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1 Abstract

We show how some recent results relate to the currently open question of
whether Thompson’s group F is automatic. We begin with a brief introduc-
tion to (synchronous) automatic groups including some basic results, namely
their characterisation as regularly generated groups which have the fellow
traveller property and that their Dehn function is quadratic. This is followed
by a description of the group F and proofs of some of its basic properties
leading on to a discussion of results related to the growth function of F ; the
fellow traveller property and Guba’s proof that the Dehn function of F is
quadratic.

2 Preliminaries

Here we recap key concepts and standard terminology used within this sur-
vey.
An alphabet is a finite set of symbols, usually denoted by A. Elements of
A are called letters. A string (equivalently a word) over an alphabet A is
a finite sequence of letters from A. This can also be viewed as a function
s : {1, ..., n} → A. This representation is only conceptual, in what follows
s(k) will always refer to the length k prefix of s. A language over A is a set
of strings over A. The largest possible language over A is the free monoid
with respect to concatenation A∗, this contains every possible finite string
over A.
A finite state automaton is a 5-tuple FA = (Q,A, δ, q0, F ) where

• Q is the set of states,

• A is the alphabet of the automata,

• A deterministic automaton has transition function δ : Q×A→ Q,

• A nondeterministic automaton has transition function δ : Q × A →
P(Q),
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• q0 ∈ Q is the start state,

• F ⊆ Q is the set of final states.

An automaton FA performs a computation on a string s ∈ A∗ by application
of the transition function on the letters of s and the current state of the
automata, where the first state is q0. The computation is accepting if after
reading all of the letters of s the automaton is in a state in F . Thus we can
define the language of an automaton L(FA) as the subset of strings in A∗

accepted by the automaton FA.
A regular expression is a string representation of a language. Suppose L1

and L2 are automata recognisable languages over A. A regular expression
over A is defined inductively as:

• L(ε) = {ε}, L(()) = ∅ and for any s ∈ A∗, L(s) = {s}.

Let r1 and r2 be regular expressions;

• L(r1|r2) = L(r1) ∪ L(r2).

• L(r1r2) = {st : s ∈ L(r1) and t ∈ L(r2)}.

• L(r∗1) = L(r1)
∗, i.e. the free monoid generated by L(r1).

Parentheses are used to group subexpressions.
A key result in the theory of automata states that the languages recognised
by finite automata are equivalent to those defined by regular expressions.
The set of all languages recognisable by either of these methods is called the
regular languages. We will normally give a regular expression when referring
explicitly to the language of an automaton.

A group may be written in a compact form as a set of generators and
a set of relators. A group G is generated by the set X if G is the smallest
group containing X. In an abstract sense, let A be some alphabet such that
there is a surjective map π : A → X. Define the free group on A, F (A)
as the subset of the language (A|A−1)∗ which does not contain any words
with substrings aa−1 or a−1a for any a ∈ A. Note that F (A) and F (B) are
isomorphic if |A| = |B|, so if |A| = n, F (A) is normally referred to as the free
group of rank n. The relators are words over A that act as ’simplification
rules’ to define a sublanguage of F (A) in which no word has any relator as
a substring and this sublanguage is representative of G in F (A). What we
have really done is define a surjective group homomorphism β : F (A) → G
for which all of the relators are in the kernel. Since these are sufficient to
define the group, the kernel of β is just the normal closure of the set of
relators. Groups can then be specified as G =< X|R > where X is the
generating set and R is the set of relators. This is a presentation for G.
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3 Automatic groups

Automatic groups formalise, in a sense, the notion of a ”well-behaved” group
from a computational perspective. Central to this is the group presentation.
In general, groups have many different presentations and it is rarely clear
which, if any, is the best to use. A major part of this difficulty is the fact
that the homomorphism from the free group F (A) to G is not guaranteed
to be one-to-one. This means that any element of G may have many repre-
sentatives in F (A) and many more in A∗. The problem of recognising when
two arbitrary words in A∗ represent the same element of G (or, equivalently,
a word represents the identity in G) is called the word problem.

Automatic groups have elements and operations recognisable by finite
automata over A∗. More precisely the automata recognise the graphs of right
multiplication by elements of A over a certain subset of the free group on A.
This implies a certain simplicity of computation in both recognising normal
forms for elements of G and for computing multiplications and equality. In
fact automatic groups have a word problem solvable in quadratic time as will
be shown later. Much of the material developed here is covered in greater
detail in the now classic work by Epstein [8].

Definition 3.1. A finitely generated group G with generating set A is called
an automatic group if there exist the following automata:

1. W the word automaton, an automaton over A with language L(W ),
such that L(W ) maps surjectively on to G.

2. For each x ∈ A an automaton Mx such that M accepts (v, w) ∈ A∗×A∗
if v, w ∈ L(W ) and v = wx in G. These are called multipliers.

3. An automaton E over A such that L(E) = {(w,w) ∈ A∗ × A∗| if
w =G w}. This is the equality recogniser.

Together these are referred to as an automatic structure for G over A.

A technical note on the definition of the multipliers; these are a type
of automata known as many-variable automata. They are defined over the
alphabet A′ × A′ where A′ = A ∪ {$}, assuming $ is not in A. Any string
in A∗ × A∗ has an equivalent in (A′ × A′)∗ which can be found by padding
the shorter string in the pair with the letter $ so that both have the same
length, then splitting these strings into letters from (A′ ×A′)∗.

Some examples of simple automatic groups:
The free group on X, has word automaton recognising the language X∗

and multiplier automata Mx that recognise {(y, y) : y ∈ X}∗($, x) for all
x ∈ X.

Any finite group G =< X >. L(W ) can simply be the set of all group
elements, this is a finite language over G. Similarly multipliers correspond to
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the language of pairs of group elements that differ by a single generator, also
finite. Another classic example of automatic groups are the word-hyperbolic
groups. A non-example is the Baumslag-Solitar groups. These have presen-
tation B(m,n) =< a, b|bamb−1 = an > which, to return to the point about
presentations, look ”easy” but are quite difficult to work with. In particu-
lar, the group B(1, n) has an exponential Dehn function for |n| ≥ 2. This
means that given any word of length n representing the identity in B(1, 2),
O(2n) other words equivalent to w can be derived. It will be shown later
that automatic groups have quadratic Dehn function.

