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Introduction

In presenting a brief exposition of the axioms of ZFC set theory and the cat-
egory of sets the intent of this report is to look at what gets blithely called
‘foundational’ and occasionally stop to ponder the plight of the “working
mathematician”. This enigmatic figure is constantly invoked in mathemat-
ical literature as the arbiter of what is worthwhile, often with the ulterior
motive to point out that foundational concerns are irrelevant to his job.

It can seem like a misnomer to call the disciplines of set theory and cat-
egory theory foundational when they are not historically antecedent to the
main body of mathematical thought. However, this talk of foundations be-
came more of a focus with the employment of the modern axiomatic method.
This is not because they are equivalent but the use of explicit primary as-
sumptions that allow a greater abstraction in the structures discussed raises
questions about the truth and security of proofs in general.

A key maxim of the axiomatic method is that the essential properties of iso-
morphic structures are mathematically indistinguishable [Mayberry, 1994].
This means that reference to the real numbers as abstract ontological ob-
jects is replaced by the axiomatically defined complete ordered fields. While
the real numbers are a complete ordered field the axioms do not specifically
describe ‘the’ real numbers. Instead, any two complete ordered fields can
be shown to be order isomorphic. This means that the way the elements in
these structures relate to one another is the same, only the names of these
elements differ. By referring to the axiomatically defined structure of com-
plete ordered fields we are being more explicit about the properties possessed
by such a field without stating what the elements of such a structure are.
For instance, π is a real number and so it is an element of a complete ordered
field but the axioms do not tell us anything about π, only the way it relates
to the other elements. This sidesteps the ontological difficulty of what ab-
stract mathematical objects such as π are by making structures the primary
subject matter.

When we compare the axioms of ZFC and the category of sets they di-
verge in the abstractness they allow. An element in a complete ordered field
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is not required to possess any specific properties however this is different to
allowing the element to be so abstract as to have no properties. Lawvere
points out that Cantor talked about an abstract set whose elements were
devoid of properties except for their mutual distinctness. However Zermelo
thought it was inconsistent to have a definite number of points that possess
no distinguishing properties. Hence in the Zermelo-Fraenkel axioms there is
a focus on the individual elements which are the starting point for building
sets within the cumulative hierarchy.

Category theory allows abstract points as it begins with morphisms or map-
pings between ‘objects’. This does not require an explicit statement about
the nature of the elements of that object. This is in contrast to the con-
structive approach of set theory where the process of building sets out of
elements plunges the elements into the limelight. The axiom of foundation
or regularity in ZFC is a statement about what it means to talk of a set
being an element of another set. This plays a large role in set theory yet
the category of all sets and mappings in ZFC is isomorphic to the category
of all sets and mappings in ZFC where the axiom of foundation is replaced
with anti-foundation [Simpson]. This demonstrates that the exact nature of
membership is not important from a categorical perspective.

Rather than focusing on the membership of structures, categories provide
a context to look at the general notion of structure. However a structure is
typically defined as a set with a defined morphology that can also be charac-
terized by sets. As a set can be seen as a plurality that is limited in size it is
at odds with a category which is not as discerning in its membership criteria,
letting anything in. Category theory talks about types of structures based
on what components and structural maps it requires. For instance graphs
have ‘arrows’ and ‘dots’ as two component objects and ‘source’ and ‘target’
maps.

Based on the differing approaches to membership if we want to talk about
a property of an entity such as a group there are different quantification re-
quirements. In set theory we must quantify over a specific range of ‘group’
objects that are somehow fixed and given. This is because set theory builds
upwards and so to satisfy this property any group constructed in this man-
ner must possess this property. However category theory is more schematic
and to state a property of a group it talks about the property of ‘any group’
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rather than requiring all fixed or possible groups to be included in the state-
ment. As a schematic statement about a group it allows the group structure
to take different instances and is not characterising all possible groups from
a universal perspective [Awodey].

The differing approaches to abstraction are in line with opinions on what
a foundational system is or should provide. It is here that the figure of the
“working mathematician” antagonistically steps forward, as always clothed
in his inverted commas. From one perspective, espoused by the category
theorist Lawvere, a mathematical foundation is not something that founds
but is a description whose aim is to “concentrate the essence of practice and
in turn use the result to guide practice.” [Lawvere, 2003] This has a close
relation with our working mathematician as it does not dictate his universe;
it is exploring it with him.

