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Let T = (T , τ) be a topological space with countable basis

B0,B1, . . . ,Bn, . . .

Definition
F : T → T ′ is effectively continuous, if there is some computable
g : N2 → N such that for all n,

F−1(B ′n) =
⋃
{Bg(n,a) | a ≥ 0 }.



Effective continuity corresponds to computability.

How can F be computed? Via oracle machines!

Oracle questions: z ∈ Bn?

Input: y

0. n := 0;

1. i := 0;

2. y ∈ Bg(n,i)?

I If YES: Output B ′n; n := n + 1; Goto 1;

I If NO: i := i + 1; Goto 2;

By this way a sequence of open sets B ′n is generated. If it is a base
of the neighbourhood filter N (z) of some z ∈ T ′, set

F (y) = z .

Otherwise, F (y) is undefined.



Definition
y is computable if there is a computable h : N→ N such that
{Bh(a) | a ≥ 0 } is a base of N (y).

Set Tc = { y ∈ T | y computable }.

Let i be the code of a program that computes h. Then i is an
index of y .

This defines a (partial) indexing x : N⇀ Tc (onto).

Definition
F : Tc → T ′c is effective if there is some computable f : N⇀ N
such that

F (xi ) = x ′f (i).

f transforms the program computing approximations of the input.



Example

Functional programming (LISP, SCHEME): The data are itself
programs that are manipulated by a program.



Abstract setting.

T : Countable T0 space T with indexing x ,

Topology τ with countable basis B and total indexing B of B.

T ′ : Similar

Continuity Problem Given F : T → T ′ effective.
Is F effectively continuous?



Special cases.

I P = { f : N⇀ N | f computable }.

Topology generated by

Bg = { f ∈ P | graph g ⊆ graph f },

where

g ∈ FINFCT = set of partial functions with finite domain.

Note that functions in FINFCT can be coded. Moreover, they
form an enumerable dense subset of P.

Indexing of P:

f = ϕi , iff i is the code of a Turing machine computing f .

Myhill/Shepherdson (1955) Effective operators on the partial
computable functions are effectively continuous.



Structure of P
1. P is partially ordered by

f v h⇐⇒ graph(f ) ⊆ graph(h)

2. Topology determines the order:

f v h⇐⇒ (∀g ∈ FINFCT)[f ∈ Bg ⇒ h ∈ Bg ]

3. { g ∈ FINFCT | g v f } is directed and enumerable such that

graph(f ) =
⋃
{ graph(g) ⊆ graph(f ) | g ∈ FINFCT }

4. Each enumerable directed set of finite functions has a least
upper bound in P.

Properties (3) and (4) say that (P,v) is a domain.



Example

I CE = set of all computably enumerable subsets of N.

I CE is partially ordered by ⊆
I A =

⋃
{E ⊆ A | E finite }, for all A ∈ CE.

Generalizations of the Myhill/Shepherdson Theorem to domains:

I Egli/Constable 1976

I Sciore/Tang 1978

I Weihrauch 1980

Pros Domains are closed under the function space construction: lift
the order argumentwise.

Cons So far no way to measure the speed of approximations, no
complexity measure.

Note. Domains are in general not Hausdorff!



I R = { f : N→ N | f total, computable }

I R is a metric space:

δ(f , g) =

{
0 if f = g ,

2−min{ n | f (n) 6= g(n) } otherwise.

I The topology is generated by

B(g ,m) = { f ∈ R | δ(g , f ) < 2−m },

where g is 0 almost everywhere.

Functions like g can be coded: code the finite initial segment
where, for some n, g(n) 6= 0. Moreover, they form an enumerable
dense subset of R.

Indexing of R:

f = ϕi , iff i is the code of a Turing machine computing f .



Kreisel/Lacombe/Shoenfield (1959) Effective operators on the
total computable functions are effectively continuous.

Generalizations to recursive metric spaces.
Recursive metric spaces come with

I an enumerable dense subset S ,

I δ : S × S → Rc is effective.

Here, Rc is the set of computable real numbers.

Cĕıtin (1962), Moschovakis (1964) Effective operators between
recursive metric spaces are effectively continuous.

Pros Speed of approximation can be measured. Complexity can be
studied.

Cons Not closed under higher function spaces: NNN
can never have

a countably based topology (Hyland (1979)).



Situation so far:

I Positive solutions for topologically very different types of
spaces

I Domains: T0, non-Hausdorff
I Metric spaces: Hausdorff

I Negative result:

Friedberg (1958) Effective operators are not continuous in
general.

Friedberg constructed a map G : R → N⊥ that is effective, but not
continuous.
Here N⊥ is the flat domain of the natural numbers, i.e., the set
N ∪ {⊥} with the order

u v v ⇐⇒ u = ⊥ ∨ u = v .



Thus. In order to derive a general theorem, a further condition is
needed that is satisfied in the positive solution cases.

Spreen/Young (1983) Every effective operator between
effectively given T0 spaces that has a witness for noninclusion is
effectively continuous.

