Point degree spectra of represented spaces¹

Arno Pauly

Clare College University of Cambridge

ARA 2014, Pretoria

¹Joint work with Takayuki Kihara.

Two questions

Introducing point degree spectra

The spectra

Applications

Names of real numbers

- ► There is no admissible representation of ℝ with unique names
- But any real number has a well-defined Turing degree (equal to its decimal expansion)
- **Proof:** Make a case distinction $x \in \mathbb{Q}$ vs $x \in \mathbb{R} \setminus \mathbb{Q}$
- Question (Pour-El & Richards): Does every point in a computable metric space have a Turing degree²?

²I.e. a name computable from all its other names

An answer and a new question

Theorem (Miller 2004)

Some elements of $[0, 1]^{\mathbb{N}}$ do not have Turing degrees.

Question (Brattka & Miller)

For which computable Polish spaces do all points have Turing degrees?

Countable isomorphisms and the second question

Definition

Let \cong denote computable isomorphic. Say $\mathbf{X} \cong_{\sigma d} \mathbf{Y}$, iff $\exists (\mathbf{X}_i)_{i \in \mathbb{N}}, (\mathbf{Y}_i)_{i \in \mathbb{N}} \text{ s.t. } \mathbf{X} = \bigcup_{i \in \mathbb{N}} \mathbf{X}_i \text{ and } \mathbf{Y} = \bigcup_{i \in \mathbb{N}} \mathbf{Y}_i \text{ and } \forall i \in \mathbb{N} \mathbf{X}_i \cong \mathbf{Y}_i.$

By ^c the relativized version is distinguished.

Question (Motto-Ros, Schlicht & Selivanov)

Are there more $\cong_{\sigma d}^{c}$ -equivalence classes of Polish spaces than $\mathbb{N}, \{0, 1\}^{\mathbb{N}}, [0, 1]^{\mathbb{N}}$?

Talking about computability

Definition

A *represented space* **X** is a pair (X, δ_X) where *X* is a set and $\delta_X :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ a surjective partial function.

Definition $f :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a realizer of $F :\subseteq \mathbf{X} \rightrightarrows \mathbf{Y}$, iff $(\delta_X(p), \delta_Y(f(p))) \in F$ for all $p \in \delta_X^{-1}(\operatorname{dom}(F))$.

Definition

 $F :\subseteq \mathbf{X} \Rightarrow \mathbf{Y}$ is called computable (continuous), iff it has a computable (continuous) realizer.

Turing and Medvedev degrees

Definition

Given $p, q \in \mathbb{N}^{\mathbb{N}}$, say $p \leq_{\mathcal{T}} q$ iff $\exists F$ computable s.t. F(q) = p. Let \mathfrak{T} be the partially ordered set of $\leq_{\mathcal{T}}$ equivalence classes.

Definition

Given $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, say $A \leq_M B$ iff $\exists F : B \to A$ computable. Let \mathfrak{M} be the partially ordered set of \leq_M equivalence classes.

We understand $\mathfrak{T} \subset \mathfrak{M}$.

The definition of point degree spectra

Definition

Given a represented space $\mathbf{X} = (X, \delta_{\mathbf{X}})$, define:

$$\operatorname{Spec}(\mathbf{X}) := \{ \delta_{\mathbf{X}}^{-1}(\{x\}) / \equiv_M | x \in \mathbf{X} \} \subseteq \mathfrak{M}$$

Theorem $\mathbf{X} \cong_{\sigma d} \mathbf{Y}$ iff $Spec(\mathbf{X}) = Spec(\mathbf{Y})$.

Dimension theory enters the fray

Definition Let dim $\emptyset = -1$ and

 $\dim(\mathbf{X}) = \inf\{\alpha \mid \forall U \in \mathcal{T} \ \forall x \in U \exists V \in \mathcal{T} \ x \in V \subseteq U \land \dim(\delta V) < \alpha\}$

We set $\inf \emptyset = \infty$, and understand $\alpha < \infty$ for any ordinal α .

