
1 Topoi

The origin of topoi in category theory came from the Grothendieck school of
algebraic geometry. In the 1950s Grothendieck had introduced the idea of an
abelian category to unify the categories of sheaves of abelian groups in his work
on homological algebra. Turning to the categories of sheaves of sets in the 1960s,
these were captured by the concept of a Grothendieck topos.

The topoi we are looking at are not all Grothendieck topoi but came out of Law-
vere’s work. Lawvere focused on the existence of a truth value object in each
Grothendieck topos and their connection to a Grothendieck topology. Subse-
quently he developed a concept of a topos in the 1960s in terms of the existence
of a subobject classifier which is like a truth value object. This was originally
referred to as an elementary topos but is now just called a topos.

A motivating factor in Lawvere’s work with topoi was the desire to give a cate-
gorical version of Cohen’s proof of the independence of the continuum hypothesis
from the axioms of set theory. This seemed plausible due to connections between
Cohen’s forcing technique and sheaf theory which is tied up with Grothendieck
topoi.

The aim of this section is to define a topos, look at some constructions possible
in a topos and consider the example of an effective topos. Before defining a
topos we expand on the discussion of limits above and describe exponential
objects and the subobject classifier. Once the notion of a topos is established
we look at the ability to construct an integer and rational object from a natural
number object. Lastly we briefly describe the effective topos - a universe where
everything is computable.

1.1 Limits

In general a limit is a cone over an arbitrary diagram such that all other cones
have a unique morphism into the limit. So far we have only considered the
limit over the empty diagram, a pair of objects and a parallel pair of morphisms
which are the terminal object, the product and the equalizer respectively.

Another important example is the pullback which categorically expresses notions
such as the inverse image and an equivalence relation. The pullback is a limit
over the following diagram.

B

g

��
A

f
// C

A pullback, P with morphisms px makes a commuting square as f ◦ pa = pc =
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g ◦ pb. We typically leave out the diagonal and state that f ◦ pa = g ◦ pb.

P
pb //

pa

��

pc

��@
@

@
@ B

g

��
A

f
// C

Example 1. In Set a standard example of a pullback for the diagram above is
P = {(a, b) : f(a) = g(b)} with corresponding projections.

Example 2. Let f : A → B be a function in Set. The inverse image of B′ ⊆ B
is found by the pullback of the two functions f and the inclusion ι : B′ → B,

f−1(B′)
f ′

//
� _

i

��

B′
� _

ι

��
A

f
// B

where f−1(B′) = {x ∈ A : f(x) ∈ B′} and f ′ is the restriction of f to the
domain f−1(B′) and i : f−1(B′) → A is an inclusion.

We do not need to establish the existence of each sort of limit individually.
Once we know that a category has limits over any finite diagram, then we know
that the category has a multitude of tools for expressing the interaction of its
objects.

Theorem 1. If the category A has equalizers and all finite products then A has
limits over all finite diagrams.

Proof. Let J be a finite index category. A limit over the diagram D : J → A
can be constructed as the equalizer over a suitable pair of morphisms between
two products; the product of the objects in D and the product of all the objects
which are codomains in D.

As J is a finite category let ObJ be the finite set of objects in J.

Let ObJ be the index category consisting only of objects from J with no mor-
phisms. Construct a second index category CoJ that contains a subset of the
objects of ObJ. In particular CoJ = {u : ∃n 6= u ∈ ObJ,HomJ(n, u) 6= ∅}. CoJ
is the index category with all of the codomain objects of non-identity morphisms
from J as illustrated by the following diagram.