Definition 3.2. Let G be a group with a finite set of generators A. The
Cayley graph Γ(G,A), is the graph with G as its set of vertices and such
that (x, y) is an edge of Γ precisely when y = xg, for g ∈ A. Each edge is
labelled by its respective generator and if |g| = 2, so that y = xg and x = yg,
then the edge between x and y is undirected. The vertex corresponding to
the identity in G is referred to as the basepoint of the graph.

As a simple example, the cyclic group Zn =< a > has Cayley graph
Γ(G, {a}) isomorphic to the cyclic graph on n vertices. Each edge has the
form (ai, ai+1) for 0 ≤ i < n and is labelled by a. The basepoint is the
identity.

An important point to make is that the geometry of the Cayley graph
of G for different generating sets is not necessarily similar. Take for ex-
ample S3, which is be generated by both A1 = {(1, 2), (1, 3)} and A2 =
{(1, 2), (1, 2, 3)}. Clearly Γ(G,A2) must contain a directed 3-cycle, whereas
Γ(G,A1) contains no such cycle, as every edge is necessarily undirected.
Hence the two graphs cannot be isomorphic.

Next we introduce some important combinatorial structures that occur
within the Cayley graph of a group.

Definition 3.3. Given a presentation < A|R > for a finitely generated
group G, any representative of the identity can be written in the form

w = Πn
i=1v

−1
i r±1i vi (1)

where vi ∈ F (A), ri ∈ R and n ≥ 0. This is referred to as the disc with
boundary w and combinatorial area n. The combinatorial area of the word
w is the smallest possible n for which w has a decomposition (1). This is
often written as area(w).

Consider Dn =< r, f |rn, f2, (rf)2 >, the dihedral group of order n. A
representative of the identity in Dn is w = rkfr(n−k)f where 0 < k < n. One
disc for w is Πn−2

i=0 r
i(rf)2r(n−i). Another disc for w is r(n−1)f(rn)r(n−1)f .

Hence area(w) = 1.
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The intuitive idea of a disc is that if w represents the identity in G,
it corresponds to a cycle starting at the basepoint in the Cayley graph.
Then a (possibly longer) cycle can be obtained from w by taking cycles
labelled by the relators ri and translating them by the vi’s such that the
outer cycle remains w. In this way the construction provides a concrete way
of representing all such representatives of the identity derived from w. As
well, the combinatorial area of a word represents the smallest number of
applications of relators of the presentation of G needed to derive the word.
Looking at discs as subgraphs of a Cayley graph provides an avenue for
investigating representatives of the identity from a geometric perspective.

Definition 3.4. The Dehn diagram (also called van Kampen diagram) for
a disc is the path in Γ(G,A) starting at the basepoint and labelled by the
word on the right hand side of (1). The boundary of this subgraph has label
w and it has n internal cycles labelled by the relators r1, ..., rn.

Dehn diagrams were used extensively by Guba to obtain his results on
the complexity of the Dehn function which we define below.

Definition 3.5. The Dehn function (also called the isoperimetric function)
of G with respect to a generating set A is defined as

φ(n) = max{area(w) : w =G e and |w| ≤ n}

where area(w) is just the combinatorial area of w.

Although the Dehn function depends on the specific presentation of the
group, its complexity class is an invariant of the group. To see this, first fix
some presentation for G with Dehn function φ. In any other presentation
for G, the generators of this new presentation may be written in terms of
the old generators such that they are represented by words whose length are
bounded by some constant Cgens. Also the relators of the old presentation
are discs in the new presentation whose are must be bounded by some con-
stant Crel as they are finite. Hence if φ′ is the Dehn function of the new
presentation, it is the case that φ(n) ≤ Crelφ

′(nCgens).
Note that then name ”Dehn function” is normally reserved for the smallest
isoperimetric function of a group. But since we are primarily concerned with
the complexity class of such functions we will simply refer to any representa-
tive isoperimetric function as a Dehn function. The fact that isoperimetric
functions for a group have the same complexity and the following theorem
demonstrate the usefulness of the Dehn function when investigating groups.

Theorem 3.1. The group G has a solvable word problem if and only if its
Dehn function is computable.

The proof of this consists of showing that if the Dehn function is bounded
by a computable function, then the number of representatives for the iden-
tity is also bounded and is therefore computable. It requires the lemma that
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if v ∈ F (A) participates in a disc over A then it’s maximum length is lin-
early proportional to the length of the boundary word. This together with
the the definition of isoperimetric functions gives the result. The complete
proof is found in Epstein [8].

The Cayley graph has the usual graph distance metric, namely d(x, y)
being the length of the shortest path between x and y, or infinite if no such
path exists. Note that Γ(G,A) must be connected because A generates G.
Hence d(x, y) is finite for all vertices x and y. Hence we have a well behaved
metric for G:

Definition 3.6. The word metric on G induced by A, dA : G → N, is the
length of the shortest path between two elements of G in the Cayley graph
Γ(G,A). Equivalently, dA(x, y) is the shortest word over A representing
x−1y. We write |x| for dA(x, e).

This naturally extends to a metric for A∗ simply by applying the surjec-
tive map from A to G. Another useful metric is the synchronous distance,
which is essentially the word distance between equal length prefixes of two
words.

Definition 3.7. The synchronous distance between two words over A∗ is
dsyn(u, v) = sup{dA(u(t), v(t)) : t ≤ min(|u|, |v|)}.

The property of being an automatic group, while guaranteeing well-
behaved presentations, also implies a certain geometric reqularity in the
Cayley graph of the underlying group.

Theorem 3.2. Assume G is an automatic group with generators A and
word automaton W . Let Mx be a multiplier automaton for some x ∈ A.
For any w1, w2 ∈ L(Mx) the word distance between w1(n) and w2(n) is
bounded by a fixed constant kA. This is called the often called the fellow
traveller property or Lipschitz property.

