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Names of real numbers

I There is no admissible representation of R with unique
names

I But any real number has a well-defined Turing degree
(equal to its decimal expansion)

I Proof: Make a case distinction x ∈ Q vs x ∈ R \Q
I Question (Pour-El & Richards): Does every point in a

computable metric space have a Turing degree2?

2I.e. a name computable from all its other names



An answer and a new question

Theorem (Miller 2004)
Some elements of [0,1]N do not have Turing degrees.

Question (Brattka & Miller)
For which computable Polish spaces do all points have Turing
degrees?



Countable isomorphisms and the second question

Definition
Let ∼= denote computable isomorphic. Say X ∼=σd Y, iff
∃(Xi)i∈N, (Yi)i∈N s.t. X =

⋃
i∈N Xi and Y =

⋃
i∈N Yi and

∀i ∈ N Xi
∼= Yi .

By c the relativized version is distinguished.

Question (Motto-Ros, Schlicht & Selivanov)
Are there more ∼=c

σd -equivalence classes of Polish spaces than
N, {0,1}N, [0,1]N?



Talking about computability

Definition
A represented space X is a pair (X , δX ) where X is a set and
δX :⊆ NN → X a surjective partial function.

Definition
f :⊆ NN → NN is a realizer of F :⊆ X⇒ Y, iff
(δX (p), δY (f (p))) ∈ F for all p ∈ δ−1

X (dom(F )).

NN f−−−−→ NNyδA

yδB

X F−−−−→ Y

Definition
F :⊆ X⇒ Y is called computable (continuous), iff it has a
computable (continuous) realizer.



Turing and Medvedev degrees

Definition
Given p,q ∈ NN, say p ≤T q iff ∃F computable s.t. F (q) = p.
Let T be the partially ordered set of ≤T equivalence classes.

Definition
Given A,B ⊆ NN, say A ≤M B iff ∃F : B → A computable. Let
M be the partially ordered set of ≤M equivalence classes.
We understand T ⊂M.



The definition of point degree spectra

Definition
Given a represented space X = (X , δX), define:

Spec(X) := {δ−1
X ({x})/ ≡M | x ∈ X} ⊆M

Theorem
X ∼=σd Y iff Spec(X) = Spec(Y).



Dimension theory enters the fray

Definition
Let dim ∅ = −1 and

dim(X) = inf{α | ∀U ∈ T ∀x ∈ U ∃V ∈ T x ∈ V ⊆ U∧dim(δV ) < α}

We set inf ∅ =∞, and understand α <∞ for any ordinal α.

Theorem (e.g. Hurewicz & Wallmann)
For a Polish space X the following are equivalent:

1. dim(X) <∞
2. X ∼=c

σd A for some A ⊆ NN.

Corollary
For a Polish space X the following are equivalent:

1. dim(X) <∞
2. ∃p ∈ T p × Spec(X) ⊆ T



The continuous degrees

Definition (Miller 2004)
Define C := Spec([0,1]N).
For a closed set A ⊆ {0,1}N, let T (A) ⊆ {0,1}N be the set of
codes of trees for A.

Theorem
A ∈ C iff ∃B ∈ A({0,1}N) such that A ≡M B ≡M T (B).



The enumeration degrees

Recall that δO : NN → O(N) defined via
n ∈ δO(p)⇔ ∃i p(i) = n + 1 is an admissible representation.

Definition
E := Spec(O(N))

Theorem (Miller 2004)
C ( E



The fourth Polish space

Theorem
There is a Polish space P with T ( Spec(P) ( C.
This answers the question by Motto-Ros, Schlicht & Selivanov
in the affirmative.



A degree structure A?

Question
Define A :=

⋃
Xadmissible Spec(X). Is E ( A ( M?

Question
Is there some admissible X with Spec(X) = A.



Probabilistic computability

Definition (Brattka, Gherardi & Hölzl 2013)
We call f : X→ Y probabilistically computable, iff there is a
computable F :⊆ X× {0,1}N → Y s.t.
∀x ∈ X λ({p ∈ {0,1}N | F (x ,p) = f (x)}) > 0.

Proposition (Brattka, Gherardi & Hölzl 2013)
Let f : X→ Y be probabilistically computable and Spec(Y) ⊆ T.
Then f is non-uniformly computable.

Proof.
use Theorem of Sacks



Improving the result

Proposition
Let f : X→ Y be probabilistically computable and Spec(Y) ⊆ E.
Then f is non-uniformly computable.

Proof.
use Theorem of Leeuw-Moore-Shannon-Shapiro



Shore Slaman Join Theorem

Let J : NN → NN be the Turing jump. Then Lk ,n is defined as
(J−1)◦k ◦ lim◦k+n.

Theorem
Let Spec(Y) ⊆ T and f : X→ Y be single-valued. Then if
(id× f ) ≤sW Lk ,n, then f : X→ Y(n) is non-uniformly
computable.
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