• // •

����
��

��
�

• • •

•
J

•

OO

oo •
ObJ

• •
CoJ

Objects and morphisms in the diagram D will be denoted Dn and D(f) respec-
tively where n is an object and f a morphism in J. Throughout this proof n is
used for an object in ObJ while u denotes an object in CoJ.
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Define two products; the first over all the objects of D which are indexed by
ObJ and the second over all the codomain objects of D indexed by CoJ.∏

ObJ =
∏

n∈ObJ

Dn with morphisms (On :
∏

ObJ → Dn)n∈ObJ

∏
CoJ =

∏
u∈CoJ

Du with morphisms (Cu :
∏

CoJ → Du)u∈CoJ

Construct two morphisms, r, s :
∏

ObJ →
∏

CoJ as follows.

By definition, for each u ∈ CoJ there exists some morphism fu : n → u in J
where n 6= u ∈ ObJ. For each u ∈ CoJ let ru, su :

∏
ObJ → Du be defined as

(1) ru = D(fu) ◦On

Dn

D(fu)

��
(2) su = Ou

∏
ObJ

On

33

Ou ++
Du

For each u ∈ CoJ there exists ru, su :
∏

ObJ → Du hence there exists
r =< .., ru, .. >, s =< .., su, .. >:

∏
ObJ →

∏
CoJ which commute as follows.

(3) Cu ◦ r = ru

∏
ObJ

r //

s
//

ru

))SSSSSSSSSSSSSSSSSS

su

))SSSSSSSSSSSSSSSSSS

∏
CoJ

Cu

��
(4) Cu ◦ s = su Du

Given the parallel pair of morphisms r, s there exists an equalizer, E with mor-
phism e : E →

∏
ObJ.

E
e // ∏ ObJ

r //

s
//
∏

CoJ

What remains to be shown in that E is the limit over the diagram D with the
family of morphisms (On ◦ e : E → Dn)n∈ObJ.

Dn

D(fu)

��

E

On◦e --

e //

Ou◦e
11

∏
ObJ

r //

s
//

On

22

Ou ,,

∏
CoJ

Cu ##G
GG

GG
GG

GG

Du

First we require that E is a cone over the diagram. This means the morphisms
associated with E must commute with morphisms in the diagram.
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Given D(fu) : Dn → Du we require D(fu) ◦On ◦ e = Ou ◦ e.

D(fu) ◦On ◦ e = Cu ◦ r ◦ e by (1) and (3)
= Cu ◦ s ◦ e by definition of an equalizer
= Ou ◦ e by (2) and (4)

Secondly, if E is a limit cone then any other cone over the diagram D must factor
through E. Let C be an arbitrary cone over D with morphisms (Mn : C →
Dn)n∈ObJ. We need to show that there exists a unique morphism h : C → E
such that On ◦ e ◦ h = Mn for all n ∈ ObJ.

Dn

C

Mn
..

Mu
11

h // E

On◦e

77

Ou◦e
''
Du

Using the properties of E as an equalizer of r and s we can show that the unique
h must exist.

If there is a morphism g : C →
∏

ObJ such that s ◦ g = r ◦ g then the unique
h : C → E exists by the property of the equalizer E. It remains to be shown
that such a g exists.

E
e // ∏ ObJ

r //

s
//
∏

CoJ

C

h

OO

g

<<xxxxxxxx

As C is a cone over the diagram indexed by J it is also a cone over the diagram
indexed by ObJ. By the property of the limit

∏
ObJ there exists a unique

morphism g : C →
∏

ObJ such that

(5) On ◦ g = Mn.

To verify that s ◦ g = r ◦ g it is sufficient to check that Cu ◦ s ◦ g = Cu ◦ r ◦ g
for each u ∈ CoJ.

Cu ◦ s ◦ g = Ou ◦ g by (4) and (2)
= Mu by (5)
= D(fu) ◦Mn by property of the cone C

= D(fu) ◦On ◦ g by (5)
= Cu ◦ r ◦ g by (3) and (1)

Therefore the unique morphism h : C → E exists by the property of the equal-
izer such that g = e ◦ h. This guarantees that On ◦ e ◦ h = Mn so the cone C
factors through E, and E is the limit over D.
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This is a useful theorem to guarantee the existence of finite limits. Equivalent
results are possible in terms of different sorts of limits.