Proof. Assume that all the automata of the automatic structure are nor-
malised (they have no unreachable states and dead states are consolidated).
Take k to be the largest number of states in any automaton of the automatic
structure. Suppose w1, w2 ∈ L(W ) and (w1, w2) is accepted by Mx. After
processing the first n letters of (w1, w2) Mx must be in a state no more than
k steps away from an accepting state, otherwise it is in the consolidated dead
state which is not possible as (w1, w2) is an accepted string. Hence there is
an accepting string (w1(n)v1, w2(n)v2), implying that w1(n)v1 =G w2(n)v2x.
Then there is a path in Γ(G,A) from w1(n) to w2(n) labelled by v1xv

−1
2 and

this has length 2k − 1. Thus the distance between prefixes is bounded by
kA = 2k − 1.
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It turns out that this property is in fact characteristic of automatic
groups, as demonstrated in the following theorem.

Theorem 3.3. Let G be a group with finite generating set A. If W =
(S,A, δ, s0, F ) is a regular automaton over A such that L(W ) maps sur-
jectively onto G and Γ(G,A) has the fellow traveller property, then G is
automatic.

Proof. Suppose kA is the Lipschitz constant for G. Define N to be the set
{g ∈ G : |g| ≤ k}. Now we must construct the multipliers of the automatic
structure. We know that these satisfy the fellow traveller property, so any
accepting pair has prefixes which are at less than distance k from one an-
other. Then we can immediately reject any pair for which this does not
hold. For those which it does, the difference between the pair in G has a
shortest length representative of length less than k, so it lies in N which is
finite. Hence we can keep track of this difference with a finite automaton.
So for x ∈ A ∪ {ε} define Mx as follows:

1. Starting with an automaton W ′ that recognises L(W )$∗, we take the
set of states to be S′×S′×N ∪ {sfail} where S′ is the set of states of
W ′ and sfail /∈ S′.

2. The alphabet A′ = (A ∪ {$})× (A ∪ {$}).

3. The start state is (s0, s0, e).

4. Define the transition function δx such that for (a, b) ∈ A′

δx((a, b), (si, sj , g))→ (δ(si, a), δ(sj , b), agb
−1)

where the letter $ maps to the identity in G and if agb−1 /∈ N the
resulting state is sfail. This is a failure state, so for any a ∈ A′,
δx(x, sfail)→ sfail.

5. The set of final states is {(si, sj , x) ∈ S × S ×N : si, sj ∈ F}.

Clearly this automaton has the desired multiplier behaviour and these mul-
tipliers, together with W , give an automatic structure for G on A.

Note that there is a generalisation of automatic groups which do not nec-
essarily have this property, these are called asynchronous automatic groups.
The kind discussed here are then referred to as synchronous automatic
groups.

Theorem 3.4. The property of automaticity is invariant under change of
generators.
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Proof. Suppose we have two generating sets X and Y for the group G and
an automatic structure for G on X specified by the word automaton WX and
the Lipschitz constant kX . Clearly, every generator inX has a representation
in terms of Y . It is a theorem that the image of a regular language under
substitution is a regular language. Call the above substitution f . So we
have that f(L(WX)) is a regular language over Y and since L(WX) maps
surjectively onto G and x =G f(x), then f(L(WX)) maps surjectively onto
G also. Concretely we find the automaton WY over Y by replacing the
letters on each of the arrows of WX with the representation of that letter
in terms of Y . An automaton with arrows labelled by strings (or regular
expressions in general) is known as a generalised finite state automaton. A
Lipschitz constant for the new structure can be found by multiplying kX by
the length of the longest string over Y required to represent a generator in
X. By theorem 3.3 this specifies an automatic structure for G over Y .

Theorem 3.5. Let word automaton W define an automatic structure for
G =< A >. Given any s ∈ A∗, a representative of s in L(W ) can be found
in time quadratic in the length of s.

Proof. We show that given s ∈ L(W ) we can find a representative of sx
where x ∈ A, in linear time, so that starting with a representative of the
identity in L(W ) we can build up a representative of any w ∈ A∗ by ap-
pending the letters of w one by one. Hence this entire process may be
accomplished in time O(|w|2).
Let s = s0s1...sn be any element of L(W ). We want to find a normal form
of sx that is accepted by W , which we will call s̄x. To do this, we enu-
merate the set of states of Mx = (Q,A, δ, q0, F ) reachable by a computation
on (s, t), where t is a yet to be determined element of A∗. In other words,
define S0 = {q0}, then define inductively Si+1 = {q ∈ Q : δ(qi, (si, t)) = q
for qi ∈ Si, t ∈ A∗}. Since Mx is finite, one of these sets must eventually
contain a final state. This corresponds to a path of edges from S0 to the
final state. The label of this path is s̄x ∈ L(W ) by definition. Since the
size of each set Si is bounded by a constant we must now show that the
number of sets (equivalently the length of s̄x) grows no more than O(|s|) to
complete the proof. By definition (s, s̄x) is accepted by Mx. Then, if the
run of Mx on (s, s̄x) has more than |s| + |Q| transitions, some state of Mx

is visited twice after all of s has been read. Since any final state of Mx is
no more than |Q| transitions away from any (non-rejecting) state, there is
a shorter accepting string. However s̄x is defined above to be the shortest
string such that (s, s̄x) is accepting, hence |s̄x| ≤ |s|+ |Q|.

Theorem 3.6. Let G be an automatic group with presentation < A|R >,
then any word w ∈ A∗ that represents the identity has a disc (1) that has
area O(|w|2). Equivalently, G has a quadratic Dehn function.
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Proof. Let w ∈ A∗ and W be a word automaton for G over A. Define N
to be a constant larger than the number of states in any of the multiplier
automata in the automatic structure for G implied by W . First we prove
any representative of w in L(W ) is has length O(|w|). Fix c as the length
of some word w0 ∈ L(W ) that maps to the identity in G. Now (w0, w(1)) is
accepted by some multiplier automaton, hence w(1) has a representative in
L(W ) of length at most c+N . Assume w(t) has a representative of length
at most c + tN for some t ≤ |w|. Following the argument above, w(t + 1)
has a representative in L(W ) of length at most c+ tN +N = c+ (t+ 1)N .
Then w has a representative of length at most c+ |w|N .
Take two prefixes of w, w(t) and w(t+ 1) where w(t+ 1) = w(t)x for x ∈ A.
The paths in Γ(G,A) to the respective elements of G called wt and wt+1 have
length less than c + |w|N and by the fellow traveller property, these have
synchronous distance less than some constant k. Hence the loop wtxw

−1
t+1

can be decomposed into c + |w|N loops of length 2k + 2. Since there are
|w| many such prefix pairs, there are O(|w|2) such loops in total. We can
build an equivalent presentation by adding the boundary equations of all
loops of size 2k + 2 to R. If w represents the identity element in this new
presentation, then by the above construction w can always be decomposed
into a disc with area O(|w|2), hence the Dehn function is O(n2).

