
INTUNDLA LODGE RETREAT: OPEN PROBLEMS

1. De Beer

Background: This question concerns the speed of convergence of Birkhoff’s
theorem.

Let X := (X,Σ, µ) be a standard Borel space and let T be a measure-
preserving automorphism of Σ such that the dynamical system (X,T ) is
ergodic (i.e. there are no non-trivial invariant Borel subsets). Birkhoff tells
us that if f ∈ L1(X,µ),

(1)
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n

n∑
i=1

f(T ix)−
∫
f dµ

∣∣→ 0

for µ-a.e. x ∈ X. Now as shown in the paper by del Junco & Rosenblatt (as
one example out of several), this convergence can happen arbitrarily slowly.

I am interested in the positive direction. The main reasons for this are
that there are direct applications in number theory, as well as applications to
the problem of finding new invariants to distinguish between non-isomorphic
dynamical systems.

There are two distinct variants of the question. Let (X,T ) be a fixed
dynamical system and (an) some monotone decreasing sequence of positive
reals with limit 0.

Question 1.1. Find a dense subspace R ⊂ L1(X,µ) for which (??) con-
verges to 0 faster than (an) for µ-a.e. x ∈ X and f ∈ R.

Question 1.2.

Given some f ∈ L1(X,µ), consider the sets A ⊆ X for which (??) con-
verges to 0 faster than (an) for x ∈ A. Is it possible to describe some such
A in terms of f?

2. Davie

Question 2.1. Suppose in the setting of Birkhoff’s theorem, we have a
computable operator T and a computable function. What is the speed of
convergence when starting from a Martin-Löf- random point?

3. Freer

Background: Recall that a homogeneous structure is highly homogeneous
when its age has one structure of each finite size, up to isomorphism. For
example, (Q, <) is highly homogeneous, because although there are n!-many
linear orderings on [n], they are all isomorphic.

Question 3.1. Is there a proof that high homogeneity of a structure implies
that it has trivial definable closure (equivalently, that its age has the Strong
Amalgamation Property) without using Peter Cameron’s 1976 characteriza-
tion of the 5 reducts of (Q, <)?
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The following proof idea of Arno is a good start, and illustrates the key
difficulty:

Suppose ab witnesses the nontrivial definable closure of a structure M,
i.e., every automorphism of M fixing the tuple a pointwise also fixes an
element b 6∈ a. Let c 6∈ ab be any other element ofM. Because no automor-
phism that fixes a pointwise moves b to c, we have tp(c/a) 6= tp(b/a). In
particular, ab and ac are nonisomorphic tuples of the same size.

The problem is as follows: While ab and ac are nonisomorphic as tuples in
that order, there may be some isomorphism as unordered tuples, e.g., a0a1b
and a0ca1 may be isomorphic ordered tuples. In fact, even this can’t happen,
but the only proof we know is either much more complicated combinatorially
or else makes use of Cameron and Ackerman–Freer–Patel. The goal is to
find a simple combinatorial argument that no permutation of ac can be
isomorphic to ab.

Question 3.2. Suppose the isomorphism class in StrL of a countable struc-
ture in a countable language L admits continuum-many ergodic probability
measures that are S∞-invariant (with respect to the logic action). How
many such ergodic invariant measures come from fundamentally different
Borel L-structures, in the sense that they could not be obtained as random
substructures of the same Borel structure with points chosen m-i.i.d. for
different nondegenerate continuous probability measures m (on the domain
of the Borel structure)?

(Note that not all ergodic invariant measures must arise in this way,
by sampling substructures of a Borel L-structure, though when there are
continuum-many ergodic invariant measures there are continuum-many of
this form.)

4. Mukeru

Background: Fractional Brownian motion is an interesting stochastic pro-
cess with many applications in engineering, telecommunications, financial
mathematics,... Compared to the classical Brownian motion process, very
little is known about its properties.