Lemma 2. If a category A has finite products and pullbacks, then A has finite
limits.

This result follows from above because an equalizer of f, g : A → B is also
a pullback of f and g. We can just rephrase the previous result in terms of
pullbacks instead of equalizers.

Once we have guaranteed the existence of finite limits in a category we can do
many diagram chasing proofs like the one given above.

1.2 Exponential Object and Evaluation Morphism

The exponential object and evaluation morphism allow us to curry a function.
Given some f : A × X → Y the curried function will be λf : A → (X → Y ).
This allows us to change between a function of two variables to a single variable.

Definition 1. Let X and Y be objects in the category A. An exponential of
Y by X is an object Y X along with a morphism eval : Y X ×X → Y such that
for any object A and morphism f : A×X → Y there exists a unique morphism
λf : A → Y X such that the following triangle commutes,

Y X Y X ×X
eval // Y

A

λf

OO

A×X

λf×idX

OO

f

;;vvvvvvvvv

An exponential is unique up to isomorphism.

Example 3. Given X and Y in Set the functions from X to Y form a set
which is the object Y X . The morphism eval is defined by eval(f, x) = f(x)
where f : X → Y and x ∈ X.

The same construction is valid in FinSet. There are only finitly many functions
between two finite sets and the eval function is still defined.

Example 4. Let A and B be two categories in the category of all small cat-
egories. The functor category BA is the exponential object with standard eval
morphism.

1.3 Subobject Classifier

The useful concept of a subset or subgroup is traditionally defined in terms of
element membership. As category theory is based on morphisms rather than
elements the definition of a subobject is based on the idea of an inclusion mor-
phism.

Consider the category Set and objects X and S where S ⊆ X. The image of
the inclusion function ι : S → X is S. While ι is monic, there are many other
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monics m : S′ → X whose image is S. All such monics define the subset S in
a way equivalent to ι. We can define the subobjects of X by formalising the
notion of equivalent monics.

Definition 2. Let f : A → X, g : B → X be two monomorphisms in A. Let
f ∼ g be an equivalence relation defined by the existence of h1 : A → B and
h2 : B → A such that f = g ◦ h1 and g = f ◦ h2.