4 Thompson’s group F

Thompson’s group owes it’s name to Richard Thompson who first encoun-
tered it in 1965 in the context of his work on the λ-calculus. It was originally
described by Thompson as the geometry group of the composition law but
later found other incarnations as a homeomorphism group (see below) and
as the group of order-preserving automorphisms of the free Cantor algebra
on a singleton set.
F is interesting in that it is a finitely generated infinite order group which
is ’almost ablelian’ in that every homomorphic image of F is abelian. Over
the years F has served as a useful source for counter-examples to various
conjectures. A complete overview of the basic theorems on F (and the other
infinite Thompson groups) from the homeomorphism point of view is found
in Cannon, Floyd and Parry’s survey [4]. Another very readable introduc-
tion with an emphasis on tree diagrams (introduced in the next section) is
the first chapter of Belk’s thesis [1].

Definition 4.1. A number is a dyadic rational if its denominator is a power
of 2. A dyadic interval is an interval of the form [k/2n, (k+1)/2n] for some
k, n ∈ N. A dyadic rearrangement is a piecewise linear homeomorphism that
maps a dyadic partition onto another dyadic partition of the same size.

Thompson’s group has one definition as the set of dyadic rearrange-
ments of the unit interval under composition. This is precisely the group
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of piecewise-linear homeomorphisms of the unit interval which are differ-
entiable everywhere except for at a finite set of points which have dyadic
rational coordinates and whose derivatives (where they exist) are powers of
2.

First we define an infinite sequence of functions and claim that F is
generated by these. Then we exhibit an equivalent finite presentation.

Consider the following two functions:

f0(x) :=


2x, x ∈ [0, 1/4)

x+ 1/4, x ∈ [1/4, 2/4)

(x+ 1)/2, x ∈ [1/2, 1]

f1(x) :=


x, x ∈ [0, 1/2)

2x− 1/2, x ∈ [4/8, 5/8)

x+ 1/8, x ∈ [5/8, 6/8)

(x+ 1)/2, x ∈ [3/4, 1]

f0 represents a rearrangement of the dyadic partition [0, 1/2], [2/4, 3/4], [3/4, 1]
to the partition [0, 1/2], [2/4, 3/4], [3/4, 1]. A simpler notation is to just
list the breakpoints of the partitions, for example the domain partition is
0, 1/2, 3/4, 1.
So f1 rearranges the partition 0, 1/2, 5/8, 3/4, 1 to 0, 1/2, 3/4, 7/8, 1. Note
that by giving the domain and range partitions we have completely speci-
fied the functions. Below is a graphical method of describing elements of F
which helps visualise multiplication.

1/2

1/2

0 1

0 1

f1

3/4

7/8

1/21/4

3/41/2

0 1

0 1

f0

Fig. 1. Representation of f0 and f1 as rearrangements of dyadic partitions.

Note that conjugation of f1 by f0 essentially embeds the pattern of f0
in the interval [3/4, 1]. This is a general pattern and with it in mind we
define the sequence of functions f0, f1, f2... where f0 and f1 are defined as
above and fi = f1−i0 f1f

i−1
0 for all i ≥ 2. The following theorem states that

giving two equal size standard dyadic partitions of [0, 1] is enough to define
an element of f .

Theorem 4.1. If 0 < x1 < x2 < ... < xn = 1 and 0 < y1 < y2 < ... < yn = 1
are sequences of dyadic rationals such that [xi, x(i+1)] and [yi, y(i+ 1)] are
standard dyadic intervals for 1 ≤ i ≤ n − 1 , then there exists f ∈ F such
that f(xi) = yi. Also, if xi = yi and x(i+1) = y(i+1), then f is trivial on
[xi, x(i+1)].

Proof. Define f : [0, 1] → [0, 1] to be the function whose graph is the path
in R2 from (0, 0) to (1, 1) comprised of the line segments with end points
(xi, yi) and (x(i+1), y(i+1)). Clearly this function is a piecewise linear home-
omorphism with dyadic breakpoints. Since [xi, x(i+1)] and [yi, y(i+ 1)] are
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standard dyadic intervals the line segment from (xi, yi) to (x(i+1), y(i+1)) has
slope that is a power of 2. Hence f is a dyadic rearrangement. If xi = yi
and x(i+1) = y(i+1) then the line segment over the interval [xi, x(i+1)] has
slope one. Thus f is trivial on [xi, x(i+1)].

The sequence of functions f0, f1, f2, ... in F is in fact a generating set for
F . The set is closed under composition and so forms a submonoid in F and
every element of F can be written as a gf−1 where both g and f are in this
monoid. This set gives rise to the following canonical infinite presentation
for F .

Definition 4.2. F is described by the presentation

< x0, x1, x2, ...|xnxk = xkxn+1, k < n > (2)

The map setting xi = fi for all i ≥ 0 defines an isomorphism with F .

Given this infinite presentation we can show that F has a finite presen-
tation with generators {x0, x1}.

Theorem 4.2. F has finite presentation

< x0, x1|xx1
2 = x3, x

x1
3 = x4 > (3)

where xn+1 = x−n0 x1x
n
0 , for n ≥ 1.

Proof. The definition of xn+1 is by induction on indices of elements. x2 =
xx0
1 and for arbitrary k, the inductive assumption xk = x1−k0 x1x

k−1
0 and

the relator xk+1 = xx0
k imply the result. Hence F is generated by x0, x1.