But others will argue that the descriptive position leaves the working math-
ematician at an impasse: his job is involved in “the science which draws
necessary conclusions” [Pierce quoted in Mayberry 1994] yet he has no basis
for characterising the compelling truth of any statement or proof. Hence
what is required is the knowledge that his proofs rest upon premises whose
truth is generally accepted and that these premises are statements involving
explicitly stated primitive terms to be used as a fixed reference point for
the whole mathematical discourse. This desire to construct a universe for
mathematics out of a select few basic ideas is analogous to the statement
that “points pre-exist spaces which are made up of points”. The incommen-
surable alternative that “spaces pre-exist points and points are extracted out
of spaces or are at the boundaries and intersections of spaces” exemplifies the
descriptive approach which surveys what is already talked about and then
abstracts parts out of this for a generalised discussion.

The common rhetoric of category theory is that it is form and not con-
tent that is pivotal. While Cantor may have agreed with this, based on a
rough popularity count the “working mathematician” prefers ZFC set theory
with its concomitant membership content over the greater abstractness of
categorical mapping forms.

However mathematics does not require a respite to the foundational bickering
to get on with investigating and discovering/creating its structures. Besides
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which category theory was not initially developed as a foundational program
and presents mathematics with many interesting and useful descriptions ap-
plicable in many fields regardless of any foundational claims. Similarly in set
theory there are a variety of new objects. The rest of this report will give
an explicit statement of the axioms of ZFC and the alternative Category of
Sets and introduce some of the objects of these fields and the problems that
arise with them.

The Axioms of ZFC

Zermelo and Fraenkel came up with the following axioms for set theory which
are the most commonly used variety. It is called ZFC due to the inclusion of
the axiom of choice to differentiate from situations where choice is not used
and we are working in ZF.

Axiom of Extension

For any sets X, Y they are equal if and only if they have the same elements.
∀X∀Y (X = Y ↔ ∀z(z ∈ X ↔ z ∈ Y ))

This expresses the foundational assumption of set theory that a set is uniquely
determined by its elements.

Axiom of Power Set

If X is a set there exists a set Y = P(X) , the set of all subsets of X.
Y = {A | ∀x ∈ A, x ∈ X}

Axiom of Union

For any set X there exists a set Y =
�

X, the union of all elements of X.
Y = {A | ∃Z(A ∈ Z ∧ Z ∈ X)}
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Axiom Schema of Replacement

If a class F is a function then for any set X, there exists a set Y = F (X).

Alternatively, if a class F is a function and the domain of F is a set then the
range of F is a set.

This is called an axiom schema because for each formula ϕ(x, y, p), where
p is a parameter, the following is an axiom:

∀x∀y∀z(ϕ(x, y, p) ∧ ϕ(x, z, p) → y = z)

→ ∀X∃Y ∀y(y ∈ Y ↔ (∃x ∈ X)ϕ(x, y, p))

Axiom of Foundation or Axiom of Regularity

Every nonempty set X has an ∈-minimal element z.
∀X(X �= ∅ → (∃z ∈ X)X ∩ z = ∅).

This axiom restricts the inclusion of some things in the universe of sets and
it is useful for the construction of models. It allows all sets to be arranged in
a cumulative hierarchy which we can define by recursion of partial universes.
This definition will be stated although it requires the notion of an ordinal
which will not be given till later.

V0 = ∅
Vα+1 = P(Vα) for any ordinal α
Vδ =

�
α<δ Vα for any limit ordinal δ

Sets of the form Vα are called partial universes. Using this definition there
is an equivalent form of the Axiom of Foundation, namely:

Every set, X, belongs to some partial universe.

Axiom of Empty Set

There is exactly one X such that for any y, y /∈ X, X = ∅.
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Axiom of Pairing

For any a, b there exists a set X = {a, b} that contains exactly a and b.

This axiom is redundant as it can be derived from the other axioms:
∅ is a set, hence P(P(∅)) = {∅, {∅}} is a set.
By Replacement we can define a function

F (x) =

�
a, x=∅
b, x={∅}

Hence X = {a, b} exists.

Axiom Schema of Separation

For any property, P , and for any set, X, there exists a set, Y , of all the
elements in X which have the property P .

Y = {x ∈ X | P (x)}

One, but not both, of the Axiom of Empty Set and Axiom Schema of Separa-
tion are needed. The other can be derived within the remaining axioms of ZF.

