Point degree spectra of represented spaces ${ }^{1}$

Arno Pauly
Clare College
University of Cambridge

ARA 2014, Pretoria
${ }^{1}$ Joint work with Takayuki Kihara.

Outline

Two questions

Introducing point degree spectra

The spectra

Applications

Names of real numbers

- There is no admissible representation of \mathbb{R} with unique names
- But any real number has a well-defined Turing degree (equal to its decimal expansion)
- Proof: Make a case distinction $x \in \mathbb{Q}$ vs $x \in \mathbb{R} \backslash \mathbb{Q}$
- Question (Pour-El \& Richards): Does every point in a computable metric space have a Turing degree ${ }^{2}$?

[^0]
An answer and a new question

Theorem (Miller 2004)
Some elements of $[0,1]^{\mathbb{N}}$ do not have Turing degrees.
Question (Brattka \& Miller)
For which computable Polish spaces do all points have Turing degrees?

Countable isomorphisms and the second question

Definition

Let \cong denote computable isomorphic. Say $\mathbf{X} \cong_{\sigma d} \mathbf{Y}$, iff
$\exists\left(\mathbf{X}_{i}\right)_{i \in \mathbb{N}},\left(\mathbf{Y}_{i}\right)_{i \in \mathbb{N}}$ s.t. $\mathbf{X}=\bigcup_{i \in \mathbb{N}} \mathbf{X}_{i}$ and $\mathbf{Y}=\bigcup_{i \in \mathbb{N}} \mathbf{Y}_{i}$ and
$\forall i \in \mathbb{N} \mathbf{X}_{i} \cong \mathbf{Y}_{i}$.
$B y{ }^{c}$ the relativized version is distinguished.
Question (Motto-Ros, Schlicht \& Selivanov)
Are there more $\cong_{\sigma d}^{c}$-equivalence classes of Polish spaces than
$\mathbb{N},\{0,1\}^{\mathbb{N}},[0,1]^{\mathbb{N}}$?

Talking about computability

Definition
A represented space \mathbf{X} is a pair $\left(X, \delta_{X}\right)$ where X is a set and $\delta_{X}: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow X$ a surjective partial function.

Definition
$f: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ is a realizer of $F: \subseteq \mathbf{X} \rightrightarrows \mathbf{Y}$, iff
$\left(\delta_{X}(p), \delta_{Y}(f(p))\right) \in F$ for all $p \in \delta_{X}^{-1}(\operatorname{dom}(F))$.

$$
\begin{array}{ll}
\mathbb{N}^{\mathbb{N}} \xrightarrow{f} & \mathbb{N}^{\mathbb{N}} \\
\downarrow_{\text {d }} & \\
\mathbf{X} \xrightarrow{F} & \delta_{B} \\
\mathbf{X}
\end{array}
$$

Definition
$F: \subseteq \mathbf{X} \rightrightarrows \mathbf{Y}$ is called computable (continuous), iff it has a computable (continuous) realizer.

Turing and Medvedev degrees

Definition
Given $p, q \in \mathbb{N}^{\mathbb{N}}$, say $p \leq_{T} q$ iff $\exists F$ computable s.t. $F(q)=p$. Let \mathfrak{T} be the partially ordered set of \leq_{T} equivalence classes.

Definition
Given $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, say $A \leq_{M} B$ iff $\exists F: B \rightarrow A$ computable. Let \mathfrak{M} be the partially ordered set of \leq_{M} equivalence classes.
We understand $\mathfrak{T} \subset \mathfrak{M}$.

The definition of point degree spectra

Definition
Given a represented space $\mathbf{X}=\left(X, \delta_{\mathbf{X}}\right)$, define:

$$
\operatorname{Spec}(\mathbf{X}):=\left\{\delta_{\mathbf{X}}^{-1}(\{x\}) / \equiv_{M} \mid x \in X\right\} \subseteq \mathfrak{M}
$$

Theorem
$\mathbf{X} \cong_{\sigma d} \mathbf{Y} i f f \operatorname{Spec}(\mathbf{X})=\operatorname{Spec}(\mathbf{Y})$.