It remains to show that the relators of (3) derive those of (2). We prove
that xxk

n = xn+1 for all k < n again by induction on n. This is true by
definition for n = 2 and 3. Assume the inductive hypothesis for arbitrary
n. Now consider xxk

n for some k < n. If k = 0 then the statement is true by
definition. So 0 < k < n. Expanding the above and simplifying:

xxk
n = x1−k0 x−11 xk−n0 x1x

n−k
0 x1x

k−1
0

= x1−k0 x−11 xn−k+1x1x
k−1
0

= x1−k0 (xn−k+1)
x1xk−10

So we all we must prove (xn−k+1)
x1 = xn−k+2, as all other cases follow by

conjugating both sides of this equation by xk−10 . This is true for n − k + 1
less than n, so we have xxk

n = xn+1 for 1 < k < n. The only remaining case
is k = 1. This is done using the relations xn−1x1 = xn, xnxk = xkxn+1 as
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above and x2x1 = x1x3. The derivation is as follows:

xn−1x2 = x2xn

(xn−1x2)x1 = (x2xn)x1

xn−1x1x3 = x2xnx1

x1xnx3 = x2xnx1

x1x3xn+1 = x2xnx1

x2(x1xn+1) = x2(xnx1)

Therefore in all cases xxk
n = xn+1 and so the two relations of (3) suffice.

Hence (3) is a presentation for F .

Definition 4.3. A positive element of p ∈ F is a product of {x0, x1, ...}.
A monotone positive element is any p ∈ F such that p is positive and can
be written as a product of generators with monotonically increasing indices.,
although we will not prove this here

Theorem 4.3. Every f ∈ F has a unique normal form f = pq−1 where
both p and q are monotone positive and if xi occurs in both p and q, then
xi+1 is in one of p or q. In addition, the indices of generators in p and q do
not exceed the length of pq−1, considered as a word over {x0, x1, ...}.

Proof. The proof consists of the observation that the relators of the infi-
nite presentation yield rewriting rules for strings over {x0, x1}, where xn is
considered shorthand for x1−i0 x1x

i−1
0 and x−1n is x1−i0 x−11 xi−10 , (for simplicity

these shall be referred to as ’letters’). Here we present just enough detail to
illustrate how to find these normal forms in practice.
Assuming an ordering on words such that xi < xi+1 and xi < x−1i for any
i ∈ N, it follows that systematic application of these rules yields a unique
irreducible string of the required form.
Suppose k < n, then these rules follow from (2):

x−1n xk → xkx
−1
n+1

x−1k xn → xn+1x
−1
k

These rules act to shift inverse elements right and so produce a string with
a strictly lower lexicographic order. This string has the form ab where a is
positive and b is not. Also we have:

xnxk → xkxn+1

x−1k x−1n → x−1n+1x
−1
k

The immediate result of these rules is a string of lower lexicographic order.
The eventual result is that every substring with all positive (resp. negative)
letters is monotone.

12



Thus, once these rules can no longer be applied to the given string, it must
have the form pq−1 where both p and q are monotone positive. If some letter
xi occurs in both p and q and xi+1 does not occur in either, then the reverse
of the above rules can be applied to bring xi and x−1i adjacent and cancel
both (since the rule xix

−1
i → ε is implicit). If xi+1 is in one of p or q, then

nothing can be done. To prove that this system gives a unique normal form
it is required to prove that applying the above rules in any order produces
the same irreducible string. A full proof using tree diagrams is in [4] and an
abridged version is in [11] uses the rewrite-rule approach above.

As a demonstration of the above procedure consider normalising the
word x5x

−2
3 x1x3x5x

−1
3 x−12 . First shift negative letters right:

x5x1x
−2
4 x3x5x

−1
3 x−12

x5x1x3x
−1
5 x−13 x−12

Then reorder positive letters:

x1x6x3x
−1
5 x−13 x−12

x1x3x7x
−1
5 x−13 x−12

Finally delete the pair x3, x
−1
3 by shifting x−13 left.

x1x3x7x
−1
3 x−14 x−12

x1x3x
−1
3 x6x

−1
4 x−12

x1x6x
−1
4 x−12

Note that the last step would not have been possible if either x4 or x−14 had
occurred in x1x3x7x

−1
5 x−13 x−12 .

Now we will present some interesting properties of F .

Theorem 4.4. F/[F, F ] ' Z⊕ Z.

Proof. A presentation for the abelianisation can be obtained by adding rela-
tors xxk

n = xn for 1 ≤ and 0 ≤ k to (2), the infinite presentation of F . Since
this already has relators of the form xxk

n = xn+1 the resulting presentation
is

< x0, x1, ...|xi = xj for i, j ≥ 1 >

This is an abelian group generated by x0 and x1, both of which have infinite
order. Thus, this is a presentation for Z⊕ Z.

Theorem 4.5. Z(F ) is trivial.

13



Proof. Take f ∈ Z(F ). Suppose for contradiction that f is non-trivial. So
we can choose some point z ∈ [0, 1] such that z 6= f(z). Choose n large
enough so that z ∈ [k/2n, (k+ 1)/2n] and f(z) ∈ [l/2n, (l+ 1)/2n] but k 6= l.
Then by theorem 4.1, we can find some element g ∈ F such that g is non-
trivial on [k/2n, (k + 1)/2n] but trivial on [l/2n, (l + 1)/2n]. It follows that
g(f(z)) 6= f(g(z)) contradicting that f ∈ Z(F ).

Theorem 4.6. For every proper non-trivial normal subgroup N , the group
F/N is abelian.

Theorem 4.7. [F, F ] is simple.

Theorem 4.8. F contains a free abelian subgroup of every rank.

Proof. Define the set Xn = {x0x−11 , x2x
−1
3 , ...x2n−2x22n− 1−1}. Let xaxa+1

and xbx
−1
b+1 for 0 ≤ a < b be in X. Clearly b − a > 2. So using the rules

from theorem 4.3 we have

(xbx
−1
b+1)

xax
−1
a+1 =

(xb+1x
−1
b+2)

x−1
a+1

(xa+1xb+1x
−1
a+1)(xa+1x

−1
b+2x

−1
a+1)

(xbxa+1)x
−1
a+1xa+1(x

−1
a+1x

−1
b+1)

= xbx
−1
b+1

And since every element of F has infinite order it follows that < Xn >=
Zn.

Definition 4.4. The growth function gL : N → N, of language L over
alphabet A is defined as gL(n) = |L ∩ An| or, in other words, simply the
number of words in L having length n. In addition, the generating function
for gL is defined as the power series

GFL(x) = Σ∞n=0gL(n)xn (4)

Languages can be classified in terms of their growth function and gener-
ating function. Key categories are:

• exponential growth- when gL(n) = O(mn).