Regardless of whether it is explicitly stated or merely derived, the presence
of the axiom of separation means set theory avoids Russell’s paradox that;

A = {x | x /∈ x} does not exist because A ∈ A ⇔ A /∈ A

This paradox is avoided due to the extra condition that x ∈ X, for some set
X, before looking at whether x satisfies a certain property such as x /∈ x.
A consequence of this is that there is not a universal set U which contains
all sets. If U existed then {x ∈ U | x /∈ x} would be a valid set by the
Separation axiom and we would be faced with Russell’s paradox again.

While there exists some collections that cannot be described in ZFC it is
possible to talk about them as a class of sets possessing a certain property,
i.e. sets that satisfy a formula ψ. Although sets are the only object in ZFC,
the informal notion of a class, C(ψ) = {x | ψ(x)} is used as it is easier to
manipulate than formulas, although C(ψ) is synonymous with the formula
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ψ. With the notion of class we can talk about intersection or union of classes
as C(ψ)∪C(φ) = C(ψ∨φ). Similarly the inclusion of a class C(φ) in a class
C(ψ) is equivalent to (φ → ψ) being logically valid. However we cannot talk
about one class being the member of another class.

With the axioms stated so far only finite collections are sets meaning all
infinite collections are proper classes. This is due to the bottom-up construc-
tion beginning with the empty set as the most basic object and building a
cumulative hierarchy of sets with reference to the other axioms. To be able
to talk about an infinite collection as being a set we need another axiom.

Axiom of Infinity

There exists an infinite set. Or equivalently; there exists an inductive set.
∃X(∅ ∈ X ∧ (∀x ∈ X) x ∪ {x} ∈ X)

The axiom of infinity is independent of the other axioms as there exists
a consistent model of ZF minus the axiom of infinity. The model is (N,∈)
where x ∈ y if there is a 1 in the x + 1 position of the binary representation
of y.

Similarly the axiom of choice is independent of ZF. I will state the axiom
here but will look at it in greater detail later on.

Axiom of Choice

Let F be a function with domain I and F (i) �= ∅ for each i ∈ I then
X = (F (i) | i ∈ I) is an indexed family of sets.

The axiom of choice states that there exists a choice function, f , on X such
that for each i ∈ I, f(i) ∈ F (i).

With this basic framework for ZFC it is possible to give explicit formula-
tions of ordered pairs, functions and relations in set theory. This allows us
to talk about structures within set theory as not only the domain is a set but
also the morphology or relation defined on it can be conceived of in terms of
sets. This is important for the claim that it is possible to do all of mathe-
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matics in a set theory using only the notion ’belongs to’.

Ordered pairs are used throughout mathematics but the order is a matter
of notation. In set theory {a, b} = {b, a} so it is not sufficient to represent
the ordered pair (a, b) as the set {a, b}. The set theoretical convention, due
to C. Kuratowski, is to say (a, b) = {{a}, {a, b}}. This prevents the need
to introduce a second primitive notion for an ordered set, as Kuratowski’s
definition only requires the primitive notion ∈.

Using the definition of an ordered pair we can define;

The Cartesian product A×B = {(a, b) | a ∈ A, b ∈ B};

A relation R which holds between x and y, xRy, if (x, y) ∈ R;

A function f which is a relation with the condition that
∀x, y, z (x, y), (x, z) ∈ f ⇒ y = z

Ordinals and Cardinals

Cantor used bijective functions to compare the sizes of two sets. This method
was particularly necessary for infinite sets and highlights the paradoxical case
that with infinity it is not true that the whole is greater than the part. To
be able to talk about the size of these sets Cantor introduced ordinals and
cardinals as new mathematical objects.

Ordinals

Ordinal numbers behave in such a way that

α < β ⇔ α ∈ β, β = {α | α < β}

A set is an ordinal if the set is transitive and well ordered by ∈.

A set, T , is transitive if ∀x, y x ∈ y ∈ T ⇒ x ∈ T . Alternatively T is
transitive if ∀x, x ∈ T ⇒ x ⊆ T .
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One conception of the ordinals is the von Neumann ordinals

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, ...

Beginning with the empty set, each von Neumann ordinal is the set of all
preceding von Neumann ordinals. But regardless of how the ordinals are
conceived, every well ordered set is isomorphic to a unique ordinal. A conse-
quence of the axiom of choice is that every set can be well ordered and hence
every set has an ordinal.

For each ordinal, α, we define the successor of α to be

α + 1 = α ∪ {α} = inf{β | β > α}

If there does not exist α such that β = α + 1 then β is a limit ordinal and
β = sup{α | α < β}. The supremum of ∅ is defined to be 0. This makes 0
the first limit ordinal and if the axiom of infinity is not included it is also the
only limit ordinal.