Question 4.1. Assume that X = {X(t) : t ≥ 0} is a fractional Brownian
motion of Hurst index 0 < H < 1. It is well known that the maximum
function M(t) = sup{X(s) : s ≤ t} has the same distribution as |X(t)| for
H = 1/2 (that is, when X is the classical Brownian motion). Nothing is
known for the general case H 6= 1/2. Even the mean E[M(t)] is not known.
Same problem for the local times of fractional Brownian motion. This is an
interesting open problem with significant impact on various applications of
fractional Brownian motion.

Question 4.2. It has been obtained by different authors that some al-
most surely properties of Brownian motion are reflected in every complex
oscillations (algorithmically random Brownian motion). For many other
properties, the problem remains open. For example, “does every complex
oscillation admit local times?”



INTUNDLA LODGE RETREAT: OPEN PROBLEMS 3

5. Nies

We say that Z ∈ 2N is density random if Z is ML-random and every Π0
1

class P with P 3 Z has Lebesgue density 1 at Z. This is the same as: every
left-r.e. Martingale converges along Z.
z is a weak Birkhoff point of T if limN

∑
i<N f ◦ T i(z) exists.

Question 5.1. Let T be a computable measure-preserving transformation
on Cantor space. Let f be lower semicomputable. Is every density random
a weak Birkhoff point of f?

If f = 1U for an effectively open U then ML-randomness of z suffices.
A metric measure space is a Polish metric space (M,d) with a Borel

probability measure µ.

Question 5.2. Understand Gromov’s obvious Lemma (2006 Book, 3 1/2
.6): given a m.m. space M . Let (xi) be a sequence in M . Then either (xi)
has a convergent subsequence, or there is δ > 0 such that µBδ(xi)→ 0.

Idea: The second alternative should say that there is some δ > 0 with
lim infi µBδ(xi) = 0. For a counterexample, suppose that M =

⊔
nXn where

each Xn is noncompact with (e.g.) diameter 2−n, d(x, y) = 2 for all x ∈ Xm,
y ∈ Xn with m 6= n, and (e.g.) µ(Xn) = 2−n. Suppose that h : ω × ω → ω
is a bijection and choose (xi) such that (xh(n,j))j is a discrete sequence in
Xn for all n.

The proof of the weaker claim is straightforward. Assuming that the
second alternative fails. We first claim that for every infinite I ⊆ ω and
every δ > 0, there is an infinite I ′ ⊆ I of diameter ≤ δ. To see this,
suppose that δ > 0 and let f(i, j) = 0 for i 6= j in I if Bδ(xi) ∩ Bδ(xj) = ∅
and f(i, j) = 1 otherwise. By Ramsey’s theorem, there is an infinite f -
homogeneous I ′ ⊆ I. If f is constant 0, then µ(M) is infinite, contradicting
the assumption. So f is constant 1 on I ′.

Using this, we could try to inductively construct a sequence I0 ⊇ I1 ⊇
of infinite sets with diameters ≤ 1

n and in := min In < min In+1 for all n.
Then (xin)n is a Cauchy subsequence of (xi). Detail needed.

Gromov/Vershik have shown that measure preserving isometry of m.m.
spaces is smooth, i.e., Borel reducible to identity on R.

Question 5.3. Suppose we are given computable metric measure spaces
M0,M1 that are measure preserving isometric. Show that there is a low
measure preserving isometry.

Note: Melnikov and Nies have an example of such M0,M1 where every
measure -preserving isometry is PA complete.

6. Schlicht

Background: The Gromov-Hausdorff distance dGH(X,Y ) of two Polish
spaces X,Y is defined as the infimum over the Hausdorff distances of the
images of X,Y under isometric embeddings into arbitrary metric spaces Z.
Two Polish spaces X,Y are EGH -equivalent if dGH(X,Y ) = 0.



4 INTUNDLA LODGE RETREAT: OPEN PROBLEMS

Question 6.1. Does E1 (equality up to finite error on sequences of reals)
Borel reduce to EGH on Polish spaces?

Question 6.2. Is there an EGH -equivalence class of Polish spaces which
contains exactly n equivalence classes for some n ≥ 2?

Question 6.3. In the constructible universe L, is there a Σ1
2 or even Π1

1

counterexample to Frostman’s Lemma?