A

h1
++

f   @
@@

@@
@@

B
h2

kk

g
~~~~

~~
~~

~

X

In the example in Set above, the equivalence class [ι] is the set of all injective
functions into the set X whose image is the subset S. There are no other
inclusion functions in [ι] and the subset S is uniquely determined by [ι].

Definition 3. A subobject of an object A in A is an equivalence class of
monomorphisms under ∼.

In set theory a subset is equivalent to a characteristic function. The analogous
tool for categories is to characterise subobjects using a specific pullback.

Let S ⊆ X then the characteristic function χS : X → {0, 1} is defined as
χ(x) = 1 if x ∈ S and 0 otherwise.

Conversely given a characteristic function χA : X → {0, 1} we can determine
the subset A ⊆ X using a pullback. Define T : {x} → {0, 1} such that T (x) = 1.

A′ ! //

m

��

{x}

T

��
X χA

// {0, 1}

As {x} is a terminal object in Set then ! is the unique function from A′ into {x}.
Furthermore as T is monic, by a property of pullbacks m must also be monic.

The pullback means that for any a ∈ A′,

T ◦ !(a) = T (x) = 1 = χA ◦m(a)

The elements in the image of m form the subset of X for which χA takes the
value 1. As other monics m′ : A′′ → X satisfy the pullback above [m] is the
subobject of X.

The equivalence class of monics, [m] is not the same as the subset A but from
a categorical perspective they interact with χA in the same way.

Definition 4. Let A be a category with terminal object 1. A subobject classifier
is an object Ω along with the monic T : 1 → Ω such that for any monic m :
A → X there exists a unique morphism χm : X → Ω such that the following is
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a pullback.

A
! //

m

��

1

T

��
X χm

// Ω

The equivalence class of monics [m] is the subobject of X corresponding to χm.

In Set, FinSet and Grp the subobject classifier is simply {0,1} with the stan-
dard characteristic functions.

Lawvere refers to Ω as the truth value object and the morphism T as a way to
single out the value true from Ω.

1.4 A Topos

Now we can present the axioms for when a category is a topos. We will give some
common examples and counterexamples as well as methods for constructing new
topoi from old ones.

Definition 5. A category A is a topos if it has;

1. Limits over all finite diagrams;

2. For all objects A,B in A an exponential object AB with evaluation mor-
phisms eval : AB ×B → A;

3. A subobject classifier with the object Ω and morphism T : 1 → Ω.

Example 5. The categories Set and FinSet are topoi. The category of count-
able sets and functions between them, CountSet, is not a topos because it lacks
exponential objects.

Given the sets {0, 1} and ω in CountSet, assume the exponential object {0, 1}ω

exists. Then Hom(1, {0, 1}ω) would be a countable set. That is a contradiction
because Hom(1, {0, 1}ω) is isomorphic to the uncountable set Hom(ω, {0, 1}).

Example 6. The category G-Set is a topos. Recall that the objects are sets,
X under the group action of G such that h · (g · x) = (h · g) · x where h, g ∈ G
and x ∈ X.

Products and equalizers are the same in G-Set as in Set because they preserve
G-actions. Let m,n : X → Y be two G-maps and consider the standard equal-
izer from Set, E = {x ∈ X : m(x) = n(x)}. If E is an object in G-Set then it
must be closed under G-actions.

Let x ∈ E, then by definition of the G-maps and the equalizer m(g · x) =
g · m(x) = g · n(x) = n(g · x). Therefore g · x ∈ E and E is closed under
G-actions. Similarly products are closed under G-actions so G-Set has finite
limits.

Given the G-Sets X and Y , the exponential object Y X is the set of all G-maps
f : X → Y . If Y X is an object in G-Set then a G-action has to be defined on
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the maps. Let f ∈ Y X and g ∈ G then define gf to be the map which acts on
x ∈ X by

x 7−→ gf(g−1x).

This is a G-action because for g, h ∈ G,

h(gf)(x) = h(gf(h−1x))
= hg(f(g−1h−1x))
= ((hg)f)(x).

Lastly the subobject classifier is Ω = {0, 1} with the trivial group action defined
on it and the morphism T : 1 → {0, 1} which picks out the value 1.

The category G-Set is only one example of how to generate new topoi from old
ones.

Lemma 3. If T1 and T2 are topoi then the cartesian product T1×T2 is a topos.

