues
1 and −1 respectively. That is

H+ = {h ∈ H | S2(h) = h},
H− = {h ∈ H | S2(h) = −h}.

Since H+ ∩ H− = {0} and S4 = 1 we have that H = H+ ⊕ H−. Also
note that because of this decomposition there is a basis of H in which the
representation of S2 in this basis is a diagonal matrix of dim(H+) 1s and
dim(H−) −1s and therefore the trace of S2 is given by.

Tr(S2) = dim(H+)− dim(H−),
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Now suppose for a contradiction that H is not semisimple. By Theorem 1
of [9] we obtain that Tr(S2) = 0. Therefore we obtain dim(H) = 2 dim(H+).
But since dim(H) is an odd prime we obtain a contradiction. Therefore H
is semisimple.

4.2.1. Hopf Modules and Characters. To proceed, we must first discuss the
modules and then the characters of Hopf algebras. A Hopf algebra module
is simply a module over the underlying ring structure. The character of a
Hopf module is defined as follows:

Definition 4.9. A character of H-module V is a dual-vector χV ∈ H∗ such
that χV (a) = Tr|V (a) for all a ∈ H where Tr|V (a) is the trace of the linear
operator defined by v 7→ a · v for all v ∈ V .

The simplest character we can construct is the trivial character which is
defined via the counit.

Example 4.3. Let C be a one-dimensional module over H with the action
defined by a · λ = ε(a)λ for all a ∈ H. The corresponding character is ε.

Now note that characters are closed under addition and multiplication.
If χV and χU are characters corresponding to H-modules V and U , the
maps χV χU and χV + χU are characters of the modules V ⊗ U and V ⊕ U
respectively. With this notion we can define a unital subalgebra of H∗ that
contains all characters.

Definition 4.10. The character ring C(H) of H is the subalgebra of H∗

over Q spanned by the irreducible characters of H.

Here the unit is given by the trivial character ε.
It can then be shown that C(H)⊗QC ⊂ H∗ is semisimple. By the Artin-

Wedderburn theorem of finite dimensional semisimple algebras, it follows
that C(H)⊗QC can be decomposed into the finite product of matrix algebras
over division algebras. Thus we can write

C(H)⊗Q C '
α∏
α=1

Mnα(Dα)

for some finite dimensional division algebras Dα over C. We then choose a
basis of matrix units Eαij for 1 ≤ α ≤ N and 1 ≤ i, j ≤ nα. It can again be
shown that the trace of each unit is a positive integer dividing the dimension
of H.

Thus we obtain a decomposition for the identity.

N∑
α=1

nα∑
i=1

Eαii = 1

4.2.2. Proof of Theorem 4.1. We note that ε is the identity of C(H) and
take the trace of the decomposition to obtain

N∑
α=1

nα∑
i=1

Tr(Eαii) = Tr(ε) = p.

Since each Eαii divides p we have two cases. In the first there is only one Eαii
with trace equal to p. Therefore C(H)⊗QC is one-dimensional. Hence H has
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only trivial character ε. However this is impossible as only one dimensional
algebras have only trivial irreducible character. In the second case we have
that there are p matrix units, each with trace p, and so C(H) ⊗Q C has
dimension p. Thus C(H)⊗Q C is a p-dimensional subalgebra of H∗ over C
and therefore C(H)⊗Q C = H∗. Here H is then a direct sum of p copies of
C and therefore H ' CZp.

4.3. Quantum Groups as Deformations. By definition, a quantum group
is a Hopf algebra but in most contexts they are used as deformations of a
usually commutative algebra. We first show how Lie algebras and groups can
be described as Hopf algebras and then provide some deformed examples.

4.4. Lie Groups as Hopf Algebras. We follow the construction given
in [2]. Let G be a Lie group and A = Fun(G) the set of complex-valued
differentiable functions on G. By piece-wise multiplication and addition, A
forms an algebra. Now define coproduct ∆, counit ε, and antipode S by

∆(f)(g, h) = f(gh)

ε(f) = f(e)

S(f)(g) = f(g−1).

for all f, g, h ∈ A.
Another interesting construction from [10] arises from complex semisimple

Lie groups. If G is a complex semisimple Lie group then it has a faithful
representation in GLn(C) which by theorem 6.3 in [11] is algebraic so

G = {x ∈Mn | p(x) = 0}

for some collection of polynomials p. HenceG forms an algebraic variety with
coordinate ring C[G] generated by n2 variables xij for 0 ≤ i, j ≤ n modulo

〈p〉. The coproduct and counit are then derived from matrix multiplication

∆(xij) =
∑
k

xik ⊗ xkj

ε(xij) = δij

That is, the coproduct is matrix multiplication and the counit is the trace.
The antipode is given by defining the antipode of the matrix of generators
as the adjugate matrix.

4.5. Lie Algebras as Hopf Algebras. We note that to construct a Hopf
algebra from a Lie algebra we take the universal enveloping algebra and
endow it with the appropriate structure. Let g be a finite-dimensional Lie
algebra over field C with generators g1, . . . , gn. Its universal enveloping alge-
bra is the free associative algebra C〈1, g1, . . . , gn〉 modulo the commutation
relations [gi, gj ] = gigj − gjgi for all 1 ≤ i, j ≤ n. We take this algebra and
define the coproduct, counit, and antipode by

∆(gi) = gi ⊗ I + I ⊗ gi
ε(gi) = 0

S(gi) = −gi.
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4.6. SL(2) and SLq(2). We now give an example of the Hopf algebra of a Lie
group and the collection of Quantum groups generalising it. For SL(2,C)
(the Lie subgroup of GL(2,C) which we abbreviate to SL(2)) we use the
Lie group construction. Since SL(2) = {x ∈ M2 | det(x) = 1}, the corre-
sponding Hopf algebra becomes C[SL(2)] = C[a, b, c, d]/〈ad − bc − 1〉. The
coproduct is given by matrix multiplication as in Section 4.4, the counit
gives the diagonal elements and the antipode is given by

S

(
a b
c d

)
=

(
d −b
−c a

)
.

To form SLq(2) we generalise these relations. Pick q ∈ C∗ and we start
in the free associative algebra C〈a, b, c, d〉 and mod out by “quantised” com-
mutation relations

ca = qac, ba = qab, db = qbd, dc = qcd, bc = cb, da−ad = (q−q−1)bc

and a quantised determinant relation

ad− q−1bc = 1.

The coproduct and counit are given as in the classical case and the antipode
by

S

(
a b
c d

)
=

(
d −qb

−q−1c a

)
.

We thus obtain a quantum group, i.e a class of Hopf algebras parameterised
by q ∈ C∗ where taking q → 1 yields the classical case.
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