Spreen (1998)

I Every effectively continuous operator is effective.

I Every effectively continuous operator has witness for
noninclusion, if the topology is semi-regular, i.e., if
Bn = int(cl(Bn)).

Definition
F : T → T ′ has a witness for noninclusion, if the following holds:

xi ∈ F−1(B ′n), Bm 6⊆ F−1(B ′n) =⇒
a witness z ∈ Bm \ F−1(B ′n) can effectively be found,

uniformly in i ,m, n.



Special cases

I F : P → P

1. Effective maps are monotone with respect to v.

2. F (Bg ) 6⊆ B ′f =⇒ g ∈ Bg \ F−1(B ′f ). g is the witness!

Generalization. F : Domain→ T0 space

I F : R → R

1. ext(B ′n) is enumerable, uniformly in n.

2. Search for z ∈ Bm with F (z) ∈ ext(B ′n). z is the witness!

Generalization. F : T0 space→ recursive metric space.

Note. Only the case of Friedberg’s operator is not covered.



Problem The witness for noninclusion condition seems to have no
topological meaning. So, what is its role in the result?

Aim To point out that the condition appears naturally when in a
classical context the Axiom of Choice is used.



Definition
F : T → T ′ is

I effectively pointwise continuous, if there is some computable
h : N→ N such that

F (xi ) ∈ B ′n =⇒ xi ∈ Bh(i ,n) ⊆ F−1(B ′n).

I effectively sequentially continuous, if there is some computable
k : N2 → N such that, if m is an index of a computable
sequence (ya)a in T converging to y ∈ T and F (y) ∈ B ′n, then

(∀a ≥ k(m, n))F (ya) ∈ B ′n.



Lemma (Spreen 1998)

1. If F : T → T ′ is effectively continuous, then it is also
effectively pointwise continuous.

2. If T has an enumerable dense subset and F : T → T ′ is
effective, then if F is effectively pointwise continuous it is also
effectively continuous.

Remaining steps.

1. F effectively sequentially continuous⇒
F effectively pointwise continuous.

2. F effective⇒ F effectively sequentially continuous.



Step 1.

Let us have a look to the classical proof: Given y ∈ T ,

I Construct a sequence of basic open sets

U0 ⊇ U1 ⊇ · · · 3 y .

I Assume that F is not continuous. Then

(∃V ∈ N (F (y)))(∀a)F (Ua) 6⊆ V

I Choose ya ∈ Ua \ F−1(V ), for all a.

I It follows that ya → y and hence that F (ya)→ F (y), as F is
sequentially continuous.

I Thus, (∃N)(∀a ≥ N)F (ya) ∈ V .

I Contradiction!

In an effective setting we cannot choose ya. Here, we use the
witness for noninclusion condition!



Step 2. F effective =⇒ F effectively sequentially continuous.

General assumption:

I Given the index of a computable convergent sequence in T we
can compute an index of its limit.

I B ′n is enumerable, uniformly in n.

Assume.

I F is effective.

I (ya) computable and convergent with F (lima ya) ∈ B ′n.



We use the Kleene’s recursion theorem and/or Rogers’ fixed point
theorem to construct a computable sequence (za). Note that the
recursion theorem allows impredicative constructions, i.e., in the
construction process we can use (za) as if it were already
constructed. In particular, using our general assumption, we can
compute its limit lima za (better: an index of it). And since F is
effective, we can apply F to lima za (better: apply the index
function coming with F to the computed index of lima za), and
search whether we find F (lima za) in B ′n.



Construction of (za)

1. Follow the sequence (ya) as long as

F (lima za)

has not been found in B ′n, or (za) does not converge.

2. If (za) converges and F (lima za) has been found in B ′n, say in
step N0, repeat yN0 as long as

F (yN0)

has not been found in B ′n.

3. If, in step N1, F (yN0) has been found in B ′n, repeat yN0+1 as
long as

F (yN0+1)

has not been found in B ′n.

4. . . .



Suppose 1. (za) does not converge, or F (lima za) will never be
found in B ′n.

Then
za = ya (a ≥ 0).

Hence,
za → lima ya.

But
F (lima ya) ∈ B ′n.

Contradiction!

Thus N0 exists and depends computably on n and the index m of
(ya).



Suppose 2. F (yN0) will never be found in B ′n.

Then
lima za = yN0 .

As we have just seen,

F (lima za) will be found in B ′n,

i.e. F (yN0) will be found in B ′n, contradiction!

Thus, N1 exists and depends computably on m, n.

By induction it follows that for all c ≥ N0,

F (yc) ∈ B ′n.

Thus, (F (ya))a converges to F (lima ya).



Note. We have to use the Markov Principle

¬¬(∃n)P(n)

(∃n)P(n)
(MP)

in our proofs.

As shown by Beeson (1975, 1976) and Beeson/Ščedrov (1984),

The continuity of effective operators cannot be derived in
intuitionistic systems without MP.