Cardinals

The cardinality of a set X is denoted by |X|. This refers to the size of the
set X and is like a property shared by all sets Y such that there exists a
bijective function f : X → Y . This relationship between X and Y is written
X ≈ Y .

There are two ways to define cardinals depending on whether the axiom
of choice is included.

For a well ordered set W , there exists an ordinal α such that |W | = |α|.
If we assume the axiom of choice then by Zermelo’s Well-Ordering theorem
all sets can be well ordered. Hence we can define the cardinality of any set
W as

|W | = the least ordinal such that |W | = |α|
To define cardinals in ZF look at the equivalence classes

CX = {Y | X ≈ Y }
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For X ≈ Y to be a relation it has to be a relation on some set. However we
need the set of all sets, V , to be the domain of ≈ which is not a set but a
proper class. To talk about cardinals that are sets and not proper classes let

F (X) = min{α | ∃Y ∈ Vα(X ≈ Y )}

By the axiom of regularity there exists such a partial universe, Vα.

Then |X| = {Y ∈ VF (X) | (X ≈ Y )}

However without the axiom of choice not all cardinals are comparable. As a
result in ZF there exists a set A such that n < |A| for all n ∈ N but there
there does not exist a one-to-one function f : ω → A.

Every cardinal is an ordinal and in the finite case the reverse is true. Looking
at the infinite case only limit ordinals are cardinals starting with |N| = ω.
This follows from the definition that an ordinal, α is a cardinal if there does
not exist a bijection between α and a section of α or |α| �= |β| for any β < α.

For notational convenience the infinite limit ordinals, or cardinals, are called
alephs and are defined as:

ℵ0 = ω

ℵα+1 = ℵ+
α , the successor of ℵα where α is a successor ordinal.

ℵδ = sup{ℵβ | β < δ} if δ is a limit ordinal.

A cardinal ℵα is a successor cardinal if α = β + 1 for some β, similarly
if δ is a limit ordinal then ℵδ is a limit cardinal. Along with the aleph
notation I will use the greek letters κ, λ, µ to refer to cardinals.

Cofinality and Inaccessible Cardinals

The cofinality of a cardinal κ, written cf(κ), is the least cardinal λ such that
if µi ≤ λ for all i ∈ I where |I| = λ then

κ =
�

i∈I

µi

The first infinite cardinal is ℵ0 = ω. This is not equal to a finite sum of finite
cardinals so cf(ℵ0) = ℵ0 = ω.
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If cf(κ) = κ then κ is a regular cardinal.
If cf(κ) < κ then κ is singular.

The cofinality of a cardinal is a regular cardinal as cf(cf(λ)) = cf(λ).

A successor cardinal, κ+, is regular because if we have |I| = κ and λi ≤ κ

for all i ∈ I then �

i∈I

λi ≤ κ

Hence there does not exist a cardinal, µ ≤ κ which is less than κ+ for which
κ+ is the sum of µ many cardinals that are strictly smaller than κ+.

For an uncountable limit cardinal κ = ℵα, where α is a limit ordinal,

cf(ℵα) = cf(α)

If the limit cardinal is also regular then

cf(ℵα) = cf(α) = α and ℵα = α

A cardinal is weakly inaccessible if it is an uncountable regular limit car-
dinal, i.e. cf(ℵα) = cf(α) = α for α > 0.

An uncountable cardinal, κ is inaccessible if it is regular and 2λ < κ for all
λ < κ.

For all finite n, 2n < ω so ℵ0 has the same properties as an inaccessible
cardinal.

Inaccessible Cardinals and the Consistency of ZFC

If α is a limit ordinal then the partial universe Vα satisfies the axioms of ZFC
except for possibly the replacement axiom [Cameron, p131].

However if α is an inaccessible cardinal then the partial universe Vα sat-
isfies all of the axioms of ZFC. This means that any sets that can be build
from sets within Vα are also contained in Vα.
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We can not prove the existence of an inaccessible cardinal with recourse
to the axioms of ZFC. This is similar to the existence of ω for which we had
to include the axiom of infinity. In fact inaccessible cardinals can be thought
of as generalisations of ω.

If we assume that an inaccessible cardinal α exists then Vα is a model for
ZFC which shows that ZFC is consistent. However Godel’s Second Incom-
pleteness Theorem shows that the consistency of ZFC can not be proven from
the axioms of ZFC. Hence ZFC cannot prove the existence of an inaccessible
cardinal as this is equivalent to proving its own consistency.