• polynomial (sometimes termed subexponential) growth- when gL(n) =
O(nk) for some k ∈ N.

• rational growth - this refers to the generating function GFL being a
rational function, that is it can be written as a ratio of polynomial
functions.

14



As would be expected, this classification can be applied to finitely generated
groups by forming the growth function of the language over a generating set.
The property of having exponential growth is independent of the choice of
generating set, as shown in [14].

Theorem 4.9. F has exponential growth.

Proof. We exhibit a subset of F which has an exponential growth function.
This forms a lower bound for the growth function of F , thus it is exponential
also. Consider the alphabet {x−10 , x1} ⊂ F . Any word over this alphabet can
be written in the form xe11 x

−1
0 xe21 ...x

−1
0 xen1 , where each ei ≥ 0. By Theorem

4.3, (in particular, by repeated application of the rule x−10 xi → xi+1x
−1
0

to the n − 1 occurrences of x0), we obtain the equivalent normal form in
F , xe11 x

e2
2 ...x

en
n x

1−n
0 . This is unique and is fully specified by the sequence

of exponents e1, e2, e3, ..., en. Hence every element of {x−10 , x1}∗ is distinct
in F (in other words it is a free submonoid of F ). For any n there are
2n elements in {x−10 , x1}. This is the lower bound for gF . Thus F has
exponential growth.

Regular languages may have exponential or polynomial growth, but al-
ways have rational generating function. So, does the language given by (3)
have rational generating function? Burillo proved in [3] that the monoid of
positive words (i.e. {x0, x1}∗) has rational generating function and gave an
explicit formula for the number of positive words of a given length. In the
opposite direction, Elder, Fusy and Rechnitzer [7] in a 2010 paper calculate
the first 1500 terms of the growth series and conjecture that the generating
function ”...contains square-root singularities, so is unlikely to be rational.”
A negative answer like this would demonstrate that no automaton has lan-
guage precisely that of (3). At the present time this question remains open.

Another result pointing to F not being automatic is the fact that geodesic
combings over the finite presentation of F do not have the fellow traveller
property. This relies on the fact that F is not minimally almost as demon-
strated by Belk and Bux [2] and separately by Cleary and Tabak[5].

Definition 4.5. A group G is minimally almost-convex if, for every g, h ∈
Bn(G) (where Bn(G) is the n-ball centred on the basepoint in the Cayley
graph of G) and such that the distance between g and h is exactly 2, then
there is a path of length less than 2n between g and h within Bn(G).

Theorem 4.10. F is not minimally almost-convex.

Definition 4.6. Given G generated by A, with Cayley graph Γ(G,A), a
combing of G is a map that associates with each g ∈ G a path in Γ(G,A)
from g to the basepoint. A geodesic combing is a combing in which every
path has minimal length in Γ(G,A).

15



Theorem 4.11. Any geodesic combing of F using the finite presentation
does not have the fellow traveller property.

Proof. Suppose for contradiction that a geodesic combing of F has a Lip-
schitz contstant k. Choose n > 2k and let a, b be words over {x0, x1}
representing geodesic paths of length less than n to two elements a, b ∈ F
such that a and b are at distance two from each other. Then there is another
element c ∈ F at distance one from each of a and b. So for 0 < i < n it is
the case that the distance between a(i) and c(i) is less than k and similarly
for b(i) and c(i). Hence the elements a(i) and b(i) are at distance at most
2k from each other. Since both are in Bn(F ) and by assumption 2k < 2n,
this contradicts that F is not minimally almost-convex.

This immediately implies that there can be no automatic structure for
F whose language L(W ) has only geodesics strings. In fact it’s stronger
than that. A theorem found in chapter 3 of Epstein [8] states that given the
language L(W ) of an automatic structure, then, given some ordering on the
alphabet A, the lexicographically shortest representatives within L(W ) for
each element of G forms an automatic structure for G also. In particular no
automatic structure for F can have a geodesic representative for every group
element within its language. This was also shown by Cleary and Elder in
2006 [6].

Now we summarise S. B. Fordham’s result[9], which was later extended[10]
to the p-adic Thompson groups F (p) (these are the groups of rearrangements
of p-adic subintervals of [0, 1]). The result is developed using the tree rep-
resentation for group elements.

Definition 4.7. The tree of standard dyadic intervals is the rooted binary
tree T with nodes labelled by intervals. It has root [0, 1] and for every node
the left child is the left half of the interval and the right child the right half.

Clearly the edges of T represent the subset inclusion relation and any
dyadic partition of [0, 1] corresponds to a finite subtree with root [0, 1].

Definition 4.8. A tree diagram for f ∈ F is a pair (T1, T2) of finite subtrees
of T each with root [0, 1] such that the leaves of T1 are labelled by the intervals
in the dyadic partition induced by the breakpoints of the domain of f and
similarly T2 has leaves labelled by the image of this partition under f .

As an example consider the tree diagrams for the generators f0 and f1.
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x0 = x1 =
[0,1/4] [1/2,1][1/4, 1/2]

[0,1/2] [1/2,3/4] [3/4, 1]

[0,1/2]

[0,1/2] [1/2,3/4]

[1/2,5/8]

[3/4,7/8] [7/8,1]

[5/8,3/4] [3/4,1]

Fig. 2. Tree diagrams for generators x0 and x1.

Note that some trees may have redundant leaves. A caret is defined as a
binary tree with just three nodes. If any carets of T1 have leaves which are
also leaves in T1 and these leaves match the leaves of a caret in T2, then the
corresponding element of f will have the same gradient on both of the inter-
vals that make up the carets leaves. Hence this is an unecessary subdivision
and may be removed. Any tree diagram which has had all redundant carets
removed is said to be reduced and this represents the equivalence class of
all unreduced trees that also correspond to the given element of F . The
product of tree diagrams (T1, T2) and (T2, T3) is (T1, T3). Multiplication in
general can be carried out by reversing the reduction process; simply adding
caret pairs to a tree diagram until the range and domain tree of the two
elements to be multiplied match.