Answer: A Π1
1 counterexample can be constructed in L using the Spector-

Gandy theorem.

Question 6.4. Assuming projective determinacy, does Frostman’s Lemma
hold for all projective sets?

Question 6.5. Suppose that F is the Fraisse limit of a Ramsey class of not
necessarily rigid finite structures. Is Aut(F ) amenable?

Note: It might follow from results mentioned in Cameron Freer’s talk that
Aut(F ) does not have to be amenable.

7. Pauly

Question 7.1. Given some computable Aut(Q)-flow on a computably com-
pact computable metric space, how hard is it to find a fixed point? Can we
ensure PA complete?

Note that there is always a low one.

Question 7.2. Consider the maps dimH : A([0, 1])→ [0, 1] and FractionalDensity :
2N → [0, 1]. One can quite easily show lim ≤W dimH ≤W lim ? lim and
lim ≤W FractionalDensity ≤W lim ? lim. But what are the precise classifi-
cations? Paul Potgieter’s (2013 paper on arithmetic progressions, involving
nonstandard analysis) construction may show FractionalDensity ≤W dimH.

Question 7.3. Fix some dynamical system. Consider the (partial, multi-
valued) map R mapping a function f and a starting point to the rate of
convergence in Birkhoff’s theorem. How hard is R? There are examples
where the rate of convergence may be arbitrarily bad, but R is continuous,
and examples where CN × dMLR is reducible to R.

8. Fouché

If G is a topological group we write Cub(G) for the C∗-algebra consisting
of the uniformly continuous bounded complex-valued functions on G. We
denote by Γ the Gelfand functor on C∗-algebras.

A topological group is non-archimedean if its unit element has a system
of neighbourhoods consisting of open subgroups of the group.

If D is a locally compact space, we write β(D) for its Stone-Cech com-
pactification. Note that if D is discrete, then β(D) can be thought of as the
space of ultrafilters on D, or as Γ(`∞(D)), the space of characters on the
C∗-algebra `∞(D).

If H is a subgroup of G we write H\G for the space of right-cosets Hσ.
If H is open in G then the strongest topology rendering the natural map
G→ (H\G) continuous, is discrete.
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If G is non-archimedean, it can be shown that

ΓCub(G) ≈ lim←−−−−
H≤oG

β(H\G),

where the inverse limit is over all the open subgroups of G.

Question 8.1. Let G = Aut(Q). Prove, without invoking Ramsey’s the-
orem (finite version), the existence of a G-invariant element on ΓCub(G) .
More generally, give a topological proof of the classical Ramsey theorem.

Question 8.2. Find an explicit embedding of the universal minimal S∞-
flow M(S∞) into ΓCub(S∞). Note that one can identify M(S∞) with the
space LO of linear orders on N topologised via its embedding into {0, 1}N×N.

Question 8.3. Let L be the class of finite structures of the form (L,<),
where L is a finite lattice and < is a linear extension of L. Write L for the
Fräıssé-limit of L. Is the automorphism group of L extremely amenable?
Or equivalently, is L Ramsey? My conjecture is that the Ramsey degree of
a finite lattice L is given by

e(L)

|Aut(L)|
,

where e(L) is the number of linear extensions of L.
Let L0 be the class of finite lattices and L0 its Fräıssé limit. Is Aut(L0)

amenable?

Question 8.4. Calculate the Ramsey degrees of finite graphs, for exam-
ple, in a purely dynamical-topological way by using the Kechris-Pestov-
Todorcevic (KPT) dynamical interpretation of Ramsey degrees. (This prob-
lem is due to KPT, but deserves repeating.)

Question 8.5. Determine the Weihrauch complexity of identifying the Fourier
dimension of a compact subset of the reals.

The definition of the Fourier dimension of a compact set E of reals denoted
by dimf (E) is as follows:

dimf (E) = sup{α : ∃µ∈M+(E) |µ̂|2(u)� |u|−α}
Also recall that Hausdorff dimension dimh has the following Fourier in-

terpretion:

dimh(E) = sup{α : ∃µ∈M+(E)

∫
R
|µ̂(u)|2|u|α du

|u|
<∞}.