The Axiom of Choice

The axioms of set theory do not always include choice. This is due to the
controversy that has surrounded it from the beginning. This section will
look at some variations of this axiom and the undesirable consequences of its
inclusion.

The Axiom of Choice is not always used in the form stated earlier. Two
equivalent and common variations are Zermelo’s Well-Ordering Principle,

Every set can be well-ordered
and Zorn’s Lemma,

For any partially ordered set (X, <), if every subset of X that is
ordered by < has an upper bound then X has a maximal element.

There are many other equivalent forms of this axiom which can result in
it going unnoticed in a proof. Hardy showed that to index a set of cardi-
nality 2ℵ0 , Borel had used the axiom of choice in his proof of a continuous
function f : R → R which does not have a double series polynomial repre-
sentation. This is despite the fact that Borel objected to the axiom of choice
(Herrlich 21).

The axiom of choice is independent of the ZF axioms and entails some very
useful results in a wide range of fields that would not be possible in ZF alone.
This includes Tychonoff’s Theorem in topology, the existence of a basis for
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any vector space and the unique (up to isomorphism) algebraic closure of a
field F.

However the full axiom of choice is not always needed. Recall that the axiom
states the existence of a choice function, f on an indexed family of non-
empty sets, X = (F (i) | i ∈ I), such that for each i ∈ I, f(i) ∈ F (i) and
|f(i) ∩ F (i)| = 1. This can be weakened by three different approaches:

1. Restrict the size of I, the indexing set.

2. Restrict the nature of each F (i) in the indexed family of sets.

3. Change the requirement that the choice function takes only one element
from each set F (i).

One version that uses the first approach is The Countable Axiom of

Choice;

Every countable family, A, of nonempty sets has a choice function.

Howard and Rubin list 383 variations of weakened choice although there are
undoubtedly many more. Countable Choice is among the most commonly
used forms and is also implied by The Principle of Dependent Choice;

If R is a binary relation on a nonempty set A and for all x ∈ A there exists
y ∈ A such that �x, y� ∈ R, then there exists a sequence (xn)n∈N in A such
that �xn, xn+1� ∈ R for all n ∈ N.

Countable Choice is sufficient to show that the countable union of countable
sets is countable and to prove the closure of the Borel sets (to be defined in
the following section). Dependent choice allows for countably many consec-
utive choices and is used in Solovay’s Theorem later on.

Despite the advantages that come from including the axiom of choice there
are also some paradoxical consequences in measure theory.

Basic Concepts of Measure Theory

A σ − algebra X is a collection of subsets of a given set S, i.e. a subset of
P(S), that satisfy the conditions

1. S ∈ X,
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2. if A ∈ X and B ∈ X then A ∪B ∈ X,

3. if A ∈ X then the complement X − A ∈ X,

4. if An ∈ X for all n,
�∞

n=0 An ∈ X

X is also closed under intersections and countable intersections as these can
be written in terms of union and complement.

The smallest σ − algebra containing the open sets of R is B, the collec-
tion of Borel sets. These are generated by the collections

�0
α and

�0
α for

α < ω1 defined as;

�0
1 = all the open sets,

�0
1 = all the closed sets,

�0
α = the collection of sets A, such that A is the countable union of

sets belonging to
�0

β for β < α,

�0
α = the collection of all the complements of sets in

�0
α,

= the collection of sets A, such that A is the countable intersection
of sets belonging to

�0
β for β < α.

Using the countable axiom of choice we can verify that the following col-
lection is a σ−algebra that is closed under countable intersection and union:

�

α<ω1

�0
α =

�

α<ω1

�0
α

All Borel sets are Lebesgue measurable although the converse does not hold.
To define the Lebesgue measure I will first define an outer measure µ∗(X)
for a set X ⊂ Rn.

µ∗(X) = inf

�
�

k∈N
v(Ik)

�

Where {Ik | k ∈ N} is a set of spheres such that X ⊂
�

k∈N Ik and v(Ik) is the
volume of each sphere defined in the normal way. In R2 a sphere is an interval.
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A set A is Lebesgue measurable if for all X ⊂ Rn,

µ(A) = µ∗(A) = µ∗(X − A) + µ∗(X ∩ A)

Alternatively a set A is Lebesgue measurable if and only if there exists a
Borel set, B, such that the symmetric difference A∆B has measure zero.

Some important properties of the Lebesgue measure are as follows:

• µ(A) ≥ 0

• The empty set and discreet points, {x}, have measure zero

• µ(A) ≤ µ(B) if A ⊂ B, this is called monotonicity.