Proof. Finite limits, exponentials and subobject classifer are defined component
wise. In particular (Y1, Y2)X1,X2 = (Y X1

1 , Y X2
2 ) and the subobject classifier is

(Ω1,Ω2).

Theorem 4. For a small category A, the functor category SetA is a topos.

We will give two examples to illustrate this result. Recall that in a functor
category the objects are functors F : A → Set and the morphisms are natural
transformations between functors.

The category G-Set can be expressed as a functor category SetG-m where G-m
is a monoid whose morphisms correspond to elements of the group G. A functor
from G-m to Set is like a group action on a set.

The second illustration of the functor category construction is given by the
category of directed multi-graphs.

Let Gr be the category with two objects, V,E and two non-identity morphisms.

E
s
55

t ))
V

The category Gr is like a graph with vertice and edge sets and a way of assigning
a source and target vertex to each edge.

The category of all directed multi-graphs is equivalent to the functor category
SetGr. As Gr is a small category, SetGr is a topos.

Let G = (VG, EG) and H = (VH , EH) be graphs in SetGr.

The product G × H = (VG × VH , EG × EH) such that for (x, y) and (x′, y′) in
VG × VH we have (x, y) is adjacent to (x′, y′) if (x, x′) ∈ EG and (y, y′) ∈ EH .

Consider the following example of two graphs G and H and their product.

2 //

��

3 b
��

��

(1, b)

�� ##G
GGGGGGG

))SSSSSSSSSSSSSSSSS (2, b) //oo

�� ##G
GGGGGGG

{{wwwwwwww
(3, b)

1

HH

a (1, a) (2, a) (3, a)
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G H G×H

The exponential graph HG = (Hom(VG, VH), E) such that f and g in Hom(VG, VH)
are adjacent when (x, x′) ∈ EG implies (f(x), g(x′)) ∈ EH .

Following on from the example above, let f ∈ Hom(VG, VH) be represented as
f(1)f(2)f(3), then this is the graph of HG.

bbb

��

//

  A
AA

AA
AA

A

''OOOOOOOOOOOOOO

**TTTTTTTTTTTTTTTTTTTT ++ ''• • •

bba

HH

//

>>}}}}}}}}

77oooooooooooooo

44jjjjjjjjjjjjjjjjjjjj 33 77• • •

The terminal object is the graph with one vertex and only the identity mor-
phism.

The subobject classifier is the following graph with morphism T : 1 → Ω that
picks out e.

1
s
((

e

��

v

EE 0
t

hh ndd

The subobject classifier gives the different possibilities for the relationships be-
tween vertices and edges. For the subgraph m : S → G the classifing map
χm : G → Ω acts as follows;

- If a vertex is in S it is mapped to 1, otherwise mapped to 0;

- An edge in S is mapped to e;

- An edge that is not in S can be mapped to four possibilities;

(v) If the source and target vertices are in the subgraph;

(s) If the source vertex is in the subgraph;

(t) If the target vertex is in the subgraph;

(n) If neither the edge nor vertices are in the subgraph.

Example 7. A partially ordered set can be treated as a category. If it has no
greatest element then there is no terminal object. In this case finite limits are
not defined and it is not a topos.

Example 8. It is not always possible to put a topology on the set of continuous
functions between two topologies. This means Top lacks exponential objects and
is not a topos.

Example 9. The category Ab is not a topos because there does not exist a
subobject classifier.

The terminal object 1 in Ab is the zero group. The group homomorphism
T : 1 → Ω must send the zero group to 0 ∈ Ω. Given any φ : A → Ω the
pullback must give Ker(φ) = φ−1(0) as the subgroup of A.
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Ker(φ) ! //

��

1

T

��
A

φ
// Ω

Hence Ω must be an abelian group with a copy of every quotient A/Ker(φ) for
every abelian group A which is impossible.

The categories which are topoi have the ability to express a lot of mathematical
concepts and operations. For this reason topoi are sometimes presented as an
alternative foundation for mathematics. We will now look at the possibility of
expressing concepts about the natural numbers in topoi.

1.5 Natural Numbers, Integers and Rationals

In the category Set, N is an object but the natural number 3 is not. Categor-
ically the singleton {3} is indistinguishable from {π}. It is not possible to use
the elements to give a categorical definition of N. Instead we should characterise