Guba has developed a generalisation of the method of representing group
elements by pairs of diagrams in the above manner, these are called diagram
groups and are introduced in [13]. They consist of matched pairs of diagrams
where multiplication is accomplished in the above manner and subdiagrams
which may be reduced are specified in a similar way to relators in a pre-
sentation. For example F has the single ’relator’ x2 = x corresponding to
caret reduction. In [13] he uses these methods to prove that the conjugacy
problem for F is solvable (this problem is similar to the word problem only
it identifies when two elements are conjugate).

Definition 4.9. A minimal length function for a group G = < X > is any
function φ : G→ N which satisfies the following defining properties:
Let g ∈ G and x ∈ X,

1. φ(1G) = 0.

2. If φ(g) = 0 then g = 1G.

3. φ(gx−1) ≥ φ(g)− 1.

4. There always exists some y ∈ X such that φ(gy−1) = φ(g)− 1.
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In Fordham’s paper, tree diagrams are modified by only keeping track
of internal nodes (i.e. not leaves). A placeholder element is used instead
to represent unreduced trees in a concise manner. He identifies just seven
possible configurations for these internal nodes and thus creates a scheme to
label each occurence of these with a multiset representing the sequence of
generators required to produce them. The size of these labelling multisets
can then be easily calculated. This is then shown to be a minimal length
function for F . Since this method only requires a traversal of the tree and
the configuration of the internal nodes are determined by their neighbours,
this can be accomplished in linear time.

Theorem 4.12. Given a word w ∈ {x0, x1}∗ a minimal length representa-
tive for w in F can be found in O(|w|) steps. In particular the word problem
for F is solvable in linear time.

If F were shown not to be automatic, then the above theorem puts F in
the interesting situation where it has a large number of properties of auto-
matic groups yet is sufficiently complex that it doesn’t have an automatic
structure. The next section demonstrates another property that F has in
common with automatic groups.

5 The Dehn function of F is quadratic

This section summarises a result by Guba [11]. Prior to this result Guba had
proved that the Dehn function was bounded by a quintic polynomial [12]. As
demonstrated above, the Dehn function of an automatic group is quadratic.
So this result shifts the balance in favour of F being automatic. But even
if it turns out that it is not, F would still be an illustrative boundary case.
Here we develop a few of Guba’s preliminary constructions with a view
to illustrating the techniques used, but the proof of the main theorem is
omitted.

Definition 5.1. Define the group Pr as

Pr =< x0, x1, x2, ...|xxi
j = xj+1(0 < j − i ≤ r) >

This group is equal to F for r ≥ 2.

Using this presentation for F gives a nice intermediate form between
the simplification power of (2) and the finiteness of (3). It gives rise to the
following theorem relating Dehn diagrams of P5 and F .

Theorem 5.1. If ∆ is a Dehn diagram over P5 with boundary word w
and area N , then there is a corresponding Dehn diagram over the finite
presentation of F with boundary w and area ≤ 13N .
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Proof. The proof amounts to showing that any inner cycle of ∆ is divided
into no more than 13 cycles in the Cayley graph of the finite presenta-
tion for F . Given an arbitrary diagram ∆ of P5 we map this to a dia-
gram of F by replacing every edge labelled by xn with a path labelled by
x1−n0 x1x

n−1
0 for n ≥ 2. Given our chosen presentation of F , the smallest

possible cycles have as boundary word either xx0
2 x
−1
3 or xx0

3 x
−1
4 . Any in-

ner cycle of ∆ has boundary xxi
j x
−1
j+1 for 0 < j − i ≤ 5 as per definition

5.1. If i = 0, then since xx0
j = xj+1 by definition, the image of the cy-

cle with boundary xx0
j x
−1
j+1 is a point. If i ≥ 1, then the cycle boundary

can be written as (x1−i0 x−11 xi−10 )xj(x
1−i
0 x1x

i−1
0 )x−1j+1, which is equivalent to

x1−i0 xx1

(j−i+1)x
i−1
0 x−1j+1 by expanding the definition of xj . The possible sub-

scripts for the middle element are in the range 2 ≤ j − i + 1 ≤ 6, since
0 < j − i ≤ 5 by definition 5.1. Note that xx1

k = xk+1 is a relator in the
infinite presentation of F . From this we infer that if xx1

k occurs in the la-
bel of a cycle then there is a chord with label x−1k+1. Equivalently, any disc
bounded by the cycle may be rewritten with this relator. As in the proof for
theorem 4.2, these relators can be written as compositions of the 2 relators
of (3). The largest of the possible elements, x6, admits a decomposition into
a disc over (3) with area at most 13. Hence the total area is no more that
13N .

Theorem 5.2. If every word w over {x±10 , x±11 } has a disc in P5 with bound-
ary w(pq−1)−1, where pq−1 is the normal form of w and area in O(|w|2), then
the Dehn function of F is quadratic.

Proof. If pq−1 is the normal form for w, then w = pq−1 and so w(pq−1)−1 is
a disc. Also, if w is the boundary word of some Dehn diagram then w = 1
and pq−1 = 1. So pq−1 and w have the same area. The result in Theorem
5.1 shows that if the area of a Dehn diagram in P5 is quadratically bounded
then so is the area of the corresponding diagram in F . The rest of the
argument proceeds in the same manner as at the end of Theorem 3.6.

These theorems reduce the problem to finding Dehn diagrams over P5
with a boundary in a standard form. The following constructions provide a
means for doing so.

Definition 5.2. The shift function on (2) is ψ(xi) = xi+1 for all i ≥ 0.
The analogous function on (3) is simply conjugation by x0.

Definition 5.3. Let p and q be monotone positive words over F . The tri-
angle diagram of p and q is the Dehn diagram over (3) with boundary pqr−1,
where r is the normal form of the word pq.

This construct provides a geometric interpretation of the normalisation
of two positive words. It was estimated in [7] that the normal form of an
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element and its geodesic representation (i.e. the label of the shortest path to
it in the Cayley graph) differ by O(1), so these diagrams indeed deserve their
name. The proof that the area of these diagrams has the same complexity
class as arbitrary Dehn diagrams proceeds by induction on the length of
the word w. Essentially it shows that the Dehn diagram with boundary
w(pq−1)−1 can be ’cut up’ by normalised words in such a way that these
form the ’hypotenuse’ to two monotone positive words and the diagram is
divided into triangular diagrams. When doing this it is necessary to specify
that neither the length of any ’hypotenuse’ r nor the maximum subscript
occurring as a letter of r is larger than the length of the word being divided.

