Coarse Reducibility and Randomness

Joint work with D. Hirschfeldt, C. G. Jockusch, Jr. and P. Schupp.

Asymptotic density

Definition. Let $A \subseteq \omega$. Then we define:

$$
\begin{aligned}
& \bar{\rho}(A)=\lim \sup _{n} \frac{|A \cap[0, n)|}{n} \\
& \underline{\rho}(A)=\liminf \frac{|A \cap[0, n)|}{n} .
\end{aligned}
$$

If $\bar{\rho}(A)=\underline{\rho}(A)$, then $\rho(A)=\bar{\rho}(A)$.

Coarse reducibility

Definition. A coarse description of A is a set $D \subseteq \omega$ such that $\rho(A \triangle D)=0$.

Definition. We say that $A \subseteq \omega$ is coarsely computable if A has a computable coarse description.

Example. (Jockusch-Schupp) For every finitely generated group, the word problem is coarsely computable.

Definition. We say that $A \leq_{c} B$ if there is a Turing functional Φ such that for any coarse description D of $B, \Phi(D)$ is a coarse description of A (i.e. if the set of coarse descriptions of A Medvedev-reduces to the set of coarse descriptions of B).

Bases for randomness

One would naively expect for non-computable A : if X is A-random, then X does not compute A.

Definition. We call A a base for 1-randomness if there exists an $X \geq_{T} A$ which is A-random.

If A is K-trivial, then it is a base for 1 -randomness by Kučera-Gács.
Theorem. (Hirschfeldt, Nies and Stephan) A set A is a base for 1 -randomness if and only if A is K-trivial.

An embedding of the Turing degrees

We can embed the Turing degrees into the coarse degrees. First, let $I_{n}=\left[2^{n}, 2^{n+1}\right)$.

Let $F(A)$ repeat A infinitely often, i.e.
$F(A)=\{\langle n, i\rangle \mid n \in A \wedge i \in \omega\}$.
Finally, let $E(A)=\bigcup_{m \in F(A)} I_{m}$.
Then E is an embedding of the Turing degrees into the coarse degrees.

Coarse bases for randomness

One could ask once more: is it possible for non-computable A that X is A-random, yet $E(A) \leq_{c} X$?

Note that, if $E(A) \leq_{c} X$, then every coarse representation of X computes A non-uniformly, i.e. $\{A\}$ Muchnik-reduces to the set of coarse representations of X. Thus, we could also ask the slightly weaker question, if we let

$$
X^{c}=\left\{A \subseteq \omega \mid \rho(X \triangle D)=0 \rightarrow A \leq_{T} D\right\}
$$

is it the case $X^{c}=\mathbf{0}$ for 1 -random X ?

Coarse bases for randomness

Theorem. (Hirschfeldt et al.) If X is 1-random, then every element of X^{c} is K-trivial.

Corollary. (Hirschfeldt et al.) If X is weakly 2-random, then $X^{c}=\mathbf{0}$.
Theorem. (Hirschfeldt et al.) If $X \leq_{T} \emptyset^{\prime}$ is 1-random, then $X^{c} \neq \mathbf{0}$.

Coarse bases for randomness

Definition. (Hirschfeldt et al.) Let $n \in \omega$, let $X \subseteq \omega$ and let $0 \leq i<n$. Then we let $X_{i}^{n}(k)=X(n k+i)$. Furthermore, we let $X_{\neq i}^{n}=\oplus_{j \neq i} X_{j}^{n}$.

Lemma. (Hirschfeldt et al.) Let $n \in \omega, X \subseteq \omega 1$-random and A non-K-trivial. Then there is an $0 \leq i<n$ such that $X_{\neq i}^{n} \not ¥_{T} A$.

Proof. Towards a contradiction, assume every $X_{\neq i}^{n}$ computes A. Then X certainly computes A. We will show that X is A-random, which is a contradiction. We have:
$X_{0}^{n} 1$-random in $X_{\neq 0}^{n} \Rightarrow X_{0}^{n} 1$-random in A.
$X_{1}^{n} 1$-random in $X_{\neq 1}^{n} \Rightarrow X_{1}^{n} 1$-random in $A \oplus X_{0}^{n} \Rightarrow X_{0}^{n} \oplus X_{1}^{n}$ 1-random in A.

Coarse bases for randomness

Theorem. (Hirschfeldt et al.) If X is 1-random, then every element of X^{c} is K-trivial.

Proof. (Sketch) Let A be non-K-trivial and let X be 1-random. We will construct a coarse description D of X which does not compute A. In step e, we diagonalise against Φ_{e}. Let $0 \leq i \leq 2^{e+1}$ be such that $X_{\neq i}^{2 e+1} \not ¥_{T} A$, which exists by the lemma. Then there are two options: either Φ_{e} splits along $X_{\neq i}^{2 e+1}$, in which case there is a finite string σ such that D defined by

$$
D(j)= \begin{cases}X(j) & \text { if } j \neq i \bmod 2^{e+1} \\ \sigma\left(2^{-e-1}(j-i)\right) \text { otherwise } & \end{cases}
$$

does not compute A. Otherwise, we can force divergence in a similar way.