Dimension theory enters the fray

Definition

Let $\operatorname{dim} \emptyset=-1$ and
$\operatorname{dim}(\mathbf{X})=\inf \{\alpha \mid \forall U \in \mathcal{T} \forall x \in U \exists V \in \mathcal{T} x \in V \subseteq U \wedge \operatorname{dim}(\delta V)<\alpha\}$
We set $\inf \emptyset=\infty$, and understand $\alpha<\infty$ for any ordinal α.
Theorem (e.g. Hurewicz \& Wallmann)
For a Polish space \mathbf{X} the following are equivalent:

1. $\operatorname{dim}(\mathbf{X})<\infty$
2. $\mathbf{X} \cong_{\sigma d}^{c} A$ for some $A \subseteq \mathbb{N}^{\mathbb{N}}$.

Corollary

For a Polish space \mathbf{X} the following are equivalent:

1. $\operatorname{dim}(\mathbf{X})<\infty$
2. $\exists p \in \mathfrak{T} p \times \operatorname{Spec}(\mathbf{X}) \subseteq \mathfrak{T}$

The continuous degrees

Definition (Miller 2004)
Define $\mathfrak{C}:=\operatorname{Spec}\left([0,1]^{\mathbb{N}}\right)$.
For a closed set $A \subseteq\{0,1\}^{\mathbb{N}}$, let $T(A) \subseteq\{0,1\}^{\mathbb{N}}$ be the set of codes of trees for A.
Theorem
$A \in \mathfrak{C}$ iff $\exists B \in \mathcal{A}\left(\{0,1\}^{\mathbb{N}}\right)$ such that $A \equiv_{M} B \equiv_{M} T(B)$.

The enumeration degrees

Recall that $\delta_{\mathcal{O}}: \mathbb{N}^{\mathbb{N}} \rightarrow \mathcal{O}(\mathbb{N})$ defined via
$n \in \delta_{\mathcal{O}}(p) \Leftrightarrow \exists i p(i)=n+1$ is an admissible representation.
Definition
$\mathfrak{E}:=\operatorname{Spec}(\mathcal{O}(\mathbb{N}))$
Theorem (Miller 2004)
$\mathfrak{C} \subsetneq \mathfrak{E}$

The fourth Polish space

Theorem

There is a Polish space \mathbf{P} with $\mathfrak{T} \subsetneq \operatorname{Spec}(\mathbf{P}) \subsetneq \mathfrak{c}$.
This answers the question by Motto-Ros, Schlicht \& Selivanov in the affirmative.

A degree structure \mathfrak{A} ?

Question
Define $\mathfrak{A}:=\bigcup_{\text {Xadmissible }} \operatorname{Spec}(\mathbf{X})$. Is $\mathfrak{E} \subsetneq \mathfrak{A} \subsetneq \mathfrak{M}$?
Question
Is there some admissible \mathbf{X} with $\operatorname{Spec}(\mathbf{X})=\mathfrak{A}$.

Probabilistic computability

Definition (Brattka, Gherardi \& Hölzl 2013)
We call $f: \mathbf{X} \rightarrow \mathbf{Y}$ probabilistically computable, iff there is a computable $F: \subseteq \mathbf{X} \times\{0,1\}^{\mathbb{N}} \rightarrow \mathbf{Y}$ s.t.
$\forall x \in \mathbf{X} \lambda\left(\left\{p \in\{0,1\}^{\mathbb{N}} \mid F(x, p)=f(x)\right\}\right)>0$.
Proposition (Brattka, Gherardi \& Hölzl 2013)
Let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be probabilistically computable and $\operatorname{Spec}(\mathbf{Y}) \subseteq \mathfrak{T}$.
Then f is non-uniformly computable.
Proof.
use Theorem of Sacks

Improving the result

Proposition
Let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be probabilistically computable and $\operatorname{Spec}(\mathbf{Y}) \subseteq \mathfrak{E}$. Then f is non-uniformly computable.

Proof.
use Theorem of Leeuw-Moore-Shannon-Shapiro

Shore Slaman Join Theorem

Let $J: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ be the Turing jump. Then $\mathfrak{L}_{k, n}$ is defined as $\left(J^{-1}\right)^{\circ k} \circ \lim ^{\circ k+n}$.
Theorem
Let $\operatorname{Spec}(\mathbf{Y}) \subseteq \mathfrak{T}$ and $f: \mathbf{X} \rightarrow \mathbf{Y}$ be single-valued. Then if $(\operatorname{id} \times f) \leq_{s w} \mathfrak{L}_{k, n}$, then $\underline{f}: \mathbf{X} \rightarrow \mathbf{Y}^{(n)}$ is non-uniformly computable.

[^0]: ${ }^{2}$ I.e. a name computable from all its other names