• µ(I) = b− a where I is an interval with endpoints a, b and a < b

• If a set is translated by c then the measure, µ(A + c) = µ(A), is
translation invariant.

• Countable subadditivity, µ (
�∞

1 Ak) ≤
�∞

1 µ(Ak). This is a strict
equality if the sets Ak are disjoint.

As µ({x}) = 0, by the property of countable subadditivity the measure of
the rationals in the interval I = [0, 1] is zero. Let Q be the set of all the
rationals in the interval I and R the set of all irrationals, then I is the disjoint
union of Q and R. As µ([0, 1]) = 1 and µ(Q) = 0 then µ(R) = 1 showing
that the uncountable addition of discreet points all of measure zero does not
necessarily give measure zero.

Vitali Set

An example of the undesirable consequences of what can be proven with the
axiom of choice is the existence of the Vitali Set, a subset of the real line
which is not Lebesgue measurable.

For x ∈ [0, 1], let Vx = { y | y ∈ [0, 1], x− y ∈ Q}.
The equivalence classes form a partition, {Vi | i ∈ I}, of [0, 1] where,

|I| = |R|
|Vi| = ω for all i ∈ I
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By the axiom of choice we can have a selector M = {xi | i ∈ I} of the
partition {Vi | i ∈ I} such that |M ∩ Vi| = 1 for all i ∈ I.

Assume for a contradiction that M is measurable.

For all distinct x, y ∈ M, x− y /∈ Q

Let Mq = {x + q | x ∈ M} for all q ∈ Q

Then
�

q∈[−1,1]∩Q Mq is a union of distinct sets that covers [0, 1]. For the
remainder of this proof I shall use q ∈ [−1, 1] to refer to the rationals in that
interval.

[0, 1] ⊆
�

q∈[−1,1]

Mq ⊆ [−1, 2]

From the monotonicity of the Lebesgue measure,

µ([0, 1]) ≤ µ




�

q∈[−1,1]

Mq



 ≤ µ([−1, 2])

Due to countable sub additivity and Mq being distinct for all q,

µ




�

q∈[−1,1]

Mq



 =
�

q∈[−1,1]

µ(Mq)

As the Lebesgue measure is invariant under translation

µ(Mq) = µ(M)

1 ≤
�

q∈[−1,1]

µ(M) ≤ 3

There is no value for µ(M) such that this is true.

Hence M is not measurable.
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Banach-Tarski Paradox

The Banach-Tarski paradox states that any ball it can be partitioned into
five pieces that are moved using only translations and rotations and are re-
assembled to form two balls, each the same size as the original. It is in the
partitioning of the ball that the axiom of choice is used resulting in the mea-
sure on the partition being undefined in a similar way to the Vitali set [Just
and Weese].

The unit ball U can be partitioned into two sets X and Y such that X ≈ U

and Y ≈ U .

The relation ≈ is defined on P(R3) where A ≈ B if there are partitions
(Ai)i<n of A and (Bi)i<n of B for n < ω such that Ai

∼= Bi for all i < n.
A ∼= B means there exists an isometry of the sphere, φ, such that φ[A] = B.

Solovay’s Theorem

The presence of the Vitali set and the Banach-Tarski paradox show that
with the axiom of choice there exists non-measurable sets. That alone does
not make the axiom of choice the culprit. However, Solovay showed that it
is consistent to have dependent choice with all sets of real numbers being
Lebesgue measurable. This shows that it is due to the inclusion of the axiom
of choice that non-measurable sets occur.

Let κ be an inaccessible cardinal. Let INC stand for the statement “There
exists an inaccessible cardinal.”

Theorem 1 If there is a transitive model of ZFC + INC then there is a
transitive model of ZF where the following propositions are valid;

(1) The principle of dependent choice.
(2) Every set of reals is Lebesgue measurable.
(3)-(5) See Solovay for a full statement.

Although we know there exists a set that does not have a Lebesgue mea-
sure in ZFC we have not given an explicit definition of it because we are
unable to do so. Part of the issue is that it is not clear how to express ‘de-
finable’ by a set theoretical formula.
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Myhill and Scott showed that “X is definable from some countable sequence
of ordinals” is expressible with set theoretical formula where X is any set of
reals. Thus the following theorem, which is similar to Theorem 1, can be
formulated in set theory.

Theorem 2 If ZFC + INC has a transitive model then ZFC + GCH has
a transitive model where the analog of propositions (2)-(5) from Theorem 1
hold. The analog of (2) is;

(2’) Every set of reals definable from a countable sequence of ordinals is
Lebesgue measurable.