Coarse bases for randomness

Theorem. (Hirschfeldt et al.) If X is 1 -random, then every element of X^{c} is K-trivial.

Proof. (Sketch) In both cases, $\rho(X \triangle D) \leq \frac{1}{2^{e+1}}$ and we have only defined D on a coinfinite set. We use the remaining space in the later steps.

A question

Thus, we have seen: $X^{c} \subseteq \mathcal{K}$ for every 1 -random X, while $X^{c} \neq 0$ for $X \leq_{T} \emptyset^{\prime}$.

Question. (Hirschfeldt) Is every K-trivial A in X^{c} for some 1-random X ?

I will sketch why this is false.

Oberwolfach randomness

Introduced by Bienvenu, Greenberg, Kučera, Nies and Turetsky to study the covering problem. It lies between difference randomness and balanced randomness.

Theorem. (Bienvenu et al.) There is a K-trivial set A such that no set $X \geq_{T} A$ is Oberwolfach random. In fact, the upper cone of A is captured by a single Oberwolfach test.

In particular, we have:
Corollary. There is a K-trivial set A such that the upper cone of A is captured by a single balanced test.

Computing from parts of a 1-random

Theorem. (Bienvenu et al.) There is a K-trivial set A such that for every 1 -random X, either A is not computable from the left half X_{0} or it is not computable from the right half X_{1}.

We generalise this result (using a different proof) as follows:
Theorem. There is a K-trivial set A such that for every 1 -random X and every $n \in \omega$ there exists an $0 \leq i<n$ such that $X_{\neq i}^{n}$ does not compute A.

Assuming this fact, the answer to the question follows by a similar argument as the one which showed that $X^{c} \subseteq \mathcal{K}$.

Computing from all parts of a 1-random

Theorem. There is a K-trivial set A such that for every $n \in \omega$ there exists an $0 \leq i<n$ such that $X_{\neq i}^{n}$ does not compute A.
Proof. Let A be a K-trivial whose upper cone is captured by a balanced test, say $\left(G_{m, s}\right)_{m \in \omega}$. We may assume G_{m} changes at most 2^{m} times. Fix $n \in \omega$. Let

$$
H_{m, s}=\left\{X \mid \forall 0 \leq i<n\left(X_{\neq i}^{n} \in G_{m, s}\right)\right\} .
$$

Now, let $U_{m}=\bigcup_{s \in \omega} H_{m, s}$. We claim: $\left(U_{m}\right)_{m \in \omega}$ is a Solovay test.
Lemma. (Loomis-Whitney inequality) Let $U \subseteq[0,1]^{n}$ be an open set. Then, if we let $\pi_{i}:[0,1]^{n} \rightarrow[0,1]^{n-1}$ be the projection

$$
\pi_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)
$$

we have:

$$
\lambda(U)^{n-1} \leq \lambda\left(\pi_{1}(U)\right) \ldots \lambda\left(\pi_{n}(U)\right)
$$

Computing from all parts of a 1-random

Theorem. There is a K-trivial set A such that for every $n \in \omega$ there exists an $0 \leq i<n$ such that $X_{\neq i}^{n}$ does not compute A.
Proof. Let A be a K-trivial whose upper cone is captured by a balanced test, say $\left(G_{m, s}\right)_{m \in \omega}$. We may assume G_{m} changes at most 2^{m} times. Fix $n \in \omega$. Let

$$
H_{m, s}=\left\{X \mid \forall 0 \leq i<n\left(X_{\neq i}^{n} \in G_{m, s}\right)\right\} .
$$

Now, let $U_{m}=\bigcup_{s \in \omega} H_{m, s}$. We claim: $\left(U_{m}\right)_{m \in \omega}$ is a Solovay test.
Lemma. (Loomis-Whitney inequality) Let $U \subseteq[0,1]^{n}$ be an open set. Then, if we let $\pi_{i}:[0,1]^{n} \rightarrow[0,1]^{n-1}$ be the projection

$$
\pi_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)
$$

we have:

$$
\lambda(U)^{n-1} \leq \lambda\left(\pi_{1}(U)\right) \ldots \lambda\left(\pi_{n}(U)\right)
$$

Computing from all parts of a 1-random

Theorem. There is a K-trivial set A such that for every $n \in \omega$ there exists an $0 \leq i<n$ such that $X_{\neq i}^{n}$ does not compute A.

Proof. Therefore, we have:

$$
\lambda\left(H_{m, s}\right) \leq \lambda\left(G_{m, s}\right)^{\frac{n}{n-1}} \leq 2^{\frac{-m n}{n-1}}
$$

and thus

$$
\lambda\left(U_{m}\right) \leq 2^{m} 2^{\frac{-m n}{n-1}}=\left(2^{\frac{1}{n-1}}\right)^{-m} .
$$

References

- Carl G. Jockusch, Jr. and Paul Schupp, Generic computability, Turing degrees, and asymptotic density, Journal of the London Mathematical Society 85 (2) (2012), 472-490.
- Rodney G. Downey, Carl G. Jockusch, Jr. and Paul Schupp, Asymptotic density and computably enumerable sets, J. Mathematical Logic, to appear.