Theorem (e.g. Hurewicz & Wallmann) For a Polish space **X** the following are equivalent:

1. dim(
$$\mathbf{X}$$
) < ∞

2.
$$\mathbf{X}\cong_{\sigma d}^{c} A$$
 for some $A\subseteq \mathbb{N}^{\mathbb{N}}$.

Corollary

For a Polish space X the following are equivalent:

1. dim(
$$\mathbf{X}$$
) < ∞

2.
$$\exists p \in \mathfrak{T} \ p \times Spec(\mathbf{X}) \subseteq \mathfrak{T}$$

The continuous degrees

Definition (Miller 2004)

Define $\mathfrak{C} := \operatorname{Spec}([0,1]^{\mathbb{N}}).$

For a closed set $A \subseteq \{0, 1\}^{\mathbb{N}}$, let $T(A) \subseteq \{0, 1\}^{\mathbb{N}}$ be the set of codes of trees for A.

Theorem

 $A \in \mathfrak{C} \text{ iff } \exists B \in \mathcal{A}(\{0,1\}^{\mathbb{N}}) \text{ such that } A \equiv_M B \equiv_M T(B).$

The enumeration degrees

Recall that $\delta_{\mathcal{O}} : \mathbb{N}^{\mathbb{N}} \to \mathcal{O}(\mathbb{N})$ defined via $n \in \delta_{\mathcal{O}}(p) \Leftrightarrow \exists i \ p(i) = n + 1$ is an admissible representation. Definition $\mathfrak{E} := \operatorname{Spec}(\mathcal{O}(\mathbb{N}))$ Theorem (Miller 2004) $\mathfrak{E} \subseteq \mathfrak{E}$

The fourth Polish space

Theorem There is a Polish space \mathbf{P} with $\mathfrak{T} \subsetneq Spec(\mathbf{P}) \subsetneq \mathfrak{C}$.

This answers the question by Motto-Ros, Schlicht & Selivanov in the affirmative.

A degree structure \mathfrak{A} ?

Question Define $\mathfrak{A} := \bigcup_{\mathbf{X} \text{admissible}} Spec(\mathbf{X})$. Is $\mathfrak{E} \subsetneq \mathfrak{A} \subsetneq \mathfrak{M}$? Question

Is there some admissible **X** with $Spec(\mathbf{X}) = \mathfrak{A}$.

Probabilistic computability

Definition (Brattka, Gherardi & Hölzl 2013)

We call $f : \mathbf{X} \to \mathbf{Y}$ probabilistically computable, iff there is a computable $F :\subseteq \mathbf{X} \times \{0, 1\}^{\mathbb{N}} \to \mathbf{Y}$ s.t. $\forall x \in \mathbf{X} \ \lambda(\{p \in \{0, 1\}^{\mathbb{N}} \mid F(x, p) = f(x)\}) > 0.$

Proposition (Brattka, Gherardi & Hölzl 2013)

Let $f : \mathbf{X} \to \mathbf{Y}$ be probabilistically computable and $Spec(\mathbf{Y}) \subseteq \mathfrak{T}$. Then f is non-uniformly computable.

Proof.

use Theorem of Sacks

Improving the result

Proposition

Let $f : \mathbf{X} \to \mathbf{Y}$ be probabilistically computable and $Spec(\mathbf{Y}) \subseteq \mathfrak{E}$. Then f is non-uniformly computable.

Proof.

use Theorem of Leeuw-Moore-Shannon-Shapiro

Shore Slaman Join Theorem

Let $J : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ be the Turing jump. Then $\mathfrak{L}_{k,n}$ is defined as $(J^{-1})^{\circ k} \circ \lim^{\circ k+n}$.

Theorem Let $Spec(\mathbf{Y}) \subseteq \mathfrak{T}$ and $f : \mathbf{X} \to \mathbf{Y}$ be single-valued. Then if $(id \times f) \leq_{sW} \mathfrak{L}_{k,n}$, then $\underline{f} : \mathbf{X} \to \mathbf{Y}^{(n)}$ is non-uniformly computable.