The proof of Theorem 1 follows from the proof of Theorem 2. I will give
a brief sketch of the details that relate to the Lebesgue measurability of all
sets of real numbers. For definitions of undefined terms and the many missed
details see Jech or Solovay.

Let M be a transitive model of ZFC. Let B = B(P ) be the Levy collapse for
κ where P is the collection of properties of forcing that collapse each α < κ

onto ℵ0. Let G be an M-generic ultrafilter on B. The requirement that G

is an ultrafilter on B means it is a subset of P(B) such that;

• B ∈ G and ∅ �= G

• if X, Y ∈ G then X ∩ Y ∈ G

• if X, Y ⊂ B, X ∈ G and X ⊂ Y then Y ∈ G

• for all X ⊂ B either X or its complement is in G

The requirement that G is M-generic means that if D is a dense subset of
B and D ∈M then G ∩D �= ∅.

A model for ZFC is M[G], a generic extension of M. Every element in
M[G] has a ‘name’ in M that describes how it was constructed and G in-
terprets these names.

We want a submodel where every set of reals can be described by a count-
able sequence of ordinals. Let N be the set of elements that are hereditary
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definable from a sequence of ordinals in M[G]. Every real and sequence of
ordinals in M[G] is in N and dependent choice holds in N .

For all sets of reals X ∈M, X is M-R-definable in M[G] and X is Lebesgue
measurable in M[G]. Hence there exists Borel sets C, D in M[G], where D

is null meaning it has 0 measure, such that

C∆X ⊆ D

D is null in N so X is Lebesgue measurable in N .

The Category of Sets

In contrast to set theory, category theory does not place primary impor-
tance on the element membership of an object. The element of a set A can
be expressed in terms of a mapping. In talking about a mapping, u, from the
domain A to the codomain B, I will use the notation A

u−→ B. An element
b, of a set A is equivalent to the mapping with the terminal object 1 as its
domain and A as its codomain,

1
b−→ A

Looking at a composition

1
a−→ A

f−→ B

reveals that fa is an element of B.

The associative law is a generalized version of this, for some T let

T
u−→ A

if T
u−→ A

f−→ B
g−→ C, then g(fu) = gf(u)
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With this it is possible to define a category as possessing the following data:

• A set of objects, O which are a special sort of mapping.

• A set of morphisms, M , also referred to as maps or arrows.

• For each arrow, f in M , there is an associated domain, A, and a
codomain, B, where A and B are objects in O and

A
f−→ B

• For arrows, f, g, with codomain(f) = domain(g)

A
f−→ B and B

g−→ C

there is an assigned composite arrow, gf such that

A
gf−→ C

• For each object, A, in O there is an assigned arrow, 1A called the iden-
tity on A

A
1A−→ A

The category of sets as articulated by the following axioms is capable of
providing a foundation for number theory, analysis and much of algebra
and topology without a clearly defined membership relation. This partially
demonstrates that substance is not necessary to carry mathematical infor-
mation as invariant form is sufficient.

Category Axiom

Axiom Abstract sets and maps form a category, S.

The objects are sets and the arrows are maps and S satisfies the conditions
above. From now on I will talk specifically in relation to this category and
refer to ‘sets’ instead of the general ‘object’ even if a statement is applicable
to other object types.
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Limit Axiom

Axiom The limits and colimits for any finite data are in S.

Limits and colimits are dual notions. To define these it is instructive to
first look at the example of the dual sets 0 and 1.

Instead of referring to a singleton with a particular element we talk about
the object 1, the terminal set, disregarding the particular element that is its
single member. It does not matter if there is a unique terminal set or if there
are many of them, the only properties of interest are the mappings between
the terminal set and other sets. For any set A there exists a unique mapping
A −→ 1.
The initial set is 0, which means for any set A there is a unique mapping
0 −→ A. The initial set has no elements and like the empty set in ZFC it is
unique.
The mapping 1 −→ A exists if A is nonempty and the number of mappings
corresponds to the number of elements of A as seen above. However 1 −→ 0
is not defined. The only set A for which A −→ 0 exists is the empty set, and
there is only one mapping.

The limit property of the terminal set 1 is the existence of a unique map
from every set A to 1. The dual property or colimit is the existence of a
unique map from the initial or empty set 0, to every set A.

To give the formal definition of a limit requires a definition of data. The
axiom only applies to data that is finite.