N in terms of morphisms.

In set theory the natural numbers can be generated by defining an initial element
and a successor relation. A similar idea holds in category theory; a morphism
from a terminal object is like selecting an initial element and a successor relation
is just a particular non-identity morphism from an object to itself.

Definition 6. A natural number object in T is an object N along with two
morphisms in : 1 → N and succ : N → N such that for any other object M
with morphisms i : 1 → M and s : M → M there exists a unique morphism
u : N → M making the following diagram commute.

N
succ //

u

��

N

u

��
1

in

>>~~~~~~~~
i
// M s

// M

Not surprisingly the set of the natural numbers is the natural number object
in the topos Set. In any category a natural number object is unique up to
isomorphism.

To define the conditions for having a natural number object we need to specify
which morphisms will accompany it. Thinking back to set theory, the property
that the natural numbers form an infinite set can be captured by the existence
of an isomorphism from N ∪ {x} to N. Freyd used the idea of an appropriate
isomorphism to give the condition for a natural number object in a topos.

Theorem 5. If there exists an object X in T such that there is an isomorphism
f from the coproduct of X and the terminal object 1 to X then X is the natural
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number object in T.
X

##F
FF

FF
FF

FF
1

||yy
yy

yy
yy

y

X + 1

f

��
X

The coproduct of X and 1 is like taking their disjoint union which suggests we
have added something to X. Yet the isomorphism f attests to the fact that
X + 1 is still no different to X. This expresses the notion of an infinite object
categorically.

A category which is not a topos may have a natural number object. What is
significant about having a natural number object in a topos is that we have
the tools of finite limits at our disposal. This makes it possible to construct
an integer object and a rational number object using similar ideas to the set
theoretic constructions.

Example 10. The set theoretic construction of the integers is given by

Z = {(n, m) : n, m ∈ N}/ ∼,

where (n, m) ∼ (n′,m′) if and only if n + m′ = n′ + m. The equivalence class
[(n, m)] represents the integer n−m.

In category theory a pullback is used to define an equivalence relation and a
coequalizer is used to quotient.

Let N be the natural number object in a topos T. Let + : N×N → N be the
additive morphism that is defined recursively using the property of the natural
number object.

Let E be the equivalence relation given by the following pullback.

E
a //

b

��

N×N

+

��
N×N

+
// N

In Set E would be {(n, m, n′,m′) : +(n, m′) = +(n′,m)}.
Define two morphisms p, p′ : E → N×N. In Set p and p′ would act on E by,

p : (n, m, n′,m′) 7−→ (n, m),

p′ : (n, m, n′,m′) 7−→ (n′,m′).

We define the integer object Z as the coequalizer of the morphisms p and p′.
This quotients by the relation ∼.

E
p //

p′
// N×N // Z
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In a general category we do not know explicitly what p and p′ are. However we
can give their construction in terms of the morphisms from the pullback and
product already defined. Then in any category p and p′ behave in the same way,
and their coequalizer is the integer object of that category.

First from the pullback we have the morphisms a and b which in Set were
projections of a 4-tuple onto a pair. Secondly, as N × N is a product in the
topos it comes with projections π1, π2 : N×N → N. In Set these give the first
and second elements of an ordered pair.

Categorically p and p′ can be constructed such that p =< π1 ◦ a, π2 ◦ b > and
p′ =< π1 ◦ b, π2 ◦ a >.

Using pullbacks and coequalizers in a similar way a rational number object Q
can be constructed from N and Z.

Example 11. In the set theoretic construction the rationals are given by

{(z, n) : z ∈ Z, n ∈ N}/ ∼,

where (z, n) ∼ (z′, n′) if and only if z(n′ +1) = z′(n+1). The equivalence class
[(z, n)] represents the rational z

n+1 .

Again in the categorical situation a coequalizer will be used to quotient an
equivalence relation constructed by a pullback.

In particular given that N and Z are objects in T the product Z×N exists with