Triangle diagrams have a regular internal structure which is used in a fur-
ther simplification to ”rectangular diagrams”. To motivate this, it is useful
to consider the process of generating the triangle diagram corresponding to
the words p and q over (2). Suppose p = xj1xj2...xjm and q = xk1xk2...xkn.
Define the sequence of words v0, u1, v1, u2, v2, ...un, vn such that:

• v0 = p.

• ui is the longest suffix of vi−1 such that it’s first letter has a subscript
higher than ki.

• vi = ψ(ui).

Starting with p we note that u1 is the suffix xjaxja+1...xjm of p such that
k1 < ja. Since v1 = ψ(u1) and xk1 < xja it follows that v1 = uxk1

1 . We can
picture this as ”attaching” the word v1 to the word u1 in p by edges labelled
with xk1. In general the word vi can be attached by xki to the suffix ui of
vi−1. This continues until some uj is empty. The result can be pictured
as p lying horizontally with layers of rectangular cells stacked on top, flush
against the right edge of p. These cells have borders labelled by ui on the
bottom xki on the vertical edges and vi on top. So the rightmost vertical
path of the diagram has label q
Now the prefix of p left by u1 consists of letters with subscripts at most k1.
Continuing by reading xk1, then the prefix of v1 left by u2 and we see that
letters are read in increasing order. We can follow this ’hypotenuse’ path
from the empty element to pq, this is the path r and clearly it represents
the normal form of pq.

Definition 5.4. Let p = xi1...xim, q = xj1...xjn be monotone positive words
over F such that j1 + k > ik+1 for 0 ≤ k < m. Then there is a Dehn
diagram in P5 with boundary qp(ψm(q))−1 and with mn cells. This is called
a rectangular diagram.

Note that the boundary corresponds to the equality qp = ψm(q). This
follows from the condition j1+k > i(k+1), because qxi1 = xj1+1xj2+1...xjn+1 =

ψ(q) and similarly qxi1...xik = xj1+kxj2+k...xjn+k = ψk(q) for k as above.
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Due to their internal structure as described above, triangle diagrams can be
covered by rectangular diagrams in such a way that the area of the combined
covering diagrams is not more than a constant multiple of the area of the
original triangle diagram. The following example will give an idea of how
this may be done.

Define two monotone positive words, p = x0x3x4x6x8x9x10 and q =
x21x7x10x13x14x19. We can construct the triangle diagram for the pair and
a graphical representation of this is shown below. Note that the numbers
refer to the subscripts of the letters in the words and each of the horizontal
lines corresponds to a vi from the triangle diagram sequence. Now r can
easily be read off from the diagram as x0x

2
1x5x6x7x9x10x12x

2
13x14x16x19.

1

1

7

10

13

14

19

0 3 4 6 8 9 10

4 5 7 9 10 11

5 6 8 10 11 12

9 11 12 13

12 13 14

15

16

1

1

7

10

13

14

p

q

Fig. 3. Triangle diagram for p and q.

Next we want to show how this is covered by rectangular diagrams. Note
that each of the suggestively drawn cells of the triangle diagram does in fact
form a rectangular diagram, as the letter on the vertical edges always has
a lower subscript than those on the bottom and the letter on the upper
horizontal edge is just the shift of that on the bottom edge. For example,
the first cell on the lower left is the rectangular diagram formed by x3 and x1
and its border is labelled by xx1

3 (ψ(x3))
−1. Guba shows that such a diagram

can be covered by choosing subdiagrams recursively such that the fragments
of r that are not on the edges of of the diagram have lengths at most |r|/2
and also that the difference between largest and least subscripts in such a
diagram is not more than the range of subscripts in r.
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1

1

7

10

13

14

19

0 3 4 6 8 9 10

5 6

9

12 13 14

16

1

1

7

10

13

14

p

q

T1

T2

r1

r2

r3

r4

T0

Fig. 4. Triangle diagram shaded to show rectangular subdiagrams.

To do this in our example we can first choose the rectangular subdiagram
shaded dark grey. This has border label (x8x9x10)

x2
1x7x10(x12x13x14)

−1 and
its intersection wsectionith r is the word r1 = x10x12x13. Notice that the
remaining parts of the original triangle diagram T0 are also triangle diagrams
which we will call T1 and T2. The hypotenuse of T1 is x0x

2
1x5x6x7x9 and

that of T2 is x13x14x16x19 both of the required length. These two triangle
diagrams can be covered as well, T1 by the light grey and white rectangle
diagrams shown and T2 by the single rectangle diagram corresponding to
the subword r3 of r. All of these diagrams have subscript ranges less than
r. Hence if these can be shown to have quadratically bounded area then T0
will also.

The remainder of the proof consists in demonstrating that rectangu-
lar diagrams have quadratically bounded area. This proceeds by breaking
the problem into yet smaller pieces and considering Horizontal and Vertical
subdiagrams of rectangular diagrams where p and q in the formulation of
rectangle diagrams are assumed to consist of one letter in each respective
case. The proofs in both cases are quite technical and aim to show that
respective bounding cases exist within each diagram type.

All automatic groups have quadratic Dehn function but the converse
is not known to be true. So this theorem neither proves nor disproves the
automaticity of F . Its direct implication is that F has solvable word problem
by theorem 3.1, however this was already known before this result and indeed
the result from theorem 4.12 shows that the word problem for the finite
presentation of F is linear.

6 Summary

We have seen that the class of automatic groups represents groups that are
’well-behaved’ in a computational sense. In particular they have a regular
language which maps onto the group, the fellow-traveller property and a
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quadratic word problem and quadratic Dehn function. Thompson’s group
F , in particular its finite presentation, has been shown to have some of
these properties, yet shows signs of violating others. F has a word problem
solvable in linear time and quadratic Dehn function which suggest that the
equivalence class of representatives for a group element is not complicated.
But it has an exponential growth function showing that the number of el-
ements of any size grows extremely fast. Also the facts that the growth
function appears to not be rational and that there can be no regular lan-
guage containing all geodesics of F hints that there may not be a regular
language for the finite presentation. If F eventually is proved to not be
automatic it will nevertheless be a very interesting illustration of just where
the boundary lies between automatic and non-automatic groups.
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