Let Ai be a family of sets and I the set of indices.
Let fj be the family of mappings between the sets in Ai and let J be the set
of indices of fj.
A data type is of the form

J I

where the map d gives a set from Ai, namely with an index in I, to be the
domain of a mapping with index in J, and the map c gives the set which is
the codomain of that same mapping.
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For an element j in J, there are maps d and c,

1
j−→ J I

such that there is a map between the two sets indexed by d(j), c(j) in I

Ad(j)
fj−→ Ac(j)

The limit for some Ai, fj as above is given by the single set L and a universal
cone with vertex L and a base defined by the family of maps,

for 1
i−→ I, L

πi−→ Ai

The cone is universal because for any set T such that T has a map associated
with every set that L had a map associated with, then there exists a unique
map T

a−→ L
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Axiom of Choice

Similar to the axiom of choice of ZFC this axiom means that every surjective
map is invertible.

Axiom Every epimap has a section.

Let A
f−→ B

then the map s is a section of the map f if s is injective and

B
s−→ A

If s is a section of f then fs = 1B.

f is an epimap if it has the right-cancellation property

∀φ, ψ[φf = ψf ⇒ φ = ψ]

If A
f−→ B, then for arbitrary C, A

f−→ B C

Instead of referring to a map A
f−→ B, f can be seen as a family of sets

Ab = {a | f(a) = b}

A section s for the map f is a rule that chooses exactly one element from
each set in Ab.

fs = 1B

⇒ f(sb) = b

⇒ s(b) ∈ Ab for all b.

The category of order-preserving mappings between partially ordered sets
satisfies all the axioms of the category of sets except the axiom of choice
showing that choice is independent.

Dedekind-Peano Axiom

This is a statement about the existence of an infinite object called a natural
number object, N . Its existence is expressed in terms of a sequence starting
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with an initial element and having the equivalent of a successor relationship.
The term ‘sequence’ denotes a map in S with N as its domain.

Axiom There exists a mapping 1
0−→ N

ψ−→ N in S such that for any
mapping

1
x0−→ X

φ−→ X

there exists a unique sequence x such that x0 = x0 and xψ = φx

Mapping Set Axiom

Axiom There is a mapping set Y X for any objects X and Y in S.

For each arrow B → Y X there is an assigned arrow in B × X → Y and
vice versa. This is written,

B → Y X

B ×X → Y
↑↓

When B is 1 we can see that the number of elements in Y X must be the
same as the number of arrows or mappings X → Y .

In particular for each map B × X
f→ Y there is a unique map B

g→ Y X

for which g × 1X = f .

Axiom of Truth Value Representation

Axiom There exists a truth value object 1
v1→ V and a one to one correspon-

dence between parts (up to equivalence) of an object A and the mappings
A → V .
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Let V be a truth value set and 1
v1→ V a fixed element of V which can

be called ‘true’.

A part, i, of a set A is a mapping into A which is a monomorphism (it
has left cancellation) meaning it keeps the elements of the domain distinct.

For U = domain(i), U
i→ A.

There exists a characteristic function ϕ, A
ϕ→ V on a part i of a set A if

and only if the elements of A which are members of the part i are exactly
the elements which the function ϕ gives the value ’true’ in V .

As this is a universal property, for any T and mapping T
a→ A

a ∈A i

⇔ ϕa = v1T

Where a ∈A i means ∃a T
a→ U such that a = ia and v1T is the constant

map T
T→ 1

v1→ V .

When V = 2 all parts of all sets have a unique characteristic function.

Boolean Axiom

Axiom S is Boolean.

There is an object Ω such that

�
t

f
: 1 + 1 → Ω where t, f are injec-

tions and as Ω is the sum of the two sets 1 and 1 then for all Y there is a
unique mapping g such that
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As g is unique 1 and 1 exhaust Ω meaning there is no element of Ω which is
not mapped to by either t or f .

Two-Valued Axiom

Axiom S is Two-Valued.

This simply asserts the existence of an object with more than one element.

That completes the axioms for the category of sets.

These axioms are not able to talk about cardinals greater than ℵω. How-
ever, the category of sets was devised as a foundation for analysis and most
of algebra and topology where such large cardinals rarely occur. It is possible
to extend these axioms but in Lawvere’s opinion if one wanted to go beyond
this it would be better to use the category of categories.

Conclusion

The “working mathematician” is wise not to be taken in by a quixotic desire
for a complete consistent formal system. There is no direct answer for what
‘the’ foundation of mathematics should be and so this is not a conclusive
conclusion. Set theory and category theory are not solely concerned with
foundations although they offer many different version, ZFC and the Cate-
gory of Sets are only two possibilities.
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