morphisms π1 : Z×N → Z and π2 : Z×N → N .

Let m : Z × N → Z be a morphism which acts like the multiplication of an
integer with a natural number. Then m ◦ (IdZ × succ) acts like multiplication
of an integer with the successor of a natural number.

Define E as the object given by the following pullback,

E
a //

b

��

Z×N

m◦(IdZ×succ)

��
Z×N

m◦(IdZ×succ)
// Z

In Set E is {(z, n′, z′, n) : z(n′ + 1) = z′(n + 1)}.
Define the rational number object Q as the coequalizer of the following diagram,

E
<π1◦a,π2◦b> //

<π1◦b,π2◦a>
// Z×N // Q

In Set the construction of the integer and rational object is the categorical
translation of the set theoretic construction. However the advantage of express-
ing it categorically is that the same result will hold in any other topos with a
natural number object.
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1.6 Effective Topos

The effective topos, Eff was first described by J. M. E. Hyland in 1982. It is
based on the idea of Kleene’s recursive realizability.

Eff is not a Grothendieck topos. This is despite the fact that Grothendieck
topoi are based on the idea of sheaves, and Powell showed there is a parallel
between sheaf models and realizability.

We will give a brief definition of Eff before turning to the subject of analysis.
Hyland claims that analysis in Eff is essentially constructive real analysis similar
to the Markov school. We will give one theorem which holds in Eff but not in
classical analysis.

Objects in Eff are pairs (X,∼) consisting of a set X with a map ∼: X ×X →
P (N).

For (x, y) ∈ X the image under the map ∼ is denoted (x ∼ y). The natural
numbers in (x ∼ y) index partial functions. These partial functions realize
something about the similarity of x and y.

Let φe denote the partial function from N to N computed by the eth Turing
machine. Define φe(n) ↓ to mean that φe halts on input n.

Let 〈−,−〉 : N× N → N be a pairing function.

The map ∼ must satisfy conditions for symmetry and transitivity. Namely there
exists s and t in N such that;

1. n ∈ (x ∼ y) ⇒ φs(n) ↓ ∧φs(n) ∈ (y ∼ x)

2. n ∈ (x ∼ y) ∧m ∈ (y ∼ z) ⇒ φt(〈n, m〉) ↓ ∧φt(〈n, m〉) ∈ (x ∼ z).

Example 12. The natural number object is N = (N,∼), where (x ∼ y) =
{x} ∩ {y}.

A morphism from (X,∼) to (Y,∼) is an equivalence class of strict, single valued,
relational and total maps M : X × Y → P (N). A full definition can be found
in [Oos08].

The subobject classifier is larger than previous examples to account for the
different possible subsets of N which contain the indexes for the significant
partial functions.

In particular we have Ω = (P (N),∼) where

(X ∼ Y ) = {〈e0, e1〉 : ∀x ∈ Xφe0(x) ∈ Y ∧ ∀y ∈ Y φe1(y) ∈ X}.

1.7 Analysis in Eff

There are two set theoretic constructions of the real numbers using Cauchy
sequences or Dedekind cuts. Classically the Dedekind reals are isomorphic to
the Cauchy reals. A Dedekind real number object and a Cauchy real number
object can be constructed in any topos with a natural number object. In a topos
the Dedekind reals do not necessarily coincide with the Cauchy reals.
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Lemma 6. In Eff the object of the Dedekind reals is isomorphic to the Cauchy
reals object.

There is only one real number object up to isomorphism in Eff. Let R denote
this real number object.

The following result in Eff contradicts the classical Bolzano-Weierstrass theo-
rem.

Theorem 7. There exists a bounded monotone sequence of rationals in Eff
which has no limit in R.

Proof. Let f : N → N be an injective function which enumerates the halting
set {(e, x) : φe(x) ↓} without repetition. Using f we will construct a bounded
monotone sequence (rn)n∈N of rationals defined below.

rn =
n∑

i=0

2−f(i)

Assume for a contradiction that (rn)n∈N has a limit L.

∀k,∃Nk,∀n > Nk |rn − L| < 2−k

There exists a computable function g(k) = Mk where Mk > Nk by countable
choice such that,

∀k,∀n > g(k) |rn − L| < 2−k

Given k ∈ N, if there exists an i such that f(i) = k then for any n < i we have
rn + 2−k ≤ ri < L hence |rn − L| > 2−k.

For all k ∈ N if f(i) = k then i ≤ g(k). This contradicts the fact that the image
of f is undecidable.
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